Analysis of Evolutionary Processes of Species Jump in Waterfowl Parvovirus

Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host preferences. A novel duck parvovirus (NDPV), identified as a new variant of GPV, is currently infecting ducks, thus causing considerable economic loss....

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 8; p. 421
Main Authors Fan, Wentao, Sun, Zhaoyu, Shen, Tongtong, Xu, Danning, Huang, Kehe, Zhou, Jiyong, Song, Suquan, Yan, Liping
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 14.03.2017
Subjects
Online AccessGet full text
ISSN1664-302X
1664-302X
DOI10.3389/fmicb.2017.00421

Cover

Abstract Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host preferences. A novel duck parvovirus (NDPV), identified as a new variant of GPV, is currently infecting ducks, thus causing considerable economic loss. This study analyzed the molecular evolution and population dynamics of the emerging parvovirus capsid gene to investigate the evolutionary processes concerning the host shift of NDPV. Two important amino acids changes (Asn-489 and Asn-650) were identified in NDPV, which may be responsible for host shift of NDPV. Phylogenetic analysis indicated that the currently circulating NDPV originated from the GPV lineage. The Bayesian Markov chain Monte Carlo tree indicated that the NDPV diverged from GPV approximately 20 years ago. Evolutionary rate analyses demonstrated that GPV evolved with 7.674 × 10 substitutions/site/year, and the data for MDPV was 5.237 × 10 substitutions/site/year, whereas the substitution rate in NDPV branch was 2.25 × 10 substitutions/site/year. Meanwhile, viral population dynamics analysis revealed that the GPV major clade, including NDPV, grew exponentially at a rate of 1.717 year . Selection pressure analysis showed that most sites are subject to strong purifying selection and no positively selected sites were found in NDPV. The unique immune-epitopes in waterfowl parvovirus were also estimated, which may be helpful for the prediction of antibody binding sites against NDPV in ducks.
AbstractList Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host preferences. A novel duck parvovirus (NDPV), identified as a new variant of GPV, is currently infecting ducks, thus causing considerable economic loss. This study analyzed the molecular evolution and population dynamics of the emerging parvovirus capsid gene to investigate the evolutionary processes concerning the host shift of NDPV. Two important amino acids changes (Asn-489 and Asn-650) were identified in NDPV, which may be responsible for host shift of NDPV. Phylogenetic analysis indicated that the currently circulating NDPV originated from the GPV lineage. The Bayesian Markov chain Monte Carlo tree indicated that the NDPV diverged from GPV approximately 20 years ago. Evolutionary rate analyses demonstrated that GPV evolved with 7.674 × 10 -4 substitutions/site/year, and the data for MDPV was 5.237 × 10 -4 substitutions/site/year, whereas the substitution rate in NDPV branch was 2.25 × 10 -3 substitutions/site/year. Meanwhile, viral population dynamics analysis revealed that the GPV major clade, including NDPV, grew exponentially at a rate of 1.717 year -1 . Selection pressure analysis showed that most sites are subject to strong purifying selection and no positively selected sites were found in NDPV. The unique immune-epitopes in waterfowl parvovirus were also estimated, which may be helpful for the prediction of antibody binding sites against NDPV in ducks.
Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host preferences. A novel duck parvovirus (NDPV), identified as a new variant of GPV, is currently infecting ducks, thus causing considerable economic loss. This study analyzed the molecular evolution and population dynamics of the emerging parvovirus capsid gene to investigate the evolutionary processes concerning the host shift of NDPV. Two important amino acids changes (Asn-489 and Asn-650) were identified in NDPV, which may be responsible for host shift of NDPV. Phylogenetic analysis indicated that the currently circulating NDPV originated from the GPV lineage. The Bayesian Markov chain Monte Carlo tree indicated that the NDPV diverged from GPV approximately 20 years ago. Evolutionary rate analyses demonstrated that GPV evolved with 7.674 × 10 substitutions/site/year, and the data for MDPV was 5.237 × 10 substitutions/site/year, whereas the substitution rate in NDPV branch was 2.25 × 10 substitutions/site/year. Meanwhile, viral population dynamics analysis revealed that the GPV major clade, including NDPV, grew exponentially at a rate of 1.717 year . Selection pressure analysis showed that most sites are subject to strong purifying selection and no positively selected sites were found in NDPV. The unique immune-epitopes in waterfowl parvovirus were also estimated, which may be helpful for the prediction of antibody binding sites against NDPV in ducks.
Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host preferences. A novel duck parvovirus (NDPV), identified as a new variant of GPV, is currently infecting ducks, thus causing considerable economic loss. This study analyzed the molecular evolution and population dynamics of the emerging parvovirus capsid gene to investigate the evolutionary processes concerning the host shift of NDPV. Two important amino acids changes (Asn-489 and Asn-650) were identified in NDPV, which may be responsible for host shift of NDPV. Phylogenetic analysis indicated that the currently circulating NDPV originated from the GPV lineage. The Bayesian Markov chain Monte Carlo tree indicated that the NDPV diverged from GPV approximately 20 years ago. Evolutionary rate analyses demonstrated that GPV evolved with 7.674 × 10-4 substitutions/site/year, and the data for MDPV was 5.237 × 10-4 substitutions/site/year, whereas the substitution rate in NDPV branch was 2.25 × 10-3 substitutions/site/year. Meanwhile, viral population dynamics analysis revealed that the GPV major clade, including NDPV, grew exponentially at a rate of 1.717 year-1. Selection pressure analysis showed that most sites are subject to strong purifying selection and no positively selected sites were found in NDPV. The unique immune-epitopes in waterfowl parvovirus were also estimated, which may be helpful for the prediction of antibody binding sites against NDPV in ducks.Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host preferences. A novel duck parvovirus (NDPV), identified as a new variant of GPV, is currently infecting ducks, thus causing considerable economic loss. This study analyzed the molecular evolution and population dynamics of the emerging parvovirus capsid gene to investigate the evolutionary processes concerning the host shift of NDPV. Two important amino acids changes (Asn-489 and Asn-650) were identified in NDPV, which may be responsible for host shift of NDPV. Phylogenetic analysis indicated that the currently circulating NDPV originated from the GPV lineage. The Bayesian Markov chain Monte Carlo tree indicated that the NDPV diverged from GPV approximately 20 years ago. Evolutionary rate analyses demonstrated that GPV evolved with 7.674 × 10-4 substitutions/site/year, and the data for MDPV was 5.237 × 10-4 substitutions/site/year, whereas the substitution rate in NDPV branch was 2.25 × 10-3 substitutions/site/year. Meanwhile, viral population dynamics analysis revealed that the GPV major clade, including NDPV, grew exponentially at a rate of 1.717 year-1. Selection pressure analysis showed that most sites are subject to strong purifying selection and no positively selected sites were found in NDPV. The unique immune-epitopes in waterfowl parvovirus were also estimated, which may be helpful for the prediction of antibody binding sites against NDPV in ducks.
Author Song, Suquan
Fan, Wentao
Shen, Tongtong
Xu, Danning
Huang, Kehe
Zhou, Jiyong
Sun, Zhaoyu
Yan, Liping
AuthorAffiliation 1 College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
3 Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes Guangzhou, China
2 Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
AuthorAffiliation_xml – name: 1 College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
– name: 2 Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
– name: 3 Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes Guangzhou, China
Author_xml – sequence: 1
  givenname: Wentao
  surname: Fan
  fullname: Fan, Wentao
– sequence: 2
  givenname: Zhaoyu
  surname: Sun
  fullname: Sun, Zhaoyu
– sequence: 3
  givenname: Tongtong
  surname: Shen
  fullname: Shen, Tongtong
– sequence: 4
  givenname: Danning
  surname: Xu
  fullname: Xu, Danning
– sequence: 5
  givenname: Kehe
  surname: Huang
  fullname: Huang, Kehe
– sequence: 6
  givenname: Jiyong
  surname: Zhou
  fullname: Zhou, Jiyong
– sequence: 7
  givenname: Suquan
  surname: Song
  fullname: Song, Suquan
– sequence: 8
  givenname: Liping
  surname: Yan
  fullname: Yan, Liping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28352261$$D View this record in MEDLINE/PubMed
BookMark eNp1UUtLxDAQDqK4PvbuSXr00jWZpNn2IoisLxYUVPQW0jTVSNusSVvZf2_2JSo4h8zAfI8w3z7abmyjEToieERpmp2WtVH5CDAZjzBmQLbQHuGcxRTDy_aPeYCG3r_jUAxDeHfRAFKaAHCyh27PG1nNvfGRLaNJb6uuNbaRbh7dO6u093q5eZhpZcJ429WzyDTRs2y1K-1nFd1L19veuM4fop1SVl4P1_0APV1OHi-u4-nd1c3F-TRWNONtnGQ8TylhUrMxzziMUwlZkQNXGkrK6RhyrnBBMMslaAYlY4rQAmiJiSY8oQfobKU76_JaF0o3rZOVmDlTh38LK434vWnMm3i1vUgoywjOgsDJWsDZj077VtTGK11VstG284KkKeCUkAQC9Pin17fJ5oABwFcA5az3TpdCmVYubhisTSUIFouwxDIssQhLLMMKRPyHuNH-l_IFFW6YUA
CitedBy_id crossref_primary_10_1016_j_psj_2022_101929
crossref_primary_10_1080_03079457_2018_1517938
crossref_primary_10_3390_microorganisms12122423
crossref_primary_10_3390_ani10101833
crossref_primary_10_3390_ani12202846
crossref_primary_10_1186_s12985_019_1237_2
crossref_primary_10_3390_v14071471
crossref_primary_10_3390_v17010096
crossref_primary_10_1093_ve_vez053
crossref_primary_10_1016_j_cimid_2023_102079
crossref_primary_10_1111_tbed_14453
crossref_primary_10_3390_v14040696
crossref_primary_10_1007_s00705_021_05352_z
crossref_primary_10_2478_jvetres_2021_0063
crossref_primary_10_1080_03079457_2024_2419038
Cites_doi 10.1128/JVI.80.2.1015-1024.2006
10.1016/j.meegid.2004.06.011
10.1093/molbev/msi105
10.1371/journal.ppat.1002260
10.1128/JVI.67.2.765-772.1993
10.1126/science.1176062
10.1016/j.meegid.2009.11.011
10.1093/molbev/msw054
10.1371/journal.ppat.1004395
10.1080/01621459.1995.10476572
10.1093/nar/gkg520
10.1093/molbev/msj021
10.1073/pnas.96.19.10752
10.1093/molbev/msr232
10.1128/JVI.06222-11
10.1371/journal.pgen.1002511
10.1080/03079450802356979
10.1080/03079450902737839
10.1016/0042-6822(88)90500-4
10.1016/j.meegid.2016.07.020
10.1007/978-1-59745-251-9_5
10.1016/0042-6822(86)90408-3
10.1126/science.1058321
10.1128/JVI.00575-16
10.1146/annurev.genet.39.073003.112420
10.3103/S0891416815040102
10.1128/JVI.02093-13
10.1371/journal.pgen.1002764
10.1016/j.coviro.2014.07.004
10.1186/1471-2148-7-214
10.1093/bioinformatics/btq429
10.1098/rstb.2001.0866
10.1186/s13059-014-0541-9
10.1186/s12985-015-0344-y
10.1128/JVI.77.12.6995-7006.2003
10.1093/bioinformatics/4.1.187
10.1016/j.tim.2008.01.012
10.1126/science.1094823
10.1371/journal.pcbi.1003537
10.1136/vr.163.15.461
10.1637/0005-2086(2007)51[609:EIOAOO]2.0.CO;2
10.1126/science.1188836
10.1007/s00705-016-2926-4
10.1016/j.tree.2005.02.009
10.1016/S1369-5274(03)00083-3
10.1016/S0966-842X(02)02428-9
10.1371/journal.pone.0140284
10.1556/AVet.53.2005.1.8
10.1093/molbev/mss258
10.1093/molbev/msl051
10.1073/pnas.0406765102
10.1016/j.vetimm.2011.11.022
10.1093/bioinformatics/btm404
10.1093/molbev/mss075
10.1038/nature04017
10.1128/JVI.01288-06
10.1016/0014-5793(90)80535-Q
10.1371/journal.ppat.1004728
10.1128/JVI.01004-12
ContentType Journal Article
Copyright Copyright © 2017 Fan, Sun, Shen, Xu, Huang, Zhou, Song and Yan. 2017 Fan, Sun, Shen, Xu, Huang, Zhou, Song and Yan
Copyright_xml – notice: Copyright © 2017 Fan, Sun, Shen, Xu, Huang, Zhou, Song and Yan. 2017 Fan, Sun, Shen, Xu, Huang, Zhou, Song and Yan
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.3389/fmicb.2017.00421
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID PMC5349109
28352261
10_3389_fmicb_2017_00421
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c396t-596b8314ae47696278a29db26ce2f36372b6c0d104ba2e42f44c13d23f01e1653
IEDL.DBID M48
ISSN 1664-302X
IngestDate Thu Aug 21 14:21:50 EDT 2025
Fri Sep 05 00:10:56 EDT 2025
Thu Jan 02 22:22:20 EST 2025
Tue Jul 01 00:54:37 EDT 2025
Thu Apr 24 22:51:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords epidemiology
phylogeny
evolution
Bayesian inference
species jump
waterfowl parvovirus
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-596b8314ae47696278a29db26ce2f36372b6c0d104ba2e42f44c13d23f01e1653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Akio Adachi, University of Tokushima, Japan
Reviewed by: Marta Canuti, Memorial University of Newfoundland, Canada; Dongbo Sun, Heilongjiang Bayi Agricultural University, China
This article was submitted to Virology, a section of the journal Frontiers in Microbiology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2017.00421
PMID 28352261
PQID 1882081152
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5349109
proquest_miscellaneous_1882081152
pubmed_primary_28352261
crossref_citationtrail_10_3389_fmicb_2017_00421
crossref_primary_10_3389_fmicb_2017_00421
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-14
PublicationDateYYYYMMDD 2017-03-14
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-14
  day: 14
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2017
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Pybus (B43) 2001; 292
Wu (B60) 2006; 80
Istvan (B16) 2014; 136
Stucker (B53) 2011; 86
Chen (B2) 2015; 10
Irvine (B15) 2008; 163
Wu (B59) 2013; 30
Longdon (B31) 2011; 7
Streicker (B52) 2010; 329
Walker (B55) 2005; 5
Salganik (B45) 2014; 88
Delport (B6) 2010; 26
Longdon (B29) 2014; 10
Leitner (B25) 1999; 96
Drouin (B7) 2016; 90
Woolhouse (B58) 2005; 20
Hueffer (B14) 2003; 6
Delaney (B4) 2012; 8
Opie (B38) 2003; 77
Delano (B5) 2002; Vol. 4
Schwede (B46) 2003; 31
Shien (B50) 2008; 37
Mani (B33) 2006; 80
Shapiro (B49) 2006; 23
Woolhouse (B57) 2002; 10
Yu (B61) 2012; 145
Kosakovsky Pond (B20) 2005; 22
Chen (B3) 2016; 161
Wolf (B56) 1988; 4
Palya (B39) 2009; 38
Fraser (B11) 2009; 324
Longdon (B30) 2015; 11
Smith (B51) 2004; 304
Ferguson (B10) 2005; 437
Glávits (B12) 2005; 53
Langeveld (B23) 1993; 67
Li (B28) 2012; 29
May (B34) 2001; 356
Zehender (B62) 2009; 10
Drummond (B8) 2007; 7
Posada (B42) 2009; 537
Parrish (B41) 1986; 148
Quattrocchi (B44) 2012; 86
Kumar (B22) 2016; 33
Li (B27) 2014; 15
Mollentze (B35) 2014; 8
Kass (B18) 1995; 90
Lópezbueno (B32) 2006; 299
Shao (B48) 2015; 30
Jansson (B17) 2007; 51
Kosakovsky Pond (B21) 2006; 23
Tu (B54) 2015; 12
Parrish (B40) 1988; 166
Nielsen (B37) 2005; 39
Bouckaert (B1) 2014; 10
Kolaskar (B19) 1990; 276
Shackelton (B47) 2005; 102
Li (B26) 2016; 44
Drummond (B9) 2012; 29
Larkin (B24) 2007; 23
Harbison (B13) 2008; 16
Murrell (B36) 2012; 8
12824332 - Nucleic Acids Res. 2003 Jul 1;31(13):3381-5
25064563 - Curr Opin Virol. 2014 Oct;8:68-72
26465143 - PLoS One. 2015 Oct 14;10(10):e0140284
19322718 - Avian Pathol. 2009 Apr;38(2):175-80
20671151 - Bioinformatics. 2010 Oct 1;26(19):2455-7
16379002 - J Virol. 2006 Jan;80(2):1015-24
1702393 - FEBS Lett. 1990 Dec 10;276(1-2):172-4
21940644 - Mol Biol Evol. 2012 Feb;29(2):751-61
25774803 - PLoS Pathog. 2015 Mar 16;11(3):e1004728
3382992 - Comput Appl Biosci. 1988 Mar;4(1):187-91
24198419 - J Virol. 2014 Jan;88(2):1071-9
22807683 - PLoS Genet. 2012;8(7):e1002764
15782661 - Acta Vet Hung. 2005;53(1):73-89
22346765 - PLoS Genet. 2012 Feb;8(2):e1002511
12768018 - J Virol. 2003 Jun;77(12):6995-7006
7678305 - J Virol. 1993 Feb;67(2):765-72
27314945 - Arch Virol. 2016 Sep;161(9):2407-16
16177232 - Mol Biol Evol. 2006 Jan;23(1):7-9
20689015 - Science. 2010 Aug 6;329(5992):676-9
16818476 - Mol Biol Evol. 2006 Oct;23(10):1891-901
15626758 - Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):379-84
18849581 - Vet Rec. 2008 Oct 11;163(15):461
22718826 - J Virol. 2012 Sep;86(17):9274-84
27440903 - J Virol. 2016 Sep 12;90(19):8542-51
26239432 - Virol J. 2015 Aug 04;12:114
17626494 - Avian Dis. 2007 Jun;51(2):609-13
11423661 - Science. 2001 Jun 22;292(5525):2323-5
19378141 - Methods Mol Biol. 2009;537:93-112
16943302 - J Virol. 2006 Nov;80(22):11393-7
16701375 - Trends Ecol Evol. 2005 May;20(5):238-44
24722319 - PLoS Comput Biol. 2014 Apr 10;10(4):e1003537
27004904 - Mol Biol Evol. 2016 Jul;33(7):1870-4
15737910 - Infect Genet Evol. 2005 Apr;5(3):199-208
19433588 - Science. 2009 Jun 19;324(5934):1557-61
22114336 - J Virol. 2012 Feb;86(3):1514-21
12941411 - Curr Opin Microbiol. 2003 Aug;6(4):392-8
11405937 - Philos Trans R Soc Lond B Biol Sci. 2001 Jun 29;356(1410):901-10
22209204 - Vet Immunol Immunopathol. 2012 Jan 15;145(1-2):522-6
22367748 - Mol Biol Evol. 2012 Aug;29(8):1969-73
21966271 - PLoS Pathog. 2011 Sep;7(9):e1002260
15703242 - Mol Biol Evol. 2005 May;22(5):1208-22
16079797 - Nature. 2005 Sep 8;437(7056):209-14
18798024 - Avian Pathol. 2008 Oct;37(5):499-505
16568906 - Curr Top Microbiol Immunol. 2006;299:349-70
10485898 - Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10752-7
19932194 - Infect Genet Evol. 2010 Mar;10(2):215-20
16285858 - Annu Rev Genet. 2005;39:197-218
17996036 - BMC Evol Biol. 2007 Nov 08;7:214
12377561 - Trends Microbiol. 2002;10(10 Suppl):S3-7
25375777 - PLoS Pathog. 2014 Nov 06;10(11):e1004395
27449955 - Infect Genet Evol. 2016 Oct;44:278-80
3942033 - Virology. 1986 Jan 15;148(1):121-32
15073366 - Science. 2004 Apr 9;304(5668):237-42
23233462 - Mol Biol Evol. 2013 Mar;30(3):669-88
25418281 - Genome Biol. 2014 Nov 22;15(11):541
18406140 - Trends Microbiol. 2008 May;16(5):208-14
3176341 - Virology. 1988 Oct;166(2):293-307
17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8
References_xml – volume: 80
  start-page: 1015
  year: 2006
  ident: B33
  article-title: Low pH-dependent endosomal processing of the incoming parvovirus minute virus of mice virion leads to externalization of the VP1 N-terminal sequence (N-VP1), N-VP2 cleavage, and uncoating of the full-length genome.
  publication-title: J. Virol.
  doi: 10.1128/JVI.80.2.1015-1024.2006
– volume: 5
  start-page: 199
  year: 2005
  ident: B55
  article-title: Comparative population dynamics of HIV-1 subtypes B and C: subtype-specific differences in patterns of epidemic growth.
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2004.06.011
– volume: 22
  start-page: 1208
  year: 2005
  ident: B20
  article-title: Not so different after all: a comparison of methods for detecting amino acid sites under selection.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msi105
– volume: 7
  issue: e1002260
  year: 2011
  ident: B31
  article-title: Host phylogeny determines viral persistence and replication in novel hosts.
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002260
– volume: 67
  start-page: 765
  year: 1993
  ident: B23
  article-title: B-cell epitopes of canine parvovirus: distribution on the primary structure and exposure on the viral surface.
  publication-title: J. Virol.
  doi: 10.1128/JVI.67.2.765-772.1993
– volume: 324
  start-page: 1557
  year: 2009
  ident: B11
  article-title: Pandemic potential of a strain of influenza a (H1N1): early findings.
  publication-title: Science
  doi: 10.1126/science.1176062
– volume: 10
  start-page: 215
  year: 2009
  ident: B62
  article-title: Rapid molecular evolution of human bocavirus revealed by Bayesian coalescent inference.
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2009.11.011
– volume: 33
  start-page: 1870
  year: 2016
  ident: B22
  article-title: MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msw054
– volume: 10
  issue: e1004395
  year: 2014
  ident: B29
  article-title: The evolution and genetics of virus host shifts.
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004395
– volume: 90
  start-page: 773
  year: 1995
  ident: B18
  article-title: Bayes factors.
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1995.10476572
– volume: 31
  start-page: 3381
  year: 2003
  ident: B46
  article-title: SWISS-MODEL: an automated protein homology-modeling server.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg520
– volume: 23
  start-page: 7
  year: 2006
  ident: B49
  article-title: Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msj021
– volume: 96
  start-page: 10752
  year: 1999
  ident: B25
  article-title: The molecular clock of HIV-1 unveiled through analysis of a known transmission history.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.96.19.10752
– volume: 29
  start-page: 751
  year: 2012
  ident: B28
  article-title: Model averaging and Bayes factor calculation of relaxed molecular clocks in Bayesian phylogenetics.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msr232
– volume: 86
  start-page: 1514
  year: 2011
  ident: B53
  article-title: The role of evolutionary intermediates in the host adaptation of canine parvovirus.
  publication-title: J. Virol.
  doi: 10.1128/JVI.06222-11
– volume: 8
  issue: e1002511
  year: 2012
  ident: B4
  article-title: Correction: ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum.
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002511
– volume: 37
  start-page: 499
  year: 2008
  ident: B50
  article-title: Identification of sequence changes in live attenuated goose parvovirus vaccine strains developed in Asia and Europe.
  publication-title: Avian. Pathol.
  doi: 10.1080/03079450802356979
– volume: 38
  start-page: 175
  year: 2009
  ident: B39
  article-title: Short beak and dwarfism syndrome of mule duck is caused by a distinct lineage of goose parvovirus.
  publication-title: Avian. Pathol.
  doi: 10.1080/03079450902737839
– volume: 166
  start-page: 293
  year: 1988
  ident: B40
  article-title: Canine host range and a specific epitope map along with variant sequences in the capsid protein gene of canine parvovirus and related feline, mink, and raccoon parvoviruses.
  publication-title: Virology
  doi: 10.1016/0042-6822(88)90500-4
– volume: 44
  start-page: 278
  year: 2016
  ident: B26
  article-title: Novel duck parvovirus identified in cherry valley ducks ( Anas platyrhynchos domesticus), China.
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2016.07.020
– volume: 537
  start-page: 93
  year: 2009
  ident: B42
  article-title: Selection of models of DNA evolution with jModelTest.
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-251-9_5
– volume: 148
  start-page: 121
  year: 1986
  ident: B41
  article-title: Characterization and recombination mapping of an antigenic and host range mutation of canine parvovirus.
  publication-title: Virology
  doi: 10.1016/0042-6822(86)90408-3
– volume: 292
  start-page: 2323
  year: 2001
  ident: B43
  article-title: The epidemic behavior of the hepatitis C virus.
  publication-title: Science
  doi: 10.1126/science.1058321
– volume: 90
  start-page: 8542
  year: 2016
  ident: B7
  article-title: Cryo-electron microscopy reconstruction and stability studies of Wild-Type and R432A variant of AAV2 reveals capsid structural stability is a major factor in genome packaging.
  publication-title: J. Virol.
  doi: 10.1128/JVI.00575-16
– volume: 39
  start-page: 197
  year: 2005
  ident: B37
  article-title: Molecular signatures of natural selection.
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.39.073003.112420
– volume: 30
  start-page: 233
  year: 2015
  ident: B48
  article-title: Genetic diversity of VP3 of goose parvovirus isolated from Southeastern China during 2012–2013.
  publication-title: Mol. Genet. Microbiol. Virol.
  doi: 10.3103/S0891416815040102
– volume: 299
  start-page: 349
  year: 2006
  ident: B32
  article-title: Parvovirus variation for disease: a difference with rna viruses?
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 88
  start-page: 1071
  year: 2014
  ident: B45
  article-title: Adeno-associated virus capsid proteins may play a role in transcription and second-strand synthesis of recombinant genomes.
  publication-title: J. Virol.
  doi: 10.1128/JVI.02093-13
– volume: 8
  issue: e1002764
  year: 2012
  ident: B36
  article-title: Detecting individual sites subject to episodic diversifying selection.
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002764
– volume: 8
  start-page: 68
  year: 2014
  ident: B35
  article-title: The role of viral evolution in rabies host shifts and emergence.
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2014.07.004
– volume: 7
  issue: 214
  year: 2007
  ident: B8
  article-title: BEAST: bayesian evolutionary analysis by sampling trees.
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-7-214
– volume: 26
  start-page: 2455
  year: 2010
  ident: B6
  article-title: Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq429
– volume: 356
  start-page: 901
  year: 2001
  ident: B34
  article-title: Infectious disease dynamics: what characterizes a successful invader?
  publication-title: Philos. Trans. R. Soc. Lond.
  doi: 10.1098/rstb.2001.0866
– volume: 15
  start-page: 541
  year: 2014
  ident: B27
  article-title: Genomic analysis of emerging pathogens: methods, application and future trends.
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0541-9
– volume: 12
  start-page: 1
  year: 2015
  ident: B54
  article-title: Role of capsid proteins in parvoviruses infection.
  publication-title: Virol. J.
  doi: 10.1186/s12985-015-0344-y
– volume: 136
  start-page: 599
  year: 2014
  ident: B16
  article-title: Waterfowl parvoviruses. Literature review.
  publication-title: Magy. Allatorvosok Lapja
– volume: 77
  start-page: 6995
  year: 2003
  ident: B38
  article-title: Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding.
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.12.6995-7006.2003
– volume: 4
  start-page: 187
  year: 1988
  ident: B56
  article-title: An integrated family of amino acid sequence analysis programs.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/4.1.187
– volume: 16
  start-page: 208
  year: 2008
  ident: B13
  article-title: The parvovirus capsid odyssey: from the cell surface to the nucleus.
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2008.01.012
– volume: 304
  start-page: 237
  year: 2004
  ident: B51
  article-title: How viruses enter animal cells.
  publication-title: Science
  doi: 10.1126/science.1094823
– volume: 10
  issue: e1003537
  year: 2014
  ident: B1
  article-title: BEAST 2: a software platform for bayesian evolutionary analysis.
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003537
– volume: 163
  issue: 461
  year: 2008
  ident: B15
  article-title: Goose parvovirus in Great Britain.
  publication-title: Vet. Rec.
  doi: 10.1136/vr.163.15.461
– volume: 51
  start-page: 609
  year: 2007
  ident: B17
  article-title: Epidemiologic Investigation of an outbreak of goose parvovirus infection in sweden (Investigación epidemiológica de un brote de infección con parvovirus del ganso en Suecia).
  publication-title: Avian. Dis.
  doi: 10.1637/0005-2086(2007)51[609:EIOAOO]2.0.CO;2
– volume: 329
  start-page: 676
  year: 2010
  ident: B52
  article-title: Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats.
  publication-title: Science
  doi: 10.1126/science.1188836
– volume: 161
  start-page: 1
  year: 2016
  ident: B3
  article-title: Isolation and characterization of a distinct duck-origin goose parvovirus causing an outbreak of duckling short beak and dwarfism syndrome in China.
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-016-2926-4
– volume: 20
  start-page: 238
  year: 2005
  ident: B58
  article-title: Emerging pathogens: the epidemiology and evolution of species jumps.
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2005.02.009
– volume: Vol. 4
  start-page: 148
  year: 2002
  ident: B5
  publication-title: The PyMOL User’s Manual. Dpsm for Modeling Engineering Problems,
– volume: 6
  start-page: 392
  year: 2003
  ident: B14
  article-title: Parvovirus host range, cell tropism and evolution.
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/S1369-5274(03)00083-3
– volume: 10
  start-page: s3
  year: 2002
  ident: B57
  article-title: Population biology of emerging and re-emerging pathogens.
  publication-title: Trends Microbiol.
  doi: 10.1016/S0966-842X(02)02428-9
– volume: 10
  issue: e0140284
  year: 2015
  ident: B2
  article-title: Isolation and genomic characterization of a duck-origin GPV-related parvovirus from cherry valley ducklings in China.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0140284
– volume: 53
  start-page: 73
  year: 2005
  ident: B12
  article-title: Comparative pathological studies on domestic geese (Anser anser domestica) and Muscovy ducks (Cairina moschata) experimentally infected with parvovirus strains of goose and Muscovy duck origin.
  publication-title: Acta Vet. Hung
  doi: 10.1556/AVet.53.2005.1.8
– volume: 30
  start-page: 669
  year: 2013
  ident: B59
  article-title: Bayesian selection of nucleotide substitution models and their site assignments.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mss258
– volume: 23
  start-page: 1891
  year: 2006
  ident: B21
  article-title: Automated phylogenetic detection of recombination using a genetic algorithm.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msl051
– volume: 102
  start-page: 379
  year: 2005
  ident: B47
  article-title: High rate of viral evolution associated with the emergence of carnivore parvovirus.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0406765102
– volume: 145
  start-page: 522
  year: 2012
  ident: B61
  article-title: Localization of linear B-cell epitopes on goose parvovirus structural protein.
  publication-title: Vet. Immunol. Immunopathol.
  doi: 10.1016/j.vetimm.2011.11.022
– volume: 23
  start-page: 2947
  year: 2007
  ident: B24
  article-title: Clustal W and Clustal X version 2.0.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm404
– volume: 29
  start-page: 1969
  year: 2012
  ident: B9
  article-title: Bayesian phylogenetics with BEAUti and the BEAST 1.7.
  publication-title: Molecular Biology & Evolution
  doi: 10.1093/molbev/mss075
– volume: 437
  start-page: 209
  year: 2005
  ident: B10
  article-title: Strategies for containing an emerging influenza pandemic in Southeast Asia.
  publication-title: Nature
  doi: 10.1038/nature04017
– volume: 80
  start-page: 11393
  year: 2006
  ident: B60
  article-title: Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes.
  publication-title: J. Virol.
  doi: 10.1128/JVI.01288-06
– volume: 276
  start-page: 172
  year: 1990
  ident: B19
  article-title: A semi-empirical method for prediction of antigenic determinants on protein antigens.
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(90)80535-Q
– volume: 11
  issue: e1004728
  year: 2015
  ident: B30
  article-title: The causes and consequences of changes in virulence following pathogen host shifts.
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004728
– volume: 86
  start-page: 9274
  year: 2012
  ident: B44
  article-title: Characterization of the early steps of human parvovirus B19 infection.
  publication-title: J. Virol.
  doi: 10.1128/JVI.01004-12
– reference: 18849581 - Vet Rec. 2008 Oct 11;163(15):461
– reference: 25774803 - PLoS Pathog. 2015 Mar 16;11(3):e1004728
– reference: 22114336 - J Virol. 2012 Feb;86(3):1514-21
– reference: 16701375 - Trends Ecol Evol. 2005 May;20(5):238-44
– reference: 22718826 - J Virol. 2012 Sep;86(17):9274-84
– reference: 22209204 - Vet Immunol Immunopathol. 2012 Jan 15;145(1-2):522-6
– reference: 12824332 - Nucleic Acids Res. 2003 Jul 1;31(13):3381-5
– reference: 15703242 - Mol Biol Evol. 2005 May;22(5):1208-22
– reference: 22346765 - PLoS Genet. 2012 Feb;8(2):e1002511
– reference: 11405937 - Philos Trans R Soc Lond B Biol Sci. 2001 Jun 29;356(1410):901-10
– reference: 12768018 - J Virol. 2003 Jun;77(12):6995-7006
– reference: 21966271 - PLoS Pathog. 2011 Sep;7(9):e1002260
– reference: 26239432 - Virol J. 2015 Aug 04;12:114
– reference: 12377561 - Trends Microbiol. 2002;10(10 Suppl):S3-7
– reference: 16177232 - Mol Biol Evol. 2006 Jan;23(1):7-9
– reference: 18798024 - Avian Pathol. 2008 Oct;37(5):499-505
– reference: 15782661 - Acta Vet Hung. 2005;53(1):73-89
– reference: 24198419 - J Virol. 2014 Jan;88(2):1071-9
– reference: 15737910 - Infect Genet Evol. 2005 Apr;5(3):199-208
– reference: 27314945 - Arch Virol. 2016 Sep;161(9):2407-16
– reference: 20689015 - Science. 2010 Aug 6;329(5992):676-9
– reference: 27440903 - J Virol. 2016 Sep 12;90(19):8542-51
– reference: 26465143 - PLoS One. 2015 Oct 14;10(10):e0140284
– reference: 19433588 - Science. 2009 Jun 19;324(5934):1557-61
– reference: 27004904 - Mol Biol Evol. 2016 Jul;33(7):1870-4
– reference: 1702393 - FEBS Lett. 1990 Dec 10;276(1-2):172-4
– reference: 25375777 - PLoS Pathog. 2014 Nov 06;10(11):e1004395
– reference: 23233462 - Mol Biol Evol. 2013 Mar;30(3):669-88
– reference: 19932194 - Infect Genet Evol. 2010 Mar;10(2):215-20
– reference: 25064563 - Curr Opin Virol. 2014 Oct;8:68-72
– reference: 27449955 - Infect Genet Evol. 2016 Oct;44:278-80
– reference: 16079797 - Nature. 2005 Sep 8;437(7056):209-14
– reference: 18406140 - Trends Microbiol. 2008 May;16(5):208-14
– reference: 22367748 - Mol Biol Evol. 2012 Aug;29(8):1969-73
– reference: 15073366 - Science. 2004 Apr 9;304(5668):237-42
– reference: 22807683 - PLoS Genet. 2012;8(7):e1002764
– reference: 17996036 - BMC Evol Biol. 2007 Nov 08;7:214
– reference: 16943302 - J Virol. 2006 Nov;80(22):11393-7
– reference: 25418281 - Genome Biol. 2014 Nov 22;15(11):541
– reference: 11423661 - Science. 2001 Jun 22;292(5525):2323-5
– reference: 16568906 - Curr Top Microbiol Immunol. 2006;299:349-70
– reference: 3942033 - Virology. 1986 Jan 15;148(1):121-32
– reference: 24722319 - PLoS Comput Biol. 2014 Apr 10;10(4):e1003537
– reference: 10485898 - Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10752-7
– reference: 19378141 - Methods Mol Biol. 2009;537:93-112
– reference: 12941411 - Curr Opin Microbiol. 2003 Aug;6(4):392-8
– reference: 3176341 - Virology. 1988 Oct;166(2):293-307
– reference: 16379002 - J Virol. 2006 Jan;80(2):1015-24
– reference: 19322718 - Avian Pathol. 2009 Apr;38(2):175-80
– reference: 16818476 - Mol Biol Evol. 2006 Oct;23(10):1891-901
– reference: 17626494 - Avian Dis. 2007 Jun;51(2):609-13
– reference: 16285858 - Annu Rev Genet. 2005;39:197-218
– reference: 7678305 - J Virol. 1993 Feb;67(2):765-72
– reference: 21940644 - Mol Biol Evol. 2012 Feb;29(2):751-61
– reference: 20671151 - Bioinformatics. 2010 Oct 1;26(19):2455-7
– reference: 15626758 - Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):379-84
– reference: 3382992 - Comput Appl Biosci. 1988 Mar;4(1):187-91
– reference: 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8
SSID ssj0000402000
Score 2.282996
Snippet Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 421
SubjectTerms Microbiology
Title Analysis of Evolutionary Processes of Species Jump in Waterfowl Parvovirus
URI https://www.ncbi.nlm.nih.gov/pubmed/28352261
https://www.proquest.com/docview/1882081152
https://pubmed.ncbi.nlm.nih.gov/PMC5349109
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yEXwR784bFXzxobpcmrUPIiLqGCg-ONxbSZoUB6PV7qL7956TdtOpCL6UliSlnJMm38fJ-Q4hx8oJlQngJsY0fBGZ1A_DiKIQJC6U1DCF-c5397LVEe1u0P1Mj64MOPiV2mE9qU7RP31_nVzAD3-OjBP2W_BAL9F4SgvVCAVmlS-6aBEe5KvAvluXkSq5nBQqJYYDWLeMW_76kvl96gf4_H6G8sumdLNKVio06V2W7l8jCzZbJ0tlfcnJBmlPJUe8PPWux9UsU8XEq_IDrGtxNejhtg2u9XqZ96SwdnX-1vceVDHOx71iNNgknZvrx6uWXxVP8BMeyaEfRFKHnAplRVNihZ1QschohhXAUi55k2mZNAywMa2YFSwVIqHcMJ42qKUy4FukluWZ3SFeYnVoLWALo1MRUBOGXAZpU2rOooRFQZ2cTU0VJ5WyOBa46MfAMNC4sTNujMaNnXHr5GQ24qVU1fij79HU-jFMfYxnqMzmo0FMgR0AogEEUifbpTdmb2MlsoTRzTk_zTqgrPZ8S9Z7dvLaAReAoaLdf3zjHlnGBzybRsU-qQ2LkT0AsDLUh47kw_W2Sw_dfPwAXNzn_w
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Evolutionary+Processes+of+Species+Jump+in+Waterfowl+Parvovirus&rft.jtitle=Frontiers+in+microbiology&rft.au=Fan%2C+Wentao&rft.au=Sun%2C+Zhaoyu&rft.au=Shen%2C+Tongtong&rft.au=Xu%2C+Danning&rft.date=2017-03-14&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=8&rft_id=info:doi/10.3389%2Ffmicb.2017.00421&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmicb_2017_00421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon