Influence of Land Surface Temperature and Rainfall on Surface Water Change: An Innovative Machine Learning Approach
The largest reservoir of drinkable water on Earth is surface water. It is crucial for maintaining ecosystems and enabling people to adapt to diverse climate changes. Despite surface freshwater is essential for life, the current research shows a striking lack of understanding in its spatial and tempo...
        Saved in:
      
    
          | Published in | Water resources management Vol. 37; no. 8; pp. 3013 - 3035 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Dordrecht
          Springer Netherlands
    
        01.06.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0920-4741 1573-1650 1573-1650  | 
| DOI | 10.1007/s11269-023-03476-2 | 
Cover
| Abstract | The largest reservoir of drinkable water on Earth is surface water. It is crucial for maintaining ecosystems and enabling people to adapt to diverse climate changes. Despite surface freshwater is essential for life, the current research shows a striking lack of understanding in its spatial and temporal dynamics of variations in outflow and storage across a sizable country: India. Numerous restrictions apply to current research, including the use of insufficient machine learning techniques and limited data series. This work uses cutting-edge and SOTA-method to use the available data and machine learning to accurately understand spatial and temporal dynamics of variations in surface freshwater outflow and storage using extended data series. The authors did the examination of thematic maps produced using ArcMap 10.8 from June’2005 to June’2020 using JRC dataset to track changes in the intensity of surface water. Google Earth Engine in Python API has been devised to detect changes in surface water levels and quantifying shifting map trends. Raster image viewing, editing, and calculation are done with ArcMap. For determining the relationship between declines in Surface water levels, changes in rainfall intensity and land surface temperature, variables were averaged over 13 rivers for 15 years. The change in surface water is reliant on independent variables of change in land surface temperature and rainfall intensity. The authors use the correlation between these parameters to achieve an average R-squared adjusted value of 0.402. The study's findings contribute to a better understanding of the matter and can be used across the world. | 
    
|---|---|
| AbstractList | The largest reservoir of drinkable water on Earth is surface water. It is crucial for maintaining ecosystems and enabling people to adapt to diverse climate changes. Despite surface freshwater is essential for life, the current research shows a striking lack of understanding in its spatial and temporal dynamics of variations in outflow and storage across a sizable country: India. Numerous restrictions apply to current research, including the use of insufficient machine learning techniques and limited data series. This work uses cutting-edge and SOTA-method to use the available data and machine learning to accurately understand spatial and temporal dynamics of variations in surface freshwater outflow and storage using extended data series. The authors did the examination of thematic maps produced using ArcMap 10.8 from June’2005 to June’2020 using JRC dataset to track changes in the intensity of surface water. Google Earth Engine in Python API has been devised to detect changes in surface water levels and quantifying shifting map trends. Raster image viewing, editing, and calculation are done with ArcMap. For determining the relationship between declines in Surface water levels, changes in rainfall intensity and land surface temperature, variables were averaged over 13 rivers for 15 years. The change in surface water is reliant on independent variables of change in land surface temperature and rainfall intensity. The authors use the correlation between these parameters to achieve an average R-squared adjusted value of 0.402. The study's findings contribute to a better understanding of the matter and can be used across the world. The largest reservoir of drinkable water on Earth is surface water. It is crucial for maintaining ecosystems and enabling people to adapt to diverse climate changes. Despite surface freshwater is essential for life, the current research shows a striking lack of understanding in its spatial and temporal dynamics of variations in outflow and storage across a sizable country: India. Numerous restrictions apply to current research, including the use of insufficient machine learning techniques and limited data series. This work uses cutting-edge and SOTA-method to use the available data and machine learning to accurately understand spatial and temporal dynamics of variations in surface freshwater outflow and storage using extended data series. The authors did the examination of thematic maps produced using ArcMap 10.8 from June’2005 to June’2020 using JRC dataset to track changes in the intensity of surface water. Google Earth Engine in Python API has been devised to detect changes in surface water levels and quantifying shifting map trends. Raster image viewing, editing, and calculation are done with ArcMap. For determining the relationship between declines in Surface water levels, changes in rainfall intensity and land surface temperature, variables were averaged over 13 rivers for 15 years. The change in surface water is reliant on independent variables of change in land surface temperature and rainfall intensity. The authors use the correlation between these parameters to achieve an average R-squared adjusted value of 0.402. The study's findings contribute to a better understanding of the matter and can be used across the world.  | 
    
| Author | Jain, Rachna Gupta, Eeshita Takkar, Ish Jain, Vanita Dhingra, Aarushi Islam, Sardar M. N.  | 
    
| Author_xml | – sequence: 1 givenname: Vanita surname: Jain fullname: Jain, Vanita organization: Bharati Vidyapeeth’s College Of Engineering – sequence: 2 givenname: Aarushi surname: Dhingra fullname: Dhingra, Aarushi organization: Bharati Vidyapeeth’s College Of Engineering – sequence: 3 givenname: Eeshita surname: Gupta fullname: Gupta, Eeshita organization: Bharati Vidyapeeth’s College Of Engineering – sequence: 4 givenname: Ish surname: Takkar fullname: Takkar, Ish organization: Bharati Vidyapeeth’s College Of Engineering – sequence: 5 givenname: Rachna surname: Jain fullname: Jain, Rachna organization: Bhagwan Parshuram Institute of Technology – sequence: 6 givenname: Sardar M. N. orcidid: 0000-0001-9451-7390 surname: Islam fullname: Islam, Sardar M. N. email: sardar.islam@vu.edu.au organization: ISILC, Victoria University  | 
    
| BookMark | eNqNkU9r3DAQxUVJoJu0X6AnQS-9uNUfW7J6W5a2WdhSaBJyFGN5nDh4x65kp-TbR-mGFnIIPQkN7_f05umEHdFIyNg7KT5KIeynJKUyrhBKF0KX1hTqFVvJyupCmkocsZVwShSlLeVrdpLSrRAZc2LF0pa6YUEKyMeO74Bafr7EDvL9AvcTRpiXiPxx_hN66mAY-Eh_NVcwY-SbG6Br_MzXxLdE4x3M_R3y7xBuekK-Q4jU0zVfT1Mc8_ANO84-Cd8-nafs8uuXi81ZsfvxbbtZ74qgnZmLEkwJwZrWus6ounEIdatcY5taCYmtsJU2eRRCbdE1sgkKWg1CqdB1umn1KdMH34UmuP-do_sp9nuI914K_9ibP_Tmc2_-T29eZerDgcphfy2YZr_vU8BhAMJxSV7LSkurhauy9P0z6e24RMo7eVVnX2e0rLNKHVQhjilF7P4vRf0MCv2cex1pjtAPL6NPa6f8Tv6X-C_VC9QDPZOu4g | 
    
| CitedBy_id | crossref_primary_10_1007_s40808_024_02066_4 crossref_primary_10_1007_s41976_024_00142_y crossref_primary_10_1007_s11356_024_35529_3 crossref_primary_10_1016_j_gsd_2025_101419  | 
    
| Cites_doi | 10.1126/science.289.5477.284 10.1016/j.rse.2006.06.026 10.1007/s11269-020-02648-8 10.1029/2006JD007847 10.1038/nclimate1744 10.1038/sdata.2018.296 10.1016/j.jclepro.2020.123413 10.1029/2018RG000598 10.1007/s11269-022-03090-8 10.1007/s12518-021-00390-3 10.21203/rs.3.rs-1260445/v1 10.1029/2012GL051276 10.1007/s40710-022-00602-x 10.1029/2004GL021900 10.1029/2006RG000197 10.3390/rs6065067 10.1038/nature20584 10.1155/2016/3928920 10.1007/s10668-020-01122-0 10.1007/978-3-540-37293-6_4 10.4319/lo.2006.51.5.2388 10.1007/s11269-022-03126-z 10.1080/01431160304987 10.1155/2020/7363546 10.1016/j.isprsjprs.2019.03.014 10.1007/s41748-019-00088-y  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 7S9 L.6 ADTOC UNPAY  | 
    
| DOI | 10.1007/s11269-023-03476-2 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Science Database Biological Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) AGRICOLA CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1573-1650 | 
    
| EndPage | 3035 | 
    
| ExternalDocumentID | 10.1007/s11269-023-03476-2 10_1007_s11269_023_03476_2  | 
    
| GeographicLocations | India | 
    
| GeographicLocations_xml | – name: India | 
    
| GrantInformation_xml | – fundername: Victoria University | 
    
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.G PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c396t-4a64ac76d79f628b9ea8d29b7b8201ed07536a8dcc87e9b1bc2ad3a022cff3bd3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0920-4741 1573-1650  | 
    
| IngestDate | Sun Oct 26 03:31:03 EDT 2025 Fri Sep 05 08:04:19 EDT 2025 Fri Jul 25 18:56:16 EDT 2025 Wed Oct 01 01:10:53 EDT 2025 Thu Apr 24 22:58:30 EDT 2025 Fri Feb 21 02:43:39 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Keywords | Rainfall Climate change Google earth engine Surface Water Remote sensing  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c396t-4a64ac76d79f628b9ea8d29b7b8201ed07536a8dcc87e9b1bc2ad3a022cff3bd3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-9451-7390 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s11269-023-03476-2.pdf | 
    
| PQID | 2826996318 | 
    
| PQPubID | 54174 | 
    
| PageCount | 23 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s11269_023_03476_2 proquest_miscellaneous_3153173095 proquest_journals_2826996318 crossref_primary_10_1007_s11269_023_03476_2 crossref_citationtrail_10_1007_s11269_023_03476_2 springer_journals_10_1007_s11269_023_03476_2  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20230600 2023-06-00 20230601  | 
    
| PublicationDateYYYYMMDD | 2023-06-01 | 
    
| PublicationDate_xml | – month: 6 year: 2023 text: 20230600  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Dordrecht | 
    
| PublicationPlace_xml | – name: Dordrecht | 
    
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) | 
    
| PublicationTitle | Water resources management | 
    
| PublicationTitleAbbrev | Water Resour Manage | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer Netherlands Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V  | 
    
| References | Alsdorf DE, Rodríguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45(2) SinghAPDhadseKEconomic evaluation of crop production in the Ganges region under climate change: A sustainable policy frameworkJ Clean Prod202127812341310.1016/j.jclepro.2020.123413 Mustafa EK, Co Y, Liu G, Kaloop MR, Beshr AA, Zarzoura F, Sadek M (2020) Study for predicting land surface temperature (LST) using landsat data: a comparison of four algorithms. Adv Civil Eng TaylorRGScanlonBDöllPRodellMVan BeekRWadaYTreidelHGround water and climate changeNat Clim Change20133432232910.1038/nclimate1744 Tang Y, Xi S, Chen X, Lian Y (2016) Quantification of multiple climate change and human activity impact factors on flood regimes in the Pearl River Delta of China. Adv Meteorol JiangHFengMZhuYLuNHuangJXiaoTAn automated method for extracting rivers and lakes from Landsat imageryRemote Sens2014665067508910.3390/rs6065067 NguyenPShearerEJTranHOmbadiMHayatbiniNPalaciosTSorooshianSThe CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation dataSci Data20196111010.1038/sdata.2018.296 XiaJZengJEnvironmental factors assisted the evaluation of entropy water quality indices with efficient machine learning techniqueWater Resour Manag20223662045206010.1007/s11269-022-03126-z Pérez-AlarcónAGarcia-CortesDFernández-AlvarezJCMartínez-GonzálezYImproving monthly rainfall forecast in a watershed by combining neural networks and autoregressive modelsEnviron Process20229312610.1007/s40710-022-00602-x Wolfe RE (2006) MODIS geolocation. In Earth science satellite remote sensing (pp. 50-73). Springer, Berlin, Heidelberg JRC Global Surface Water (2000) https://developers.google.com/earth-engine WanZNew refinements and validation of the MODIS Land-Surface Temperature/Emissivity productsRemote Sens Environ20081121597410.1016/j.rse.2006.06.026 Shindell DT, Faluvegi G, Bell N, Schmidt GA (2005) An emissions-based view of climate forcing by methane and tropospheric ozone. Geophys Res Lett 32(4) ZhangXMaLZhuYLouWXieBShengLGuQTemporal stability analysis for the evaluation of spatial and temporal patterns of surface water qualityWater Resour Manag20223641413142910.1007/s11269-022-03090-8 BarakatAOuargafZKhelloukREl JazouliATouhamiFLand use/land cover change and environmental impact assessment in béni-mellal district (Morocco) using remote sensing and gisEarth Syst Environ20193111312510.1007/s41748-019-00088-y HuangCChenYZhangSWuJDetecting, extracting, and monitoring surface water from space using optical sensors: A reviewRev Geophys201856233336010.1029/2018RG000598 MODIS Land Surface Temperature (2000) https://modis.gsfc.nasa.gov/data/dataprod India-WRIS wiki (2015) https://www.indiawris.gov.in/wris ShakeelASultaniWAliMDeep built-structure counting in satellite imagery using attention based re-weightingISPRS J Photogramm Remote Sens201915131332110.1016/j.isprsjprs.2019.03.014 PekelJFCottamAGorelickNBelwardASHigh-resolution mapping of global surface water and its long-term changesNature2016540763341842210.1038/nature20584 MehrazarABavaniARMGohariAMashalMRahimikhoobHAdaptation of water resources system to water scarcity and climate change in the suburb area of megacitiesWater Resour Manag202034123855387710.1007/s11269-020-02648-8 VorosmartyCJGreenPSalisburyJLammersRBGlobal water resources: vulnerability from climate change and population growthScience2000289547728428810.1126/science.289.5477.284 PuppalaHSinghAPAnalysis of urban heat island effect in Visakhapatnam, India, using multi-temporal satellite imagery: causes and possible remediesEnviron Dev Sustain2021238114751149310.1007/s10668-020-01122-0 DowningJAPrairieYTColeJJDuarteCMTranvikLJStrieglRGMiddelburgJJThe global abundance and size distribution of lakes, ponds, and impoundmentsLimnol Oceanogr20065152388239710.4319/lo.2006.51.5.2388 Prigent C, Papa F, Aires F, Rossow WB, Matthews E (2007) Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J Geophys Res Atmos 112(D12) Al Kafy A, Al Rakib A, Akter KS, Rahaman ZA, Jahir DM, Subramanyam G, Bhatt A (2021) The operational role of remote sensing in assessing and predicting land use/land cover and seasonal land surface temperature using machine learning algorithms in Rajshahi, Bangladesh. Appl Geomat 1–24 ZhaYGaoJNiSUse of normalized difference built-up index in automatically mapping urban areas from TM imageryInt J Remote Sens200324358359410.1080/01431160304987 Ghorbani K, Salarijazi M, Ghahreman N (2022) Development of stepwise m5 tree model to determine the influential factors on rainfall prediction and overcome the greedy problem of its algorithm. https://doi.org/10.21203/rs.3.rs-1260445/v1. PPR:PPR449276 PERSIANN Precipitation Data (2000) https://chrsdata.eng.uci.edu Prigent C, Papa F, Aires F, Jimenez C, Rossow WB, Matthews E (2012) Changes in land surface water dynamics since the 1990s and relation to population pressure. Geophys Res Lett 39(8) JF Pekel (3476_CR14) 2016; 540 C Huang (3476_CR6) 2018; 56 3476_CR27 RG Taylor (3476_CR24) 2013; 3 AP Singh (3476_CR22) 2021; 278 X Zhang (3476_CR30) 2022; 36 Z Wan (3476_CR26) 2008; 112 3476_CR23 J Xia (3476_CR28) 2022; 36 A Pérez-Alarcón (3476_CR15) 2022; 9 3476_CR21 JA Downing (3476_CR4) 2006; 51 3476_CR17 3476_CR18 3476_CR16 A Shakeel (3476_CR20) 2019; 151 A Barakat (3476_CR3) 2019; 3 H Puppala (3476_CR19) 2021; 23 Y Zha (3476_CR29) 2003; 24 H Jiang (3476_CR8) 2014; 6 A Mehrazar (3476_CR10) 2020; 34 3476_CR9 CJ Vorosmarty (3476_CR25) 2000; 289 3476_CR7 3476_CR5 3476_CR11 3476_CR12 P Nguyen (3476_CR13) 2019; 6 3476_CR2 3476_CR1  | 
    
| References_xml | – reference: BarakatAOuargafZKhelloukREl JazouliATouhamiFLand use/land cover change and environmental impact assessment in béni-mellal district (Morocco) using remote sensing and gisEarth Syst Environ20193111312510.1007/s41748-019-00088-y – reference: JiangHFengMZhuYLuNHuangJXiaoTAn automated method for extracting rivers and lakes from Landsat imageryRemote Sens2014665067508910.3390/rs6065067 – reference: Ghorbani K, Salarijazi M, Ghahreman N (2022) Development of stepwise m5 tree model to determine the influential factors on rainfall prediction and overcome the greedy problem of its algorithm. https://doi.org/10.21203/rs.3.rs-1260445/v1. PPR:PPR449276 – reference: Prigent C, Papa F, Aires F, Rossow WB, Matthews E (2007) Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J Geophys Res Atmos 112(D12) – reference: Prigent C, Papa F, Aires F, Jimenez C, Rossow WB, Matthews E (2012) Changes in land surface water dynamics since the 1990s and relation to population pressure. Geophys Res Lett 39(8) – reference: Al Kafy A, Al Rakib A, Akter KS, Rahaman ZA, Jahir DM, Subramanyam G, Bhatt A (2021) The operational role of remote sensing in assessing and predicting land use/land cover and seasonal land surface temperature using machine learning algorithms in Rajshahi, Bangladesh. Appl Geomat 1–24 – reference: VorosmartyCJGreenPSalisburyJLammersRBGlobal water resources: vulnerability from climate change and population growthScience2000289547728428810.1126/science.289.5477.284 – reference: SinghAPDhadseKEconomic evaluation of crop production in the Ganges region under climate change: A sustainable policy frameworkJ Clean Prod202127812341310.1016/j.jclepro.2020.123413 – reference: DowningJAPrairieYTColeJJDuarteCMTranvikLJStrieglRGMiddelburgJJThe global abundance and size distribution of lakes, ponds, and impoundmentsLimnol Oceanogr20065152388239710.4319/lo.2006.51.5.2388 – reference: ZhangXMaLZhuYLouWXieBShengLGuQTemporal stability analysis for the evaluation of spatial and temporal patterns of surface water qualityWater Resour Manag20223641413142910.1007/s11269-022-03090-8 – reference: MehrazarABavaniARMGohariAMashalMRahimikhoobHAdaptation of water resources system to water scarcity and climate change in the suburb area of megacitiesWater Resour Manag202034123855387710.1007/s11269-020-02648-8 – reference: Tang Y, Xi S, Chen X, Lian Y (2016) Quantification of multiple climate change and human activity impact factors on flood regimes in the Pearl River Delta of China. Adv Meteorol – reference: Shindell DT, Faluvegi G, Bell N, Schmidt GA (2005) An emissions-based view of climate forcing by methane and tropospheric ozone. Geophys Res Lett 32(4) – reference: Alsdorf DE, Rodríguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45(2) – reference: Pérez-AlarcónAGarcia-CortesDFernández-AlvarezJCMartínez-GonzálezYImproving monthly rainfall forecast in a watershed by combining neural networks and autoregressive modelsEnviron Process20229312610.1007/s40710-022-00602-x – reference: XiaJZengJEnvironmental factors assisted the evaluation of entropy water quality indices with efficient machine learning techniqueWater Resour Manag20223662045206010.1007/s11269-022-03126-z – reference: Wolfe RE (2006) MODIS geolocation. In Earth science satellite remote sensing (pp. 50-73). Springer, Berlin, Heidelberg – reference: PERSIANN Precipitation Data (2000) https://chrsdata.eng.uci.edu/ – reference: PuppalaHSinghAPAnalysis of urban heat island effect in Visakhapatnam, India, using multi-temporal satellite imagery: causes and possible remediesEnviron Dev Sustain2021238114751149310.1007/s10668-020-01122-0 – reference: Mustafa EK, Co Y, Liu G, Kaloop MR, Beshr AA, Zarzoura F, Sadek M (2020) Study for predicting land surface temperature (LST) using landsat data: a comparison of four algorithms. Adv Civil Eng – reference: India-WRIS wiki (2015) https://www.indiawris.gov.in/wris/#/ – reference: NguyenPShearerEJTranHOmbadiMHayatbiniNPalaciosTSorooshianSThe CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation dataSci Data20196111010.1038/sdata.2018.296 – reference: WanZNew refinements and validation of the MODIS Land-Surface Temperature/Emissivity productsRemote Sens Environ20081121597410.1016/j.rse.2006.06.026 – reference: JRC Global Surface Water (2000) https://developers.google.com/earth-engine/ – reference: HuangCChenYZhangSWuJDetecting, extracting, and monitoring surface water from space using optical sensors: A reviewRev Geophys201856233336010.1029/2018RG000598 – reference: MODIS Land Surface Temperature (2000) https://modis.gsfc.nasa.gov/data/dataprod/ – reference: TaylorRGScanlonBDöllPRodellMVan BeekRWadaYTreidelHGround water and climate changeNat Clim Change20133432232910.1038/nclimate1744 – reference: PekelJFCottamAGorelickNBelwardASHigh-resolution mapping of global surface water and its long-term changesNature2016540763341842210.1038/nature20584 – reference: ShakeelASultaniWAliMDeep built-structure counting in satellite imagery using attention based re-weightingISPRS J Photogramm Remote Sens201915131332110.1016/j.isprsjprs.2019.03.014 – reference: ZhaYGaoJNiSUse of normalized difference built-up index in automatically mapping urban areas from TM imageryInt J Remote Sens200324358359410.1080/01431160304987 – volume: 289 start-page: 284 issue: 5477 year: 2000 ident: 3476_CR25 publication-title: Science doi: 10.1126/science.289.5477.284 – volume: 112 start-page: 59 issue: 1 year: 2008 ident: 3476_CR26 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2006.06.026 – volume: 34 start-page: 3855 issue: 12 year: 2020 ident: 3476_CR10 publication-title: Water Resour Manag doi: 10.1007/s11269-020-02648-8 – ident: 3476_CR17 doi: 10.1029/2006JD007847 – volume: 3 start-page: 322 issue: 4 year: 2013 ident: 3476_CR24 publication-title: Nat Clim Change doi: 10.1038/nclimate1744 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 3476_CR13 publication-title: Sci Data doi: 10.1038/sdata.2018.296 – volume: 278 start-page: 123413 year: 2021 ident: 3476_CR22 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.123413 – volume: 56 start-page: 333 issue: 2 year: 2018 ident: 3476_CR6 publication-title: Rev Geophys doi: 10.1029/2018RG000598 – volume: 36 start-page: 1413 issue: 4 year: 2022 ident: 3476_CR30 publication-title: Water Resour Manag doi: 10.1007/s11269-022-03090-8 – ident: 3476_CR1 doi: 10.1007/s12518-021-00390-3 – ident: 3476_CR5 doi: 10.21203/rs.3.rs-1260445/v1 – ident: 3476_CR18 doi: 10.1029/2012GL051276 – volume: 9 start-page: 1 issue: 3 year: 2022 ident: 3476_CR15 publication-title: Environ Process doi: 10.1007/s40710-022-00602-x – ident: 3476_CR21 doi: 10.1029/2004GL021900 – ident: 3476_CR11 – ident: 3476_CR2 doi: 10.1029/2006RG000197 – volume: 6 start-page: 5067 issue: 6 year: 2014 ident: 3476_CR8 publication-title: Remote Sens doi: 10.3390/rs6065067 – volume: 540 start-page: 418 issue: 7633 year: 2016 ident: 3476_CR14 publication-title: Nature doi: 10.1038/nature20584 – ident: 3476_CR23 doi: 10.1155/2016/3928920 – volume: 23 start-page: 11475 issue: 8 year: 2021 ident: 3476_CR19 publication-title: Environ Dev Sustain doi: 10.1007/s10668-020-01122-0 – ident: 3476_CR27 doi: 10.1007/978-3-540-37293-6_4 – volume: 51 start-page: 2388 issue: 5 year: 2006 ident: 3476_CR4 publication-title: Limnol Oceanogr doi: 10.4319/lo.2006.51.5.2388 – ident: 3476_CR9 – volume: 36 start-page: 2045 issue: 6 year: 2022 ident: 3476_CR28 publication-title: Water Resour Manag doi: 10.1007/s11269-022-03126-z – volume: 24 start-page: 583 issue: 3 year: 2003 ident: 3476_CR29 publication-title: Int J Remote Sens doi: 10.1080/01431160304987 – ident: 3476_CR12 doi: 10.1155/2020/7363546 – ident: 3476_CR16 – volume: 151 start-page: 313 year: 2019 ident: 3476_CR20 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2019.03.014 – volume: 3 start-page: 113 issue: 1 year: 2019 ident: 3476_CR3 publication-title: Earth Syst Environ doi: 10.1007/s41748-019-00088-y – ident: 3476_CR7  | 
    
| SSID | ssj0010090 | 
    
| Score | 2.3987074 | 
    
| Snippet | The largest reservoir of drinkable water on Earth is surface water. It is crucial for maintaining ecosystems and enabling people to adapt to diverse climate... | 
    
| SourceID | unpaywall proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 3013 | 
    
| SubjectTerms | Atmospheric Sciences Change detection Civil Engineering climate Climate change data collection Drinking water Dynamics Earth and Environmental Science Earth Sciences Environment Freshwater Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology/Water Resources Independent variables India Inland water environment Internet Land surface temperature Learning algorithms Machine learning Mathematical analysis Outflow people Precipitation rain rain intensity Rainfall Rainfall intensity Rivers Storage Surface temperature Surface water temporal variation Thematic mapping Water level fluctuations Water levels Water outflow  | 
    
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8MHpSD8TOiaGriTRq3duuoN0IkaMSLELktbdd5IYPwofG_93UrA40helzXdste-z762_s9hK6blGkdJpp4ShkSaMqIolKRhHuSRdr4PrfJyb1n3h0Ej8Nw6GhybC7MD_z-dmZTXAQBy0I8FkScgLrdBiPFc2CWt0vEAHyF_DxFQDgUgJl0CTK_z_HdCK08yxIMraKdRTaRnx9yNFqzN519tOccRdwqJHuAtkx2iKpr9IFHyEJGRYURPE7xk8wS_LKYphKu-wbc4YIuGdt2C-Ok8BQ8zso-r-BmTnGRXnCHWxl-cBVS3w3u5f9YGuzoV99wy3GPH6NB577f7hJXRIFoJvicBJIHUkc8iUTKaVMJI5sJFSpS1vabBFwGxqFJ62ZkhPKVpjJhEky7TlOmEnaCKtk4M6cI2zHccF9RDVF16qkwoCYKjfQCKdJI1ZC__KqxdgzjttDFKF5xI1tJxCCJOJdETGvophwzKfg1NvauL4UVu702iyFo5BC1gXKqoavyNuwSC33IzIwXs5iBYvdBmYmwhhpLIa-m2PTERrkQ_vCCZ_-b_Rzt0nxZ2lOdOqrMpwtzAU7OXF3mq_sLMlLwjw priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QH1wBuxqCAjcaNuE9uxN9xWQFUQrZDoinKK_OyBVXa1TVrBr2e8cbIFoQrEMc7YiZ_zjcbzDcDLCePWFs7SzBhPhWWcGqYNdTLTXFmf5zIGJx-fyKOZ-HBWnG3B2z4WZn3bvXdJdjENkaWpbg6WLhxsAt9yJkuK-oZmXChJ0Tp04RZsywIR-Qi2Zyefpl_XNHtoHQklOtpUxWmOiCTFzvy5oV_10wZ0Dn7SHbjd1kv9_UrP59dU0eFd8H0nuhso3_bbxuzbH7_xO_5vL-_BnYRVybRbXPdhy9cPYOcag-FDiF6rLskJWQTyUdeOfG5XQePzqUdE3jE2k1gePUkBe0MW9SDzBZHuinQRDq_JtCbvU5LWS0-O19c8PUkMsOdkmujPH8Hs8N3pmyOa8jhQy0vZUKGl0FZJp8og2cSUXk8cK40yEX54h6iFSyyydqJ8aXJjmXZcI7qwIXDj-GMY1YvaPwES60gvc8MsGvYhM4VgXhVeZ0KXQZkx5P3sVTaRnMdcG_NqQ88cB7XCQa3Wg1qxMbwa6iw7io8bpXf7RVGl7X5Rod0q0XDE83EML4bXuFGj90XXftFeVBx1S47naVmMYa-f-00TN31xb1hwf_GDT_9NfBdGzar1zxBaNeZ52jk_AXMfGyo priority: 102 providerName: Unpaywall  | 
    
| Title | Influence of Land Surface Temperature and Rainfall on Surface Water Change: An Innovative Machine Learning Approach | 
    
| URI | https://link.springer.com/article/10.1007/s11269-023-03476-2 https://www.proquest.com/docview/2826996318 https://www.proquest.com/docview/3153173095 https://link.springer.com/content/pdf/10.1007/s11269-023-03476-2.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 37 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 1573-1650 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-1650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0010090 issn: 1573-1650 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0010090 issn: 1573-1650 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 1573-1650 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010090 issn: 1573-1650 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9t7QPsAfEpCqMyEm_MIrETJ0FCKFTtxseqCVaxPUX-Ci9VUroWxH_POXHS8VLxEimOE1u58_lnn-93AK9SxrWOjaaBUpZGmnGqmFTUiEDyRNswFC44-XwuzhbRp6v46gDmXSyMO1bZ2cTGUJtauz3yN7g0EIjNUQXfr35SlzXKeVe7FBrSp1Yw7xqKsUMYMseMNYDhh-n84mvvV0BE0ey6ZLhoinAy9WE0bTBdiC1QnMNowKNEUPbvVLXDn73L9AjubKuV_PNbLpe3ZqXZfbjn4STJW_k_gANbPYSjWySDj8A5lto8JKQuyRdZGfJtuy4l3l9aBM0tqTJx5c7ZU2IrpK76Ot8RjK5JG4TwluQV-ejzqP6y5Lw5iWmJJ2n9QXLPUP4YFrPp5eSM-lQLVPNMbGgkRSR1IkySlYKlKrMyNSxTiXIIwRoEFlxgkdZpYjMVKs2k4RIBgC5Lrgx_AoOqruxTIO4dYUWomMa1dxmoOGI2ia0MIpmViRpB2P3VQnsecpcOY1nsGJSdJAqURNFIomAjeN2_s2pZOPbWPu6EVfgReVPs9GcEL_vHOJacg0RWtt7eFBzNf4gmL4tHcNIJefeJfS2e9IrwHx18tr-Dz-Eua9TQ7fUcw2Cz3toXCH02agyH6ex0DMP89PrzdOy1G0snYoLXBcuxbDG_yK__AhVLBGQ | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7WHsAfEpCgOMBE_MIrEdp0GaUIFNLWsrBJ3YW_BXeKnS0g-m_XP8bZwTJx0vFS97jGM7ju_s353Pdwfwqsu4MYk1NNLaUWEYp5opTa2MFE-Ni2PpnZNHY9k_F58vkosd-NP4wvhrlc2eWG3Udmb8GflbVA0kyubIgu_nv6jPGuWtq00KDRVSK9jjKsRYcOw4c1eXqMItjwefkN6vGTs9mXzs05BlgBqeyRUVSgplUmnTrJCsqzOnupZlOtUeHJ1FTOUSi4zppi7TsTZMWa4Q-0xRcG059nsL9gQXGSp_ex9Oxl--tnYMlGCqU54MlTSB4B3cdmrnvRj_iCJm0oiLVFL2LzRu5N3WRHsA--tyrq4u1XR6DQVP78KdIL6SXs1v92DHlffh4FpQwwfgDVl13hMyK8hQlZZ8Wy8Khc8Th0J6HcSZ-HJvXCrwK2RWtnW-o_C7ILXTwzvSK8kg5G397ciouvnpSAgK-5P0QkT0h3B-I5P-CHbLWekeA_FtpJOxZgZ1_SLSiWAuTZyKhMqKVHcgbmY1NyHuuU-_Mc03EZs9JXKkRF5RImcdeNO2mddRP7bWPmyIlYcdYJlv-LUDL9vXuHa9QUaVbrZe5hzhJsYtNks6cNQQedPFti8etYzwHwN8sn2AL2C_PxkN8-FgfPYUbrOKJf050yHsrhZr9wzFrpV-HnibwI-bXk5_ATwCPR4 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkF7QDzVhQJGghO1mtiJs6mE0IqydOlDSLSiN-NXelkl231Q9a_x6zpOnGy5rLj0GMd2HM_Y34zHMwPwvs-4Mak1NNLa0cQwTjVTmloRKZ4ZF8fCOycfn4iDs-T7eXq-Bn9bXxh_rbLdE-uN2lbGn5HvomogUDZHFtwtwrWIH_vDz5NL6jNIeUtrm06jYZFDd32F6tvs02gfaf2BseHX0y8HNGQYoIbnYk4TJRJlMmGzvBCsr3On-pblOtMeGJ1FPOUCi4zpZy7XsTZMWa4Q90xRcG059nsP7mc-irv3Uh9-6ywYKLvU5zs5qmcJwnZw2Gnc9mL8F4poSSOeZIKyf0FxKel2xtlNeLgoJ-r6So3Ht_Bv-BgeBcGVDBpOewJrrnwKm7fCGT4Db8JqMp6QqiBHqrTk52JaKHw-dSieN-GbiS_3ZqUCv0KqsqvzC8XeKWncHfbIoCSjkLH1jyPH9Z1PR0I42AsyCLHQn8PZnUz5C1gvq9JtAfFthBOxZga1_CLSacJcljoVJSovMt2DuJ1VaULEc594YyyXsZo9JSRSQtaUkKwHH7s2kybex8ra2y2xZFj7M7nk1B68617jqvWmGFW6ajGTHIEmxs01T3uw0xJ52cWqL-50jPAfA3y5eoBv4QEuInk0Ojl8BRus5kh_wLQN6_Ppwr1GeWuu39SMTeD3Xa-kG4MBOrg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QH1wBuxqCAjcaNuE9uxN9xWQFUQrZDoinKK_OyBVXa1TVrBr2e8cbIFoQrEMc7YiZ_zjcbzDcDLCePWFs7SzBhPhWWcGqYNdTLTXFmf5zIGJx-fyKOZ-HBWnG3B2z4WZn3bvXdJdjENkaWpbg6WLhxsAt9yJkuK-oZmXChJ0Tp04RZsywIR-Qi2Zyefpl_XNHtoHQklOtpUxWmOiCTFzvy5oV_10wZ0Dn7SHbjd1kv9_UrP59dU0eFd8H0nuhso3_bbxuzbH7_xO_5vL-_BnYRVybRbXPdhy9cPYOcag-FDiF6rLskJWQTyUdeOfG5XQePzqUdE3jE2k1gePUkBe0MW9SDzBZHuinQRDq_JtCbvU5LWS0-O19c8PUkMsOdkmujPH8Hs8N3pmyOa8jhQy0vZUKGl0FZJp8og2cSUXk8cK40yEX54h6iFSyyydqJ8aXJjmXZcI7qwIXDj-GMY1YvaPwES60gvc8MsGvYhM4VgXhVeZ0KXQZkx5P3sVTaRnMdcG_NqQ88cB7XCQa3Wg1qxMbwa6iw7io8bpXf7RVGl7X5Rod0q0XDE83EML4bXuFGj90XXftFeVBx1S47naVmMYa-f-00TN31xb1hwf_GDT_9NfBdGzar1zxBaNeZ52jk_AXMfGyo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Land+Surface+Temperature+and+Rainfall+on+Surface+Water+Change%3A+An+Innovative+Machine+Learning+Approach&rft.jtitle=Water+resources+management&rft.au=Jain%2C+Vanita&rft.au=Dhingra%2C+Aarushi&rft.au=Gupta%2C+Eeshita&rft.au=Takkar%2C+Ish&rft.date=2023-06-01&rft.issn=0920-4741&rft.volume=37&rft.issue=8+p.3013-3035&rft.spage=3013&rft.epage=3035&rft_id=info:doi/10.1007%2Fs11269-023-03476-2&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |