Analysis of Evolutionary Processes of Species Jump in Waterfowl Parvovirus
Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host preferences. A novel duck parvovirus (NDPV), identified as a new variant of GPV, is currently infecting ducks, thus causing considerable economic loss....
Saved in:
Published in | Frontiers in microbiology Vol. 8; p. 421 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
14.03.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-302X 1664-302X |
DOI | 10.3389/fmicb.2017.00421 |
Cover
Abstract | Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host preferences. A novel duck parvovirus (NDPV), identified as a new variant of GPV, is currently infecting ducks, thus causing considerable economic loss. This study analyzed the molecular evolution and population dynamics of the emerging parvovirus capsid gene to investigate the evolutionary processes concerning the host shift of NDPV. Two important amino acids changes (Asn-489 and Asn-650) were identified in NDPV, which may be responsible for host shift of NDPV. Phylogenetic analysis indicated that the currently circulating NDPV originated from the GPV lineage. The Bayesian Markov chain Monte Carlo tree indicated that the NDPV diverged from GPV approximately 20 years ago. Evolutionary rate analyses demonstrated that GPV evolved with 7.674 × 10
substitutions/site/year, and the data for MDPV was 5.237 × 10
substitutions/site/year, whereas the substitution rate in NDPV branch was 2.25 × 10
substitutions/site/year. Meanwhile, viral population dynamics analysis revealed that the GPV major clade, including NDPV, grew exponentially at a rate of 1.717 year
. Selection pressure analysis showed that most sites are subject to strong purifying selection and no positively selected sites were found in NDPV. The unique immune-epitopes in waterfowl parvovirus were also estimated, which may be helpful for the prediction of antibody binding sites against NDPV in ducks. |
---|---|
AbstractList | Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host preferences. A novel duck parvovirus (NDPV), identified as a new variant of GPV, is currently infecting ducks, thus causing considerable economic loss. This study analyzed the molecular evolution and population dynamics of the emerging parvovirus capsid gene to investigate the evolutionary processes concerning the host shift of NDPV. Two important amino acids changes (Asn-489 and Asn-650) were identified in NDPV, which may be responsible for host shift of NDPV. Phylogenetic analysis indicated that the currently circulating NDPV originated from the GPV lineage. The Bayesian Markov chain Monte Carlo tree indicated that the NDPV diverged from GPV approximately 20 years ago. Evolutionary rate analyses demonstrated that GPV evolved with 7.674 × 10
-4
substitutions/site/year, and the data for MDPV was 5.237 × 10
-4
substitutions/site/year, whereas the substitution rate in NDPV branch was 2.25 × 10
-3
substitutions/site/year. Meanwhile, viral population dynamics analysis revealed that the GPV major clade, including NDPV, grew exponentially at a rate of 1.717 year
-1
. Selection pressure analysis showed that most sites are subject to strong purifying selection and no positively selected sites were found in NDPV. The unique immune-epitopes in waterfowl parvovirus were also estimated, which may be helpful for the prediction of antibody binding sites against NDPV in ducks. Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host preferences. A novel duck parvovirus (NDPV), identified as a new variant of GPV, is currently infecting ducks, thus causing considerable economic loss. This study analyzed the molecular evolution and population dynamics of the emerging parvovirus capsid gene to investigate the evolutionary processes concerning the host shift of NDPV. Two important amino acids changes (Asn-489 and Asn-650) were identified in NDPV, which may be responsible for host shift of NDPV. Phylogenetic analysis indicated that the currently circulating NDPV originated from the GPV lineage. The Bayesian Markov chain Monte Carlo tree indicated that the NDPV diverged from GPV approximately 20 years ago. Evolutionary rate analyses demonstrated that GPV evolved with 7.674 × 10 substitutions/site/year, and the data for MDPV was 5.237 × 10 substitutions/site/year, whereas the substitution rate in NDPV branch was 2.25 × 10 substitutions/site/year. Meanwhile, viral population dynamics analysis revealed that the GPV major clade, including NDPV, grew exponentially at a rate of 1.717 year . Selection pressure analysis showed that most sites are subject to strong purifying selection and no positively selected sites were found in NDPV. The unique immune-epitopes in waterfowl parvovirus were also estimated, which may be helpful for the prediction of antibody binding sites against NDPV in ducks. Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host preferences. A novel duck parvovirus (NDPV), identified as a new variant of GPV, is currently infecting ducks, thus causing considerable economic loss. This study analyzed the molecular evolution and population dynamics of the emerging parvovirus capsid gene to investigate the evolutionary processes concerning the host shift of NDPV. Two important amino acids changes (Asn-489 and Asn-650) were identified in NDPV, which may be responsible for host shift of NDPV. Phylogenetic analysis indicated that the currently circulating NDPV originated from the GPV lineage. The Bayesian Markov chain Monte Carlo tree indicated that the NDPV diverged from GPV approximately 20 years ago. Evolutionary rate analyses demonstrated that GPV evolved with 7.674 × 10-4 substitutions/site/year, and the data for MDPV was 5.237 × 10-4 substitutions/site/year, whereas the substitution rate in NDPV branch was 2.25 × 10-3 substitutions/site/year. Meanwhile, viral population dynamics analysis revealed that the GPV major clade, including NDPV, grew exponentially at a rate of 1.717 year-1. Selection pressure analysis showed that most sites are subject to strong purifying selection and no positively selected sites were found in NDPV. The unique immune-epitopes in waterfowl parvovirus were also estimated, which may be helpful for the prediction of antibody binding sites against NDPV in ducks.Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host preferences. A novel duck parvovirus (NDPV), identified as a new variant of GPV, is currently infecting ducks, thus causing considerable economic loss. This study analyzed the molecular evolution and population dynamics of the emerging parvovirus capsid gene to investigate the evolutionary processes concerning the host shift of NDPV. Two important amino acids changes (Asn-489 and Asn-650) were identified in NDPV, which may be responsible for host shift of NDPV. Phylogenetic analysis indicated that the currently circulating NDPV originated from the GPV lineage. The Bayesian Markov chain Monte Carlo tree indicated that the NDPV diverged from GPV approximately 20 years ago. Evolutionary rate analyses demonstrated that GPV evolved with 7.674 × 10-4 substitutions/site/year, and the data for MDPV was 5.237 × 10-4 substitutions/site/year, whereas the substitution rate in NDPV branch was 2.25 × 10-3 substitutions/site/year. Meanwhile, viral population dynamics analysis revealed that the GPV major clade, including NDPV, grew exponentially at a rate of 1.717 year-1. Selection pressure analysis showed that most sites are subject to strong purifying selection and no positively selected sites were found in NDPV. The unique immune-epitopes in waterfowl parvovirus were also estimated, which may be helpful for the prediction of antibody binding sites against NDPV in ducks. |
Author | Song, Suquan Fan, Wentao Shen, Tongtong Xu, Danning Huang, Kehe Zhou, Jiyong Sun, Zhaoyu Yan, Liping |
AuthorAffiliation | 1 College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China 3 Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes Guangzhou, China 2 Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China |
AuthorAffiliation_xml | – name: 1 College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China – name: 2 Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China – name: 3 Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes Guangzhou, China |
Author_xml | – sequence: 1 givenname: Wentao surname: Fan fullname: Fan, Wentao – sequence: 2 givenname: Zhaoyu surname: Sun fullname: Sun, Zhaoyu – sequence: 3 givenname: Tongtong surname: Shen fullname: Shen, Tongtong – sequence: 4 givenname: Danning surname: Xu fullname: Xu, Danning – sequence: 5 givenname: Kehe surname: Huang fullname: Huang, Kehe – sequence: 6 givenname: Jiyong surname: Zhou fullname: Zhou, Jiyong – sequence: 7 givenname: Suquan surname: Song fullname: Song, Suquan – sequence: 8 givenname: Liping surname: Yan fullname: Yan, Liping |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28352261$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UUtLxDAQDqK4PvbuSXr00jWZpNn2IoisLxYUVPQW0jTVSNusSVvZf2_2JSo4h8zAfI8w3z7abmyjEToieERpmp2WtVH5CDAZjzBmQLbQHuGcxRTDy_aPeYCG3r_jUAxDeHfRAFKaAHCyh27PG1nNvfGRLaNJb6uuNbaRbh7dO6u093q5eZhpZcJ429WzyDTRs2y1K-1nFd1L19veuM4fop1SVl4P1_0APV1OHi-u4-nd1c3F-TRWNONtnGQ8TylhUrMxzziMUwlZkQNXGkrK6RhyrnBBMMslaAYlY4rQAmiJiSY8oQfobKU76_JaF0o3rZOVmDlTh38LK434vWnMm3i1vUgoywjOgsDJWsDZj077VtTGK11VstG284KkKeCUkAQC9Pin17fJ5oABwFcA5az3TpdCmVYubhisTSUIFouwxDIssQhLLMMKRPyHuNH-l_IFFW6YUA |
CitedBy_id | crossref_primary_10_1016_j_psj_2022_101929 crossref_primary_10_1080_03079457_2018_1517938 crossref_primary_10_3390_microorganisms12122423 crossref_primary_10_3390_ani10101833 crossref_primary_10_3390_ani12202846 crossref_primary_10_1186_s12985_019_1237_2 crossref_primary_10_3390_v14071471 crossref_primary_10_3390_v17010096 crossref_primary_10_1093_ve_vez053 crossref_primary_10_1016_j_cimid_2023_102079 crossref_primary_10_1111_tbed_14453 crossref_primary_10_3390_v14040696 crossref_primary_10_1007_s00705_021_05352_z crossref_primary_10_2478_jvetres_2021_0063 crossref_primary_10_1080_03079457_2024_2419038 |
Cites_doi | 10.1128/JVI.80.2.1015-1024.2006 10.1016/j.meegid.2004.06.011 10.1093/molbev/msi105 10.1371/journal.ppat.1002260 10.1128/JVI.67.2.765-772.1993 10.1126/science.1176062 10.1016/j.meegid.2009.11.011 10.1093/molbev/msw054 10.1371/journal.ppat.1004395 10.1080/01621459.1995.10476572 10.1093/nar/gkg520 10.1093/molbev/msj021 10.1073/pnas.96.19.10752 10.1093/molbev/msr232 10.1128/JVI.06222-11 10.1371/journal.pgen.1002511 10.1080/03079450802356979 10.1080/03079450902737839 10.1016/0042-6822(88)90500-4 10.1016/j.meegid.2016.07.020 10.1007/978-1-59745-251-9_5 10.1016/0042-6822(86)90408-3 10.1126/science.1058321 10.1128/JVI.00575-16 10.1146/annurev.genet.39.073003.112420 10.3103/S0891416815040102 10.1128/JVI.02093-13 10.1371/journal.pgen.1002764 10.1016/j.coviro.2014.07.004 10.1186/1471-2148-7-214 10.1093/bioinformatics/btq429 10.1098/rstb.2001.0866 10.1186/s13059-014-0541-9 10.1186/s12985-015-0344-y 10.1128/JVI.77.12.6995-7006.2003 10.1093/bioinformatics/4.1.187 10.1016/j.tim.2008.01.012 10.1126/science.1094823 10.1371/journal.pcbi.1003537 10.1136/vr.163.15.461 10.1637/0005-2086(2007)51[609:EIOAOO]2.0.CO;2 10.1126/science.1188836 10.1007/s00705-016-2926-4 10.1016/j.tree.2005.02.009 10.1016/S1369-5274(03)00083-3 10.1016/S0966-842X(02)02428-9 10.1371/journal.pone.0140284 10.1556/AVet.53.2005.1.8 10.1093/molbev/mss258 10.1093/molbev/msl051 10.1073/pnas.0406765102 10.1016/j.vetimm.2011.11.022 10.1093/bioinformatics/btm404 10.1093/molbev/mss075 10.1038/nature04017 10.1128/JVI.01288-06 10.1016/0014-5793(90)80535-Q 10.1371/journal.ppat.1004728 10.1128/JVI.01004-12 |
ContentType | Journal Article |
Copyright | Copyright © 2017 Fan, Sun, Shen, Xu, Huang, Zhou, Song and Yan. 2017 Fan, Sun, Shen, Xu, Huang, Zhou, Song and Yan |
Copyright_xml | – notice: Copyright © 2017 Fan, Sun, Shen, Xu, Huang, Zhou, Song and Yan. 2017 Fan, Sun, Shen, Xu, Huang, Zhou, Song and Yan |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.3389/fmicb.2017.00421 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | PMC5349109 28352261 10_3389_fmicb_2017_00421 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IAO IEA IHR IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c396t-596b8314ae47696278a29db26ce2f36372b6c0d104ba2e42f44c13d23f01e1653 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Thu Aug 21 14:21:50 EDT 2025 Fri Sep 05 00:10:56 EDT 2025 Thu Jan 02 22:22:20 EST 2025 Tue Jul 01 00:54:37 EDT 2025 Thu Apr 24 22:51:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | epidemiology phylogeny evolution Bayesian inference species jump waterfowl parvovirus |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-596b8314ae47696278a29db26ce2f36372b6c0d104ba2e42f44c13d23f01e1653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Akio Adachi, University of Tokushima, Japan Reviewed by: Marta Canuti, Memorial University of Newfoundland, Canada; Dongbo Sun, Heilongjiang Bayi Agricultural University, China This article was submitted to Virology, a section of the journal Frontiers in Microbiology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2017.00421 |
PMID | 28352261 |
PQID | 1882081152 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5349109 proquest_miscellaneous_1882081152 pubmed_primary_28352261 crossref_citationtrail_10_3389_fmicb_2017_00421 crossref_primary_10_3389_fmicb_2017_00421 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-14 |
PublicationDateYYYYMMDD | 2017-03-14 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2017 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Pybus (B43) 2001; 292 Wu (B60) 2006; 80 Istvan (B16) 2014; 136 Stucker (B53) 2011; 86 Chen (B2) 2015; 10 Irvine (B15) 2008; 163 Wu (B59) 2013; 30 Longdon (B31) 2011; 7 Streicker (B52) 2010; 329 Walker (B55) 2005; 5 Salganik (B45) 2014; 88 Delport (B6) 2010; 26 Longdon (B29) 2014; 10 Leitner (B25) 1999; 96 Drouin (B7) 2016; 90 Woolhouse (B58) 2005; 20 Hueffer (B14) 2003; 6 Delaney (B4) 2012; 8 Opie (B38) 2003; 77 Delano (B5) 2002; Vol. 4 Schwede (B46) 2003; 31 Shien (B50) 2008; 37 Mani (B33) 2006; 80 Shapiro (B49) 2006; 23 Woolhouse (B57) 2002; 10 Yu (B61) 2012; 145 Kosakovsky Pond (B20) 2005; 22 Chen (B3) 2016; 161 Wolf (B56) 1988; 4 Palya (B39) 2009; 38 Fraser (B11) 2009; 324 Longdon (B30) 2015; 11 Smith (B51) 2004; 304 Ferguson (B10) 2005; 437 Glávits (B12) 2005; 53 Langeveld (B23) 1993; 67 Li (B28) 2012; 29 May (B34) 2001; 356 Zehender (B62) 2009; 10 Drummond (B8) 2007; 7 Posada (B42) 2009; 537 Parrish (B41) 1986; 148 Quattrocchi (B44) 2012; 86 Kumar (B22) 2016; 33 Li (B27) 2014; 15 Mollentze (B35) 2014; 8 Kass (B18) 1995; 90 Lópezbueno (B32) 2006; 299 Shao (B48) 2015; 30 Jansson (B17) 2007; 51 Kosakovsky Pond (B21) 2006; 23 Tu (B54) 2015; 12 Parrish (B40) 1988; 166 Nielsen (B37) 2005; 39 Bouckaert (B1) 2014; 10 Kolaskar (B19) 1990; 276 Shackelton (B47) 2005; 102 Li (B26) 2016; 44 Drummond (B9) 2012; 29 Larkin (B24) 2007; 23 Harbison (B13) 2008; 16 Murrell (B36) 2012; 8 12824332 - Nucleic Acids Res. 2003 Jul 1;31(13):3381-5 25064563 - Curr Opin Virol. 2014 Oct;8:68-72 26465143 - PLoS One. 2015 Oct 14;10(10):e0140284 19322718 - Avian Pathol. 2009 Apr;38(2):175-80 20671151 - Bioinformatics. 2010 Oct 1;26(19):2455-7 16379002 - J Virol. 2006 Jan;80(2):1015-24 1702393 - FEBS Lett. 1990 Dec 10;276(1-2):172-4 21940644 - Mol Biol Evol. 2012 Feb;29(2):751-61 25774803 - PLoS Pathog. 2015 Mar 16;11(3):e1004728 3382992 - Comput Appl Biosci. 1988 Mar;4(1):187-91 24198419 - J Virol. 2014 Jan;88(2):1071-9 22807683 - PLoS Genet. 2012;8(7):e1002764 15782661 - Acta Vet Hung. 2005;53(1):73-89 22346765 - PLoS Genet. 2012 Feb;8(2):e1002511 12768018 - J Virol. 2003 Jun;77(12):6995-7006 7678305 - J Virol. 1993 Feb;67(2):765-72 27314945 - Arch Virol. 2016 Sep;161(9):2407-16 16177232 - Mol Biol Evol. 2006 Jan;23(1):7-9 20689015 - Science. 2010 Aug 6;329(5992):676-9 16818476 - Mol Biol Evol. 2006 Oct;23(10):1891-901 15626758 - Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):379-84 18849581 - Vet Rec. 2008 Oct 11;163(15):461 22718826 - J Virol. 2012 Sep;86(17):9274-84 27440903 - J Virol. 2016 Sep 12;90(19):8542-51 26239432 - Virol J. 2015 Aug 04;12:114 17626494 - Avian Dis. 2007 Jun;51(2):609-13 11423661 - Science. 2001 Jun 22;292(5525):2323-5 19378141 - Methods Mol Biol. 2009;537:93-112 16943302 - J Virol. 2006 Nov;80(22):11393-7 16701375 - Trends Ecol Evol. 2005 May;20(5):238-44 24722319 - PLoS Comput Biol. 2014 Apr 10;10(4):e1003537 27004904 - Mol Biol Evol. 2016 Jul;33(7):1870-4 15737910 - Infect Genet Evol. 2005 Apr;5(3):199-208 19433588 - Science. 2009 Jun 19;324(5934):1557-61 22114336 - J Virol. 2012 Feb;86(3):1514-21 12941411 - Curr Opin Microbiol. 2003 Aug;6(4):392-8 11405937 - Philos Trans R Soc Lond B Biol Sci. 2001 Jun 29;356(1410):901-10 22209204 - Vet Immunol Immunopathol. 2012 Jan 15;145(1-2):522-6 22367748 - Mol Biol Evol. 2012 Aug;29(8):1969-73 21966271 - PLoS Pathog. 2011 Sep;7(9):e1002260 15703242 - Mol Biol Evol. 2005 May;22(5):1208-22 16079797 - Nature. 2005 Sep 8;437(7056):209-14 18798024 - Avian Pathol. 2008 Oct;37(5):499-505 16568906 - Curr Top Microbiol Immunol. 2006;299:349-70 10485898 - Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10752-7 19932194 - Infect Genet Evol. 2010 Mar;10(2):215-20 16285858 - Annu Rev Genet. 2005;39:197-218 17996036 - BMC Evol Biol. 2007 Nov 08;7:214 12377561 - Trends Microbiol. 2002;10(10 Suppl):S3-7 25375777 - PLoS Pathog. 2014 Nov 06;10(11):e1004395 27449955 - Infect Genet Evol. 2016 Oct;44:278-80 3942033 - Virology. 1986 Jan 15;148(1):121-32 15073366 - Science. 2004 Apr 9;304(5668):237-42 23233462 - Mol Biol Evol. 2013 Mar;30(3):669-88 25418281 - Genome Biol. 2014 Nov 22;15(11):541 18406140 - Trends Microbiol. 2008 May;16(5):208-14 3176341 - Virology. 1988 Oct;166(2):293-307 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8 |
References_xml | – volume: 80 start-page: 1015 year: 2006 ident: B33 article-title: Low pH-dependent endosomal processing of the incoming parvovirus minute virus of mice virion leads to externalization of the VP1 N-terminal sequence (N-VP1), N-VP2 cleavage, and uncoating of the full-length genome. publication-title: J. Virol. doi: 10.1128/JVI.80.2.1015-1024.2006 – volume: 5 start-page: 199 year: 2005 ident: B55 article-title: Comparative population dynamics of HIV-1 subtypes B and C: subtype-specific differences in patterns of epidemic growth. publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2004.06.011 – volume: 22 start-page: 1208 year: 2005 ident: B20 article-title: Not so different after all: a comparison of methods for detecting amino acid sites under selection. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msi105 – volume: 7 issue: e1002260 year: 2011 ident: B31 article-title: Host phylogeny determines viral persistence and replication in novel hosts. publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002260 – volume: 67 start-page: 765 year: 1993 ident: B23 article-title: B-cell epitopes of canine parvovirus: distribution on the primary structure and exposure on the viral surface. publication-title: J. Virol. doi: 10.1128/JVI.67.2.765-772.1993 – volume: 324 start-page: 1557 year: 2009 ident: B11 article-title: Pandemic potential of a strain of influenza a (H1N1): early findings. publication-title: Science doi: 10.1126/science.1176062 – volume: 10 start-page: 215 year: 2009 ident: B62 article-title: Rapid molecular evolution of human bocavirus revealed by Bayesian coalescent inference. publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2009.11.011 – volume: 33 start-page: 1870 year: 2016 ident: B22 article-title: MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msw054 – volume: 10 issue: e1004395 year: 2014 ident: B29 article-title: The evolution and genetics of virus host shifts. publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004395 – volume: 90 start-page: 773 year: 1995 ident: B18 article-title: Bayes factors. publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1995.10476572 – volume: 31 start-page: 3381 year: 2003 ident: B46 article-title: SWISS-MODEL: an automated protein homology-modeling server. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg520 – volume: 23 start-page: 7 year: 2006 ident: B49 article-title: Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msj021 – volume: 96 start-page: 10752 year: 1999 ident: B25 article-title: The molecular clock of HIV-1 unveiled through analysis of a known transmission history. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.96.19.10752 – volume: 29 start-page: 751 year: 2012 ident: B28 article-title: Model averaging and Bayes factor calculation of relaxed molecular clocks in Bayesian phylogenetics. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msr232 – volume: 86 start-page: 1514 year: 2011 ident: B53 article-title: The role of evolutionary intermediates in the host adaptation of canine parvovirus. publication-title: J. Virol. doi: 10.1128/JVI.06222-11 – volume: 8 issue: e1002511 year: 2012 ident: B4 article-title: Correction: ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002511 – volume: 37 start-page: 499 year: 2008 ident: B50 article-title: Identification of sequence changes in live attenuated goose parvovirus vaccine strains developed in Asia and Europe. publication-title: Avian. Pathol. doi: 10.1080/03079450802356979 – volume: 38 start-page: 175 year: 2009 ident: B39 article-title: Short beak and dwarfism syndrome of mule duck is caused by a distinct lineage of goose parvovirus. publication-title: Avian. Pathol. doi: 10.1080/03079450902737839 – volume: 166 start-page: 293 year: 1988 ident: B40 article-title: Canine host range and a specific epitope map along with variant sequences in the capsid protein gene of canine parvovirus and related feline, mink, and raccoon parvoviruses. publication-title: Virology doi: 10.1016/0042-6822(88)90500-4 – volume: 44 start-page: 278 year: 2016 ident: B26 article-title: Novel duck parvovirus identified in cherry valley ducks ( Anas platyrhynchos domesticus), China. publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2016.07.020 – volume: 537 start-page: 93 year: 2009 ident: B42 article-title: Selection of models of DNA evolution with jModelTest. publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-251-9_5 – volume: 148 start-page: 121 year: 1986 ident: B41 article-title: Characterization and recombination mapping of an antigenic and host range mutation of canine parvovirus. publication-title: Virology doi: 10.1016/0042-6822(86)90408-3 – volume: 292 start-page: 2323 year: 2001 ident: B43 article-title: The epidemic behavior of the hepatitis C virus. publication-title: Science doi: 10.1126/science.1058321 – volume: 90 start-page: 8542 year: 2016 ident: B7 article-title: Cryo-electron microscopy reconstruction and stability studies of Wild-Type and R432A variant of AAV2 reveals capsid structural stability is a major factor in genome packaging. publication-title: J. Virol. doi: 10.1128/JVI.00575-16 – volume: 39 start-page: 197 year: 2005 ident: B37 article-title: Molecular signatures of natural selection. publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.39.073003.112420 – volume: 30 start-page: 233 year: 2015 ident: B48 article-title: Genetic diversity of VP3 of goose parvovirus isolated from Southeastern China during 2012–2013. publication-title: Mol. Genet. Microbiol. Virol. doi: 10.3103/S0891416815040102 – volume: 299 start-page: 349 year: 2006 ident: B32 article-title: Parvovirus variation for disease: a difference with rna viruses? publication-title: Curr. Top. Microbiol. Immunol. – volume: 88 start-page: 1071 year: 2014 ident: B45 article-title: Adeno-associated virus capsid proteins may play a role in transcription and second-strand synthesis of recombinant genomes. publication-title: J. Virol. doi: 10.1128/JVI.02093-13 – volume: 8 issue: e1002764 year: 2012 ident: B36 article-title: Detecting individual sites subject to episodic diversifying selection. publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002764 – volume: 8 start-page: 68 year: 2014 ident: B35 article-title: The role of viral evolution in rabies host shifts and emergence. publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2014.07.004 – volume: 7 issue: 214 year: 2007 ident: B8 article-title: BEAST: bayesian evolutionary analysis by sampling trees. publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-7-214 – volume: 26 start-page: 2455 year: 2010 ident: B6 article-title: Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq429 – volume: 356 start-page: 901 year: 2001 ident: B34 article-title: Infectious disease dynamics: what characterizes a successful invader? publication-title: Philos. Trans. R. Soc. Lond. doi: 10.1098/rstb.2001.0866 – volume: 15 start-page: 541 year: 2014 ident: B27 article-title: Genomic analysis of emerging pathogens: methods, application and future trends. publication-title: Genome Biol. doi: 10.1186/s13059-014-0541-9 – volume: 12 start-page: 1 year: 2015 ident: B54 article-title: Role of capsid proteins in parvoviruses infection. publication-title: Virol. J. doi: 10.1186/s12985-015-0344-y – volume: 136 start-page: 599 year: 2014 ident: B16 article-title: Waterfowl parvoviruses. Literature review. publication-title: Magy. Allatorvosok Lapja – volume: 77 start-page: 6995 year: 2003 ident: B38 article-title: Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding. publication-title: J. Virol. doi: 10.1128/JVI.77.12.6995-7006.2003 – volume: 4 start-page: 187 year: 1988 ident: B56 article-title: An integrated family of amino acid sequence analysis programs. publication-title: Bioinformatics doi: 10.1093/bioinformatics/4.1.187 – volume: 16 start-page: 208 year: 2008 ident: B13 article-title: The parvovirus capsid odyssey: from the cell surface to the nucleus. publication-title: Trends Microbiol. doi: 10.1016/j.tim.2008.01.012 – volume: 304 start-page: 237 year: 2004 ident: B51 article-title: How viruses enter animal cells. publication-title: Science doi: 10.1126/science.1094823 – volume: 10 issue: e1003537 year: 2014 ident: B1 article-title: BEAST 2: a software platform for bayesian evolutionary analysis. publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003537 – volume: 163 issue: 461 year: 2008 ident: B15 article-title: Goose parvovirus in Great Britain. publication-title: Vet. Rec. doi: 10.1136/vr.163.15.461 – volume: 51 start-page: 609 year: 2007 ident: B17 article-title: Epidemiologic Investigation of an outbreak of goose parvovirus infection in sweden (Investigación epidemiológica de un brote de infección con parvovirus del ganso en Suecia). publication-title: Avian. Dis. doi: 10.1637/0005-2086(2007)51[609:EIOAOO]2.0.CO;2 – volume: 329 start-page: 676 year: 2010 ident: B52 article-title: Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. publication-title: Science doi: 10.1126/science.1188836 – volume: 161 start-page: 1 year: 2016 ident: B3 article-title: Isolation and characterization of a distinct duck-origin goose parvovirus causing an outbreak of duckling short beak and dwarfism syndrome in China. publication-title: Arch. Virol. doi: 10.1007/s00705-016-2926-4 – volume: 20 start-page: 238 year: 2005 ident: B58 article-title: Emerging pathogens: the epidemiology and evolution of species jumps. publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2005.02.009 – volume: Vol. 4 start-page: 148 year: 2002 ident: B5 publication-title: The PyMOL User’s Manual. Dpsm for Modeling Engineering Problems, – volume: 6 start-page: 392 year: 2003 ident: B14 article-title: Parvovirus host range, cell tropism and evolution. publication-title: Curr. Opin. Microbiol. doi: 10.1016/S1369-5274(03)00083-3 – volume: 10 start-page: s3 year: 2002 ident: B57 article-title: Population biology of emerging and re-emerging pathogens. publication-title: Trends Microbiol. doi: 10.1016/S0966-842X(02)02428-9 – volume: 10 issue: e0140284 year: 2015 ident: B2 article-title: Isolation and genomic characterization of a duck-origin GPV-related parvovirus from cherry valley ducklings in China. publication-title: PLoS ONE doi: 10.1371/journal.pone.0140284 – volume: 53 start-page: 73 year: 2005 ident: B12 article-title: Comparative pathological studies on domestic geese (Anser anser domestica) and Muscovy ducks (Cairina moschata) experimentally infected with parvovirus strains of goose and Muscovy duck origin. publication-title: Acta Vet. Hung doi: 10.1556/AVet.53.2005.1.8 – volume: 30 start-page: 669 year: 2013 ident: B59 article-title: Bayesian selection of nucleotide substitution models and their site assignments. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mss258 – volume: 23 start-page: 1891 year: 2006 ident: B21 article-title: Automated phylogenetic detection of recombination using a genetic algorithm. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msl051 – volume: 102 start-page: 379 year: 2005 ident: B47 article-title: High rate of viral evolution associated with the emergence of carnivore parvovirus. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0406765102 – volume: 145 start-page: 522 year: 2012 ident: B61 article-title: Localization of linear B-cell epitopes on goose parvovirus structural protein. publication-title: Vet. Immunol. Immunopathol. doi: 10.1016/j.vetimm.2011.11.022 – volume: 23 start-page: 2947 year: 2007 ident: B24 article-title: Clustal W and Clustal X version 2.0. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm404 – volume: 29 start-page: 1969 year: 2012 ident: B9 article-title: Bayesian phylogenetics with BEAUti and the BEAST 1.7. publication-title: Molecular Biology & Evolution doi: 10.1093/molbev/mss075 – volume: 437 start-page: 209 year: 2005 ident: B10 article-title: Strategies for containing an emerging influenza pandemic in Southeast Asia. publication-title: Nature doi: 10.1038/nature04017 – volume: 80 start-page: 11393 year: 2006 ident: B60 article-title: Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes. publication-title: J. Virol. doi: 10.1128/JVI.01288-06 – volume: 276 start-page: 172 year: 1990 ident: B19 article-title: A semi-empirical method for prediction of antigenic determinants on protein antigens. publication-title: FEBS Lett. doi: 10.1016/0014-5793(90)80535-Q – volume: 11 issue: e1004728 year: 2015 ident: B30 article-title: The causes and consequences of changes in virulence following pathogen host shifts. publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004728 – volume: 86 start-page: 9274 year: 2012 ident: B44 article-title: Characterization of the early steps of human parvovirus B19 infection. publication-title: J. Virol. doi: 10.1128/JVI.01004-12 – reference: 18849581 - Vet Rec. 2008 Oct 11;163(15):461 – reference: 25774803 - PLoS Pathog. 2015 Mar 16;11(3):e1004728 – reference: 22114336 - J Virol. 2012 Feb;86(3):1514-21 – reference: 16701375 - Trends Ecol Evol. 2005 May;20(5):238-44 – reference: 22718826 - J Virol. 2012 Sep;86(17):9274-84 – reference: 22209204 - Vet Immunol Immunopathol. 2012 Jan 15;145(1-2):522-6 – reference: 12824332 - Nucleic Acids Res. 2003 Jul 1;31(13):3381-5 – reference: 15703242 - Mol Biol Evol. 2005 May;22(5):1208-22 – reference: 22346765 - PLoS Genet. 2012 Feb;8(2):e1002511 – reference: 11405937 - Philos Trans R Soc Lond B Biol Sci. 2001 Jun 29;356(1410):901-10 – reference: 12768018 - J Virol. 2003 Jun;77(12):6995-7006 – reference: 21966271 - PLoS Pathog. 2011 Sep;7(9):e1002260 – reference: 26239432 - Virol J. 2015 Aug 04;12:114 – reference: 12377561 - Trends Microbiol. 2002;10(10 Suppl):S3-7 – reference: 16177232 - Mol Biol Evol. 2006 Jan;23(1):7-9 – reference: 18798024 - Avian Pathol. 2008 Oct;37(5):499-505 – reference: 15782661 - Acta Vet Hung. 2005;53(1):73-89 – reference: 24198419 - J Virol. 2014 Jan;88(2):1071-9 – reference: 15737910 - Infect Genet Evol. 2005 Apr;5(3):199-208 – reference: 27314945 - Arch Virol. 2016 Sep;161(9):2407-16 – reference: 20689015 - Science. 2010 Aug 6;329(5992):676-9 – reference: 27440903 - J Virol. 2016 Sep 12;90(19):8542-51 – reference: 26465143 - PLoS One. 2015 Oct 14;10(10):e0140284 – reference: 19433588 - Science. 2009 Jun 19;324(5934):1557-61 – reference: 27004904 - Mol Biol Evol. 2016 Jul;33(7):1870-4 – reference: 1702393 - FEBS Lett. 1990 Dec 10;276(1-2):172-4 – reference: 25375777 - PLoS Pathog. 2014 Nov 06;10(11):e1004395 – reference: 23233462 - Mol Biol Evol. 2013 Mar;30(3):669-88 – reference: 19932194 - Infect Genet Evol. 2010 Mar;10(2):215-20 – reference: 25064563 - Curr Opin Virol. 2014 Oct;8:68-72 – reference: 27449955 - Infect Genet Evol. 2016 Oct;44:278-80 – reference: 16079797 - Nature. 2005 Sep 8;437(7056):209-14 – reference: 18406140 - Trends Microbiol. 2008 May;16(5):208-14 – reference: 22367748 - Mol Biol Evol. 2012 Aug;29(8):1969-73 – reference: 15073366 - Science. 2004 Apr 9;304(5668):237-42 – reference: 22807683 - PLoS Genet. 2012;8(7):e1002764 – reference: 17996036 - BMC Evol Biol. 2007 Nov 08;7:214 – reference: 16943302 - J Virol. 2006 Nov;80(22):11393-7 – reference: 25418281 - Genome Biol. 2014 Nov 22;15(11):541 – reference: 11423661 - Science. 2001 Jun 22;292(5525):2323-5 – reference: 16568906 - Curr Top Microbiol Immunol. 2006;299:349-70 – reference: 3942033 - Virology. 1986 Jan 15;148(1):121-32 – reference: 24722319 - PLoS Comput Biol. 2014 Apr 10;10(4):e1003537 – reference: 10485898 - Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10752-7 – reference: 19378141 - Methods Mol Biol. 2009;537:93-112 – reference: 12941411 - Curr Opin Microbiol. 2003 Aug;6(4):392-8 – reference: 3176341 - Virology. 1988 Oct;166(2):293-307 – reference: 16379002 - J Virol. 2006 Jan;80(2):1015-24 – reference: 19322718 - Avian Pathol. 2009 Apr;38(2):175-80 – reference: 16818476 - Mol Biol Evol. 2006 Oct;23(10):1891-901 – reference: 17626494 - Avian Dis. 2007 Jun;51(2):609-13 – reference: 16285858 - Annu Rev Genet. 2005;39:197-218 – reference: 7678305 - J Virol. 1993 Feb;67(2):765-72 – reference: 21940644 - Mol Biol Evol. 2012 Feb;29(2):751-61 – reference: 20671151 - Bioinformatics. 2010 Oct 1;26(19):2455-7 – reference: 15626758 - Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):379-84 – reference: 3382992 - Comput Appl Biosci. 1988 Mar;4(1):187-91 – reference: 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8 |
SSID | ssj0000402000 |
Score | 2.282996 |
Snippet | Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 421 |
SubjectTerms | Microbiology |
Title | Analysis of Evolutionary Processes of Species Jump in Waterfowl Parvovirus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28352261 https://www.proquest.com/docview/1882081152 https://pubmed.ncbi.nlm.nih.gov/PMC5349109 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yEXwR784bFXzxobpcmrUPIiLqGCg-ONxbSZoUB6PV7qL7956TdtOpCL6UliSlnJMm38fJ-Q4hx8oJlQngJsY0fBGZ1A_DiKIQJC6U1DCF-c5397LVEe1u0P1Mj64MOPiV2mE9qU7RP31_nVzAD3-OjBP2W_BAL9F4SgvVCAVmlS-6aBEe5KvAvluXkSq5nBQqJYYDWLeMW_76kvl96gf4_H6G8sumdLNKVio06V2W7l8jCzZbJ0tlfcnJBmlPJUe8PPWux9UsU8XEq_IDrGtxNejhtg2u9XqZ96SwdnX-1vceVDHOx71iNNgknZvrx6uWXxVP8BMeyaEfRFKHnAplRVNihZ1QschohhXAUi55k2mZNAywMa2YFSwVIqHcMJ42qKUy4FukluWZ3SFeYnVoLWALo1MRUBOGXAZpU2rOooRFQZ2cTU0VJ5WyOBa46MfAMNC4sTNujMaNnXHr5GQ24qVU1fij79HU-jFMfYxnqMzmo0FMgR0AogEEUifbpTdmb2MlsoTRzTk_zTqgrPZ8S9Z7dvLaAReAoaLdf3zjHlnGBzybRsU-qQ2LkT0AsDLUh47kw_W2Sw_dfPwAXNzn_w |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Evolutionary+Processes+of+Species+Jump+in+Waterfowl+Parvovirus&rft.jtitle=Frontiers+in+microbiology&rft.au=Fan%2C+Wentao&rft.au=Sun%2C+Zhaoyu&rft.au=Shen%2C+Tongtong&rft.au=Xu%2C+Danning&rft.date=2017-03-14&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=8&rft_id=info:doi/10.3389%2Ffmicb.2017.00421&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmicb_2017_00421 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |