The Growing Curvilinear Component Analysis (GCCA) neural network

Big high dimensional data is becoming a challenging field of research. There exist a lot of techniques which infer information. However, because of the curse of dimensionality, a necessary step is the dimensionality reduction (DR) of the information. DR can be performed by linear and nonlinear algor...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 103; pp. 108 - 117
Main Authors Cirrincione, Giansalvo, Randazzo, Vincenzo, Pasero, Eros
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.07.2018
Elsevier
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2018.03.017

Cover

Abstract Big high dimensional data is becoming a challenging field of research. There exist a lot of techniques which infer information. However, because of the curse of dimensionality, a necessary step is the dimensionality reduction (DR) of the information. DR can be performed by linear and nonlinear algorithms. In general, linear algorithms are faster because of less computational burden. A related problem is dealing with time-varying high dimensional data, where the time dependence is due to nonstationary data distribution. Data stream algorithms are not able to project in lower dimensional spaces. Indeed, only linear projections, like principal component analysis (PCA), are used in real time while nonlinear techniques need the whole database (offline). The Growing Curvilinear Component Analysis (GCCA) neural network addresses this problem; it has a self-organized incremental architecture adapting to the changing data distribution and performs simultaneously the data quantization and projection by using CCA, a nonlinear distance-preserving reduction technique. This is achieved by introducing the idea of “seed”, pair of neurons which colonize the input domain, and “bridge”, a novel kind of edge in the manifold graph, which signals the data non-stationarity. Some artificial examples and a real application are given, with a comparison with other existing techniques.
AbstractList Big high dimensional data is becoming a challenging field of research. There exist a lot of techniques which infer information. However, because of the curse of dimensionality, a necessary step is the dimensionality reduction (DR) of the information. DR can be performed by linear and nonlinear algorithms. In general, linear algorithms are faster because of less computational burden. A related problem is dealing with time-varying high dimensional data, where the time dependence is due to nonstationary data distribution. Data stream algorithms are not able to project in lower dimensional spaces. Indeed, only linear projections, like principal component analysis (PCA), are used in real time while nonlinear techniques need the whole database (offline). The Growing Curvilinear Component Analysis (GCCA) neural network addresses this problem; it has a self-organized incremental architecture adapting to the changing data distribution and performs simultaneously the data quantization and projection by using CCA, a nonlinear distance-preserving reduction technique. This is achieved by introducing the idea of "seed", pair of neurons which colonize the input domain, and "bridge", a novel kind of edge in the manifold graph, which signals the data non-stationarity. Some artificial examples and a real application are given, with a comparison with other existing techniques.
Big high dimensional data is becoming a challenging field of research. There exist a lot of techniques which infer information. However, because of the curse of dimensionality, a necessary step is the dimensionality reduction (DR) of the information. DR can be performed by linear and nonlinear algorithms. In general, linear algorithms are faster because of less computational burden. A related problem is dealing with time-varying high dimensional data, where the time dependence is due to nonstationary data distribution. Data stream algorithms are not able to project in lower dimensional spaces. Indeed, only linear projections, like principal component analysis (PCA), are used in real time while nonlinear techniques need the whole database(offline). The Growing Curvilinear Component Analysis (GCCA) neural network addresses this problem; it has a self-organized incremental architecture adapting to the changing data distribution and performs simultaneously the data quantization and projection by using CCA, a nonlinear distance-preserving reduction technique. This is achieved by introducing the idea of ``seed'', pair of neurons which colonize the input domain, and ``bridge'', a novel kind of edge in the manifold graph, which signals the data non-stationarity. Some artificial examples and a real application are given, with a comparison with other existing techniques. (C) 2018 Elsevier Ltd. All rights reserved.
Big high dimensional data is becoming a challenging field of research. There exist a lot of techniques which infer information. However, because of the curse of dimensionality, a necessary step is the dimensionality reduction (DR) of the information. DR can be performed by linear and nonlinear algorithms. In general, linear algorithms are faster because of less computational burden. A related problem is dealing with time-varying high dimensional data, where the time dependence is due to nonstationary data distribution. Data stream algorithms are not able to project in lower dimensional spaces. Indeed, only linear projections, like principal component analysis (PCA), are used in real time while nonlinear techniques need the whole database (offline). The Growing Curvilinear Component Analysis (GCCA) neural network addresses this problem; it has a self-organized incremental architecture adapting to the changing data distribution and performs simultaneously the data quantization and projection by using CCA, a nonlinear distance-preserving reduction technique. This is achieved by introducing the idea of "seed", pair of neurons which colonize the input domain, and "bridge", a novel kind of edge in the manifold graph, which signals the data non-stationarity. Some artificial examples and a real application are given, with a comparison with other existing techniques.Big high dimensional data is becoming a challenging field of research. There exist a lot of techniques which infer information. However, because of the curse of dimensionality, a necessary step is the dimensionality reduction (DR) of the information. DR can be performed by linear and nonlinear algorithms. In general, linear algorithms are faster because of less computational burden. A related problem is dealing with time-varying high dimensional data, where the time dependence is due to nonstationary data distribution. Data stream algorithms are not able to project in lower dimensional spaces. Indeed, only linear projections, like principal component analysis (PCA), are used in real time while nonlinear techniques need the whole database (offline). The Growing Curvilinear Component Analysis (GCCA) neural network addresses this problem; it has a self-organized incremental architecture adapting to the changing data distribution and performs simultaneously the data quantization and projection by using CCA, a nonlinear distance-preserving reduction technique. This is achieved by introducing the idea of "seed", pair of neurons which colonize the input domain, and "bridge", a novel kind of edge in the manifold graph, which signals the data non-stationarity. Some artificial examples and a real application are given, with a comparison with other existing techniques.
Author Randazzo, Vincenzo
Pasero, Eros
Cirrincione, Giansalvo
Author_xml – sequence: 1
  givenname: Giansalvo
  surname: Cirrincione
  fullname: Cirrincione, Giansalvo
  email: giansalvo.cirrincione@u-picardie.fr
  organization: University of Picardie Jules Verne, Amiens, France
– sequence: 2
  givenname: Vincenzo
  orcidid: 0000-0003-3640-8561
  surname: Randazzo
  fullname: Randazzo, Vincenzo
  email: vincenzo.randazzo@polito.it
  organization: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
– sequence: 3
  givenname: Eros
  orcidid: 0000-0002-2403-1683
  surname: Pasero
  fullname: Pasero, Eros
  email: eros.pasero@polito.it
  organization: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29674233$$D View this record in MEDLINE/PubMed
https://u-picardie.hal.science/hal-03631444$$DView record in HAL
BookMark eNqFkU9v1DAQxS1URLeFb4BQju0hYfxnnZgDYhXBFmklLuVsOc6Eesnai53dqt8er9L2wKGcRhr93nujeRfkzAePhLynUFGg8uO28njwOFUMaFMBr4DWr8iCNrUqWd2wM7KARvFSQgPn5CKlLQDIRvA35JwpWQvG-YJ8ub3DYh3DvfO_ivYQj250Hk0s2rDb50A_FStvxofkUnG1btvVdZFjoxnzmO5D_P2WvB7MmPDd47wkP799vW1vys2P9fd2tSktV3IqhcjZaonMMgAKNVW9VDWgWA6Cd6qvu6UE3ol-wKEzfFAdtdb2HSgmJCrkl-R69r0zo95HtzPxQQfj9M1qo0874JJTIcSRZvZqZvcx_DlgmvTOJYvjaDyGQ9IMWKNktm4y-uERPXQ77J-dnz6UgU8zYGNIKeKgrZvM5IKfonGjpqBPdeitnuvQpzryMTrXkcXiH_GT_39kn2cZ5oceHUadrENvsXcR7aT74F42-AvlKqPq
CitedBy_id crossref_primary_10_1007_s12559_023_10225_5
crossref_primary_10_1109_ACCESS_2020_3047202
crossref_primary_10_1016_j_neunet_2019_07_018
crossref_primary_10_1177_1748302620973531
Cites_doi 10.1016/S0893-6080(05)80024-3
10.1007/11840817_49
10.1007/s10115-010-0342-8
10.1109/IJCNN.2015.7280318
10.1016/j.patrec.2011.04.004
10.1109/72.554199
10.1109/ICSPS.2010.5555247
10.1016/j.neunet.2007.07.008
10.1016/B978-012722442-8/50016-1
10.1109/ICEMS.2017.8056240
10.1016/j.neunet.2006.05.024
10.1016/0893-6080(89)90044-0
10.1016/j.patrec.2009.08.005
10.1016/0893-6080(94)90109-0
10.1016/j.neucom.2010.06.034
10.1109/TPAMI.2003.1217609
10.1016/S0167-8655(97)00093-7
10.1109/72.363467
10.1126/science.1127647
10.1186/1471-2105-4-48
10.1016/j.neunet.2011.02.007
10.1016/j.patcog.2005.04.006
10.1007/978-3-319-12637-1_26
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
DOI 10.1016/j.neunet.2018.03.017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 117
ExternalDocumentID oai:HAL:hal-03631444v1
29674233
10_1016_j_neunet_2018_03_017
S0893608018301102
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
1XC
ID FETCH-LOGICAL-c396t-4406895e2c20010719d6970e45f43b9d7b5603b4dfefba3f9b1cccdb09246e9e3
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Tue Oct 14 20:20:46 EDT 2025
Thu Oct 02 10:37:19 EDT 2025
Thu Apr 03 07:06:25 EDT 2025
Wed Oct 01 02:07:56 EDT 2025
Thu Apr 24 23:02:20 EDT 2025
Fri Feb 23 02:28:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dimensionality reduction
Curvilinear component analysis
Soft competitive learning
Neural network
Non-stationary data
Bridge
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-4406895e2c20010719d6970e45f43b9d7b5603b4dfefba3f9b1cccdb09246e9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2403-1683
0000-0003-3640-8561
0000-0002-2894-4164
PMID 29674233
PQID 2028960928
PQPubID 23479
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_03631444v1
proquest_miscellaneous_2028960928
pubmed_primary_29674233
crossref_citationtrail_10_1016_j_neunet_2018_03_017
crossref_primary_10_1016_j_neunet_2018_03_017
elsevier_sciencedirect_doi_10_1016_j_neunet_2018_03_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Weng, Zhang, Hwang (b41) 2003; 25
White (b42) 1992; 5
FEMTO Bearing Data Set, (0000). Nasa prognostic data repository
Qiang, X., Cheng, G., & Li, Z. (2010). A survey of some classic self-organizing maps with incremental learning. In
(pp. 804–809).
Isaksson, Dunham, Hahsler (b17) 2012
Kouropteva, Okun, Pietikainen (b23) 2005; 38
Karbauskaitė, Dzemyda (b19) 2006; 35
Jia, Yin, Huang, Hu (b18) 2009; 30
Zhang, Ramakrishnan, Livny (b43) 1996
Aggarwal, C. C., Watson, T. J., Ctr, R., Han, J., Wang, J., & Yu, P. S. (2003). A framework for clustering evolving data streams. In
Van der Maaten, Postma, Van der Herik (b37) 2009
Hinton, Salakhutdinov (b15) 2006; 313
Kranen, Assent, Baldauf, Seidl (b24) 2016; 29
Estevez, Figueroa (b10) 2006; 19
Diamantaras, Kung (b8) 1996
(pp. 157–165).
Sun, J., Crowe, M., & Fyfe, C. (2010). Curvilinear components analysis and bregman divergences. In
Venna, J., & Kaski, S. (2005b). Local multidimensional scaling with controlled tradeoff between trustworthiness and continuity. In
Hontabat, Rising (b16) 2016
.
(pp. 81–86).
(pp. 695–702).
Sanger (b33) 1989; 2
Venna, J., & Kaski, S. (2005a). Local multidimensional scaling with controlled tradeoff between trustworthiness and continuity. In
(pp. 207–214).
Martinetz, Schulten (b29) 1994; 7
(b22) 2001
Demartines, Hérault (b6) 1997; 8
Shen, Tomotaka, Hasegawa (b34) 2007; 20
Vathy-Fogarassy, Kiss, Abonyi (b38) 2008; Vol. 4750
Cirrincione, Ortega, Henao, Prieto, Espinosa (b4) 2012; 60
Kumar, R., Randazzo, V., Cirrincione, G., Cirrincione, M., & Pasero, E. (2017). Analysis of stator faults in induction machines using Growing Curvilinear Component Analysis. In
Cirrincione, G., Hérault, J., & Randazzo, V. (2015). The on-line curvilinear component analysis (onCCA) for real-time data reduction. In
de Ridder, Duin (b7) 1997; 18
Fritzke (b12) 1995; Vol. 7
Tomenko (b36) 2011; 24
Ghesmoune, Lebbah, Azzag (b14) 2016; 1
Kingma, D., & Welling, M. (2014). Auto-encoding variational bayes. In
Ghesmoune, M., Azzag, H., & Lebbah, M. (2014). G-stream: Growing neural gas over data stream. In
(pp. 81–92).
Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Morello, B., & Zerhouni, N. (2012). PRONOSTIA: An experimental platform for bearings accelerated life test. In
Estevez, Chong, Held, Perez (b9) 2006; 4131
Kaski, Nikkilä, Oja, Venna, Törönen, Castrén (b20) 2003; 4
Cao, Ester, Qian, Zhou (b2) 2006
Martinetz, Schulten (b28) 1991
Cirrincione, Randazzo, Pasero (b5) 2018
Rougier, Boniface (b32) 2011; 74
2012.
Li, Jiang, Barrio, Lia, Cheng, Su (b26) 2011; 32
Mao, Jain (b27) 1995; 6
de Ridder (10.1016/j.neunet.2018.03.017_b7) 1997; 18
Hontabat (10.1016/j.neunet.2018.03.017_b16) 2016
Kaski (10.1016/j.neunet.2018.03.017_b20) 2003; 4
Van der Maaten (10.1016/j.neunet.2018.03.017_b37) 2009
(10.1016/j.neunet.2018.03.017_b22) 2001
Zhang (10.1016/j.neunet.2018.03.017_b43) 1996
Mao (10.1016/j.neunet.2018.03.017_b27) 1995; 6
Cirrincione (10.1016/j.neunet.2018.03.017_b5) 2018
Sanger (10.1016/j.neunet.2018.03.017_b33) 1989; 2
Jia (10.1016/j.neunet.2018.03.017_b18) 2009; 30
Kranen (10.1016/j.neunet.2018.03.017_b24) 2016; 29
Isaksson (10.1016/j.neunet.2018.03.017_b17) 2012
Rougier (10.1016/j.neunet.2018.03.017_b32) 2011; 74
10.1016/j.neunet.2018.03.017_b25
Estevez (10.1016/j.neunet.2018.03.017_b9) 2006; 4131
Estevez (10.1016/j.neunet.2018.03.017_b10) 2006; 19
10.1016/j.neunet.2018.03.017_b40
White (10.1016/j.neunet.2018.03.017_b42) 1992; 5
10.1016/j.neunet.2018.03.017_b21
Hinton (10.1016/j.neunet.2018.03.017_b15) 2006; 313
Kouropteva (10.1016/j.neunet.2018.03.017_b23) 2005; 38
Vathy-Fogarassy (10.1016/j.neunet.2018.03.017_b38) 2008; Vol. 4750
10.1016/j.neunet.2018.03.017_b3
Demartines (10.1016/j.neunet.2018.03.017_b6) 1997; 8
10.1016/j.neunet.2018.03.017_b1
Fritzke (10.1016/j.neunet.2018.03.017_b12) 1995; Vol. 7
Li (10.1016/j.neunet.2018.03.017_b26) 2011; 32
Cirrincione (10.1016/j.neunet.2018.03.017_b4) 2012; 60
Martinetz (10.1016/j.neunet.2018.03.017_b29) 1994; 7
Diamantaras (10.1016/j.neunet.2018.03.017_b8) 1996
Ghesmoune (10.1016/j.neunet.2018.03.017_b14) 2016; 1
10.1016/j.neunet.2018.03.017_b11
Cao (10.1016/j.neunet.2018.03.017_b2) 2006
10.1016/j.neunet.2018.03.017_b13
10.1016/j.neunet.2018.03.017_b35
Karbauskaitė (10.1016/j.neunet.2018.03.017_b19) 2006; 35
Martinetz (10.1016/j.neunet.2018.03.017_b28) 1991
10.1016/j.neunet.2018.03.017_b39
Shen (10.1016/j.neunet.2018.03.017_b34) 2007; 20
Tomenko (10.1016/j.neunet.2018.03.017_b36) 2011; 24
Weng (10.1016/j.neunet.2018.03.017_b41) 2003; 25
10.1016/j.neunet.2018.03.017_b30
10.1016/j.neunet.2018.03.017_b31
References_xml – reference: Kingma, D., & Welling, M. (2014). Auto-encoding variational bayes. In
– volume: 30
  start-page: 1457
  year: 2009
  end-page: 1463
  ident: b18
  article-title: Incremental laplacian eigenmaps by preserving adjacent information between data points
  publication-title: Pattern Recognition Letters
– year: 1996
  ident: b8
  article-title: Principal component neural networks: Theory and applications
– reference: 2012.
– reference: (pp. 804–809).
– start-page: 397
  year: 1991
  end-page: 402
  ident: b28
  article-title: A ”neural gas” network learns topologies
  publication-title: Artificial Neural Networks
– start-page: 264
  year: 2012
  end-page: 278
  ident: b17
  article-title: SOStream: Self organizing density-based clustering over data stream
  publication-title: MLDM
– volume: 1
  year: 2016
  ident: b14
  article-title: State-of-the-art on clustering data streams
  publication-title: Big Data Analytics
– volume: 5
  start-page: 261
  year: 1992
  end-page: 275
  ident: b42
  article-title: Competitive Hebbian learning: Algorithm and demonstations
  publication-title: Neural Networks
– volume: 24
  start-page: 501
  year: 2011
  end-page: 511
  ident: b36
  article-title: Online dimensionality reduction using competitive learning and radial basis function network
  publication-title: Neural Networks
– volume: 38
  start-page: 1764
  year: 2005
  end-page: 1767
  ident: b23
  article-title: Incremental locally linear embedding
  publication-title: Pattern Recognition
– reference: Sun, J., Crowe, M., & Fyfe, C. (2010). Curvilinear components analysis and bregman divergences. In
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b15
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 74
  start-page: 1840
  year: 2011
  end-page: 1847
  ident: b32
  article-title: Dynamic self-organising map
  publication-title: Neurocomputing
– volume: 2
  start-page: 459
  year: 1989
  end-page: 473
  ident: b33
  article-title: Optimal unsupervised learning in a single-layer neural network
  publication-title: Neural Networks
– reference: Qiang, X., Cheng, G., & Li, Z. (2010). A survey of some classic self-organizing maps with incremental learning. In
– volume: 60
  start-page: 3398
  year: 2012
  end-page: 3407
  ident: b4
  article-title: Bearing faults detection by a novel condition monitoring scheme based on statistical-time features and neural networks
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 32
  start-page: 1447
  year: 2011
  end-page: 1455
  ident: b26
  article-title: Incremental manifold learning by spectral embedding methods
  publication-title: Pattern Recognition Letters
– reference: Cirrincione, G., Hérault, J., & Randazzo, V. (2015). The on-line curvilinear component analysis (onCCA) for real-time data reduction. In
– volume: 35
  start-page: 57
  year: 2006
  end-page: 61
  ident: b19
  article-title: Multidimensional data projection algorithms saving calculations of distances
  publication-title: Information Technology and Control
– reference: (pp. 695–702).
– reference: (pp. 81–92).
– year: 2009
  ident: b37
  article-title: Dimensionality reduction: A comparative review, TiCC TR 2009-005
– reference: FEMTO Bearing Data Set, (0000). Nasa prognostic data repository,
– reference: (pp. 157–165).
– volume: 25
  start-page: 1034
  year: 2003
  end-page: 1040
  ident: b41
  article-title: Candid covariance-free incremental principal components analysis
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 4
  start-page: 48
  year: 2003
  ident: b20
  article-title: Trustworthiness and metrics in visualizing similarity of gene expression
  publication-title: BMC Bioinformatics
– reference: Kumar, R., Randazzo, V., Cirrincione, G., Cirrincione, M., & Pasero, E. (2017). Analysis of stator faults in induction machines using Growing Curvilinear Component Analysis. In
– reference: Aggarwal, C. C., Watson, T. J., Ctr, R., Han, J., Wang, J., & Yu, P. S. (2003). A framework for clustering evolving data streams. In
– volume: 20
  start-page: 893
  year: 2007
  end-page: 903
  ident: b34
  article-title: An enhanced self-organizing incremental neural network for online unsupervised learning
  publication-title: Neural Networks
– start-page: 103
  year: 1996
  end-page: 114
  ident: b43
  article-title: BIRCH: an efficient data clustering method for very large databases
  publication-title: SIGMOD conference
– year: 2001
  ident: b22
  publication-title: Self-organizing maps
– volume: 29
  start-page: 249
  year: 2016
  end-page: 272
  ident: b24
  article-title: The ClusTree indexing microclusters for anytime stream mining
  publication-title: Knowledge Information System
– volume: 6
  start-page: 296
  year: 1995
  end-page: 317
  ident: b27
  article-title: Artificial neural networks for feature extraction and multivariate data projection
  publication-title: IEEE Transactions on Neural Networks
– volume: 4131
  start-page: 464
  year: 2006
  end-page: 473
  ident: b9
  article-title: Nonlinear projection using geodesic distances and the neural gas network
  publication-title: Lecture Notes in Computer Science
– reference: (pp. 207–214).
– reference: Venna, J., & Kaski, S. (2005a). Local multidimensional scaling with controlled tradeoff between trustworthiness and continuity. In
– start-page: 328
  year: 2006
  end-page: 339
  ident: b2
  article-title: Density-based clustering over an evolving data stream with noise
  publication-title: SDM
– year: 2016
  ident: b16
  article-title: Clustering non-stationary data streams with online deep learning reduction
– start-page: 151
  year: 2018
  end-page: 160
  ident: b5
  article-title: Growing curvilinear component analysis GCCA for dimensionality reduction of nonstationary data
  publication-title: Multidisciplinary approaches to neural computing
– volume: 7
  start-page: 507
  year: 1994
  end-page: 522
  ident: b29
  article-title: Topology representing networks
  publication-title: Neural Networks
– volume: 19
  start-page: 923
  year: 2006
  end-page: 934
  ident: b10
  article-title: Online data visualization using the neural gas network
  publication-title: Neural Networks
– reference: .
– reference: (pp. 81–86).
– volume: 8
  start-page: 148
  year: 1997
  end-page: 154
  ident: b6
  article-title: Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets
  publication-title: IEEE Transaction on Neural Networks
– reference: Ghesmoune, M., Azzag, H., & Lebbah, M. (2014). G-stream: Growing neural gas over data stream. In
– volume: Vol. 7
  start-page: 625
  year: 1995
  end-page: 632
  ident: b12
  publication-title: A growing neural gas network learns topologies
– reference: Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Morello, B., & Zerhouni, N. (2012). PRONOSTIA: An experimental platform for bearings accelerated life test. In
– volume: Vol. 4750
  start-page: 61
  year: 2008
  end-page: 84
  ident: b38
  article-title: Topology representing network map –A new tool for visualization of high-dimensional data
  publication-title: Transactions on computational science I
– reference: Venna, J., & Kaski, S. (2005b). Local multidimensional scaling with controlled tradeoff between trustworthiness and continuity. In
– volume: 18
  start-page: 1307
  year: 1997
  end-page: 1316
  ident: b7
  article-title: Sammon’s mapping using neural networks: a comparison
  publication-title: Pattern Recognition Letters
– volume: 5
  start-page: 261
  issue: 2
  year: 1992
  ident: 10.1016/j.neunet.2018.03.017_b42
  article-title: Competitive Hebbian learning: Algorithm and demonstations
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80024-3
– volume: 4131
  start-page: 464
  year: 2006
  ident: 10.1016/j.neunet.2018.03.017_b9
  article-title: Nonlinear projection using geodesic distances and the neural gas network
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/11840817_49
– volume: 29
  start-page: 249
  issue: 2
  year: 2016
  ident: 10.1016/j.neunet.2018.03.017_b24
  article-title: The ClusTree indexing microclusters for anytime stream mining
  publication-title: Knowledge Information System
  doi: 10.1007/s10115-010-0342-8
– volume: Vol. 4750
  start-page: 61
  year: 2008
  ident: 10.1016/j.neunet.2018.03.017_b38
  article-title: Topology representing network map –A new tool for visualization of high-dimensional data
– year: 2001
  ident: 10.1016/j.neunet.2018.03.017_b22
– ident: 10.1016/j.neunet.2018.03.017_b3
  doi: 10.1109/IJCNN.2015.7280318
– volume: 32
  start-page: 1447
  year: 2011
  ident: 10.1016/j.neunet.2018.03.017_b26
  article-title: Incremental manifold learning by spectral embedding methods
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2011.04.004
– volume: 8
  start-page: 148
  issue: 1
  year: 1997
  ident: 10.1016/j.neunet.2018.03.017_b6
  article-title: Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets
  publication-title: IEEE Transaction on Neural Networks
  doi: 10.1109/72.554199
– volume: 35
  start-page: 57
  issue: 1
  year: 2006
  ident: 10.1016/j.neunet.2018.03.017_b19
  article-title: Multidimensional data projection algorithms saving calculations of distances
  publication-title: Information Technology and Control
– ident: 10.1016/j.neunet.2018.03.017_b31
  doi: 10.1109/ICSPS.2010.5555247
– ident: 10.1016/j.neunet.2018.03.017_b30
– ident: 10.1016/j.neunet.2018.03.017_b11
– volume: 20
  start-page: 893
  year: 2007
  ident: 10.1016/j.neunet.2018.03.017_b34
  article-title: An enhanced self-organizing incremental neural network for online unsupervised learning
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2007.07.008
– ident: 10.1016/j.neunet.2018.03.017_b1
  doi: 10.1016/B978-012722442-8/50016-1
– volume: Vol. 7
  start-page: 625
  year: 1995
  ident: 10.1016/j.neunet.2018.03.017_b12
– ident: 10.1016/j.neunet.2018.03.017_b25
  doi: 10.1109/ICEMS.2017.8056240
– volume: 19
  start-page: 923
  year: 2006
  ident: 10.1016/j.neunet.2018.03.017_b10
  article-title: Online data visualization using the neural gas network
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2006.05.024
– volume: 2
  start-page: 459
  year: 1989
  ident: 10.1016/j.neunet.2018.03.017_b33
  article-title: Optimal unsupervised learning in a single-layer neural network
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90044-0
– ident: 10.1016/j.neunet.2018.03.017_b39
– volume: 60
  start-page: 3398
  issue: 8
  year: 2012
  ident: 10.1016/j.neunet.2018.03.017_b4
  article-title: Bearing faults detection by a novel condition monitoring scheme based on statistical-time features and neural networks
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 30
  start-page: 1457
  year: 2009
  ident: 10.1016/j.neunet.2018.03.017_b18
  article-title: Incremental laplacian eigenmaps by preserving adjacent information between data points
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2009.08.005
– volume: 7
  start-page: 507
  issue: 3
  year: 1994
  ident: 10.1016/j.neunet.2018.03.017_b29
  article-title: Topology representing networks
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(94)90109-0
– year: 2016
  ident: 10.1016/j.neunet.2018.03.017_b16
– volume: 74
  start-page: 1840
  issue: 11
  year: 2011
  ident: 10.1016/j.neunet.2018.03.017_b32
  article-title: Dynamic self-organising map
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.06.034
– start-page: 264
  year: 2012
  ident: 10.1016/j.neunet.2018.03.017_b17
  article-title: SOStream: Self organizing density-based clustering over data stream
– ident: 10.1016/j.neunet.2018.03.017_b40
– start-page: 103
  year: 1996
  ident: 10.1016/j.neunet.2018.03.017_b43
  article-title: BIRCH: an efficient data clustering method for very large databases
– ident: 10.1016/j.neunet.2018.03.017_b21
– volume: 25
  start-page: 1034
  issue: 8
  year: 2003
  ident: 10.1016/j.neunet.2018.03.017_b41
  article-title: Candid covariance-free incremental principal components analysis
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2003.1217609
– volume: 18
  start-page: 1307
  year: 1997
  ident: 10.1016/j.neunet.2018.03.017_b7
  article-title: Sammon’s mapping using neural networks: a comparison
  publication-title: Pattern Recognition Letters
  doi: 10.1016/S0167-8655(97)00093-7
– volume: 6
  start-page: 296
  issue: 2
  year: 1995
  ident: 10.1016/j.neunet.2018.03.017_b27
  article-title: Artificial neural networks for feature extraction and multivariate data projection
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.363467
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.neunet.2018.03.017_b15
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 4
  start-page: 48
  year: 2003
  ident: 10.1016/j.neunet.2018.03.017_b20
  article-title: Trustworthiness and metrics in visualizing similarity of gene expression
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-4-48
– year: 1996
  ident: 10.1016/j.neunet.2018.03.017_b8
– start-page: 328
  year: 2006
  ident: 10.1016/j.neunet.2018.03.017_b2
  article-title: Density-based clustering over an evolving data stream with noise
– volume: 24
  start-page: 501
  year: 2011
  ident: 10.1016/j.neunet.2018.03.017_b36
  article-title: Online dimensionality reduction using competitive learning and radial basis function network
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2011.02.007
– start-page: 397
  year: 1991
  ident: 10.1016/j.neunet.2018.03.017_b28
  article-title: A ”neural gas” network learns topologies
  publication-title: Artificial Neural Networks
– ident: 10.1016/j.neunet.2018.03.017_b35
– volume: 1
  issue: 13
  year: 2016
  ident: 10.1016/j.neunet.2018.03.017_b14
  article-title: State-of-the-art on clustering data streams
  publication-title: Big Data Analytics
– volume: 38
  start-page: 1764
  year: 2005
  ident: 10.1016/j.neunet.2018.03.017_b23
  article-title: Incremental locally linear embedding
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2005.04.006
– year: 2009
  ident: 10.1016/j.neunet.2018.03.017_b37
– start-page: 151
  year: 2018
  ident: 10.1016/j.neunet.2018.03.017_b5
  article-title: Growing curvilinear component analysis GCCA for dimensionality reduction of nonstationary data
– ident: 10.1016/j.neunet.2018.03.017_b13
  doi: 10.1007/978-3-319-12637-1_26
SSID ssj0006843
Score 2.3194408
Snippet Big high dimensional data is becoming a challenging field of research. There exist a lot of techniques which infer information. However, because of the curse...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108
SubjectTerms Algorithms
Bridge
Curvilinear component analysis
Dimensionality reduction
Engineering Sciences
Neural network
Neural Networks (Computer)
Non-stationary data
Principal Component Analysis
Soft competitive learning
Title The Growing Curvilinear Component Analysis (GCCA) neural network
URI https://dx.doi.org/10.1016/j.neunet.2018.03.017
https://www.ncbi.nlm.nih.gov/pubmed/29674233
https://www.proquest.com/docview/2028960928
https://u-picardie.hal.science/hal-03631444
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5cJlebPlJS_isBxMk9px4htVBJTlcVmQuFlxYmuLUECl5chvZyaPIiQQEsdYfkQz9sw38ucZgH3tQq8RCPBE2YzLWGU8Ed5zmUVZYPu2UBE9cL68UsMb-fc2up2DtH0LQ7TKxvbXNr2y1k1Lr5Fm73E06v0L0NUqBDy4KcmJkR2WMqYqBocvbzQPldTMOezMqXf7fK7ieJVuWjpiVIZJleq0Klv2oXv68Z94kp-B0MoZnSzBzwZFskH9o8sw58oVWGwrNLDmwK7CEe4CdoqRNjoolk7RLBCqzMaMuj6U6HBYm5WE_TlN08EBowSXOHVZ08PX4Obk-Dod8qZmAs-FVhMu0UEnOnL9nMhSiB90oXQcOBl5KawuYosQR1hZeOdtJry2YZ7nhQ0wDlNOO7EOnRLX_wVM5ImPqvxuzkrnRIZow0snQ6swRollF0QrKpM3CcWprsW9aZljd6YWsCEBm0AYFHAX-GzUY51Q44v-casF825jGLT5X4zcQ6XNFqE82sPBhaE2ur3GSFI-h1343erU4MGi25KsdA_TJ5wJY1GFckm6sFErezZXXyu64Rab3_65LVigr5r4uw2dyXjqdhDeTOxutX93YX5wdj68egVLYPcI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6l4dBeKM8SysOgHuDgZjf2etc3ohVpgDSXJlJu1nrXFkFoE4WEY397Z_YRVAkUiat3bK_G9sw38ucZgAvtQq8RCPBE2YzLWGU8Ed5zmUVZYAe2UBE9cL6eqvFcfl1Eiw6k7VsYolU2tr-26ZW1blr6jTb76-WyfxOgq1UIeHBTkhNDO_xARoOYIrDL2z88D5XU1DmU5iTevp-rSF6l25WOKJVhUuU6reqW_dU_HX0nouS_UGjljUaP4GEDI9mw_tPH0HHlEzhtSzSw5sQ-hU-4DdgVhtrooVi6Q7tAsDLbMBJdlehxWJuWhH24StPhR0YZLnHosuaHP4P56PMsHfOmaALPhVZbLtFDJzpyg5zYUgggdKF0HDgZeSmsLmKLGEdYWXjnbSa8tmGe54UNMBBTTjvxHLolzv8CmMgTH1UJ3pyVzokM4YaXToZWYZASyx6IVlUmbzKKU2GLn6aljv0wtYINKdgEwqCCe8D3vdZ1Ro0D8nG7CubezjBo9A_0fI-Ltp-EEmmPhxNDbXR9jaGk_B324F27pgZPFl2XZKVb7X7hSBiMKtRL0oOzerH3Yw20oitu8fK_f-4tHI9n1xMz-TL9dg4n9KVmAb-C7nazc68R62ztm2ov3wECJ_id
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Growing+Curvilinear+Component+Analysis+%28GCCA%29+neural+network&rft.jtitle=Neural+networks&rft.au=Cirrincione%2C+Giansalvo&rft.au=Randazzo%2C+Vincenzo&rft.au=Pasero%2C+Eros&rft.date=2018-07-01&rft.eissn=1879-2782&rft.volume=103&rft.spage=108&rft_id=info:doi/10.1016%2Fj.neunet.2018.03.017&rft_id=info%3Apmid%2F29674233&rft.externalDocID=29674233
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon