Undecidable Translational Tilings with Only Two Tiles, or One Nonabelian Tile

We construct an example of a group G = Z 2 × G 0 for a finite abelian group  G 0 , a subset E of  G 0 , and two finite subsets F 1 , F 2 of  G , such that it is undecidable in ZFC whether Z 2 × E can be tiled by translations of F 1 , F 2 . In particular, this implies that this tiling problem is aper...

Full description

Saved in:
Bibliographic Details
Published inDiscrete & computational geometry Vol. 70; no. 4; pp. 1652 - 1706
Main Authors Greenfeld, Rachel, Tao, Terence
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0179-5376
1432-0444
DOI10.1007/s00454-022-00426-4

Cover

Abstract We construct an example of a group G = Z 2 × G 0 for a finite abelian group  G 0 , a subset E of  G 0 , and two finite subsets F 1 , F 2 of  G , such that it is undecidable in ZFC whether Z 2 × E can be tiled by translations of F 1 , F 2 . In particular, this implies that this tiling problem is aperiodic , in the sense that (in the standard universe of ZFC) there exist translational tilings of E by the tiles F 1 , F 2 , but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in  Z 2 ). A similar construction also applies for G = Z d for sufficiently large  d . If one allows the group G 0 to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile  F . The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles.
AbstractList We construct an example of a group G=Z2×G0 for a finite abelian group G0, a subset E of G0, and two finite subsets F1,F2 of G, such that it is undecidable in ZFC whether Z2×E can be tiled by translations of F1,F2. In particular, this implies that this tiling problem is aperiodic, in the sense that (in the standard universe of ZFC) there exist translational tilings of E by the tiles F1,F2, but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in Z2). A similar construction also applies for G=Zd for sufficiently large d. If one allows the group G0 to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles.
We construct an example of a group $$G = \mathbb {Z}^2 \times G_0$$ G = Z 2 × G 0 for a finite abelian group  $$G_0$$ G 0 , a subset E of  $$G_0$$ G 0 , and two finite subsets $$F_1,F_2$$ F 1 , F 2 of  G , such that it is undecidable in ZFC whether $$\mathbb {Z}^2\times E$$ Z 2 × E can be tiled by translations of $$F_1,F_2$$ F 1 , F 2 . In particular, this implies that this tiling problem is aperiodic , in the sense that (in the standard universe of ZFC) there exist translational tilings of E by the tiles $$F_1,F_2$$ F 1 , F 2 , but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in  $$\mathbb {Z}^2$$ Z 2 ). A similar construction also applies for $$G=\mathbb {Z}^d$$ G = Z d for sufficiently large  d . If one allows the group $$G_0$$ G 0 to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile  F . The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles.
We construct an example of a group G = Z 2 × G 0 for a finite abelian group  G 0 , a subset E of  G 0 , and two finite subsets F 1 , F 2 of  G , such that it is undecidable in ZFC whether Z 2 × E can be tiled by translations of F 1 , F 2 . In particular, this implies that this tiling problem is aperiodic , in the sense that (in the standard universe of ZFC) there exist translational tilings of E by the tiles F 1 , F 2 , but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in  Z 2 ). A similar construction also applies for G = Z d for sufficiently large  d . If one allows the group G 0 to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile  F . The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles.
We construct an example of a group G=Z2×G0 for a finite abelian group G0, a subset E of G0, and two finite subsets F1,F2 of G, such that it is undecidable in ZFC whether Z2×E can be tiled by translations of F1,F2. In particular, this implies that this tiling problem is aperiodic, in the sense that (in the standard universe of ZFC) there exist translational tilings of E by the tiles F1,F2, but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in Z2). A similar construction also applies for G=Zd for sufficiently large d. If one allows the group G0 to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles.We construct an example of a group G=Z2×G0 for a finite abelian group G0, a subset E of G0, and two finite subsets F1,F2 of G, such that it is undecidable in ZFC whether Z2×E can be tiled by translations of F1,F2. In particular, this implies that this tiling problem is aperiodic, in the sense that (in the standard universe of ZFC) there exist translational tilings of E by the tiles F1,F2, but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in Z2). A similar construction also applies for G=Zd for sufficiently large d. If one allows the group G0 to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles.
Author Greenfeld, Rachel
Tao, Terence
Author_xml – sequence: 1
  givenname: Rachel
  surname: Greenfeld
  fullname: Greenfeld, Rachel
  organization: UCLA Department of Mathematics
– sequence: 2
  givenname: Terence
  orcidid: 0000-0002-0140-7641
  surname: Tao
  fullname: Tao, Terence
  email: tao@math.ucla.edu
  organization: UCLA Department of Mathematics
BookMark eNp9kLtOwzAUhi1UJNrCCzBFYmEg4FtuI6q4SYUu6WzZyUlx5TrFTlX17XETJKQOnWwff799zjdBI9taQOiW4EeCcfbkMeYJjzGlcdjRNOYXaEw4C0fO-QiNMcmKOGFZeoUm3q9xoAqcj9Hn0tZQ6VoqA1HppPVGdrq10kSlNtqufLTX3Xe0sOYQlfv2WAX_ELUulCD6CqQCo6XtL67RZSONh5u_dYqWry_l7D2eL94-Zs_zuGJF2sWcUwksSZRStGGVKihmSiV50yhS5QWuJUiKk4bWNXCQSvKM1IQ1aSYpNEnBpuh-eHfr2p8d-E5stK_AGGmh3XlB8yLJMOH0iN6doOt258J8PcV4RossDxQdqMq13jtoxNbpjXQHQbA4GhaDYREMi96w4CGUn4Qq3fX2Oie1OR9lQ9SHf-wK3H9XZ1K_0dGRhw
CitedBy_id crossref_primary_10_1016_j_ejc_2024_103918
crossref_primary_10_1007_s11856_025_2716_3
crossref_primary_10_1007_s00454_024_00706_1
crossref_primary_10_1007_s00025_024_02243_y
Cites_doi 10.1006/eujc.1998.0281
10.1007/BF01418780
10.1016/S0019-9958(84)80007-8
10.1016/0012-365X(89)90282-3
10.1016/j.tcs.2008.12.006
10.1007/BF02293033
10.1007/s002220050056
10.1007/BF01231905
10.1007/s000390050090
10.1112/plms/pdw017
10.1016/j.jcta.2011.05.001
10.1016/S0021-9800(70)80055-2
10.1353/ajm.2020.0006
10.4064/fm-82-4-295-305
10.1016/0022-314X(77)90054-3
10.1016/S0012-365X(96)00118-5
10.1137/0221036
10.1023/A:1004236910492
10.1007/BF02574705
10.1006/eujc.1998.0282
10.1016/0012-365X(95)00120-L
10.1007/978-3-540-69407-6_51
10.1007/978-3-030-57666-0_6
10.1093/oso/9780198537601.003.0012
10.1109/SFCS.1998.743437
10.1017/CBO9780511661990.016
10.1007/978-3-642-00982-2_54
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023.
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1007/s00454-022-00426-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Research Library China
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1432-0444
EndPage 1706
ExternalDocumentID 10_1007_s00454_022_00426_4
GrantInformation_xml – fundername: Simons Foundation
  grantid: N/A
  funderid: http://dx.doi.org/10.13039/100000893
– fundername: Eric and Wendy Schmidt Postdoctoral Award
  grantid: N/A
– fundername: Directorate for Mathematical and Physical Sciences
  grantid: 1764034
  funderid: http://dx.doi.org/10.13039/100000086
GroupedDBID -52
-5D
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.4S
.86
.DC
06D
0R~
0VY
199
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
88I
8AO
8FE
8FG
8FW
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C1A
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KQ8
L6V
LAS
LLZTM
LO0
M0N
M2O
M2P
M4Y
M7S
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P62
P9R
PADUT
PF0
PKN
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YIN
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c396t-442ae355bbb2f3cb9203bb58ffb1c890daea205f2dde4eaba471d13f67a2ef593
IEDL.DBID C6C
ISSN 0179-5376
IngestDate Fri Sep 05 07:09:24 EDT 2025
Sat Aug 23 14:37:54 EDT 2025
Thu Apr 24 23:05:54 EDT 2025
Wed Oct 01 02:25:20 EDT 2025
Fri Feb 21 02:44:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Decidability
Translational tiling
52C23
Aperiodic tiling
03B25
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-442ae355bbb2f3cb9203bb58ffb1c890daea205f2dde4eaba471d13f67a2ef593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0140-7641
OpenAccessLink https://doi.org/10.1007/s00454-022-00426-4
PQID 2893472978
PQPubID 31658
PageCount 55
ParticipantIDs proquest_miscellaneous_2895701429
proquest_journals_2893472978
crossref_primary_10_1007_s00454_022_00426_4
crossref_citationtrail_10_1007_s00454_022_00426_4
springer_journals_10_1007_s00454_022_00426_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Discrete & computational geometry
PublicationTitleAbbrev Discrete Comput Geom
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Goodman-Strauss (CR11) 1999; 20
Golomb (CR10) 1970; 9
Grünbaum, Shephard (CR14) 1987
Jeandel, Rao (CR16) 2021; 2021
Newman (CR25) 1977; 9
CR17
Lukkarila (CR24) 2009; 410
CR34
CR33
Bhattacharya (CR5) 2020; 142
Amman, Grünbaum, Shephard (CR1) 1992; 8
Kari, Papasoglu (CR20) 1999; 9
Wijshoff, van Leeuwen (CR36) 1984; 62
Culik (CR6) 1996; 160
Danzer (CR8) 1989; 76
Greenfeld, Tao (CR13) 2021; 2021
Kari (CR18) 1992; 21
CR3
Gruslys, Leader, Tan (CR15) 2016; 112
Lagarias, Wang (CR23) 1996; 124
Kari (CR19) 1996; 160
CR28
CR9
CR27
CR26
Culik, Kari (CR7) 1995; 1
Socolar, Taylor (CR32) 2011; 118
CR22
Wang (CR35) 1975; 82
Berger (CR4) 1966
Robinson (CR29) 1967; 14
Kenyon (CR21) 1992; 107
Beauquier, Nivat (CR2) 1991; 6
Goodman-Strauss (CR12) 1999; 20
Robinson (CR30) 1971; 12
Schmitt (CR31) 1997; 34
SW Golomb (426_CR10) 1970; 9
J Kari (426_CR20) 1999; 9
D Beauquier (426_CR2) 1991; 6
426_CR33
426_CR34
R Amman (426_CR1) 1992; 8
426_CR17
K Culik II (426_CR6) 1996; 160
R Berger (426_CR4) 1966
E Jeandel (426_CR16) 2021; 2021
P Schmitt (426_CR31) 1997; 34
R Greenfeld (426_CR13) 2021; 2021
426_CR9
J Kari (426_CR19) 1996; 160
K Culik II (426_CR7) 1995; 1
DJ Newman (426_CR25) 1977; 9
S Bhattacharya (426_CR5) 2020; 142
426_CR22
C Goodman-Strauss (426_CR11) 1999; 20
JES Socolar (426_CR32) 2011; 118
426_CR3
V Gruslys (426_CR15) 2016; 112
L Danzer (426_CR8) 1989; 76
426_CR28
RM Robinson (426_CR29) 1967; 14
HAG Wijshoff (426_CR36) 1984; 62
R Kenyon (426_CR21) 1992; 107
426_CR26
426_CR27
H Wang (426_CR35) 1975; 82
JC Lagarias (426_CR23) 1996; 124
C Goodman-Strauss (426_CR12) 1999; 20
B Grünbaum (426_CR14) 1987
RM Robinson (426_CR30) 1971; 12
J Kari (426_CR18) 1992; 21
V Lukkarila (426_CR24) 2009; 410
References_xml – volume: 20
  start-page: 375
  issue: 5
  year: 1999
  end-page: 384
  ident: CR11
  article-title: A small aperiodic set of planar tiles
  publication-title: Eur. J. Comb.
  doi: 10.1006/eujc.1998.0281
– volume: 12
  start-page: 177
  issue: 3
  year: 1971
  end-page: 209
  ident: CR30
  article-title: Undecidability and nonperiodicity for tilings of the plane
  publication-title: Invent. Math.
  doi: 10.1007/BF01418780
– volume: 62
  start-page: 1
  issue: 1
  year: 1984
  end-page: 25
  ident: CR36
  article-title: Arbitrary versus periodic storage schemes and tessellations of the plane using one type of polyomino
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(84)80007-8
– ident: CR22
– year: 1987
  ident: CR14
  publication-title: Tilings and Patterns
– volume: 76
  start-page: 1
  issue: 1
  year: 1989
  end-page: 7
  ident: CR8
  article-title: Three-dimensional analogs of the planar Penrose tilings and quasicrystals
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(89)90282-3
– volume: 410
  start-page: 1516
  issue: 16
  year: 2009
  end-page: 1533
  ident: CR24
  article-title: The 4-way deterministic tiling problem is undecidable
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2008.12.006
– volume: 2021
  start-page: # 1
  year: 2021
  ident: CR16
  article-title: An aperiodic set of 11 Wang tiles
  publication-title: Adv. Comb.
– volume: 2021
  start-page: # 16
  issue: 16
  year: 2021
  ident: CR13
  article-title: The structure of translational tilings in
  publication-title: Discrete Anal.
– volume: 8
  start-page: 1
  issue: 1
  year: 1992
  end-page: 25
  ident: CR1
  article-title: Aperiodic tiles
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02293033
– volume: 124
  start-page: 341
  issue: 1–3
  year: 1996
  end-page: 365
  ident: CR23
  article-title: Tiling the line with translates of one tile
  publication-title: Invent. Math.
  doi: 10.1007/s002220050056
– volume: 107
  start-page: 637
  issue: 3
  year: 1992
  end-page: 651
  ident: CR21
  article-title: Rigidity of planar tilings
  publication-title: Invent. Math.
  doi: 10.1007/BF01231905
– ident: CR33
– volume: 9
  start-page: 353
  issue: 2
  year: 1999
  end-page: 369
  ident: CR20
  article-title: Deterministic aperiodic tile sets
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/s000390050090
– volume: 112
  start-page: 1019
  issue: 6
  year: 2016
  end-page: 1039
  ident: CR15
  article-title: Tiling with arbitrary tiles
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/pdw017
– volume: 118
  start-page: 2207
  issue: 8
  year: 2011
  end-page: 2231
  ident: CR32
  article-title: An aperiodic hexagonal tile
  publication-title: J. Comb. Theory Ser. A
  doi: 10.1016/j.jcta.2011.05.001
– ident: CR27
– volume: 1
  start-page: 675
  issue: 10
  year: 1995
  end-page: 686
  ident: CR7
  article-title: An aperiodic set of Wang cubes
  publication-title: J. Univ. Comput. Sci.
– volume: 9
  start-page: 60
  year: 1970
  end-page: 71
  ident: CR10
  article-title: Tiling with sets of polyominoes
  publication-title: J. Comb. Theory
  doi: 10.1016/S0021-9800(70)80055-2
– volume: 142
  start-page: 255
  issue: 1
  year: 2020
  end-page: 266
  ident: CR5
  article-title: Periodicity and decidability of tilings of
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.2020.0006
– volume: 82
  start-page: 295
  year: 1975
  end-page: 305
  ident: CR35
  article-title: Notes on a class of tiling problems
  publication-title: Fund. Math.
  doi: 10.4064/fm-82-4-295-305
– volume: 9
  start-page: 107
  issue: 1
  year: 1977
  end-page: 111
  ident: CR25
  article-title: Tesselation of integers
  publication-title: J. Number Theory
  doi: 10.1016/0022-314X(77)90054-3
– ident: CR3
– volume: 14
  start-page: 835
  year: 1967
  ident: CR29
  article-title: Seven polygons which permit only nonperiodic tilings of the plane
  publication-title: Notices Am. Math. Soc.
– volume: 160
  start-page: 245
  issue: 1–3
  year: 1996
  end-page: 251
  ident: CR6
  article-title: An aperiodic set of 13 Wang tiles
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(96)00118-5
– ident: CR17
– volume: 21
  start-page: 571
  issue: 3
  year: 1992
  end-page: 586
  ident: CR18
  article-title: The nilpotency problem of one-dimensional cellular automata
  publication-title: SIAM J. Comput.
  doi: 10.1137/0221036
– volume: 34
  start-page: 143
  issue: 1–2
  year: 1997
  end-page: 152
  ident: CR31
  article-title: Triples of prototiles (with prescribed properties) in space (a quasiperiodic triple in space)
  publication-title: Period. Math. Hung.
  doi: 10.1023/A:1004236910492
– volume: 6
  start-page: 575
  issue: 6
  year: 1991
  end-page: 592
  ident: CR2
  article-title: On translating one polyomino to tile the plane
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02574705
– year: 1966
  ident: CR4
  publication-title: The Undecidability of the Domino Problem. Memoirs of the American Mathematical Society
– ident: CR9
– volume: 20
  start-page: 385
  issue: 5
  year: 1999
  end-page: 395
  ident: CR12
  article-title: An aperiodic pair of tiles in for all
  publication-title: Eur. J. Comb.
  doi: 10.1006/eujc.1998.0282
– ident: CR34
– volume: 160
  start-page: 259
  issue: 1–3
  year: 1996
  end-page: 264
  ident: CR19
  article-title: A small aperiodic set of Wang tiles
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(95)00120-L
– ident: CR28
– ident: CR26
– volume: 160
  start-page: 245
  issue: 1–3
  year: 1996
  ident: 426_CR6
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(96)00118-5
– volume: 20
  start-page: 385
  issue: 5
  year: 1999
  ident: 426_CR12
  publication-title: Eur. J. Comb.
  doi: 10.1006/eujc.1998.0282
– volume: 12
  start-page: 177
  issue: 3
  year: 1971
  ident: 426_CR30
  publication-title: Invent. Math.
  doi: 10.1007/BF01418780
– volume: 8
  start-page: 1
  issue: 1
  year: 1992
  ident: 426_CR1
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02293033
– volume: 1
  start-page: 675
  issue: 10
  year: 1995
  ident: 426_CR7
  publication-title: J. Univ. Comput. Sci.
– volume: 20
  start-page: 375
  issue: 5
  year: 1999
  ident: 426_CR11
  publication-title: Eur. J. Comb.
  doi: 10.1006/eujc.1998.0281
– volume: 107
  start-page: 637
  issue: 3
  year: 1992
  ident: 426_CR21
  publication-title: Invent. Math.
  doi: 10.1007/BF01231905
– ident: 426_CR26
  doi: 10.1007/978-3-540-69407-6_51
– volume: 112
  start-page: 1019
  issue: 6
  year: 2016
  ident: 426_CR15
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/pdw017
– ident: 426_CR17
  doi: 10.1007/978-3-030-57666-0_6
– ident: 426_CR22
– ident: 426_CR9
  doi: 10.1093/oso/9780198537601.003.0012
– ident: 426_CR28
– volume: 2021
  start-page: # 1
  year: 2021
  ident: 426_CR16
  publication-title: Adv. Comb.
– volume: 160
  start-page: 259
  issue: 1–3
  year: 1996
  ident: 426_CR19
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(95)00120-L
– ident: 426_CR33
  doi: 10.1109/SFCS.1998.743437
– volume: 6
  start-page: 575
  issue: 6
  year: 1991
  ident: 426_CR2
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02574705
– volume: 410
  start-page: 1516
  issue: 16
  year: 2009
  ident: 426_CR24
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2008.12.006
– volume: 142
  start-page: 255
  issue: 1
  year: 2020
  ident: 426_CR5
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.2020.0006
– volume: 34
  start-page: 143
  issue: 1–2
  year: 1997
  ident: 426_CR31
  publication-title: Period. Math. Hung.
  doi: 10.1023/A:1004236910492
– volume: 118
  start-page: 2207
  issue: 8
  year: 2011
  ident: 426_CR32
  publication-title: J. Comb. Theory Ser. A
  doi: 10.1016/j.jcta.2011.05.001
– volume-title: Tilings and Patterns
  year: 1987
  ident: 426_CR14
– volume: 9
  start-page: 60
  year: 1970
  ident: 426_CR10
  publication-title: J. Comb. Theory
  doi: 10.1016/S0021-9800(70)80055-2
– volume: 2021
  start-page: # 16
  issue: 16
  year: 2021
  ident: 426_CR13
  publication-title: Discrete Anal.
– volume: 76
  start-page: 1
  issue: 1
  year: 1989
  ident: 426_CR8
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(89)90282-3
– volume: 14
  start-page: 835
  year: 1967
  ident: 426_CR29
  publication-title: Notices Am. Math. Soc.
– ident: 426_CR34
  doi: 10.1017/CBO9780511661990.016
– volume: 82
  start-page: 295
  year: 1975
  ident: 426_CR35
  publication-title: Fund. Math.
  doi: 10.4064/fm-82-4-295-305
– volume: 21
  start-page: 571
  issue: 3
  year: 1992
  ident: 426_CR18
  publication-title: SIAM J. Comput.
  doi: 10.1137/0221036
– volume-title: The Undecidability of the Domino Problem. Memoirs of the American Mathematical Society
  year: 1966
  ident: 426_CR4
– volume: 124
  start-page: 341
  issue: 1–3
  year: 1996
  ident: 426_CR23
  publication-title: Invent. Math.
  doi: 10.1007/s002220050056
– ident: 426_CR27
  doi: 10.1007/978-3-642-00982-2_54
– ident: 426_CR3
– volume: 9
  start-page: 353
  issue: 2
  year: 1999
  ident: 426_CR20
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/s000390050090
– volume: 62
  start-page: 1
  issue: 1
  year: 1984
  ident: 426_CR36
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(84)80007-8
– volume: 9
  start-page: 107
  issue: 1
  year: 1977
  ident: 426_CR25
  publication-title: J. Number Theory
  doi: 10.1016/0022-314X(77)90054-3
SSID ssj0004908
Score 2.4561672
Snippet We construct an example of a group G = Z 2 × G 0 for a finite abelian group  G 0 , a subset E of  G 0 , and two finite subsets F 1 , F 2 of  G , such that it...
We construct an example of a group $$G = \mathbb {Z}^2 \times G_0$$ G = Z 2 × G 0 for a finite abelian group  $$G_0$$ G 0 , a subset E of  $$G_0$$ G 0 , and...
We construct an example of a group G=Z2×G0 for a finite abelian group G0, a subset E of G0, and two finite subsets F1,F2 of G, such that it is undecidable in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1652
SubjectTerms Algorithms
Combinatorics
Computational Mathematics and Numerical Analysis
Functional equations
Geometry
Group theory
Mathematical analysis
Mathematics
Mathematics and Statistics
Tiles
Tiling
Translations
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB_8eKkPbbWKZ22J4FsNbnaz2c1TEen1KNz5coJvS5LNgnDsqnsi_e-dyWXvaEFfk-wGZiaZr8z8AM7TTKO_1ihuFEqwRA-C21I0XHnTSKMSpxVVI09nanIr_9zldzHg1sdnlcOdGC7qunMUI79ExyCTaAkW5c-HR06oUZRdjRAa27ArUpQkqhQf_97UReqASEdCx6ltSSyaCaVzofccp7fswY3g8l_FtLE2_0uQBr0z_gwfo8HIrlYc3oct3x7ApwGMgcWzeQB703UD1v4LTAnPyN3XVBjFgj5axKgfm99TBXrPKALLbtrFXzZ_6WjU9xese8Ihz2a40nqKgISJQ7gd_5pfT3hETuAu02qJNE-NR0vCWuRD5qxOk8zavGwaK1ypk9p4kyZ5k-LlJr2xBlVULbJGFSb1Ta6zI9hpu9YfA6OGbLVIjFaFk0IKq51JhFVotxV1KcwIxEC2ysW24oRusajWDZEDqSskdRVIXckR_Fh_87BqqvHu6tOBG1U8YH21EYcRnK2n8WhQvsO0vnsOa_ICXcBUj-Bi4OLmF2_vePL-jl_hA4HOrx61nMLO8unZf0PTZGm_B_l7BSPg3Us
  priority: 102
  providerName: ProQuest
Title Undecidable Translational Tilings with Only Two Tiles, or One Nonabelian Tile
URI https://link.springer.com/article/10.1007/s00454-022-00426-4
https://www.proquest.com/docview/2893472978
https://www.proquest.com/docview/2895701429
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: AFBBN
  dateStart: 19860301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central (New) (NC LIVE)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-0444
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: BENPR
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: 8FG
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0444
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004908
  issn: 0179-5376
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8eNEHv8X5MSL4poWmTdPmcRubomyKbKBPJWlTGIxO3ET8773Lug1FBV8aSK4JXD7uI7nfAVwEoUJ7rZCelriCBVoQnkl44UmrC6GlnylJ0cjdnrwZiNun6KmCyaFYmG_39w7sMxIevTl36r4nVmE9woOXnu-1ZGsZA6lc9jlaYB5BlFQBMj_38VUILTXLb5ehTsZ0dmCrUg5ZYzabu7Biyz3YnideYNU-3IPN7gJsdbIPXcpdlA1zCoJiTvaMKg8f6w8p2nzCyNvK7svRB-u_j6nWTq7Y-BWrLOshpbHk7XANBzDotPutG6_KkuBloZJT5G-gLWoNxiDPw8yowA-NiZKiMDxLlJ9rqwM_KgI8yITVRqM4ynlYyFgHtohUeAhr5bi0R8AIfC3nvlYyzgQX3KhM-9xI1NHiPOG6BnzOtjSrIMQpk8UoXYAfO1anyOrUsToVNbhc_PMyA9D4k_p0PhtptZkmKdqEoUAjIE5qcL5oxm1Adxu6tOM3RxPFaO4FqgZX81lcdvH7iMf_Iz-BDUo4P3vQcgpr09c3e4ZqydTUYTXpXNdhvdFpNntUXj_ftbFstnsPj3W3WvE7CBqfALDcUg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcKBQQSwsYCU40In7EiQ8IIWDZ0u5y2Uq9BdtxpEqrpDRbVf1T_EZmvMmuQKK3Xm0ntsbjednzDcAbIQ36a7VOrEYOVuhBJK7gdaKDrZXVqTeaspGnMz05Ud9Ps9Mt-D3kwtCzykEmRkFdtZ5i5O_RMZAKLcG8-Hj-K6GqUXS7OpTQWLHFUbi-Qpet-3D4Bff3rRDjr_PPk6SvKpB4afQS1yNsQC3rHK5RemdEKp3Lirp23BcmrWywIs1qgQdfBessiu-Ky1rnVoQ6I_AlFPl3lJSSsPqL8bdNHqaJFfCIyROCSemTdGKqXsS6S-jtfHRbEvW3ItxYt_9cyEY9N34ID3oDlX1acdQj2ArNLuwMxR9YLwt24f50DfjaPYYp1U_yZxUlYrGo_xZ9lJHNzyjjvWMU8WU_msU1m1-11Bq6A9ZeYFNgMxzpAkVcYscTOLkVmj6F7aZtwjNgBABX8dQanXvFFXfG25Q7jXZiXhXcjoAPZCt9D2NO1TQW5RqAOZK6RFKXkdSlGsG79TfnKxCPG0fvD7tR9ge6KzfsN4LX6248inS_YpvQXsYxWY4upzAjOBh2cfOL_8_4_OYZX8HdyXx6XB4fzo724B4VvF89qNmH7eXFZXiBZtHSvYy8yODnbTP_H7PQHHo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBgUIBsbSAkeBEo8aO48SHCgHtqqXsUqGt1FtqJ45UaZWUZquqf5FfxYzX2RVI9Nar7Tw0Hs_D9vcNwHuRaMzXahUZhRosMYOIbM7rSDlTS6PiUitCI48n6vBUfjtLz9bgd4-FoWuVvU30hrpqS9oj38XEIJEYCWb5bh2uRZzsjz5d_oqoghSdtPblNEwos1DtebqxAPI4drc3mM51e0f7OPcfhBgdTL8eRqHiQFQmWs3xX4Vx6IGtxf9PSqtFnFib5nVteZnruDLOiDitBRoF6Yw1aNorntQqM8LVKREzoTtYzwgvOoD1LweTk58rlKb29fFoCUREohIgPB7I55nwIrpZ75OaSP7tJlex7z_Htd4Ljp7A4xC-ss8LfXsKa67ZhI2-NAQLlmITHo2XdLDdMxhTdaXyoiKYFvPecRb2INn0gvDwHaP9YPajmd2y6U1Lra7bYe0VNjk2wZHW0X6M73gOp_ci1RcwaNrGvQRG9HAVj41WWSm55FaXJuZWYRSZVTk3Q-C92IoykJxTrY1ZsaRn9qIuUNSFF3Uhh_Bx-czlguLjztHb_WwUYbl3xUo5h_Bu2Y0LlU5fTOPaaz8mzTAhFXoIO_0srl7x_y--uvuLb-EBLoTi-9HkeAseCozBFrdttmEwv7p2rzFmmts3QRkZnN-3_v8BmtgnVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Undecidable+Translational+Tilings+with+Only+Two+Tiles%2C+or+One+Nonabelian+Tile&rft.jtitle=Discrete+%26+computational+geometry&rft.au=Greenfeld%2C+Rachel&rft.au=Tao%2C+Terence&rft.date=2023-12-01&rft.issn=0179-5376&rft.eissn=1432-0444&rft.volume=70&rft.issue=4&rft.spage=1652&rft.epage=1706&rft_id=info:doi/10.1007%2Fs00454-022-00426-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00454_022_00426_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0179-5376&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0179-5376&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0179-5376&client=summon