Shifted Fourier transform-based tensor algorithms for the 2-D DCT

In this paper, tensor algorithms for calculating the two-dimensional (2-D) discrete cosine transform (DCT) are presented. The tensor approach is based on the concept of the covering revealing the transforms, which yields in particular the splitting of the shifted 2/sup r//spl times/2/sup r/-point Fo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 49; no. 9; pp. 2113 - 2126
Main Authors Grigoryan, A.M., Agaian, S.S.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2001
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/78.942639

Cover

Abstract In this paper, tensor algorithms for calculating the two-dimensional (2-D) discrete cosine transform (DCT) are presented. The tensor approach is based on the concept of the covering revealing the transforms, which yields in particular the splitting of the shifted 2/sup r//spl times/2/sup r/-point Fourier and cosine transforms into 2/sup r-1/3 one-dimensional (1-D) incomplete 2/sup r/-point transforms. The multiplicative complexity of the 2-D 2/sup r//spl times/2/sup r/-point discrete cosine transforms in terms of the tensor representation is 4/sup r/3-2/sup r-2/(r/sup 2/+7r+14), which is reduced to 4/sup r/8/3-2/sup r/(r/sup 2/+7r+10)-20/3 when using the improved tensor algorithm. The multiplicative complexity in the general L/sup r//spl times/L/sup r/ case, with a prime L>2, as well as in the L/sub 1/L/sub 2//spl times/L/sub 1/L/sub 2/ case, with arbitrary co-prime L/sub 1/, L/sub 2/>1, is provided. The examples of the tensor algorithms for calculating the 8/spl times/8-point DCT through 104, 88, and 84 multiplications are given in detail. Based on the proposed concept, the fast algorithm for calculating the 1-D DCT-I is also developed. The multiplicative complexity of the 2/sup r/-point DCT-I is 2/sup r+1/-(r-2)(r+5)/2-8. The comparative estimates with the known algorithms are given.
AbstractList In this paper, tensor algorithms for calculating the two-dimensional (2-D) discrete cosine transform (DCT) are presented. The tensor approach is based on the concept of the covering revealing the transforms, which yields in particular the splitting of the shifted 2 super(r)2 super(r)-p oint Fourier and cosine transforms into 2 super(r-1)3 one-dimensional (1-D) incomplete 2 super(r)-point transforms. The multiplicative complexity of the 2-D 2 super(r)2 super(r)- point discrete cosine transforms in terms of the tensor representation is 4 super(r)3-2 super(r-2)(r super(2)+7r+14), which is reduced to 4 super(r/8)3-2 super(r)(r super(2)+7r+10)-20/3 when using the improved tensor algorithm. The multiplicative complexity in the general L super(r)L super(r) case, with a prime L>2, as well as in the L sub(1)L sub(2)L sub(1)L sub(2) case, with arbitrary co-prime L sub(1), L sub(2)>1, is provided. The examples of the tensor algorithms for calculating the 88-point DCT through 104, 88, and 84 multiplications are given in detail. Based on the proposed concept, the fast algorithm for calculating the 1-D DCT-I is also developed. The multiplicative complexity of the 2 super(r)-point DCT-I is 2 super(r+1)-(r-2)(r+5)/2-8. The comparative estimates with the known algorithms are given
In this paper, tensor algorithms for calculating the two-dimensional (2-D) discrete cosine transform (DCT) are presented. The tensor approach is based on the concept of the covering revealing the transforms, which yields in particular the splitting of the shifted 2 super(r) x 2 super(r)-point Fourier and cosine transforms into 2 super(r-1) 3 one-dimensional (1-D) incomplete 2 super(r )-point transforms. The multiplicative complexity of the 2-D 2 super(r) x 2 super(r)-point discrete cosine transforms in terms of the tensor representation is 4 super(r)3 2 super(r-2) (r super(2) + 7r + 14), which is reduced to 4 super(r)8/3 - 2 super(r ) (r super(2) + 7r + 10) - 20/3 when using the improved tensor algorithm. The multiplicative complexity in the general L super(r) x L super(r) case, with a prime L > 2, as well as in the L sub(1)L sub(2) x L sub(1) L sub(2) case, with arbitrary co-prime L sub(1), L sub(2) > 1, is provided. The examples of the tensor algorithms for calculating the 8 x 8-point DCT through 104, 88, and 84 multiplications are given in detail. Based on the proposed concept, the fast algorithm for calculating the 1-D DCT-1 is also developed. The multiplicative complexity of the 2 super(r)-point DCT-I is 2 super(r+1) - (r - 2)(r + 5)/2 - 8. The comparative estimates with the known algorithms are given.
In this paper, tensor algorithms for calculating the two-dimensional (2-D) discrete cosine transform (DCT) are presented. The tensor approach is based on the concept of the covering revealing the transforms, which yields in particular the splitting of the shifted 2/sup r//spl times/2/sup r/-point Fourier and cosine transforms into 2/sup r-1/3 one-dimensional (1-D) incomplete 2/sup r/-point transforms. The multiplicative complexity of the 2-D 2/sup r//spl times/2/sup r/-point discrete cosine transforms in terms of the tensor representation is 4/sup r/3-2/sup r-2/(r/sup 2/+7r+14), which is reduced to 4/sup r/8/3-2/sup r/(r/sup 2/+7r+10)-20/3 when using the improved tensor algorithm. The multiplicative complexity in the general L/sup r//spl times/L/sup r/ case, with a prime L>2, as well as in the L/sub 1/L/sub 2//spl times/L/sub 1/L/sub 2/ case, with arbitrary co-prime L/sub 1/, L/sub 2/>1, is provided. The examples of the tensor algorithms for calculating the 8/spl times/8-point DCT through 104, 88, and 84 multiplications are given in detail. Based on the proposed concept, the fast algorithm for calculating the 1-D DCT-I is also developed. The multiplicative complexity of the 2/sup r/-point DCT-I is 2/sup r+1/-(r-2)(r+5)/2-8. The comparative estimates with the known algorithms are given.
In this paper, tensor algorithms for calculating the two-dimensional (2-D) discrete cosine transform (DCT) are presented. The tensor approach is based on the concept of the covering revealing the transforms, which yields in particular the splitting of the shifted 2 (r)x2(r)-point Fourier and cosine transforms into 2(r-1)3 one-dimensional (1-D) incomplete 2(r)-point transforms. The multiplicative complexity of the 2-D 2(r)x2(r)-point discrete cosine transforms in terms of the tensor representation is 4(r)3-2(r-2)(r (2) 7r 14), which is reduced to 4(r/8)3-2(r)(r(2) 7r 10)-20/3 when using the improved tensor algorithm. The multiplicative complexity in the general L(r)xL(r) case, with a prime L > 2, as well as in the L(1)L(2)xL(1)L(2) case, with arbitrary co-prime L(1), L(2) > 1, is provided. The examples of the tensor algorithms for calculating the 8x8-point DCT through 104, 88, and 84 multiplications are given in detail. Based on the proposed concept, the fast algorithm for calculating the 1-D DCT-I is also developed. The multiplicative complexity of the 2(r)-point DCT-I is 2(r 1)-(r-2)(r 5)/2-8. The comparative estimates with the known algorithms are given
Author Grigoryan, A.M.
Agaian, S.S.
Author_xml – sequence: 1
  givenname: A.M.
  surname: Grigoryan
  fullname: Grigoryan, A.M.
  organization: Coll. of Eng., Texas Univ., San Antonio, TX, USA
– sequence: 2
  givenname: S.S.
  surname: Agaian
  fullname: Agaian, S.S.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1133359$$DView record in Pascal Francis
BookMark eNqF0cFKAzEQANAgCtbqwaunRUTxsDbZSbLJsVSrguDBCt6WbDZrU7YbTdKDf2-kRaGInjJk3gzMzAHa7V1vEDom-IoQLEeluJK04CB30IBISnJMS76bYswgZ6J82UcHISwwJpRKPkDjp7lto2myqVt5a3wWvepD6_wyr1VI_9H0wflMda_O2zhfhiwlszg3WZFfZ9eT2SHaa1UXzNHmHaLn6c1scpc_PN7eT8YPuQbJY85MUxayZqVWLEWgicSNoYwQkERDI2RbFoI3CrSEBoziUNbpl7FaF6xWMEQX675v3r2vTIjV0gZtuk71xq1CJQnllDBeJHn-pywEY5IK8j_kEggrRIKnW3CR1tWncSshKAcMIBM62yAVtOratEhtQ_Xm7VL5jyoNCsC-2OWaae9C8Kb9Ebj6umFVimp9w2RHW1bbqKJ1fTqT7X6tOFlXWGPMd-dN8hMrR6Ti
CODEN ITPRED
CitedBy_id crossref_primary_10_1016_j_sigpro_2007_12_003
crossref_primary_10_1016_j_sigpro_2015_11_006
crossref_primary_10_1109_TIP_2003_816017
crossref_primary_10_1016_j_ins_2015_05_018
crossref_primary_10_1016_j_imavis_2011_06_005
Cites_doi 10.1109/83.650856
10.1109/ICASSP.1989.266596
10.1109/tassp.1987.1165060
10.1109/26.87153
10.1109/82.486464
10.1109/78.157218
10.1109/41.661303
10.1109/78.815487
10.1109/TASSP.1980.1163351
10.1109/ICASSP.1985.1168211
10.1109/78.80854
10.1109/ICSIGP.1996.567049
10.1109/78.157217
10.1109/76.664096
10.1109/78.205723
10.1007/978-3-642-45450-9
10.1109/TASSP.1984.1164443
10.1109/ICSIGP.1996.567066
10.1109/83.641417
10.1109/78.661324
10.1109/78.80833
10.1109/78.365284
10.1109/78.902116
10.1109/T-C.1974.223784
10.1006/jvci.1997.0323
10.1109/TASSP.1976.1162839
10.1016/0734-189X(88)90140-5
10.1016/0041-5553(86)90044-3
10.1109/76.585925
10.1002/(SICI)1520-6424(199708)80:8<81::AID-ECJA9>3.0.CO;2-7
10.1109/TCOM.1985.1096337
10.1007/978-1-4612-3912-3
10.1109/78.150010
10.1016/S0165-1684(96)00132-6
10.1109/TASSP.1985.1164737
ContentType Journal Article
Copyright 2001 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001
Copyright_xml – notice: 2001 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001
DBID RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/78.942639
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 2126
ExternalDocumentID 2431767591
1133359
10_1109_78_942639
942639
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c396t-5ed729b57ca5d723c190de4511391c3d89f7286da3c93d3ea637bd8955bc25ba3
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Thu Oct 02 09:45:49 EDT 2025
Sun Sep 28 11:11:05 EDT 2025
Thu Oct 02 11:55:22 EDT 2025
Fri Jul 25 05:41:26 EDT 2025
Mon Jul 21 09:13:13 EDT 2025
Wed Oct 01 06:40:06 EDT 2025
Thu Apr 24 23:07:03 EDT 2025
Tue Aug 26 21:00:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Fourier transformation
Signal processing
Mathematical method
Discrete cosine transforms
Algorithm
Computational complexity
Tensor method
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-5ed729b57ca5d723c190de4511391c3d89f7286da3c93d3ea637bd8955bc25ba3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 884630339
PQPubID 23500
PageCount 14
ParticipantIDs crossref_primary_10_1109_78_942639
proquest_miscellaneous_28559481
proquest_miscellaneous_26931528
ieee_primary_942639
pascalfrancis_primary_1133359
proquest_miscellaneous_914641562
proquest_journals_884630339
crossref_citationtrail_10_1109_78_942639
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-09-01
PublicationDateYYYYMMDD 2001-09-01
PublicationDate_xml – month: 09
  year: 2001
  text: 2001-09-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2001
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref10
Pennebaker (ref5) 1993
Clarke (ref2) 1985
Grigoryan (ref41) 1984; 27
Grigoryan (ref42) 1986
ref17
ref19
Ma (ref16); 1002
ref46
ref45
ref47
Grigoryan (ref43) 1986; 29
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref40
Yang (ref26)
ref35
ref34
ref37
Lee (ref27) 1987; ASSP-37
ref36
ref31
Chen (ref14) 1977; C-25
ref30
ref33
ref32
ref1
ref39
ref38
Mitra (ref29)
ref24
ref23
Rao (ref12) 1990
ref25
ref20
Cho (ref18) 1991; 38
Duhamel (ref22)
ref21
ref28
Heidemann (ref48) 1988
Jain (ref11) 1989
References_xml – ident: ref10
  doi: 10.1109/83.650856
– volume: 29
  start-page: 20
  issue: 12
  year: 1986
  ident: ref43
  article-title: An optimal algorithm for computing the two-dimensional discrete Fourier transform
  publication-title: Izvestiya VUZov SSSR, Radioelectronica
– ident: ref17
  doi: 10.1109/ICASSP.1989.266596
– ident: ref15
  doi: 10.1109/tassp.1987.1165060
– ident: ref49
  doi: 10.1109/26.87153
– ident: ref28
  doi: 10.1109/82.486464
– ident: ref40
  doi: 10.1109/78.157218
– ident: ref8
  doi: 10.1109/41.661303
– volume: 38
  start-page: 397
  year: 1991
  ident: ref18
  article-title: Fast algorithm for the discrete cosine transform
  publication-title: IEEE Trans. Circuits Syst. II
– start-page: 21
  issue: 1
  year: 1986
  ident: ref42
  article-title: Tensor representation of the two-dimensional discrete Fourier transform and new orthogonal functions
  publication-title: Avtometria
– ident: ref46
  doi: 10.1109/78.815487
– ident: ref33
  doi: 10.1109/TASSP.1980.1163351
– volume: 27
  start-page: 52
  issue: 10
  year: 1984
  ident: ref41
  article-title: Two-dimensional Fourier transform algorithm
  publication-title: Izvestiya VUZov SSSR, Radioelectronica
– start-page: 772
  volume-title: Proc. ICASSP
  ident: ref26
  article-title: Prime factor decomposition of the discrete cosine transform
– volume: C-25
  start-page: 1004
  year: 1977
  ident: ref14
  article-title: A fast computational algorithm for discrete cosine transform
  publication-title: IEEE Trans. Comput.
– ident: ref21
  doi: 10.1109/ICASSP.1985.1168211
– ident: ref24
  doi: 10.1109/78.80854
– ident: ref20
  doi: 10.1109/ICSIGP.1996.567049
– start-page: 2025
  volume-title: Proc. ICASSP
  ident: ref29
  article-title: A method for fast approximate computation discrete cosine transforms
– ident: ref38
  doi: 10.1109/78.157217
– ident: ref39
  doi: 10.1109/76.664096
– ident: ref47
  doi: 10.1109/78.205723
– ident: ref1
  doi: 10.1007/978-3-642-45450-9
– volume-title: JPEG Still Image Compression Standard
  year: 1993
  ident: ref5
– ident: ref23
  doi: 10.1109/TASSP.1984.1164443
– ident: ref30
  doi: 10.1109/ICSIGP.1996.567066
– ident: ref32
  doi: 10.1109/83.641417
– ident: ref25
  doi: 10.1109/78.661324
– ident: ref34
  doi: 10.1109/78.80833
– ident: ref31
  doi: 10.1109/78.365284
– ident: ref45
  doi: 10.1109/78.902116
– ident: ref13
  doi: 10.1109/T-C.1974.223784
– volume-title: Fundamentals of Digital Image Processing
  year: 1989
  ident: ref11
– volume: ASSP-37
  start-page: 237
  year: 1987
  ident: ref27
  article-title: Input and output mapping for a prime-factor-drcomposed computation of discrete cosine transform
  publication-title: IEEE Trans. Acoust. Speech, Signal Processing
– ident: ref6
  doi: 10.1006/jvci.1997.0323
– ident: ref9
  doi: 10.1109/TASSP.1976.1162839
– ident: ref4
  doi: 10.1016/0734-189X(88)90140-5
– volume-title: Discrete Cosine Transform—Algorithms, Advantages, Applications
  year: 1990
  ident: ref12
– ident: ref44
  doi: 10.1016/0041-5553(86)90044-3
– ident: ref37
  doi: 10.1109/76.585925
– start-page: 1515
  volume-title: Proc. ICASSP
  ident: ref22
  article-title: Polynomial transform computation of the two-dimensional DCT
– ident: ref7
  doi: 10.1002/(SICI)1520-6424(199708)80:8<81::AID-ECJA9>3.0.CO;2-7
– ident: ref3
  doi: 10.1109/TCOM.1985.1096337
– volume-title: Multiplicative Complexity, Convolution, and the DFT
  year: 1988
  ident: ref48
  doi: 10.1007/978-1-4612-3912-3
– ident: ref19
  doi: 10.1109/78.150010
– volume: 1002
  start-page: 541
  volume-title: Proc. SPIE Int. Soc. Opt. Eng.
  ident: ref16
  article-title: A fast recursive algorithm for computing discrete cosine transform
– volume-title: Transform Coding Theory
  year: 1985
  ident: ref2
– ident: ref36
  doi: 10.1016/S0165-1684(96)00132-6
– ident: ref35
  doi: 10.1109/TASSP.1985.1164737
SSID ssj0014496
Score 1.7439213
Snippet In this paper, tensor algorithms for calculating the two-dimensional (2-D) discrete cosine transform (DCT) are presented. The tensor approach is based on the...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2113
SubjectTerms Algorithms
Applied sciences
Complexity
Discrete cosine transform
Discrete cosine transforms
Discrete Fourier transforms
Discrete transforms
Exact sciences and technology
Fast Fourier transforms
Fourier analysis
Fourier transforms
Image coding
Information, signal and communications theory
Mathematical analysis
Mathematical methods
Representations
Signal processing algorithms
Telecommunications and information theory
Tensile stress
Tensors
Transform coding
Transforms
Two dimensional displays
Title Shifted Fourier transform-based tensor algorithms for the 2-D DCT
URI https://ieeexplore.ieee.org/document/942639
https://www.proquest.com/docview/884630339
https://www.proquest.com/docview/26931528
https://www.proquest.com/docview/28559481
https://www.proquest.com/docview/914641562
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT3CgUEBsS8FCHLh4m7Xj17FqWVVIcGqlvUV-TGhF2aBN9sKvZ2xnlxYK4mbZYykZP-azZ_wNIe8qF2qoKs8cB8_qOsySf7dl3JoQ1Cy2Iadv-_RZnV_WHxdyMfJs57cwAJCDz2CaitmXH7uwTldlxzaxi9sdsqONKk-1tg6Dus6puBAtCCaNXowkQrPKHmszLR3vmJ6cSyVFQroeldGWLBZ_bMjZysz3yvPtPpMTpuCSr9P14Kfhx2_Ujf_5A0_I4xFt0pMyPZ6SB7DcJ49ucRA-w3316rpF2EnnJXsdHTZQliULF2kKce9W1N186VbXw9W3nmIjRdxIOTujZ6cXz8nl_MPF6Tkb8yowVLwamISIkNpLHZzEkggICiIkojJhZ0FEY1vNjYpOBCuiAKeE9lgrpQ9ceidekN1lt4SXhLYtRB5BaV7H2oG2EgIon06FXHgRJuT9RuVNGEnHU-6LmyYfPirbaNMUrUzI263o98K0cZ_QftLqVmBTe3RnGH_1xxO4kNh-uBnWZlyifWMQeaH9Tr3fbFtxbSWHiVtCt-4brqxAfGP-IWFk5ruZEPoXCYumKKvj4N5PPyQPS1Rbilp7RXaH1RqOEOYM_nWe4D8BzCL7aw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHIADjwIilFILceDidOPHrn1ELVGAtqdUym3lxyytKFmU3Vz49YztTaBQEDfLHku748d89oy_IeRNYb2EonDMcnBMSj-J_t2GcaO9Lyeh8Sl92-lZOTuXHxdqMfBsp7cwAJCCz2Aci8mXH1q_jldlhyayi5vb5I6SUqr8WGvrMpAyJeNCvCCY0tVioBGaFOaw0uPc9ZrxSdlUYiyk7VAdTc5j8ceWnOzM9GF-wN0lesIYXvJlvO7d2H__jbzxP3_hEXkw4E36Lk-Qx-QWLHfJ_V9YCJ_gznpx2SDwpNOcv472GzDLoo0LNAa5tytqrz63q8v-4mtHsZEicqScHdPjo_lTcj59Pz-asSGzAkPVlz1TEBBUO1V5q7AkPMKCAJGqTJiJF0GbpuK6DFZ4I4IAW4rKYa1SznPlrHhGdpbtEp4T2jQQeICy4jJIC5VR4KF08VzIhRN-RN5uVF77gXY8Zr-4qtPxozB1peuslRF5vRX9lrk2bhLajVrdCmxq968N48_-eAYXCtv3NsNaD4u0qzViL7TgsffBthVXV3SZ2CW0667mpRGIcPQ_JLRKjDcjQv8iYdAYJXW8uPHTD8jd2fz0pD75cPZpj9zLMW4xhu0l2elXa9hH0NO7V2my_wAU6v64
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shifted+Fourier+transform-based+tensor+algorithms+for+the+2-D+DCT&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Grigoryan%2C+A.M&rft.au=Agaian%2C+S.S&rft.date=2001-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=49&rft.issue=9&rft.spage=2113&rft_id=info:doi/10.1109%2F78.942639&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2431767591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon