Undecidable Translational Tilings with Only Two Tiles, or One Nonabelian Tile
We construct an example of a group G = Z 2 × G 0 for a finite abelian group G 0 , a subset E of G 0 , and two finite subsets F 1 , F 2 of G , such that it is undecidable in ZFC whether Z 2 × E can be tiled by translations of F 1 , F 2 . In particular, this implies that this tiling problem is aper...
Saved in:
Published in | Discrete & computational geometry Vol. 70; no. 4; pp. 1652 - 1706 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0179-5376 1432-0444 |
DOI | 10.1007/s00454-022-00426-4 |
Cover
Abstract | We construct an example of a group
G
=
Z
2
×
G
0
for a finite abelian group
G
0
, a subset
E
of
G
0
, and two finite subsets
F
1
,
F
2
of
G
, such that it is undecidable in ZFC whether
Z
2
×
E
can be tiled by translations of
F
1
,
F
2
. In particular, this implies that this tiling problem is
aperiodic
, in the sense that (in the standard universe of ZFC) there exist translational tilings of
E
by the tiles
F
1
,
F
2
, but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in
Z
2
). A similar construction also applies for
G
=
Z
d
for sufficiently large
d
. If one allows the group
G
0
to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile
F
. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles. |
---|---|
AbstractList | We construct an example of a group G=Z2×G0 for a finite abelian group G0, a subset E of G0, and two finite subsets F1,F2 of G, such that it is undecidable in ZFC whether Z2×E can be tiled by translations of F1,F2. In particular, this implies that this tiling problem is aperiodic, in the sense that (in the standard universe of ZFC) there exist translational tilings of E by the tiles F1,F2, but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in Z2). A similar construction also applies for G=Zd for sufficiently large d. If one allows the group G0 to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles. We construct an example of a group $$G = \mathbb {Z}^2 \times G_0$$ G = Z 2 × G 0 for a finite abelian group $$G_0$$ G 0 , a subset E of $$G_0$$ G 0 , and two finite subsets $$F_1,F_2$$ F 1 , F 2 of G , such that it is undecidable in ZFC whether $$\mathbb {Z}^2\times E$$ Z 2 × E can be tiled by translations of $$F_1,F_2$$ F 1 , F 2 . In particular, this implies that this tiling problem is aperiodic , in the sense that (in the standard universe of ZFC) there exist translational tilings of E by the tiles $$F_1,F_2$$ F 1 , F 2 , but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in $$\mathbb {Z}^2$$ Z 2 ). A similar construction also applies for $$G=\mathbb {Z}^d$$ G = Z d for sufficiently large d . If one allows the group $$G_0$$ G 0 to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F . The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles. We construct an example of a group G = Z 2 × G 0 for a finite abelian group G 0 , a subset E of G 0 , and two finite subsets F 1 , F 2 of G , such that it is undecidable in ZFC whether Z 2 × E can be tiled by translations of F 1 , F 2 . In particular, this implies that this tiling problem is aperiodic , in the sense that (in the standard universe of ZFC) there exist translational tilings of E by the tiles F 1 , F 2 , but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in Z 2 ). A similar construction also applies for G = Z d for sufficiently large d . If one allows the group G 0 to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F . The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles. We construct an example of a group G=Z2×G0 for a finite abelian group G0, a subset E of G0, and two finite subsets F1,F2 of G, such that it is undecidable in ZFC whether Z2×E can be tiled by translations of F1,F2. In particular, this implies that this tiling problem is aperiodic, in the sense that (in the standard universe of ZFC) there exist translational tilings of E by the tiles F1,F2, but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in Z2). A similar construction also applies for G=Zd for sufficiently large d. If one allows the group G0 to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles.We construct an example of a group G=Z2×G0 for a finite abelian group G0, a subset E of G0, and two finite subsets F1,F2 of G, such that it is undecidable in ZFC whether Z2×E can be tiled by translations of F1,F2. In particular, this implies that this tiling problem is aperiodic, in the sense that (in the standard universe of ZFC) there exist translational tilings of E by the tiles F1,F2, but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in Z2). A similar construction also applies for G=Zd for sufficiently large d. If one allows the group G0 to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles. |
Author | Greenfeld, Rachel Tao, Terence |
Author_xml | – sequence: 1 givenname: Rachel surname: Greenfeld fullname: Greenfeld, Rachel organization: UCLA Department of Mathematics – sequence: 2 givenname: Terence orcidid: 0000-0002-0140-7641 surname: Tao fullname: Tao, Terence email: tao@math.ucla.edu organization: UCLA Department of Mathematics |
BookMark | eNp9kLtOwzAUhi1UJNrCCzBFYmEg4FtuI6q4SYUu6WzZyUlx5TrFTlX17XETJKQOnWwff799zjdBI9taQOiW4EeCcfbkMeYJjzGlcdjRNOYXaEw4C0fO-QiNMcmKOGFZeoUm3q9xoAqcj9Hn0tZQ6VoqA1HppPVGdrq10kSlNtqufLTX3Xe0sOYQlfv2WAX_ELUulCD6CqQCo6XtL67RZSONh5u_dYqWry_l7D2eL94-Zs_zuGJF2sWcUwksSZRStGGVKihmSiV50yhS5QWuJUiKk4bWNXCQSvKM1IQ1aSYpNEnBpuh-eHfr2p8d-E5stK_AGGmh3XlB8yLJMOH0iN6doOt258J8PcV4RossDxQdqMq13jtoxNbpjXQHQbA4GhaDYREMi96w4CGUn4Qq3fX2Oie1OR9lQ9SHf-wK3H9XZ1K_0dGRhw |
CitedBy_id | crossref_primary_10_1016_j_ejc_2024_103918 crossref_primary_10_1007_s11856_025_2716_3 crossref_primary_10_1007_s00454_024_00706_1 crossref_primary_10_1007_s00025_024_02243_y |
Cites_doi | 10.1006/eujc.1998.0281 10.1007/BF01418780 10.1016/S0019-9958(84)80007-8 10.1016/0012-365X(89)90282-3 10.1016/j.tcs.2008.12.006 10.1007/BF02293033 10.1007/s002220050056 10.1007/BF01231905 10.1007/s000390050090 10.1112/plms/pdw017 10.1016/j.jcta.2011.05.001 10.1016/S0021-9800(70)80055-2 10.1353/ajm.2020.0006 10.4064/fm-82-4-295-305 10.1016/0022-314X(77)90054-3 10.1016/S0012-365X(96)00118-5 10.1137/0221036 10.1023/A:1004236910492 10.1007/BF02574705 10.1006/eujc.1998.0282 10.1016/0012-365X(95)00120-L 10.1007/978-3-540-69407-6_51 10.1007/978-3-030-57666-0_6 10.1093/oso/9780198537601.003.0012 10.1109/SFCS.1998.743437 10.1017/CBO9780511661990.016 10.1007/978-3-642-00982-2_54 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2023. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2023. |
DBID | C6C AAYXX CITATION 3V. 7SC 7TB 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ GUQSH HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M2O M2P M7S MBDVC P5Z P62 PADUT PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
DOI | 10.1007/s00454-022-00426-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Research Library China ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1432-0444 |
EndPage | 1706 |
ExternalDocumentID | 10_1007_s00454_022_00426_4 |
GrantInformation_xml | – fundername: Simons Foundation grantid: N/A funderid: http://dx.doi.org/10.13039/100000893 – fundername: Eric and Wendy Schmidt Postdoctoral Award grantid: N/A – fundername: Directorate for Mathematical and Physical Sciences grantid: 1764034 funderid: http://dx.doi.org/10.13039/100000086 |
GroupedDBID | -52 -5D -5G -BR -DZ -EM -Y2 -~C -~X .4S .86 .DC 06D 0R~ 0VY 199 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 88I 8AO 8FE 8FG 8FW 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AAKPC AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIHN ACIPV ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C1A C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KQ8 L6V LAS LLZTM LO0 M0N M2O M2P M4Y M7S MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P62 P9R PADUT PF0 PKN PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I REI RHV RIG RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YIN YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c396t-442ae355bbb2f3cb9203bb58ffb1c890daea205f2dde4eaba471d13f67a2ef593 |
IEDL.DBID | C6C |
ISSN | 0179-5376 |
IngestDate | Fri Sep 05 07:09:24 EDT 2025 Sat Aug 23 14:37:54 EDT 2025 Thu Apr 24 23:05:54 EDT 2025 Wed Oct 01 02:25:20 EDT 2025 Fri Feb 21 02:44:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Decidability Translational tiling 52C23 Aperiodic tiling 03B25 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-442ae355bbb2f3cb9203bb58ffb1c890daea205f2dde4eaba471d13f67a2ef593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0140-7641 |
OpenAccessLink | https://doi.org/10.1007/s00454-022-00426-4 |
PQID | 2893472978 |
PQPubID | 31658 |
PageCount | 55 |
ParticipantIDs | proquest_miscellaneous_2895701429 proquest_journals_2893472978 crossref_primary_10_1007_s00454_022_00426_4 crossref_citationtrail_10_1007_s00454_022_00426_4 springer_journals_10_1007_s00454_022_00426_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Discrete & computational geometry |
PublicationTitleAbbrev | Discrete Comput Geom |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Goodman-Strauss (CR11) 1999; 20 Golomb (CR10) 1970; 9 Grünbaum, Shephard (CR14) 1987 Jeandel, Rao (CR16) 2021; 2021 Newman (CR25) 1977; 9 CR17 Lukkarila (CR24) 2009; 410 CR34 CR33 Bhattacharya (CR5) 2020; 142 Amman, Grünbaum, Shephard (CR1) 1992; 8 Kari, Papasoglu (CR20) 1999; 9 Wijshoff, van Leeuwen (CR36) 1984; 62 Culik (CR6) 1996; 160 Danzer (CR8) 1989; 76 Greenfeld, Tao (CR13) 2021; 2021 Kari (CR18) 1992; 21 CR3 Gruslys, Leader, Tan (CR15) 2016; 112 Lagarias, Wang (CR23) 1996; 124 Kari (CR19) 1996; 160 CR28 CR9 CR27 CR26 Culik, Kari (CR7) 1995; 1 Socolar, Taylor (CR32) 2011; 118 CR22 Wang (CR35) 1975; 82 Berger (CR4) 1966 Robinson (CR29) 1967; 14 Kenyon (CR21) 1992; 107 Beauquier, Nivat (CR2) 1991; 6 Goodman-Strauss (CR12) 1999; 20 Robinson (CR30) 1971; 12 Schmitt (CR31) 1997; 34 SW Golomb (426_CR10) 1970; 9 J Kari (426_CR20) 1999; 9 D Beauquier (426_CR2) 1991; 6 426_CR33 426_CR34 R Amman (426_CR1) 1992; 8 426_CR17 K Culik II (426_CR6) 1996; 160 R Berger (426_CR4) 1966 E Jeandel (426_CR16) 2021; 2021 P Schmitt (426_CR31) 1997; 34 R Greenfeld (426_CR13) 2021; 2021 426_CR9 J Kari (426_CR19) 1996; 160 K Culik II (426_CR7) 1995; 1 DJ Newman (426_CR25) 1977; 9 S Bhattacharya (426_CR5) 2020; 142 426_CR22 C Goodman-Strauss (426_CR11) 1999; 20 JES Socolar (426_CR32) 2011; 118 426_CR3 V Gruslys (426_CR15) 2016; 112 L Danzer (426_CR8) 1989; 76 426_CR28 RM Robinson (426_CR29) 1967; 14 HAG Wijshoff (426_CR36) 1984; 62 R Kenyon (426_CR21) 1992; 107 426_CR26 426_CR27 H Wang (426_CR35) 1975; 82 JC Lagarias (426_CR23) 1996; 124 C Goodman-Strauss (426_CR12) 1999; 20 B Grünbaum (426_CR14) 1987 RM Robinson (426_CR30) 1971; 12 J Kari (426_CR18) 1992; 21 V Lukkarila (426_CR24) 2009; 410 |
References_xml | – volume: 20 start-page: 375 issue: 5 year: 1999 end-page: 384 ident: CR11 article-title: A small aperiodic set of planar tiles publication-title: Eur. J. Comb. doi: 10.1006/eujc.1998.0281 – volume: 12 start-page: 177 issue: 3 year: 1971 end-page: 209 ident: CR30 article-title: Undecidability and nonperiodicity for tilings of the plane publication-title: Invent. Math. doi: 10.1007/BF01418780 – volume: 62 start-page: 1 issue: 1 year: 1984 end-page: 25 ident: CR36 article-title: Arbitrary versus periodic storage schemes and tessellations of the plane using one type of polyomino publication-title: Inf. Control doi: 10.1016/S0019-9958(84)80007-8 – ident: CR22 – year: 1987 ident: CR14 publication-title: Tilings and Patterns – volume: 76 start-page: 1 issue: 1 year: 1989 end-page: 7 ident: CR8 article-title: Three-dimensional analogs of the planar Penrose tilings and quasicrystals publication-title: Discrete Math. doi: 10.1016/0012-365X(89)90282-3 – volume: 410 start-page: 1516 issue: 16 year: 2009 end-page: 1533 ident: CR24 article-title: The 4-way deterministic tiling problem is undecidable publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2008.12.006 – volume: 2021 start-page: # 1 year: 2021 ident: CR16 article-title: An aperiodic set of 11 Wang tiles publication-title: Adv. Comb. – volume: 2021 start-page: # 16 issue: 16 year: 2021 ident: CR13 article-title: The structure of translational tilings in publication-title: Discrete Anal. – volume: 8 start-page: 1 issue: 1 year: 1992 end-page: 25 ident: CR1 article-title: Aperiodic tiles publication-title: Discrete Comput. Geom. doi: 10.1007/BF02293033 – volume: 124 start-page: 341 issue: 1–3 year: 1996 end-page: 365 ident: CR23 article-title: Tiling the line with translates of one tile publication-title: Invent. Math. doi: 10.1007/s002220050056 – volume: 107 start-page: 637 issue: 3 year: 1992 end-page: 651 ident: CR21 article-title: Rigidity of planar tilings publication-title: Invent. Math. doi: 10.1007/BF01231905 – ident: CR33 – volume: 9 start-page: 353 issue: 2 year: 1999 end-page: 369 ident: CR20 article-title: Deterministic aperiodic tile sets publication-title: Geom. Funct. Anal. doi: 10.1007/s000390050090 – volume: 112 start-page: 1019 issue: 6 year: 2016 end-page: 1039 ident: CR15 article-title: Tiling with arbitrary tiles publication-title: Proc. Lond. Math. Soc. doi: 10.1112/plms/pdw017 – volume: 118 start-page: 2207 issue: 8 year: 2011 end-page: 2231 ident: CR32 article-title: An aperiodic hexagonal tile publication-title: J. Comb. Theory Ser. A doi: 10.1016/j.jcta.2011.05.001 – ident: CR27 – volume: 1 start-page: 675 issue: 10 year: 1995 end-page: 686 ident: CR7 article-title: An aperiodic set of Wang cubes publication-title: J. Univ. Comput. Sci. – volume: 9 start-page: 60 year: 1970 end-page: 71 ident: CR10 article-title: Tiling with sets of polyominoes publication-title: J. Comb. Theory doi: 10.1016/S0021-9800(70)80055-2 – volume: 142 start-page: 255 issue: 1 year: 2020 end-page: 266 ident: CR5 article-title: Periodicity and decidability of tilings of publication-title: Am. J. Math. doi: 10.1353/ajm.2020.0006 – volume: 82 start-page: 295 year: 1975 end-page: 305 ident: CR35 article-title: Notes on a class of tiling problems publication-title: Fund. Math. doi: 10.4064/fm-82-4-295-305 – volume: 9 start-page: 107 issue: 1 year: 1977 end-page: 111 ident: CR25 article-title: Tesselation of integers publication-title: J. Number Theory doi: 10.1016/0022-314X(77)90054-3 – ident: CR3 – volume: 14 start-page: 835 year: 1967 ident: CR29 article-title: Seven polygons which permit only nonperiodic tilings of the plane publication-title: Notices Am. Math. Soc. – volume: 160 start-page: 245 issue: 1–3 year: 1996 end-page: 251 ident: CR6 article-title: An aperiodic set of 13 Wang tiles publication-title: Discrete Math. doi: 10.1016/S0012-365X(96)00118-5 – ident: CR17 – volume: 21 start-page: 571 issue: 3 year: 1992 end-page: 586 ident: CR18 article-title: The nilpotency problem of one-dimensional cellular automata publication-title: SIAM J. Comput. doi: 10.1137/0221036 – volume: 34 start-page: 143 issue: 1–2 year: 1997 end-page: 152 ident: CR31 article-title: Triples of prototiles (with prescribed properties) in space (a quasiperiodic triple in space) publication-title: Period. Math. Hung. doi: 10.1023/A:1004236910492 – volume: 6 start-page: 575 issue: 6 year: 1991 end-page: 592 ident: CR2 article-title: On translating one polyomino to tile the plane publication-title: Discrete Comput. Geom. doi: 10.1007/BF02574705 – year: 1966 ident: CR4 publication-title: The Undecidability of the Domino Problem. Memoirs of the American Mathematical Society – ident: CR9 – volume: 20 start-page: 385 issue: 5 year: 1999 end-page: 395 ident: CR12 article-title: An aperiodic pair of tiles in for all publication-title: Eur. J. Comb. doi: 10.1006/eujc.1998.0282 – ident: CR34 – volume: 160 start-page: 259 issue: 1–3 year: 1996 end-page: 264 ident: CR19 article-title: A small aperiodic set of Wang tiles publication-title: Discrete Math. doi: 10.1016/0012-365X(95)00120-L – ident: CR28 – ident: CR26 – volume: 160 start-page: 245 issue: 1–3 year: 1996 ident: 426_CR6 publication-title: Discrete Math. doi: 10.1016/S0012-365X(96)00118-5 – volume: 20 start-page: 385 issue: 5 year: 1999 ident: 426_CR12 publication-title: Eur. J. Comb. doi: 10.1006/eujc.1998.0282 – volume: 12 start-page: 177 issue: 3 year: 1971 ident: 426_CR30 publication-title: Invent. Math. doi: 10.1007/BF01418780 – volume: 8 start-page: 1 issue: 1 year: 1992 ident: 426_CR1 publication-title: Discrete Comput. Geom. doi: 10.1007/BF02293033 – volume: 1 start-page: 675 issue: 10 year: 1995 ident: 426_CR7 publication-title: J. Univ. Comput. Sci. – volume: 20 start-page: 375 issue: 5 year: 1999 ident: 426_CR11 publication-title: Eur. J. Comb. doi: 10.1006/eujc.1998.0281 – volume: 107 start-page: 637 issue: 3 year: 1992 ident: 426_CR21 publication-title: Invent. Math. doi: 10.1007/BF01231905 – ident: 426_CR26 doi: 10.1007/978-3-540-69407-6_51 – volume: 112 start-page: 1019 issue: 6 year: 2016 ident: 426_CR15 publication-title: Proc. Lond. Math. Soc. doi: 10.1112/plms/pdw017 – ident: 426_CR17 doi: 10.1007/978-3-030-57666-0_6 – ident: 426_CR22 – ident: 426_CR9 doi: 10.1093/oso/9780198537601.003.0012 – ident: 426_CR28 – volume: 2021 start-page: # 1 year: 2021 ident: 426_CR16 publication-title: Adv. Comb. – volume: 160 start-page: 259 issue: 1–3 year: 1996 ident: 426_CR19 publication-title: Discrete Math. doi: 10.1016/0012-365X(95)00120-L – ident: 426_CR33 doi: 10.1109/SFCS.1998.743437 – volume: 6 start-page: 575 issue: 6 year: 1991 ident: 426_CR2 publication-title: Discrete Comput. Geom. doi: 10.1007/BF02574705 – volume: 410 start-page: 1516 issue: 16 year: 2009 ident: 426_CR24 publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2008.12.006 – volume: 142 start-page: 255 issue: 1 year: 2020 ident: 426_CR5 publication-title: Am. J. Math. doi: 10.1353/ajm.2020.0006 – volume: 34 start-page: 143 issue: 1–2 year: 1997 ident: 426_CR31 publication-title: Period. Math. Hung. doi: 10.1023/A:1004236910492 – volume: 118 start-page: 2207 issue: 8 year: 2011 ident: 426_CR32 publication-title: J. Comb. Theory Ser. A doi: 10.1016/j.jcta.2011.05.001 – volume-title: Tilings and Patterns year: 1987 ident: 426_CR14 – volume: 9 start-page: 60 year: 1970 ident: 426_CR10 publication-title: J. Comb. Theory doi: 10.1016/S0021-9800(70)80055-2 – volume: 2021 start-page: # 16 issue: 16 year: 2021 ident: 426_CR13 publication-title: Discrete Anal. – volume: 76 start-page: 1 issue: 1 year: 1989 ident: 426_CR8 publication-title: Discrete Math. doi: 10.1016/0012-365X(89)90282-3 – volume: 14 start-page: 835 year: 1967 ident: 426_CR29 publication-title: Notices Am. Math. Soc. – ident: 426_CR34 doi: 10.1017/CBO9780511661990.016 – volume: 82 start-page: 295 year: 1975 ident: 426_CR35 publication-title: Fund. Math. doi: 10.4064/fm-82-4-295-305 – volume: 21 start-page: 571 issue: 3 year: 1992 ident: 426_CR18 publication-title: SIAM J. Comput. doi: 10.1137/0221036 – volume-title: The Undecidability of the Domino Problem. Memoirs of the American Mathematical Society year: 1966 ident: 426_CR4 – volume: 124 start-page: 341 issue: 1–3 year: 1996 ident: 426_CR23 publication-title: Invent. Math. doi: 10.1007/s002220050056 – ident: 426_CR27 doi: 10.1007/978-3-642-00982-2_54 – ident: 426_CR3 – volume: 9 start-page: 353 issue: 2 year: 1999 ident: 426_CR20 publication-title: Geom. Funct. Anal. doi: 10.1007/s000390050090 – volume: 62 start-page: 1 issue: 1 year: 1984 ident: 426_CR36 publication-title: Inf. Control doi: 10.1016/S0019-9958(84)80007-8 – volume: 9 start-page: 107 issue: 1 year: 1977 ident: 426_CR25 publication-title: J. Number Theory doi: 10.1016/0022-314X(77)90054-3 |
SSID | ssj0004908 |
Score | 2.4561672 |
Snippet | We construct an example of a group
G
=
Z
2
×
G
0
for a finite abelian group
G
0
, a subset
E
of
G
0
, and two finite subsets
F
1
,
F
2
of
G
, such that it... We construct an example of a group $$G = \mathbb {Z}^2 \times G_0$$ G = Z 2 × G 0 for a finite abelian group $$G_0$$ G 0 , a subset E of $$G_0$$ G 0 , and... We construct an example of a group G=Z2×G0 for a finite abelian group G0, a subset E of G0, and two finite subsets F1,F2 of G, such that it is undecidable in... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1652 |
SubjectTerms | Algorithms Combinatorics Computational Mathematics and Numerical Analysis Functional equations Geometry Group theory Mathematical analysis Mathematics Mathematics and Statistics Tiles Tiling Translations |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB_8eKkPbbWKZ22J4FsNbnaz2c1TEen1KNz5coJvS5LNgnDsqnsi_e-dyWXvaEFfk-wGZiaZr8z8AM7TTKO_1ihuFEqwRA-C21I0XHnTSKMSpxVVI09nanIr_9zldzHg1sdnlcOdGC7qunMUI79ExyCTaAkW5c-HR06oUZRdjRAa27ArUpQkqhQf_97UReqASEdCx6ltSSyaCaVzofccp7fswY3g8l_FtLE2_0uQBr0z_gwfo8HIrlYc3oct3x7ApwGMgcWzeQB703UD1v4LTAnPyN3XVBjFgj5axKgfm99TBXrPKALLbtrFXzZ_6WjU9xese8Ihz2a40nqKgISJQ7gd_5pfT3hETuAu02qJNE-NR0vCWuRD5qxOk8zavGwaK1ypk9p4kyZ5k-LlJr2xBlVULbJGFSb1Ta6zI9hpu9YfA6OGbLVIjFaFk0IKq51JhFVotxV1KcwIxEC2ysW24oRusajWDZEDqSskdRVIXckR_Fh_87BqqvHu6tOBG1U8YH21EYcRnK2n8WhQvsO0vnsOa_ICXcBUj-Bi4OLmF2_vePL-jl_hA4HOrx61nMLO8unZf0PTZGm_B_l7BSPg3Us priority: 102 providerName: ProQuest |
Title | Undecidable Translational Tilings with Only Two Tiles, or One Nonabelian Tile |
URI | https://link.springer.com/article/10.1007/s00454-022-00426-4 https://www.proquest.com/docview/2893472978 https://www.proquest.com/docview/2895701429 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: AFBBN dateStart: 19860301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central (New) (NC LIVE) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-0444 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: BENPR dateStart: 20010301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1432-0444 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: 8FG dateStart: 20010301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-0444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8eNEHv8X5MSL4poWmTdPmcRubomyKbKBPJWlTGIxO3ET8773Lug1FBV8aSK4JXD7uI7nfAVwEoUJ7rZCelriCBVoQnkl44UmrC6GlnylJ0cjdnrwZiNun6KmCyaFYmG_39w7sMxIevTl36r4nVmE9woOXnu-1ZGsZA6lc9jlaYB5BlFQBMj_38VUILTXLb5ehTsZ0dmCrUg5ZYzabu7Biyz3YnideYNU-3IPN7gJsdbIPXcpdlA1zCoJiTvaMKg8f6w8p2nzCyNvK7svRB-u_j6nWTq7Y-BWrLOshpbHk7XANBzDotPutG6_KkuBloZJT5G-gLWoNxiDPw8yowA-NiZKiMDxLlJ9rqwM_KgI8yITVRqM4ynlYyFgHtohUeAhr5bi0R8AIfC3nvlYyzgQX3KhM-9xI1NHiPOG6BnzOtjSrIMQpk8UoXYAfO1anyOrUsToVNbhc_PMyA9D4k_p0PhtptZkmKdqEoUAjIE5qcL5oxm1Adxu6tOM3RxPFaO4FqgZX81lcdvH7iMf_Iz-BDUo4P3vQcgpr09c3e4ZqydTUYTXpXNdhvdFpNntUXj_ftbFstnsPj3W3WvE7CBqfALDcUg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcKBQQSwsYCU40In7EiQ8IIWDZ0u5y2Uq9BdtxpEqrpDRbVf1T_EZmvMmuQKK3Xm0ntsbjednzDcAbIQ36a7VOrEYOVuhBJK7gdaKDrZXVqTeaspGnMz05Ud9Ps9Mt-D3kwtCzykEmRkFdtZ5i5O_RMZAKLcG8-Hj-K6GqUXS7OpTQWLHFUbi-Qpet-3D4Bff3rRDjr_PPk6SvKpB4afQS1yNsQC3rHK5RemdEKp3Lirp23BcmrWywIs1qgQdfBessiu-Ky1rnVoQ6I_AlFPl3lJSSsPqL8bdNHqaJFfCIyROCSemTdGKqXsS6S-jtfHRbEvW3ItxYt_9cyEY9N34ID3oDlX1acdQj2ArNLuwMxR9YLwt24f50DfjaPYYp1U_yZxUlYrGo_xZ9lJHNzyjjvWMU8WU_msU1m1-11Bq6A9ZeYFNgMxzpAkVcYscTOLkVmj6F7aZtwjNgBABX8dQanXvFFXfG25Q7jXZiXhXcjoAPZCt9D2NO1TQW5RqAOZK6RFKXkdSlGsG79TfnKxCPG0fvD7tR9ge6KzfsN4LX6248inS_YpvQXsYxWY4upzAjOBh2cfOL_8_4_OYZX8HdyXx6XB4fzo724B4VvF89qNmH7eXFZXiBZtHSvYy8yODnbTP_H7PQHHo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBgUIBsbSAkeBEo8aO48SHCgHtqqXsUqGt1FtqJ45UaZWUZquqf5FfxYzX2RVI9Nar7Tw0Hs_D9vcNwHuRaMzXahUZhRosMYOIbM7rSDlTS6PiUitCI48n6vBUfjtLz9bgd4-FoWuVvU30hrpqS9oj38XEIJEYCWb5bh2uRZzsjz5d_oqoghSdtPblNEwos1DtebqxAPI4drc3mM51e0f7OPcfhBgdTL8eRqHiQFQmWs3xX4Vx6IGtxf9PSqtFnFib5nVteZnruDLOiDitBRoF6Yw1aNorntQqM8LVKREzoTtYzwgvOoD1LweTk58rlKb29fFoCUREohIgPB7I55nwIrpZ75OaSP7tJlex7z_Htd4Ljp7A4xC-ss8LfXsKa67ZhI2-NAQLlmITHo2XdLDdMxhTdaXyoiKYFvPecRb2INn0gvDwHaP9YPajmd2y6U1Lra7bYe0VNjk2wZHW0X6M73gOp_ci1RcwaNrGvQRG9HAVj41WWSm55FaXJuZWYRSZVTk3Q-C92IoykJxTrY1ZsaRn9qIuUNSFF3Uhh_Bx-czlguLjztHb_WwUYbl3xUo5h_Bu2Y0LlU5fTOPaaz8mzTAhFXoIO_0srl7x_y--uvuLb-EBLoTi-9HkeAseCozBFrdttmEwv7p2rzFmmts3QRkZnN-3_v8BmtgnVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Undecidable+Translational+Tilings+with+Only+Two+Tiles%2C+or+One+Nonabelian+Tile&rft.jtitle=Discrete+%26+computational+geometry&rft.au=Greenfeld%2C+Rachel&rft.au=Tao%2C+Terence&rft.date=2023-12-01&rft.issn=0179-5376&rft.eissn=1432-0444&rft.volume=70&rft.issue=4&rft.spage=1652&rft.epage=1706&rft_id=info:doi/10.1007%2Fs00454-022-00426-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00454_022_00426_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0179-5376&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0179-5376&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0179-5376&client=summon |