GPU-Accelerated Monte Carlo Simulation for a Single-Photon Underwater Lidar
The Monte Carlo (MC) simulation, due to its ability to accurately simulate the backscattered signal of lidar, plays a crucial role in the design, optimization, and interpretation of the backscattered signal in lidar systems. Despite the development of several MC models for lidars, a suitable MC simu...
Saved in:
| Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 21; p. 5245 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.11.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2072-4292 2072-4292 |
| DOI | 10.3390/rs15215245 |
Cover
| Abstract | The Monte Carlo (MC) simulation, due to its ability to accurately simulate the backscattered signal of lidar, plays a crucial role in the design, optimization, and interpretation of the backscattered signal in lidar systems. Despite the development of several MC models for lidars, a suitable MC simulation model for underwater single-photon lidar, which is a vital ocean remote sensing technique utilized in underwater scientific investigations, obstacle avoidance for underwater platforms, and deep-sea environmental exploration, is still lacking. There are two main challenges in underwater lidar simulation. Firstly, the simulation results are significantly affected by near-field abnormal signals. Secondly, the simulation process is time-consuming due to the requirement of a high number of random processes to obtain reliable results. To address these issues, an algorithm is proposed to minimize the impacts of abnormal simulation signals. Additionally, a graphics processing unit (GPU)-accelerated semi-analytic MC simulation with a compute unified device architecture is proposed. The performance of the GPU-based program was validated using 109 photons and compared to a central processing unit (CPU)-based program. The GPU-based program achieved up to 68 times higher efficiency and a maximum relative deviation of less than 1.5%. Subsequently, the MC model was employed to simulate the backscattered signal in inhomogeneous water using the Henyey–Greenstein phase functions. By utilizing the look-up table method, simulations of backscattered signals were achieved using different scattering phase functions. Finally, a comparison between the simulation results and measurements derived from an underwater single-photon lidar demonstrated the reliability and robustness of our GPU-based MC simulation model. |
|---|---|
| AbstractList | The Monte Carlo (MC) simulation, due to its ability to accurately simulate the backscattered signal of lidar, plays a crucial role in the design, optimization, and interpretation of the backscattered signal in lidar systems. Despite the development of several MC models for lidars, a suitable MC simulation model for underwater single-photon lidar, which is a vital ocean remote sensing technique utilized in underwater scientific investigations, obstacle avoidance for underwater platforms, and deep-sea environmental exploration, is still lacking. There are two main challenges in underwater lidar simulation. Firstly, the simulation results are significantly affected by near-field abnormal signals. Secondly, the simulation process is time-consuming due to the requirement of a high number of random processes to obtain reliable results. To address these issues, an algorithm is proposed to minimize the impacts of abnormal simulation signals. Additionally, a graphics processing unit (GPU)-accelerated semi-analytic MC simulation with a compute unified device architecture is proposed. The performance of the GPU-based program was validated using 109 photons and compared to a central processing unit (CPU)-based program. The GPU-based program achieved up to 68 times higher efficiency and a maximum relative deviation of less than 1.5%. Subsequently, the MC model was employed to simulate the backscattered signal in inhomogeneous water using the Henyey–Greenstein phase functions. By utilizing the look-up table method, simulations of backscattered signals were achieved using different scattering phase functions. Finally, a comparison between the simulation results and measurements derived from an underwater single-photon lidar demonstrated the reliability and robustness of our GPU-based MC simulation model. The Monte Carlo (MC) simulation, due to its ability to accurately simulate the backscattered signal of lidar, plays a crucial role in the design, optimization, and interpretation of the backscattered signal in lidar systems. Despite the development of several MC models for lidars, a suitable MC simulation model for underwater single-photon lidar, which is a vital ocean remote sensing technique utilized in underwater scientific investigations, obstacle avoidance for underwater platforms, and deep-sea environmental exploration, is still lacking. There are two main challenges in underwater lidar simulation. Firstly, the simulation results are significantly affected by near-field abnormal signals. Secondly, the simulation process is time-consuming due to the requirement of a high number of random processes to obtain reliable results. To address these issues, an algorithm is proposed to minimize the impacts of abnormal simulation signals. Additionally, a graphics processing unit (GPU)-accelerated semi-analytic MC simulation with a compute unified device architecture is proposed. The performance of the GPU-based program was validated using 10⁹ photons and compared to a central processing unit (CPU)-based program. The GPU-based program achieved up to 68 times higher efficiency and a maximum relative deviation of less than 1.5%. Subsequently, the MC model was employed to simulate the backscattered signal in inhomogeneous water using the Henyey–Greenstein phase functions. By utilizing the look-up table method, simulations of backscattered signals were achieved using different scattering phase functions. Finally, a comparison between the simulation results and measurements derived from an underwater single-photon lidar demonstrated the reliability and robustness of our GPU-based MC simulation model. The Monte Carlo (MC) simulation, due to its ability to accurately simulate the backscattered signal of lidar, plays a crucial role in the design, optimization, and interpretation of the backscattered signal in lidar systems. Despite the development of several MC models for lidars, a suitable MC simulation model for underwater single-photon lidar, which is a vital ocean remote sensing technique utilized in underwater scientific investigations, obstacle avoidance for underwater platforms, and deep-sea environmental exploration, is still lacking. There are two main challenges in underwater lidar simulation. Firstly, the simulation results are significantly affected by near-field abnormal signals. Secondly, the simulation process is time-consuming due to the requirement of a high number of random processes to obtain reliable results. To address these issues, an algorithm is proposed to minimize the impacts of abnormal simulation signals. Additionally, a graphics processing unit (GPU)-accelerated semi-analytic MC simulation with a compute unified device architecture is proposed. The performance of the GPU-based program was validated using 10[sup.9] photons and compared to a central processing unit (CPU)-based program. The GPU-based program achieved up to 68 times higher efficiency and a maximum relative deviation of less than 1.5%. Subsequently, the MC model was employed to simulate the backscattered signal in inhomogeneous water using the Henyey–Greenstein phase functions. By utilizing the look-up table method, simulations of backscattered signals were achieved using different scattering phase functions. Finally, a comparison between the simulation results and measurements derived from an underwater single-photon lidar demonstrated the reliability and robustness of our GPU-based MC simulation model. |
| Audience | Academic |
| Author | Shangguan, Mingjia Wang, Yuanlun Yang, Zhifeng Li, Sihui Liao, Yupeng Lin, Zaifa |
| Author_xml | – sequence: 1 givenname: Yupeng surname: Liao fullname: Liao, Yupeng – sequence: 2 givenname: Mingjia surname: Shangguan fullname: Shangguan, Mingjia – sequence: 3 givenname: Zhifeng surname: Yang fullname: Yang, Zhifeng – sequence: 4 givenname: Zaifa surname: Lin fullname: Lin, Zaifa – sequence: 5 givenname: Yuanlun surname: Wang fullname: Wang, Yuanlun – sequence: 6 givenname: Sihui surname: Li fullname: Li, Sihui |
| BookMark | eNp9UV1rFDEUHaSCtfbFXzDgiyhTM_mazOOyaC2uWNB9DreZmzVLNlkzM5T-e287olLEJJBwOOdw7snz6iTlhFX1smUXQvTsXRlbxelI9aQ65azjjeQ9P_nr_aw6H8c9oyVE2zN5Wn26vN42K-cwYoEJh_pzThPWaygx11_DYY4whZxqn0sNBKRdxOb6e54I26YByy2pSr0JA5QX1VMPccTzX_dZtf3w_tv6Y7P5cnm1Xm0aJ3o9NR1XHRrggFxLwY3wnb7hg9Za3VB8MIMDI1ULXrrOc6NbNH2nFaih7ZXR4qy6WnyHDHt7LOEA5c5mCPYByGVnoUzBRbS97DvvjQHHlGQGTYtS8YFJLZEz6cnr7eI1pyPc3UKMvw1bZu9rtX9qJfbrhX0s-ceM42QPYaTuIiTM82gFk0x2huom6qtH1H2eS6JeLDfGCIrD7ke5WFg7oLQh-TwVcLQHPARH3-sD4auOOhOqVy0J2CJwJY9jQW9dmB6-iIQh_jv0m0eS_0z4E0KrsHY |
| CitedBy_id | crossref_primary_10_1142_S1793545824300040 crossref_primary_10_3390_rs16132429 crossref_primary_10_3788_CJL240615 crossref_primary_10_1109_TGRS_2025_3538989 crossref_primary_10_1364_OE_543467 crossref_primary_10_1016_j_optcom_2024_131157 |
| Cites_doi | 10.1175/JTECH-D-13-00014.1 10.1364/AO.38.002384 10.3390/rs12172820 10.1007/BF02742452 10.1016/0169-2607(95)01640-F 10.3390/rs12060986 10.1364/AO.37.001596 10.1364/AO.488872 10.1364/AO.37.001589 10.1364/OE.18.006811 10.1016/j.optlastec.2018.09.028 10.1364/AO.21.002996 10.1016/0079-6611(91)90004-6 10.1086/144246 10.1364/AO.22.002272 10.1134/S1024856017010110 10.3389/fmars.2019.00251 10.1364/OE.493660 10.1109/LGRS.2023.3274449 10.1109/TGRS.2019.2926891 10.3390/app9010048 10.1364/OE.24.019322 10.1364/OE.406262 10.3390/s22041379 10.1146/annurev-marine-121916-063335 10.1364/AO.51.007690 10.1088/1464-4258/8/5/008 10.1364/AO.55.007468 10.21236/AD0753474 10.1364/OL.42.003541 10.1016/j.rse.2016.07.010 10.3390/rs15030684 10.3390/rs14143351 10.1117/1.2950319 10.1016/j.jqsrt.2019.106638 10.1364/OE.487129 10.1088/0034-4885/43/9/002 10.1364/AO.20.003653 10.1134/S1024856011050083 10.1016/j.rse.2020.112047 10.1364/OE.25.014611 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.3390/rs15215245 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_9497ff88ac05408e81e452d0464e204f 10.3390/rs15215245 A772535951 10_3390_rs15215245 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c396t-7257e8a2ae2643283f76b2d6665b215a8dca8451af4c7f2861e89765a5d195863 |
| IEDL.DBID | UNPAY |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:34:48 EDT 2025 Tue Aug 19 18:36:42 EDT 2025 Thu Oct 02 05:07:49 EDT 2025 Fri Jul 25 09:34:49 EDT 2025 Mon Oct 20 16:57:45 EDT 2025 Thu Apr 24 23:04:04 EDT 2025 Thu Oct 16 04:28:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c396t-7257e8a2ae2643283f76b2d6665b215a8dca8451af4c7f2861e89765a5d195863 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-4292/15/21/5245/pdf?version=1699172254 |
| PQID | 2888354006 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9497ff88ac05408e81e452d0464e204f unpaywall_primary_10_3390_rs15215245 proquest_miscellaneous_3040478072 proquest_journals_2888354006 gale_infotracacademiconefile_A772535951 crossref_citationtrail_10_3390_rs15215245 crossref_primary_10_3390_rs15215245 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Shangguan (ref_14) 2017; 42 James (ref_19) 1980; 43 Liu (ref_28) 2019; 237 Poole (ref_32) 1981; 20 Jamet (ref_2) 2019; 6 Kokhanenko (ref_35) 2011; 24 ref_10 Pellen (ref_3) 2012; 51 Shangguan (ref_17) 2023; 62 Krekov (ref_30) 1998; 37 Ren (ref_33) 2010; 18 Mitchell (ref_11) 2014; 31 ref_39 ref_16 Yin (ref_23) 2016; 184 Liu (ref_20) 2019; 57 Ma (ref_4) 2020; 250 Ventura (ref_12) 2020; 115 Walker (ref_18) 1999; 38 Alerstam (ref_31) 2008; 13 Wang (ref_43) 1995; 47 Shangguan (ref_7) 2023; 31 Shangguan (ref_6) 2023; 20 Liang (ref_22) 2006; 8 Morel (ref_38) 1991; 26 Gordon (ref_24) 1982; 21 Yu (ref_13) 2017; 25 Kameda (ref_37) 1998; 54 Chen (ref_26) 2019; 111 ref_25 Li (ref_34) 2016; 55 Yang (ref_36) 2020; 28 Krekov (ref_29) 1998; 37 ref_42 ref_41 Hoge (ref_5) 1983; 22 Shangguan (ref_15) 2016; 24 Maccarone (ref_9) 2023; 31 Hostetler (ref_1) 2018; 10 ref_27 Prigarin (ref_21) 2017; 30 ref_8 Henyey (ref_40) 1941; 93 |
| References_xml | – volume: 31 start-page: 681 year: 2014 ident: ref_11 article-title: Ranging through shallow semitransparent media with polarization lidar publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-13-00014.1 – volume: 38 start-page: 2384 year: 1999 ident: ref_18 article-title: Lidar equations for turbid media with pulse stretching publication-title: Appl. Opt. doi: 10.1364/AO.38.002384 – ident: ref_25 doi: 10.3390/rs12172820 – volume: 54 start-page: 509 year: 1998 ident: ref_37 article-title: Chlorophyll biomass off Sanriku, northwestern Pacific, estimated by Ocean Color and Temperature Scanner (OCTS) and a vertical distribution model publication-title: J. Oceanogr. doi: 10.1007/BF02742452 – volume: 47 start-page: 131 year: 1995 ident: ref_43 article-title: MCML—Monte Carlo modeling of light transport in multi-layered tissues publication-title: Comput. Methods Programs Biomed. doi: 10.1016/0169-2607(95)01640-F – ident: ref_10 doi: 10.3390/rs12060986 – volume: 37 start-page: 1596 year: 1998 ident: ref_30 article-title: Laser sensing of a subsurface oceanic layer. II. Polarization characteristics of signals publication-title: Appl. Opt. doi: 10.1364/AO.37.001596 – volume: 62 start-page: 5301 year: 2023 ident: ref_17 article-title: Remote sensing oil in water with an all-fiber underwater single-photon Raman lidar publication-title: Appl. Opt. doi: 10.1364/AO.488872 – volume: 37 start-page: 1589 year: 1998 ident: ref_29 article-title: Laser sensing of a subsurface oceanic layer. I. Effect of the atmosphere and wind-driven sea waves publication-title: Appl. Opt. doi: 10.1364/AO.37.001589 – volume: 18 start-page: 6811 year: 2010 ident: ref_33 article-title: GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues publication-title: Opt. Express doi: 10.1364/OE.18.006811 – volume: 111 start-page: 1 year: 2019 ident: ref_26 article-title: Semi-analytic Monte Carlo radiative transfer model of laser propagation in inhomogeneous sea water within subsurface plankton layer publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2018.09.028 – volume: 21 start-page: 2996 year: 1982 ident: ref_24 article-title: Interpretation of airborne oceanic lidar: Effects of multiple scattering publication-title: Appl. Opt. doi: 10.1364/AO.21.002996 – volume: 26 start-page: 263 year: 1991 ident: ref_38 article-title: Light and marine photosynthesis: A spectral model with geochemical and climatological implications publication-title: Prog. Oceanogr. doi: 10.1016/0079-6611(91)90004-6 – volume: 93 start-page: 70 year: 1941 ident: ref_40 article-title: Diffuse radiation in the galaxy publication-title: Astrophys. J. doi: 10.1086/144246 – volume: 22 start-page: 2272 year: 1983 ident: ref_5 article-title: Airborne dual laser excitation and mapping of phytoplankton photopigments in a Gulf Stream warm core ring publication-title: Appl. Opt. doi: 10.1364/AO.22.002272 – volume: 30 start-page: 79 year: 2017 ident: ref_21 article-title: Monte Carlo simulation of the effects caused by multiple scattering of ground-based and spaceborne lidar pulses in clouds publication-title: Atmos. Ocean. Opt. doi: 10.1134/S1024856017010110 – volume: 6 start-page: 251 year: 2019 ident: ref_2 article-title: Going beyond standard ocean color observations: Lidar and polarimetry publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2019.00251 – volume: 31 start-page: 25398 year: 2023 ident: ref_7 article-title: Sensing the profile of particulate beam attenuation coefficient through a single-photon oceanic Raman lidar publication-title: Opt. Express doi: 10.1364/OE.493660 – volume: 20 start-page: 1501905 year: 2023 ident: ref_6 article-title: Compact long-range single-photon underwater lidar with high spatial-temporal resolution publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2023.3274449 – volume: 57 start-page: 9489 year: 2019 ident: ref_20 article-title: Lidar remote sensing of seawater optical properties: Experiment and Monte Carlo simulation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2926891 – ident: ref_42 doi: 10.3390/app9010048 – volume: 24 start-page: 19322 year: 2016 ident: ref_15 article-title: All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer publication-title: Opt. Express doi: 10.1364/OE.24.019322 – volume: 28 start-page: 33538 year: 2020 ident: ref_36 article-title: Parallel Monte Carlo simulation algorithm for the spectral reflectance and transmittance of the wind-generated bubble layers in the upper ocean using CUDA publication-title: Opt. Express doi: 10.1364/OE.406262 – ident: ref_8 doi: 10.3390/s22041379 – volume: 10 start-page: 121 year: 2018 ident: ref_1 article-title: Spaceborne lidar in the study of marine systems publication-title: Annu. Rev. Mar. Sci. doi: 10.1146/annurev-marine-121916-063335 – volume: 51 start-page: 7690 year: 2012 ident: ref_3 article-title: Detection of an underwater target through modulated lidar experiments at grazing incidence in a deep wave basin publication-title: Appl. Opt. doi: 10.1364/AO.51.007690 – volume: 8 start-page: 415 year: 2006 ident: ref_22 article-title: Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems publication-title: J. Opt. A: Pure Appl. Opt. doi: 10.1088/1464-4258/8/5/008 – volume: 55 start-page: 7468 year: 2016 ident: ref_34 article-title: GPU acceleration of Monte Carlo simulations for polarized photon scattering in anisotropic turbid media publication-title: Appl. Opt. doi: 10.1364/AO.55.007468 – ident: ref_39 doi: 10.21236/AD0753474 – ident: ref_41 – volume: 42 start-page: 3541 year: 2017 ident: ref_14 article-title: Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector publication-title: Opt. Lett. doi: 10.1364/OL.42.003541 – volume: 184 start-page: 418 year: 2016 ident: ref_23 article-title: Simulation of satellite, airborne and terrestrial LiDAR with DART (I): Waveform simulation with quasi-Monte Carlo ray tracing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.07.010 – ident: ref_27 doi: 10.3390/rs15030684 – volume: 115 start-page: 48 year: 2020 ident: ref_12 article-title: Coastal zone mapping with the world’s first airborne multibeam bathymetric lidar mapping system publication-title: Hydrogr. Nachrichten – ident: ref_16 doi: 10.3390/rs14143351 – volume: 13 start-page: 041304 year: 2008 ident: ref_31 article-title: White Monte Carlo for time-resolved photon migration publication-title: J. Biomed. Opt. doi: 10.1117/1.2950319 – volume: 237 start-page: 106638 year: 2019 ident: ref_28 article-title: A semianalytic Monte Carlo radiative transfer model for polarized oceanic lidar: Experiment-based comparisons and multiple scattering effects analyses publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2019.106638 – volume: 31 start-page: 16690 year: 2023 ident: ref_9 article-title: Submerged single-photon LiDAR imaging sensor used for real-time 3D scene reconstruction in scattering underwater environments publication-title: Opt. Express doi: 10.1364/OE.487129 – volume: 43 start-page: 1145 year: 1980 ident: ref_19 article-title: Monte Carlo theory and practice publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/43/9/002 – volume: 20 start-page: 3653 year: 1981 ident: ref_32 article-title: Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems publication-title: Appl. Opt. doi: 10.1364/AO.20.003653 – volume: 24 start-page: 478 year: 2011 ident: ref_35 article-title: Lidar and in situ measurements of the optical parameters of water surface layers in Lake Baikal publication-title: Atmos. Ocean. Opt. doi: 10.1134/S1024856011050083 – volume: 250 start-page: 112047 year: 2020 ident: ref_4 article-title: Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112047 – volume: 25 start-page: 14611 year: 2017 ident: ref_13 article-title: Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications publication-title: Opt. Express doi: 10.1364/OE.25.014611 |
| SSID | ssj0000331904 |
| Score | 2.3931134 |
| Snippet | The Monte Carlo (MC) simulation, due to its ability to accurately simulate the backscattered signal of lidar, plays a crucial role in the design, optimization,... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 5245 |
| SubjectTerms | Algorithms Backscattering Central processing units Comparative analysis Computer simulation CPUs Deep sea Design optimization Efficiency Energy Graphics coprocessors graphics processing unit Graphics processing units Lasers Lidar Lookup tables Monte Carlo Monte Carlo method Monte Carlo simulation Obstacle avoidance Offshore platforms Optical radar Photons Probability distribution Propagation Random processes Remote sensing Simulation models single-photon underwater lidar Technology application Underwater Underwater exploration Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KLmkPJX1RN0lRaaD0YGLrZfm4DU1CXwTahdyEVo8m4HqDd5eQf58Z29kutLSXXG0ZNDOa0TeW5huAg8InFQSPufJC5TJpOiSs61wn4VSMovK-vyD7TZ9O5adzdb7R6ovuhA30wIPiDmtZVykZ4zyBCxNNGaXigU7kIi9kouhbmHojmepjsMClVciBj1RgXn_YLWinUpzqljZ2oJ6o_89w_Ai2V-2Vu7l2TbOx3xzvwOMRKLLJMMEn8CC2T2F77Fl-cfMMPp-cTfOJ97hvEN1DYF-JaIodua6Zs--Xv8a-XAxRKXP4oP3ZxPzsYo5gj_Xdjq7xq459uQyuew7T448_jk7zsTVC7kWtl3mFnhaN4y4ioBEIEVKlZzxgLqJmKKUzwTsjVemS9FXiRpfRIPBQTgVil9HiBWy18za-BGYCYjKVCul9JVWKLgWu6zKK5EM0Smfw_k5d1o-84dS-orGYP5Bq7W_VZvB2PfZqYMv466gPpPX1CGK47h-g3e1od_s_u2fwjmxmyQ9xOt6N5QQoFDFa2QmmDYqqjssM9u7MakcHXViOmT_98ipQvjfr1-hadF7i2jhfLazAACcrU1Q8g4P1cviHYK_uQ7BdeEgt7Yd6xz3YWnaruI_AZzl73a_xW6ew_CA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SzSHtofRJ3aTFpYHSg4mthy0fStmEpKGPZWm7kJvR6pEEXHvj3SXk33fGazuBllxlGVsjjfSNpPk-gP3YeGk5c5E0XEbCp3RImOdR6rmWzvHMmPaC7CQ9nYmvZ_JsCyZ9Lgxdq-znxHaitrWhPfIDhqEa7VHE6efFVUSqUXS62kto6E5awX5qKcYewDYjZqwRbB8eT6Y_h12XmOOQi8WGp5RjvH_QLGkFk4zyme6sTC2B_7_T9CPYWVcLfXOty_LOOnTyBB53ADIcb3r8KWy56hnsdFrmFzfP4duX6SwaG4PrCdFA2PAHEVCFR7op6_DX5Z9OrytEtBpqLKjOSxdNL2oEgWGrgnSNbzXh90urmxcwOzn-fXQadZIJkeF5uooy9ECnNNMOgQ5H6OCzdM4sxihyjq3UyhqthEy0FybzTKWJUwhIpJaWWGdS_hJGVV25VxAqi1hN-lgYkwnpnfaWpXniuDfWKZkG8LE3V2E6PnGStSgLjCvItMWtaQN4P9RdbFg0_lvrkKw-1CDm67agbs6LzpGKXOSZ90ppQ2BTOZU4IZmlE1rHYuED-EB9VpB_4u8Y3aUZYKOI6aoYYzghKRs5CWCv79aic9xlcTvMAng3PEaXo3MUXbl6vSw4TnwiU3HGAtgfhsM9DXt9_5d24SGJ2G8yHPdgtGrW7g1CndX8bTd-_wI4vfsT priority: 102 providerName: ProQuest |
| Title | GPU-Accelerated Monte Carlo Simulation for a Single-Photon Underwater Lidar |
| URI | https://www.proquest.com/docview/2888354006 https://www.proquest.com/docview/3040478072 https://www.mdpi.com/2072-4292/15/21/5245/pdf?version=1699172254 https://doaj.org/article/9497ff88ac05408e81e452d0464e204f |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-x9mHwMD4nMkYVxCTEQ9bGsR3nCWVj3QRbVTEqjafI9cdWUZIqbZnGX885Scv4EELiKZJjR3buzv6d7fsdwF5PWaYjYgKmIhZQy90hYZIE3EaSGRPFSlUXZAf8ZETfXbCLW1H87loluuKTapImvZgELp9SN2RdEnYZoaw70_bN12YvKeQIb2JUSboBbc4QjbegPRoM008up9yqdc1KGqF33y3nbr1y3_lpHaro-n-flO_B5jKfyZtrOZ3eWnX690Gu-ltfNvm8v1yM99W3X6gc_2dAD2CrgaR-WuvQQ7hj8kew2WRHv7p5DO-Ph6MgVQpXKEcsof0zR2nlH8pyWvjnky9NBjAf8a8vsSC_nJpgeFUgrPSrvErX2Kr0Tydalk9g1D_6eHgSNEkYAhUlfBHEaNNGSCINQqcIwYiN-Zho9HrYGP-kFFpJQVkoLVWxJYKHRiDEYZJpx2PDo21o5UVunoIvNKI_ZntUqZgya6TVhCehiazSRjDuweuVSDLVMJS7RBnTDD0VJ77sh_g8eLmuO6t5Of5Y68BJdl3DcWlXBUV5mTWmmSU0ia0VQioHX4URoaGMaHfma0iPWg9eOb3InMVjd5RsAhdwUI47K0vRQWEuvjn0YHelOlkzFcwzIkS1udbD8b1Yv0YjdiczMjfFcp5FOJXSWKB2eLC3Vrm_DGzn36o9g7sEQVkdO7kLrUW5NM8RRC3GHdgQ_eMOtNO3Z6fn-Dw4Ggw_dKotiU5jQ98Bv0MXqA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9hA4IJ7CtIARRYiDVWcf9vpQobS0pCSNImik3sxmH22l1A5Ooih_jt_GjLNJK4F669VZJ_Hs7Mw3u57vI2Q31k4YRm0kNBMRdwkeEmZZlDimhLUs1bp-QbaXtAf8-7k43yB_Vr0w-FrlKibWgdqUGvfI9yiUarhHESdfxr8jVI3C09WVhIby0gpmv6YY840dHbuYQwk32T_5CvP9kdLjo7PDduRVBiLNsmQapeC0ViqqLGADBtnWpcmQGoD1Ygj5UEmjleSiqRzXqaMyaVoJOVwoYZCoJWHwvQ_IFmc8g-Jv6-Co1_-x3uWJGbh4zJe8qIxl8V41wYwpKPZP3cqEtWDAv2nhEWnMirFazNVodCvvHT8hjz1gDVtLD3tKNmzxjDS8dvrl4jnpfOsPopbWkL-QdsKEp0h4FR6qalSGP6-uvT5YCOg4VHChuBjZqH9ZAugMa9WlOdxVhd0ro6oXZHAvxntJNouysK9IKA1gQ-FirnXKhbPKGZpkTcucNlaKJCCfV-bKtecvRxmNUQ51DJo2vzFtQD6sx46XrB3_HXWAVl-PQKbt-kJZXeR-4eYZTKtzUiqN4FZa2bRcUIMnwpbG3AXkE85ZjvEA_o5Wvq0BHgqZtfIWlC8Cu5-bAdlZTWvuA8Ukv3HrgLxffwxLHM9tVGHL2SRnEGh5KuOUBmR37Q53PNjru3_pHWm0z067efek19kmDynAtmV35Q7ZnFYz-wZg1nT41vtySH7d9_L5C6ygNkQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NITF4QHyKjAFBDCEeoqb-SJwHhMpGt9ExVYJKezOuY2-TuqSkrar-a_x13KVpNwm0t70mzofP57vf2b7fAezG1sucMxdJy2UkfEKbhFkWJZ4b6RxPra0PyJ4khwPx7VSebsCfVS4MHatc2cTaUOelpTXyFsNQjdYo4qTlm2MR_f3u5_HviCpI0U7rqpzGUkV6bjHH8G3y6Wgfx_o9Y92vP_cOo6bCQGR5lkyjFBXWKcOMQ1zA0dP6NBmyHCG9HKIvNCq3RgnZNl7Y1DOVtJ1C_y2NzImkJeH43jtwNyUWd8pS7x6s13dijsodiyUjKudZ3Kom5Cslo8ypaz6wLhXwr0N4AFuzYmwWczMaXfN43UfwsIGqYWepW49hwxVPYKupmn6-eAq9g_4g6liLnosIJ_LwO1FdhXumGpXhj4vLpjJYiLg4NHihOBu5qH9eItwM63pLc3yqCo8vclM9g8GtiO45bBZl4V5AqHJEhdLHwtpUSO-Mz1mStR33NndKJgF8XIlL24a5nApojDRGMCRafSXaAN6t246XfB3_bfWFpL5uQRzb9YWyOtPNlNWZyFLvlTKWYK1yqu2EZDntBTsWCx_ABxozTZYAf8eaJqEBO0WcWrqDgYukvOd2ADurYdWNiZjoK4UO4O36Nk5u2rExhStnE83RxIpUxSkLYHetDjd0bPvmL72Bezhp9PHRSe8l3GeI15ZplTuwOa1m7hXiq-nwda3IIfy67ZnzFx9AM94 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6C7mHwwH0iMFAQkxAPWRLf4jyhMjEmLlMlqDSeIteXrSKkVdoyjV_PceKWcRFC4tWxozjn4u_YPt8B2Mu044YSm3BNecKc8IeEZZkIRxW3lhZadxdkj8XRmL054SeXsvj9tUoMxaedkyZZQRJfTynNeUrylBPG07lxL76GvaRcILwpUCXZVdgSHNH4ALbGx6PhJ19Tbj26ZyWlGN2n7cKvV_49P61DHV3_7075Omyvmrm6OFd1fWnVObwJav29_WWTz_ur5WRff_uFyvF_JnQLbgRIGg97HboNV2xzB7ZDdfSzi7vw9vVonAy1xhXKE0uY-L2ntIoPVFvP4g_TL6ECWIz4N1bY0JzWNhmdzRBWxl1dpXMc1cbvpka192B8-OrjwVESijAkmpZimRRo01YqoixCJ4pgxBViQgxGPXyCf1JJo5VkPFeO6cIRKXIrEeJwxY3nsRF0BwbNrLH3IZYG0R93GdO6YNxZ5QwRZW6p08ZKLiJ4vhZJpQNDuS-UUVcYqXjxVT_EF8HTTd95z8vxx14vvWQ3PTyXdtcwa0-rYJpVycrCOSmV9vBVWplbxonxZ76WZMxF8MzrReUtHj9Hq5C4gJPy3FnVEAMU7vOb8wh216pTBVewqIiU3eZahvN7snmMRuxPZlRjZ6tFRdGVskKidkSwt1G5v0zswb91ewjXCIKyPndyFwbLdmUfIYhaTh4HO_kOeh4Snw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPU-Accelerated+Monte+Carlo+Simulation+for+a+Single-Photon+Underwater+Lidar&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Liao%2C+Yupeng&rft.au=Shangguan%2C+Mingjia&rft.au=Yang%2C+Zhifeng&rft.au=Lin%2C+Zaifa&rft.date=2023-11-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=21&rft.spage=5245&rft_id=info:doi/10.3390%2Frs15215245&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15215245 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |