The Growing Curvilinear Component Analysis (GCCA) neural network
Big high dimensional data is becoming a challenging field of research. There exist a lot of techniques which infer information. However, because of the curse of dimensionality, a necessary step is the dimensionality reduction (DR) of the information. DR can be performed by linear and nonlinear algor...
Saved in:
| Published in | Neural networks Vol. 103; pp. 108 - 117 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.07.2018
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0893-6080 1879-2782 1879-2782 |
| DOI | 10.1016/j.neunet.2018.03.017 |
Cover
| Abstract | Big high dimensional data is becoming a challenging field of research. There exist a lot of techniques which infer information. However, because of the curse of dimensionality, a necessary step is the dimensionality reduction (DR) of the information. DR can be performed by linear and nonlinear algorithms. In general, linear algorithms are faster because of less computational burden. A related problem is dealing with time-varying high dimensional data, where the time dependence is due to nonstationary data distribution. Data stream algorithms are not able to project in lower dimensional spaces. Indeed, only linear projections, like principal component analysis (PCA), are used in real time while nonlinear techniques need the whole database (offline). The Growing Curvilinear Component Analysis (GCCA) neural network addresses this problem; it has a self-organized incremental architecture adapting to the changing data distribution and performs simultaneously the data quantization and projection by using CCA, a nonlinear distance-preserving reduction technique. This is achieved by introducing the idea of “seed”, pair of neurons which colonize the input domain, and “bridge”, a novel kind of edge in the manifold graph, which signals the data non-stationarity. Some artificial examples and a real application are given, with a comparison with other existing techniques. |
|---|---|
| AbstractList | Big high dimensional data is becoming a challenging field of research. There exist a lot of techniques which infer information. However, because of the curse of dimensionality, a necessary step is the dimensionality reduction (DR) of the information. DR can be performed by linear and nonlinear algorithms. In general, linear algorithms are faster because of less computational burden. A related problem is dealing with time-varying high dimensional data, where the time dependence is due to nonstationary data distribution. Data stream algorithms are not able to project in lower dimensional spaces. Indeed, only linear projections, like principal component analysis (PCA), are used in real time while nonlinear techniques need the whole database (offline). The Growing Curvilinear Component Analysis (GCCA) neural network addresses this problem; it has a self-organized incremental architecture adapting to the changing data distribution and performs simultaneously the data quantization and projection by using CCA, a nonlinear distance-preserving reduction technique. This is achieved by introducing the idea of "seed", pair of neurons which colonize the input domain, and "bridge", a novel kind of edge in the manifold graph, which signals the data non-stationarity. Some artificial examples and a real application are given, with a comparison with other existing techniques. Big high dimensional data is becoming a challenging field of research. There exist a lot of techniques which infer information. However, because of the curse of dimensionality, a necessary step is the dimensionality reduction (DR) of the information. DR can be performed by linear and nonlinear algorithms. In general, linear algorithms are faster because of less computational burden. A related problem is dealing with time-varying high dimensional data, where the time dependence is due to nonstationary data distribution. Data stream algorithms are not able to project in lower dimensional spaces. Indeed, only linear projections, like principal component analysis (PCA), are used in real time while nonlinear techniques need the whole database(offline). The Growing Curvilinear Component Analysis (GCCA) neural network addresses this problem; it has a self-organized incremental architecture adapting to the changing data distribution and performs simultaneously the data quantization and projection by using CCA, a nonlinear distance-preserving reduction technique. This is achieved by introducing the idea of ``seed'', pair of neurons which colonize the input domain, and ``bridge'', a novel kind of edge in the manifold graph, which signals the data non-stationarity. Some artificial examples and a real application are given, with a comparison with other existing techniques. (C) 2018 Elsevier Ltd. All rights reserved. Big high dimensional data is becoming a challenging field of research. There exist a lot of techniques which infer information. However, because of the curse of dimensionality, a necessary step is the dimensionality reduction (DR) of the information. DR can be performed by linear and nonlinear algorithms. In general, linear algorithms are faster because of less computational burden. A related problem is dealing with time-varying high dimensional data, where the time dependence is due to nonstationary data distribution. Data stream algorithms are not able to project in lower dimensional spaces. Indeed, only linear projections, like principal component analysis (PCA), are used in real time while nonlinear techniques need the whole database (offline). The Growing Curvilinear Component Analysis (GCCA) neural network addresses this problem; it has a self-organized incremental architecture adapting to the changing data distribution and performs simultaneously the data quantization and projection by using CCA, a nonlinear distance-preserving reduction technique. This is achieved by introducing the idea of "seed", pair of neurons which colonize the input domain, and "bridge", a novel kind of edge in the manifold graph, which signals the data non-stationarity. Some artificial examples and a real application are given, with a comparison with other existing techniques.Big high dimensional data is becoming a challenging field of research. There exist a lot of techniques which infer information. However, because of the curse of dimensionality, a necessary step is the dimensionality reduction (DR) of the information. DR can be performed by linear and nonlinear algorithms. In general, linear algorithms are faster because of less computational burden. A related problem is dealing with time-varying high dimensional data, where the time dependence is due to nonstationary data distribution. Data stream algorithms are not able to project in lower dimensional spaces. Indeed, only linear projections, like principal component analysis (PCA), are used in real time while nonlinear techniques need the whole database (offline). The Growing Curvilinear Component Analysis (GCCA) neural network addresses this problem; it has a self-organized incremental architecture adapting to the changing data distribution and performs simultaneously the data quantization and projection by using CCA, a nonlinear distance-preserving reduction technique. This is achieved by introducing the idea of "seed", pair of neurons which colonize the input domain, and "bridge", a novel kind of edge in the manifold graph, which signals the data non-stationarity. Some artificial examples and a real application are given, with a comparison with other existing techniques. |
| Author | Randazzo, Vincenzo Pasero, Eros Cirrincione, Giansalvo |
| Author_xml | – sequence: 1 givenname: Giansalvo surname: Cirrincione fullname: Cirrincione, Giansalvo email: giansalvo.cirrincione@u-picardie.fr organization: University of Picardie Jules Verne, Amiens, France – sequence: 2 givenname: Vincenzo orcidid: 0000-0003-3640-8561 surname: Randazzo fullname: Randazzo, Vincenzo email: vincenzo.randazzo@polito.it organization: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy – sequence: 3 givenname: Eros orcidid: 0000-0002-2403-1683 surname: Pasero fullname: Pasero, Eros email: eros.pasero@polito.it organization: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29674233$$D View this record in MEDLINE/PubMed https://u-picardie.hal.science/hal-03631444$$DView record in HAL |
| BookMark | eNqFkU9v1DAQxS1URLeFb4BQju0hYfxnnZgDYhXBFmklLuVsOc6Eesnai53dqt8er9L2wKGcRhr93nujeRfkzAePhLynUFGg8uO28njwOFUMaFMBr4DWr8iCNrUqWd2wM7KARvFSQgPn5CKlLQDIRvA35JwpWQvG-YJ8ub3DYh3DvfO_ivYQj250Hk0s2rDb50A_FStvxofkUnG1btvVdZFjoxnzmO5D_P2WvB7MmPDd47wkP799vW1vys2P9fd2tSktV3IqhcjZaonMMgAKNVW9VDWgWA6Cd6qvu6UE3ol-wKEzfFAdtdb2HSgmJCrkl-R69r0zo95HtzPxQQfj9M1qo0874JJTIcSRZvZqZvcx_DlgmvTOJYvjaDyGQ9IMWKNktm4y-uERPXQ77J-dnz6UgU8zYGNIKeKgrZvM5IKfonGjpqBPdeitnuvQpzryMTrXkcXiH_GT_39kn2cZ5oceHUadrENvsXcR7aT74F42-AvlKqPq |
| CitedBy_id | crossref_primary_10_1007_s12559_023_10225_5 crossref_primary_10_1109_ACCESS_2020_3047202 crossref_primary_10_1016_j_neunet_2019_07_018 crossref_primary_10_1177_1748302620973531 |
| Cites_doi | 10.1016/S0893-6080(05)80024-3 10.1007/11840817_49 10.1007/s10115-010-0342-8 10.1109/IJCNN.2015.7280318 10.1016/j.patrec.2011.04.004 10.1109/72.554199 10.1109/ICSPS.2010.5555247 10.1016/j.neunet.2007.07.008 10.1016/B978-012722442-8/50016-1 10.1109/ICEMS.2017.8056240 10.1016/j.neunet.2006.05.024 10.1016/0893-6080(89)90044-0 10.1016/j.patrec.2009.08.005 10.1016/0893-6080(94)90109-0 10.1016/j.neucom.2010.06.034 10.1109/TPAMI.2003.1217609 10.1016/S0167-8655(97)00093-7 10.1109/72.363467 10.1126/science.1127647 10.1186/1471-2105-4-48 10.1016/j.neunet.2011.02.007 10.1016/j.patcog.2005.04.006 10.1007/978-3-319-12637-1_26 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC |
| DOI | 10.1016/j.neunet.2018.03.017 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1879-2782 |
| EndPage | 117 |
| ExternalDocumentID | oai:HAL:hal-03631444v1 29674233 10_1016_j_neunet_2018_03_017 S0893608018301102 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 1XC |
| ID | FETCH-LOGICAL-c396t-4406895e2c20010719d6970e45f43b9d7b5603b4dfefba3f9b1cccdb09246e9e3 |
| IEDL.DBID | .~1 |
| ISSN | 0893-6080 1879-2782 |
| IngestDate | Tue Oct 14 20:20:46 EDT 2025 Thu Oct 02 10:37:19 EDT 2025 Thu Apr 03 07:06:25 EDT 2025 Wed Oct 01 02:07:56 EDT 2025 Thu Apr 24 23:02:20 EDT 2025 Fri Feb 23 02:28:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dimensionality reduction Curvilinear component analysis Soft competitive learning Neural network Non-stationary data Bridge |
| Language | English |
| License | Copyright © 2018 Elsevier Ltd. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c396t-4406895e2c20010719d6970e45f43b9d7b5603b4dfefba3f9b1cccdb09246e9e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-2403-1683 0000-0003-3640-8561 0000-0002-2894-4164 |
| PMID | 29674233 |
| PQID | 2028960928 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03631444v1 proquest_miscellaneous_2028960928 pubmed_primary_29674233 crossref_citationtrail_10_1016_j_neunet_2018_03_017 crossref_primary_10_1016_j_neunet_2018_03_017 elsevier_sciencedirect_doi_10_1016_j_neunet_2018_03_017 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-01 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neural networks |
| PublicationTitleAlternate | Neural Netw |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Weng, Zhang, Hwang (b41) 2003; 25 White (b42) 1992; 5 FEMTO Bearing Data Set, (0000). Nasa prognostic data repository Qiang, X., Cheng, G., & Li, Z. (2010). A survey of some classic self-organizing maps with incremental learning. In (pp. 804–809). Isaksson, Dunham, Hahsler (b17) 2012 Kouropteva, Okun, Pietikainen (b23) 2005; 38 Karbauskaitė, Dzemyda (b19) 2006; 35 Jia, Yin, Huang, Hu (b18) 2009; 30 Zhang, Ramakrishnan, Livny (b43) 1996 Aggarwal, C. C., Watson, T. J., Ctr, R., Han, J., Wang, J., & Yu, P. S. (2003). A framework for clustering evolving data streams. In Van der Maaten, Postma, Van der Herik (b37) 2009 Hinton, Salakhutdinov (b15) 2006; 313 Kranen, Assent, Baldauf, Seidl (b24) 2016; 29 Estevez, Figueroa (b10) 2006; 19 Diamantaras, Kung (b8) 1996 (pp. 157–165). Sun, J., Crowe, M., & Fyfe, C. (2010). Curvilinear components analysis and bregman divergences. In Venna, J., & Kaski, S. (2005b). Local multidimensional scaling with controlled tradeoff between trustworthiness and continuity. In Hontabat, Rising (b16) 2016 . (pp. 81–86). (pp. 695–702). Sanger (b33) 1989; 2 Venna, J., & Kaski, S. (2005a). Local multidimensional scaling with controlled tradeoff between trustworthiness and continuity. In (pp. 207–214). Martinetz, Schulten (b29) 1994; 7 (b22) 2001 Demartines, Hérault (b6) 1997; 8 Shen, Tomotaka, Hasegawa (b34) 2007; 20 Vathy-Fogarassy, Kiss, Abonyi (b38) 2008; Vol. 4750 Cirrincione, Ortega, Henao, Prieto, Espinosa (b4) 2012; 60 Kumar, R., Randazzo, V., Cirrincione, G., Cirrincione, M., & Pasero, E. (2017). Analysis of stator faults in induction machines using Growing Curvilinear Component Analysis. In Cirrincione, G., Hérault, J., & Randazzo, V. (2015). The on-line curvilinear component analysis (onCCA) for real-time data reduction. In de Ridder, Duin (b7) 1997; 18 Fritzke (b12) 1995; Vol. 7 Tomenko (b36) 2011; 24 Ghesmoune, Lebbah, Azzag (b14) 2016; 1 Kingma, D., & Welling, M. (2014). Auto-encoding variational bayes. In Ghesmoune, M., Azzag, H., & Lebbah, M. (2014). G-stream: Growing neural gas over data stream. In (pp. 81–92). Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Morello, B., & Zerhouni, N. (2012). PRONOSTIA: An experimental platform for bearings accelerated life test. In Estevez, Chong, Held, Perez (b9) 2006; 4131 Kaski, Nikkilä, Oja, Venna, Törönen, Castrén (b20) 2003; 4 Cao, Ester, Qian, Zhou (b2) 2006 Martinetz, Schulten (b28) 1991 Cirrincione, Randazzo, Pasero (b5) 2018 Rougier, Boniface (b32) 2011; 74 2012. Li, Jiang, Barrio, Lia, Cheng, Su (b26) 2011; 32 Mao, Jain (b27) 1995; 6 de Ridder (10.1016/j.neunet.2018.03.017_b7) 1997; 18 Hontabat (10.1016/j.neunet.2018.03.017_b16) 2016 Kaski (10.1016/j.neunet.2018.03.017_b20) 2003; 4 Van der Maaten (10.1016/j.neunet.2018.03.017_b37) 2009 (10.1016/j.neunet.2018.03.017_b22) 2001 Zhang (10.1016/j.neunet.2018.03.017_b43) 1996 Mao (10.1016/j.neunet.2018.03.017_b27) 1995; 6 Cirrincione (10.1016/j.neunet.2018.03.017_b5) 2018 Sanger (10.1016/j.neunet.2018.03.017_b33) 1989; 2 Jia (10.1016/j.neunet.2018.03.017_b18) 2009; 30 Kranen (10.1016/j.neunet.2018.03.017_b24) 2016; 29 Isaksson (10.1016/j.neunet.2018.03.017_b17) 2012 Rougier (10.1016/j.neunet.2018.03.017_b32) 2011; 74 10.1016/j.neunet.2018.03.017_b25 Estevez (10.1016/j.neunet.2018.03.017_b9) 2006; 4131 Estevez (10.1016/j.neunet.2018.03.017_b10) 2006; 19 10.1016/j.neunet.2018.03.017_b40 White (10.1016/j.neunet.2018.03.017_b42) 1992; 5 10.1016/j.neunet.2018.03.017_b21 Hinton (10.1016/j.neunet.2018.03.017_b15) 2006; 313 Kouropteva (10.1016/j.neunet.2018.03.017_b23) 2005; 38 Vathy-Fogarassy (10.1016/j.neunet.2018.03.017_b38) 2008; Vol. 4750 10.1016/j.neunet.2018.03.017_b3 Demartines (10.1016/j.neunet.2018.03.017_b6) 1997; 8 10.1016/j.neunet.2018.03.017_b1 Fritzke (10.1016/j.neunet.2018.03.017_b12) 1995; Vol. 7 Li (10.1016/j.neunet.2018.03.017_b26) 2011; 32 Cirrincione (10.1016/j.neunet.2018.03.017_b4) 2012; 60 Martinetz (10.1016/j.neunet.2018.03.017_b29) 1994; 7 Diamantaras (10.1016/j.neunet.2018.03.017_b8) 1996 Ghesmoune (10.1016/j.neunet.2018.03.017_b14) 2016; 1 10.1016/j.neunet.2018.03.017_b11 Cao (10.1016/j.neunet.2018.03.017_b2) 2006 10.1016/j.neunet.2018.03.017_b13 10.1016/j.neunet.2018.03.017_b35 Karbauskaitė (10.1016/j.neunet.2018.03.017_b19) 2006; 35 Martinetz (10.1016/j.neunet.2018.03.017_b28) 1991 10.1016/j.neunet.2018.03.017_b39 Shen (10.1016/j.neunet.2018.03.017_b34) 2007; 20 Tomenko (10.1016/j.neunet.2018.03.017_b36) 2011; 24 Weng (10.1016/j.neunet.2018.03.017_b41) 2003; 25 10.1016/j.neunet.2018.03.017_b30 10.1016/j.neunet.2018.03.017_b31 |
| References_xml | – reference: Kingma, D., & Welling, M. (2014). Auto-encoding variational bayes. In – volume: 30 start-page: 1457 year: 2009 end-page: 1463 ident: b18 article-title: Incremental laplacian eigenmaps by preserving adjacent information between data points publication-title: Pattern Recognition Letters – year: 1996 ident: b8 article-title: Principal component neural networks: Theory and applications – reference: 2012. – reference: (pp. 804–809). – start-page: 397 year: 1991 end-page: 402 ident: b28 article-title: A ”neural gas” network learns topologies publication-title: Artificial Neural Networks – start-page: 264 year: 2012 end-page: 278 ident: b17 article-title: SOStream: Self organizing density-based clustering over data stream publication-title: MLDM – volume: 1 year: 2016 ident: b14 article-title: State-of-the-art on clustering data streams publication-title: Big Data Analytics – volume: 5 start-page: 261 year: 1992 end-page: 275 ident: b42 article-title: Competitive Hebbian learning: Algorithm and demonstations publication-title: Neural Networks – volume: 24 start-page: 501 year: 2011 end-page: 511 ident: b36 article-title: Online dimensionality reduction using competitive learning and radial basis function network publication-title: Neural Networks – volume: 38 start-page: 1764 year: 2005 end-page: 1767 ident: b23 article-title: Incremental locally linear embedding publication-title: Pattern Recognition – reference: Sun, J., Crowe, M., & Fyfe, C. (2010). Curvilinear components analysis and bregman divergences. In – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b15 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 74 start-page: 1840 year: 2011 end-page: 1847 ident: b32 article-title: Dynamic self-organising map publication-title: Neurocomputing – volume: 2 start-page: 459 year: 1989 end-page: 473 ident: b33 article-title: Optimal unsupervised learning in a single-layer neural network publication-title: Neural Networks – reference: Qiang, X., Cheng, G., & Li, Z. (2010). A survey of some classic self-organizing maps with incremental learning. In – volume: 60 start-page: 3398 year: 2012 end-page: 3407 ident: b4 article-title: Bearing faults detection by a novel condition monitoring scheme based on statistical-time features and neural networks publication-title: IEEE Transactions on Industrial Electronics – volume: 32 start-page: 1447 year: 2011 end-page: 1455 ident: b26 article-title: Incremental manifold learning by spectral embedding methods publication-title: Pattern Recognition Letters – reference: Cirrincione, G., Hérault, J., & Randazzo, V. (2015). The on-line curvilinear component analysis (onCCA) for real-time data reduction. In – volume: 35 start-page: 57 year: 2006 end-page: 61 ident: b19 article-title: Multidimensional data projection algorithms saving calculations of distances publication-title: Information Technology and Control – reference: (pp. 695–702). – reference: (pp. 81–92). – year: 2009 ident: b37 article-title: Dimensionality reduction: A comparative review, TiCC TR 2009-005 – reference: FEMTO Bearing Data Set, (0000). Nasa prognostic data repository, – reference: (pp. 157–165). – volume: 25 start-page: 1034 year: 2003 end-page: 1040 ident: b41 article-title: Candid covariance-free incremental principal components analysis publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 4 start-page: 48 year: 2003 ident: b20 article-title: Trustworthiness and metrics in visualizing similarity of gene expression publication-title: BMC Bioinformatics – reference: Kumar, R., Randazzo, V., Cirrincione, G., Cirrincione, M., & Pasero, E. (2017). Analysis of stator faults in induction machines using Growing Curvilinear Component Analysis. In – reference: Aggarwal, C. C., Watson, T. J., Ctr, R., Han, J., Wang, J., & Yu, P. S. (2003). A framework for clustering evolving data streams. In – volume: 20 start-page: 893 year: 2007 end-page: 903 ident: b34 article-title: An enhanced self-organizing incremental neural network for online unsupervised learning publication-title: Neural Networks – start-page: 103 year: 1996 end-page: 114 ident: b43 article-title: BIRCH: an efficient data clustering method for very large databases publication-title: SIGMOD conference – year: 2001 ident: b22 publication-title: Self-organizing maps – volume: 29 start-page: 249 year: 2016 end-page: 272 ident: b24 article-title: The ClusTree indexing microclusters for anytime stream mining publication-title: Knowledge Information System – volume: 6 start-page: 296 year: 1995 end-page: 317 ident: b27 article-title: Artificial neural networks for feature extraction and multivariate data projection publication-title: IEEE Transactions on Neural Networks – volume: 4131 start-page: 464 year: 2006 end-page: 473 ident: b9 article-title: Nonlinear projection using geodesic distances and the neural gas network publication-title: Lecture Notes in Computer Science – reference: (pp. 207–214). – reference: Venna, J., & Kaski, S. (2005a). Local multidimensional scaling with controlled tradeoff between trustworthiness and continuity. In – start-page: 328 year: 2006 end-page: 339 ident: b2 article-title: Density-based clustering over an evolving data stream with noise publication-title: SDM – year: 2016 ident: b16 article-title: Clustering non-stationary data streams with online deep learning reduction – start-page: 151 year: 2018 end-page: 160 ident: b5 article-title: Growing curvilinear component analysis GCCA for dimensionality reduction of nonstationary data publication-title: Multidisciplinary approaches to neural computing – volume: 7 start-page: 507 year: 1994 end-page: 522 ident: b29 article-title: Topology representing networks publication-title: Neural Networks – volume: 19 start-page: 923 year: 2006 end-page: 934 ident: b10 article-title: Online data visualization using the neural gas network publication-title: Neural Networks – reference: . – reference: (pp. 81–86). – volume: 8 start-page: 148 year: 1997 end-page: 154 ident: b6 article-title: Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets publication-title: IEEE Transaction on Neural Networks – reference: Ghesmoune, M., Azzag, H., & Lebbah, M. (2014). G-stream: Growing neural gas over data stream. In – volume: Vol. 7 start-page: 625 year: 1995 end-page: 632 ident: b12 publication-title: A growing neural gas network learns topologies – reference: Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Morello, B., & Zerhouni, N. (2012). PRONOSTIA: An experimental platform for bearings accelerated life test. In – volume: Vol. 4750 start-page: 61 year: 2008 end-page: 84 ident: b38 article-title: Topology representing network map –A new tool for visualization of high-dimensional data publication-title: Transactions on computational science I – reference: Venna, J., & Kaski, S. (2005b). Local multidimensional scaling with controlled tradeoff between trustworthiness and continuity. In – volume: 18 start-page: 1307 year: 1997 end-page: 1316 ident: b7 article-title: Sammon’s mapping using neural networks: a comparison publication-title: Pattern Recognition Letters – volume: 5 start-page: 261 issue: 2 year: 1992 ident: 10.1016/j.neunet.2018.03.017_b42 article-title: Competitive Hebbian learning: Algorithm and demonstations publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80024-3 – volume: 4131 start-page: 464 year: 2006 ident: 10.1016/j.neunet.2018.03.017_b9 article-title: Nonlinear projection using geodesic distances and the neural gas network publication-title: Lecture Notes in Computer Science doi: 10.1007/11840817_49 – volume: 29 start-page: 249 issue: 2 year: 2016 ident: 10.1016/j.neunet.2018.03.017_b24 article-title: The ClusTree indexing microclusters for anytime stream mining publication-title: Knowledge Information System doi: 10.1007/s10115-010-0342-8 – volume: Vol. 4750 start-page: 61 year: 2008 ident: 10.1016/j.neunet.2018.03.017_b38 article-title: Topology representing network map –A new tool for visualization of high-dimensional data – year: 2001 ident: 10.1016/j.neunet.2018.03.017_b22 – ident: 10.1016/j.neunet.2018.03.017_b3 doi: 10.1109/IJCNN.2015.7280318 – volume: 32 start-page: 1447 year: 2011 ident: 10.1016/j.neunet.2018.03.017_b26 article-title: Incremental manifold learning by spectral embedding methods publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2011.04.004 – volume: 8 start-page: 148 issue: 1 year: 1997 ident: 10.1016/j.neunet.2018.03.017_b6 article-title: Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets publication-title: IEEE Transaction on Neural Networks doi: 10.1109/72.554199 – volume: 35 start-page: 57 issue: 1 year: 2006 ident: 10.1016/j.neunet.2018.03.017_b19 article-title: Multidimensional data projection algorithms saving calculations of distances publication-title: Information Technology and Control – ident: 10.1016/j.neunet.2018.03.017_b31 doi: 10.1109/ICSPS.2010.5555247 – ident: 10.1016/j.neunet.2018.03.017_b30 – ident: 10.1016/j.neunet.2018.03.017_b11 – volume: 20 start-page: 893 year: 2007 ident: 10.1016/j.neunet.2018.03.017_b34 article-title: An enhanced self-organizing incremental neural network for online unsupervised learning publication-title: Neural Networks doi: 10.1016/j.neunet.2007.07.008 – ident: 10.1016/j.neunet.2018.03.017_b1 doi: 10.1016/B978-012722442-8/50016-1 – volume: Vol. 7 start-page: 625 year: 1995 ident: 10.1016/j.neunet.2018.03.017_b12 – ident: 10.1016/j.neunet.2018.03.017_b25 doi: 10.1109/ICEMS.2017.8056240 – volume: 19 start-page: 923 year: 2006 ident: 10.1016/j.neunet.2018.03.017_b10 article-title: Online data visualization using the neural gas network publication-title: Neural Networks doi: 10.1016/j.neunet.2006.05.024 – volume: 2 start-page: 459 year: 1989 ident: 10.1016/j.neunet.2018.03.017_b33 article-title: Optimal unsupervised learning in a single-layer neural network publication-title: Neural Networks doi: 10.1016/0893-6080(89)90044-0 – ident: 10.1016/j.neunet.2018.03.017_b39 – volume: 60 start-page: 3398 issue: 8 year: 2012 ident: 10.1016/j.neunet.2018.03.017_b4 article-title: Bearing faults detection by a novel condition monitoring scheme based on statistical-time features and neural networks publication-title: IEEE Transactions on Industrial Electronics – volume: 30 start-page: 1457 year: 2009 ident: 10.1016/j.neunet.2018.03.017_b18 article-title: Incremental laplacian eigenmaps by preserving adjacent information between data points publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2009.08.005 – volume: 7 start-page: 507 issue: 3 year: 1994 ident: 10.1016/j.neunet.2018.03.017_b29 article-title: Topology representing networks publication-title: Neural Networks doi: 10.1016/0893-6080(94)90109-0 – year: 2016 ident: 10.1016/j.neunet.2018.03.017_b16 – volume: 74 start-page: 1840 issue: 11 year: 2011 ident: 10.1016/j.neunet.2018.03.017_b32 article-title: Dynamic self-organising map publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.06.034 – start-page: 264 year: 2012 ident: 10.1016/j.neunet.2018.03.017_b17 article-title: SOStream: Self organizing density-based clustering over data stream – ident: 10.1016/j.neunet.2018.03.017_b40 – start-page: 103 year: 1996 ident: 10.1016/j.neunet.2018.03.017_b43 article-title: BIRCH: an efficient data clustering method for very large databases – ident: 10.1016/j.neunet.2018.03.017_b21 – volume: 25 start-page: 1034 issue: 8 year: 2003 ident: 10.1016/j.neunet.2018.03.017_b41 article-title: Candid covariance-free incremental principal components analysis publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2003.1217609 – volume: 18 start-page: 1307 year: 1997 ident: 10.1016/j.neunet.2018.03.017_b7 article-title: Sammon’s mapping using neural networks: a comparison publication-title: Pattern Recognition Letters doi: 10.1016/S0167-8655(97)00093-7 – volume: 6 start-page: 296 issue: 2 year: 1995 ident: 10.1016/j.neunet.2018.03.017_b27 article-title: Artificial neural networks for feature extraction and multivariate data projection publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.363467 – volume: 313 start-page: 504 year: 2006 ident: 10.1016/j.neunet.2018.03.017_b15 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 4 start-page: 48 year: 2003 ident: 10.1016/j.neunet.2018.03.017_b20 article-title: Trustworthiness and metrics in visualizing similarity of gene expression publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-4-48 – year: 1996 ident: 10.1016/j.neunet.2018.03.017_b8 – start-page: 328 year: 2006 ident: 10.1016/j.neunet.2018.03.017_b2 article-title: Density-based clustering over an evolving data stream with noise – volume: 24 start-page: 501 year: 2011 ident: 10.1016/j.neunet.2018.03.017_b36 article-title: Online dimensionality reduction using competitive learning and radial basis function network publication-title: Neural Networks doi: 10.1016/j.neunet.2011.02.007 – start-page: 397 year: 1991 ident: 10.1016/j.neunet.2018.03.017_b28 article-title: A ”neural gas” network learns topologies publication-title: Artificial Neural Networks – ident: 10.1016/j.neunet.2018.03.017_b35 – volume: 1 issue: 13 year: 2016 ident: 10.1016/j.neunet.2018.03.017_b14 article-title: State-of-the-art on clustering data streams publication-title: Big Data Analytics – volume: 38 start-page: 1764 year: 2005 ident: 10.1016/j.neunet.2018.03.017_b23 article-title: Incremental locally linear embedding publication-title: Pattern Recognition doi: 10.1016/j.patcog.2005.04.006 – year: 2009 ident: 10.1016/j.neunet.2018.03.017_b37 – start-page: 151 year: 2018 ident: 10.1016/j.neunet.2018.03.017_b5 article-title: Growing curvilinear component analysis GCCA for dimensionality reduction of nonstationary data – ident: 10.1016/j.neunet.2018.03.017_b13 doi: 10.1007/978-3-319-12637-1_26 |
| SSID | ssj0006843 |
| Score | 2.3194408 |
| Snippet | Big high dimensional data is becoming a challenging field of research. There exist a lot of techniques which infer information. However, because of the curse... |
| SourceID | hal proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 108 |
| SubjectTerms | Algorithms Bridge Curvilinear component analysis Dimensionality reduction Engineering Sciences Neural network Neural Networks (Computer) Non-stationary data Principal Component Analysis Soft competitive learning |
| Title | The Growing Curvilinear Component Analysis (GCCA) neural network |
| URI | https://dx.doi.org/10.1016/j.neunet.2018.03.017 https://www.ncbi.nlm.nih.gov/pubmed/29674233 https://www.proquest.com/docview/2028960928 https://u-picardie.hal.science/hal-03631444 |
| Volume | 103 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5cJlebPlJS_isBxMk9px4htVBJTlcVmQuFlxYmuLUECl5chvZyaPIiQQEsdYfkQz9sw38ucZgH3tQq8RCPBE2YzLWGU8Ed5zmUVZYPu2UBE9cL68UsMb-fc2up2DtH0LQ7TKxvbXNr2y1k1Lr5Fm73E06v0L0NUqBDy4KcmJkR2WMqYqBocvbzQPldTMOezMqXf7fK7ieJVuWjpiVIZJleq0Klv2oXv68Z94kp-B0MoZnSzBzwZFskH9o8sw58oVWGwrNLDmwK7CEe4CdoqRNjoolk7RLBCqzMaMuj6U6HBYm5WE_TlN08EBowSXOHVZ08PX4Obk-Dod8qZmAs-FVhMu0UEnOnL9nMhSiB90oXQcOBl5KawuYosQR1hZeOdtJry2YZ7nhQ0wDlNOO7EOnRLX_wVM5ImPqvxuzkrnRIZow0snQ6swRollF0QrKpM3CcWprsW9aZljd6YWsCEBm0AYFHAX-GzUY51Q44v-casF825jGLT5X4zcQ6XNFqE82sPBhaE2ur3GSFI-h1343erU4MGi25KsdA_TJ5wJY1GFckm6sFErezZXXyu64Rab3_65LVigr5r4uw2dyXjqdhDeTOxutX93YX5wdj68egVLYPcI |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6l4dBeKM8SysOgHuDgZjf2etc3ohVpgDSXJlJu1nrXFkFoE4WEY397Z_YRVAkUiat3bK_G9sw38ucZgAvtQq8RCPBE2YzLWGU8Ed5zmUVZYAe2UBE9cL6eqvFcfl1Eiw6k7VsYolU2tr-26ZW1blr6jTb76-WyfxOgq1UIeHBTkhNDO_xARoOYIrDL2z88D5XU1DmU5iTevp-rSF6l25WOKJVhUuU6reqW_dU_HX0nouS_UGjljUaP4GEDI9mw_tPH0HHlEzhtSzSw5sQ-hU-4DdgVhtrooVi6Q7tAsDLbMBJdlehxWJuWhH24StPhR0YZLnHosuaHP4P56PMsHfOmaALPhVZbLtFDJzpyg5zYUgggdKF0HDgZeSmsLmKLGEdYWXjnbSa8tmGe54UNMBBTTjvxHLolzv8CmMgTH1UJ3pyVzokM4YaXToZWYZASyx6IVlUmbzKKU2GLn6aljv0wtYINKdgEwqCCe8D3vdZ1Ro0D8nG7CubezjBo9A_0fI-Ltp-EEmmPhxNDbXR9jaGk_B324F27pgZPFl2XZKVb7X7hSBiMKtRL0oOzerH3Yw20oitu8fK_f-4tHI9n1xMz-TL9dg4n9KVmAb-C7nazc68R62ztm2ov3wECJ_id |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Growing+Curvilinear+Component+Analysis+%28GCCA%29+neural+network&rft.jtitle=Neural+networks&rft.au=Cirrincione%2C+Giansalvo&rft.au=Randazzo%2C+Vincenzo&rft.au=Pasero%2C+Eros&rft.date=2018-07-01&rft.eissn=1879-2782&rft.volume=103&rft.spage=108&rft_id=info:doi/10.1016%2Fj.neunet.2018.03.017&rft_id=info%3Apmid%2F29674233&rft.externalDocID=29674233 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |