Improved carriers injection capacity in perovskite solar cells by introducing A-site interstitial defects
Organic–inorganic hybrid perovskite solar cells have emerged as a promising candidate for next generation solar cells. The most extensively used perovskite absorber is methylammonium lead iodide (MAPbI 3 ). Defect types and quantities, particularly for the defects involving A-site cation (MA + ), ap...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 5; no. 17; pp. 7905 - 7911 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7488 2050-7496 2050-7496 |
DOI | 10.1039/C7TA01203A |
Cover
Abstract | Organic–inorganic hybrid perovskite solar cells have emerged as a promising candidate for next generation solar cells. The most extensively used perovskite absorber is methylammonium lead iodide (MAPbI
3
). Defect types and quantities, particularly for the defects involving A-site cation (MA
+
), appear to have significant influence on material properties and on the solar cell performance. In this report, by introducing a smaller sized potassium cation (K
+
) into the lattice structure of MAPbI
3
, the photovoltaic performance of mixed-cation perovskite solar cells was enhanced. X-ray diffraction data indicate that the K
+
mainly occupied the interstitial position in the perovskite crystal lattice. Systematic study has demonstrated that there are several benefits of introducing the proper amount of K
+
to MAPbI
3
. The increased crystallinity, red shifted photoluminescence (PL) spectra and decreased surface potential result in eminent carrier separation properties and thus reduce the charge recombination in solar cell devices. The optimized mixing range has been investigated; when 0 ≤ K
+
content of
x
(
x
is the ratio of K
+
: Pb
2+
) ≤ 0.2, the modified mixed perovskite solar cell exhibited better photoelectric conversion efficiencies than that of pristine MAPbI
3
. Particularly, the perovskite solar cell presents balanced injection capacity for both holes and electrons when
x
= 0.2, and a conversion efficiency of 19.3% is obtained. |
---|---|
AbstractList | Organic-inorganic hybrid perovskite solar cells have emerged as a promising candidate for next generation solar cells. The most extensively used perovskite absorber is methylammonium lead iodide (MAPbI3). Defect types and quantities, particularly for the defects involving A-site cation (MA+), appear to have significant influence on material properties and on the solar cell performance. In this report, by introducing a smaller sized potassium cation (K+) into the lattice structure of MAPbI3, the photovoltaic performance of mixed-cation perovskite solar cells was enhanced. X-ray diffraction data indicate that the K+ mainly occupied the interstitial position in the perovskite crystal lattice. Systematic study has demonstrated that there are several benefits of introducing the proper amount of K+ to MAPbI3. The increased crystallinity, red shifted photoluminescence (PL) spectra and decreased surface potential result in eminent carrier separation properties and thus reduce the charge recombination in solar cell devices. The optimized mixing range has been investigated; when 0 less than or equal to K+ content of x (x is the ratio of K+ : Pb2+) less than or equal to 0.2, the modified mixed perovskite solar cell exhibited better photoelectric conversion efficiencies than that of pristine MAPbI3. Particularly, the perovskite solar cell presents balanced injection capacity for both holes and electrons when x = 0.2, and a conversion efficiency of 19.3% is obtained. Organic–inorganic hybrid perovskite solar cells have emerged as a promising candidate for next generation solar cells. The most extensively used perovskite absorber is methylammonium lead iodide (MAPbI₃). Defect types and quantities, particularly for the defects involving A-site cation (MA⁺), appear to have significant influence on material properties and on the solar cell performance. In this report, by introducing a smaller sized potassium cation (K⁺) into the lattice structure of MAPbI₃, the photovoltaic performance of mixed-cation perovskite solar cells was enhanced. X-ray diffraction data indicate that the K⁺ mainly occupied the interstitial position in the perovskite crystal lattice. Systematic study has demonstrated that there are several benefits of introducing the proper amount of K⁺ to MAPbI₃. The increased crystallinity, red shifted photoluminescence (PL) spectra and decreased surface potential result in eminent carrier separation properties and thus reduce the charge recombination in solar cell devices. The optimized mixing range has been investigated; when 0 ≤ K⁺ content of x (x is the ratio of K⁺ : Pb²⁺) ≤ 0.2, the modified mixed perovskite solar cell exhibited better photoelectric conversion efficiencies than that of pristine MAPbI₃. Particularly, the perovskite solar cell presents balanced injection capacity for both holes and electrons when x = 0.2, and a conversion efficiency of 19.3% is obtained. Organic–inorganic hybrid perovskite solar cells have emerged as a promising candidate for next generation solar cells. The most extensively used perovskite absorber is methylammonium lead iodide (MAPbI 3 ). Defect types and quantities, particularly for the defects involving A-site cation (MA + ), appear to have significant influence on material properties and on the solar cell performance. In this report, by introducing a smaller sized potassium cation (K + ) into the lattice structure of MAPbI 3 , the photovoltaic performance of mixed-cation perovskite solar cells was enhanced. X-ray diffraction data indicate that the K + mainly occupied the interstitial position in the perovskite crystal lattice. Systematic study has demonstrated that there are several benefits of introducing the proper amount of K + to MAPbI 3 . The increased crystallinity, red shifted photoluminescence (PL) spectra and decreased surface potential result in eminent carrier separation properties and thus reduce the charge recombination in solar cell devices. The optimized mixing range has been investigated; when 0 ≤ K + content of x ( x is the ratio of K + : Pb 2+ ) ≤ 0.2, the modified mixed perovskite solar cell exhibited better photoelectric conversion efficiencies than that of pristine MAPbI 3 . Particularly, the perovskite solar cell presents balanced injection capacity for both holes and electrons when x = 0.2, and a conversion efficiency of 19.3% is obtained. |
Author | Yin, Wenping Han, Manhyung Kim, Minwoo Song, Young Jae Zhao, Pengjun Jung, Hyun Suk Ahn, Tae Kyu |
Author_xml | – sequence: 1 givenname: Pengjun surname: Zhao fullname: Zhao, Pengjun organization: School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Korea – sequence: 2 givenname: Wenping surname: Yin fullname: Yin, Wenping organization: Department of Energy Science, Sungkyunkwan University, Suwon, Korea – sequence: 3 givenname: Minwoo surname: Kim fullname: Kim, Minwoo organization: SKKU Advanced Institute of Nanotechnology (SAINT), Department of Physics, Sungkyunkwan University, Suwon, Korea – sequence: 4 givenname: Manhyung surname: Han fullname: Han, Manhyung organization: School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Korea – sequence: 5 givenname: Young Jae surname: Song fullname: Song, Young Jae organization: SKKU Advanced Institute of Nanotechnology (SAINT), Department of Physics, Sungkyunkwan University, Suwon, Korea – sequence: 6 givenname: Tae Kyu orcidid: 0000-0002-7474-6513 surname: Ahn fullname: Ahn, Tae Kyu organization: Department of Energy Science, Sungkyunkwan University, Suwon, Korea – sequence: 7 givenname: Hyun Suk orcidid: 0000-0002-7803-6930 surname: Jung fullname: Jung, Hyun Suk organization: School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Korea |
BookMark | eNqNkV1LwzAUhoNMcM7d-AtyKUL15KtNLsfwYzDwZl6XNE0ls2trkgn796ZMFETQ3CS8ec7LOe85R5Ou7yxClwRuCDB1uyw2CyAU2OIETSkIyAqu8snXW8ozNA9hC-lIgFypKXKr3eD7d1tjo7131gfsuq010fVdkgZtXDwkCQ82YeHVRYtD32qPjW3bgKvxM_q-3hvXveBFFkYiSckpuuh0i2vbJL9wgU4b3QY7_7xn6Pn-brN8zNZPD6vlYp0ZpvKYMUOJLqRlnAhSM60lKXRF6jpnWlDITcO5UsqqXIDUVjDLUwmteEWFoYyyGbo6-qa53vY2xHLnwtis7my_DyWlBZE5CEn-RIkCTkGBUP9BScEpy2VCr4-o8X0I3jbl4N1O-0NJoBwXVX4vKsHwA06B6zH96LVrfyv5API5lsA |
CitedBy_id | crossref_primary_10_1016_j_synthmet_2022_117261 crossref_primary_10_1039_C8CS00853A crossref_primary_10_1039_D1TC01284C crossref_primary_10_1021_acs_chemmater_8b02989 crossref_primary_10_1021_acsnano_4c06396 crossref_primary_10_1002_aenm_201902492 crossref_primary_10_1016_j_orgel_2021_106080 crossref_primary_10_1021_acs_jpclett_1c03399 crossref_primary_10_1016_j_solmat_2021_111512 crossref_primary_10_1002_aenm_201902579 crossref_primary_10_1038_nature25989 crossref_primary_10_3390_ma11091605 crossref_primary_10_1002_smll_202105783 crossref_primary_10_1007_s40843_022_2060_9 crossref_primary_10_1016_j_ijleo_2021_168294 crossref_primary_10_1021_acs_jpcc_3c07066 crossref_primary_10_3390_ijms231911792 crossref_primary_10_1016_j_jallcom_2020_158207 crossref_primary_10_1016_j_apmt_2021_100946 crossref_primary_10_1016_j_cattod_2023_114247 crossref_primary_10_1039_D0TA01944E crossref_primary_10_1088_1361_6463_abd0ad crossref_primary_10_1002_adfm_201804394 crossref_primary_10_1002_aelm_202100291 crossref_primary_10_1016_j_solener_2023_112087 crossref_primary_10_1016_j_jlumin_2021_118333 crossref_primary_10_1016_j_electacta_2022_141259 crossref_primary_10_1039_C8TA09026B crossref_primary_10_1039_D1NR07732E crossref_primary_10_1002_appl_202200077 crossref_primary_10_1021_jacs_0c07338 crossref_primary_10_1021_jacs_8b03191 crossref_primary_10_1002_slct_201800771 crossref_primary_10_3390_nano11061607 crossref_primary_10_1021_acsaem_1c01017 crossref_primary_10_1021_acs_jpcc_9b08859 crossref_primary_10_1002_pssr_202000335 crossref_primary_10_1039_C7CS00868F crossref_primary_10_1002_solr_202100112 crossref_primary_10_1016_j_cplett_2020_137179 crossref_primary_10_1002_smtd_201700295 crossref_primary_10_1002_adma_201707350 crossref_primary_10_1002_adma_201902037 crossref_primary_10_1016_j_surfin_2023_103145 crossref_primary_10_1039_D2TC00882C crossref_primary_10_1016_j_jallcom_2021_161355 crossref_primary_10_1002_adma_202000004 crossref_primary_10_1039_C8QI01020J crossref_primary_10_1088_1361_6463_ab9134 crossref_primary_10_1088_2053_1591_ac66c7 crossref_primary_10_1002_adom_202000742 crossref_primary_10_1002_eom2_12015 crossref_primary_10_1002_smll_202406784 crossref_primary_10_1016_j_cej_2022_135687 crossref_primary_10_1016_j_orgel_2020_105937 crossref_primary_10_1002_solr_201800339 crossref_primary_10_1016_j_jmst_2020_05_029 crossref_primary_10_1038_s41563_022_01390_3 crossref_primary_10_1039_D2TC04529J crossref_primary_10_1002_solr_202000098 crossref_primary_10_1016_j_matt_2019_10_005 crossref_primary_10_1021_acsenergylett_4c00840 crossref_primary_10_1039_D0RA07107B crossref_primary_10_1016_j_nanoen_2017_12_047 crossref_primary_10_1002_adma_201805214 crossref_primary_10_1016_j_surfin_2024_104274 crossref_primary_10_1021_acs_chemrev_8b00539 crossref_primary_10_1039_C9TA08130E crossref_primary_10_1002_smll_202303060 crossref_primary_10_1039_C9TA07657C crossref_primary_10_1002_ejic_202001109 crossref_primary_10_1016_j_jpcs_2024_112145 crossref_primary_10_1021_jacs_7b07223 crossref_primary_10_1039_C9TA03180D crossref_primary_10_1016_j_xcrp_2020_100045 crossref_primary_10_1088_1361_6463_abfc8b crossref_primary_10_1002_adma_201703682 crossref_primary_10_1039_D0CS01316A crossref_primary_10_1007_s12598_020_01579_y crossref_primary_10_1039_C9TA08081C crossref_primary_10_1021_acsanm_3c04311 crossref_primary_10_1039_D1CC07125D crossref_primary_10_1002_solr_201900053 crossref_primary_10_1021_acsaem_9b00391 crossref_primary_10_1039_D4TA06793B crossref_primary_10_1002_ente_202401684 crossref_primary_10_1016_j_jpowsour_2019_227065 crossref_primary_10_1016_j_nanoen_2017_10_048 crossref_primary_10_1002_admi_201901885 crossref_primary_10_1016_j_jallcom_2020_156696 crossref_primary_10_1039_C9TA07595J crossref_primary_10_1364_OE_522663 crossref_primary_10_1039_D0TA08656H crossref_primary_10_1002_solr_202100893 crossref_primary_10_1039_C9MH00500E |
Cites_doi | 10.1126/science.1243167 10.1063/1.4864778 10.1039/C5TA02843D 10.1038/ncomms8497 10.1021/nl404454h 10.1021/ja1068596 10.1038/nmat4150 10.1039/c3ee43822h 10.1126/science.1254050 10.1039/C5EE03255E 10.1021/jacs.5b04930 10.1038/nmat4014 10.1039/C5CP02605A 10.1038/nmat4065 10.1002/anie.201309361 10.1007/s12274-015-0755-5 10.1021/acs.jpclett.5b01017 10.1126/science.1243982 10.1016/j.cplett.2010.04.023 10.1002/aenm.201500615 10.1021/cm200958r 10.1021/acs.jpclett.5b00182 10.1021/nn406020d 10.1039/C4CP04479G 10.1021/nl5012992 10.1063/1.4914544 10.1021/jz500370k 10.1016/S0042-207X(98)00186-9 10.1126/science.aaa0472 10.1038/ncomms8269 10.1063/1.2884693 10.1021/acs.jpcc.5b08537 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7ST C1K SOI 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
DOI | 10.1039/C7TA01203A |
DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Environment Abstracts Materials Research Database AGRICOLA CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 7911 |
ExternalDocumentID | 10_1039_C7TA01203A |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH 7ST C1K SOI 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c396t-3c21a78e34151d3aa817ab1dd63a5206cf44999e96508ae53e43c22b4b25c2323 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 07:51:13 EDT 2025 Thu Jul 10 20:56:20 EDT 2025 Fri Jul 11 05:08:19 EDT 2025 Tue Jul 01 03:13:37 EDT 2025 Thu Apr 24 23:08:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c396t-3c21a78e34151d3aa817ab1dd63a5206cf44999e96508ae53e43c22b4b25c2323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7803-6930 0000-0002-7474-6513 |
PQID | 1901742368 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2271860581 proquest_miscellaneous_1904209059 proquest_miscellaneous_1901742368 crossref_primary_10_1039_C7TA01203A crossref_citationtrail_10_1039_C7TA01203A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2017 |
References | Jeon (C7TA01203A-(cit2)/*[position()=1]) 2014; 13 Stranks (C7TA01203A-(cit3)/*[position()=1]) 2013; 342 You (C7TA01203A-(cit30)/*[position()=1]) 2014; 8 Luo (C7TA01203A-(cit27)/*[position()=1]) 2015; 119 Zhao (C7TA01203A-(cit23)/*[position()=1]) 2015; 6 Amat (C7TA01203A-(cit18)/*[position()=1]) 2014; 14 Liu (C7TA01203A-(cit24)/*[position()=1]) 2010; 132 Shi (C7TA01203A-(cit10)/*[position()=1]) 2015; 106 Yi (C7TA01203A-(cit13)/*[position()=1]) 2016; 9 Xing (C7TA01203A-(cit4)/*[position()=1]) 2013; 342 Zelaya-Angel (C7TA01203A-(cit14)/*[position()=1]) 1999; 52 Yang (C7TA01203A-(cit16)/*[position()=1]) 2010; 492 Nie (C7TA01203A-(cit32)/*[position()=1]) 2015; 347 Yin (C7TA01203A-(cit7)/*[position()=1]) 2014; 104 Pellet (C7TA01203A-(cit12)/*[position()=1]) 2014; 53 Yun (C7TA01203A-(cit21)/*[position()=1]) 2015; 6 Duan (C7TA01203A-(cit8)/*[position()=1]) 2015; 17 Sabouret (C7TA01203A-(cit31)/*[position()=1]) 2008; 92 Gratzel (C7TA01203A-(cit1)/*[position()=1]) 2014; 13 Ahn (C7TA01203A-(cit17)/*[position()=1]) 2015; 137 Chen (C7TA01203A-(cit29)/*[position()=1]) 2015; 6 Yuan (C7TA01203A-(cit20)/*[position()=1]) 2015; 5 Yin (C7TA01203A-(cit26)/*[position()=1]) 2015; 3 Eames (C7TA01203A-(cit9)/*[position()=1]) 2015; 6 Yan (C7TA01203A-(cit25)/*[position()=1]) 2015; 8 Kong (C7TA01203A-(cit28)/*[position()=1]) 2015; 17 Lu (C7TA01203A-(cit15)/*[position()=1]) 2011; 23 Edri (C7TA01203A-(cit22)/*[position()=1]) 2014; 14 Zhou (C7TA01203A-(cit5)/*[position()=1]) 2014; 345 Eperon (C7TA01203A-(cit11)/*[position()=1]) 2014; 7 Xiao (C7TA01203A-(cit19)/*[position()=1]) 2015; 14 Kim (C7TA01203A-(cit6)/*[position()=1]) 2014; 5 |
References_xml | – volume: 342 start-page: 344 year: 2013 ident: C7TA01203A-(cit4)/*[position()=1] publication-title: Science doi: 10.1126/science.1243167 – volume: 104 start-page: 063903 year: 2014 ident: C7TA01203A-(cit7)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4864778 – volume: 3 start-page: 16860 year: 2015 ident: C7TA01203A-(cit26)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02843D – volume: 6 start-page: 7497 year: 2015 ident: C7TA01203A-(cit9)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms8497 – volume: 14 start-page: 1000 year: 2014 ident: C7TA01203A-(cit22)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl404454h – volume: 132 start-page: 14385 year: 2010 ident: C7TA01203A-(cit24)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1068596 – volume: 14 start-page: 193 year: 2015 ident: C7TA01203A-(cit19)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4150 – volume: 7 start-page: 982 year: 2014 ident: C7TA01203A-(cit11)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43822h – volume: 345 start-page: 542 year: 2014 ident: C7TA01203A-(cit5)/*[position()=1] publication-title: Science doi: 10.1126/science.1254050 – volume: 9 start-page: 656 year: 2016 ident: C7TA01203A-(cit13)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03255E – volume: 137 start-page: 8696 year: 2015 ident: C7TA01203A-(cit17)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04930 – volume: 13 start-page: 897 year: 2014 ident: C7TA01203A-(cit2)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4014 – volume: 17 start-page: 16405 year: 2015 ident: C7TA01203A-(cit28)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP02605A – volume: 13 start-page: 838 year: 2014 ident: C7TA01203A-(cit1)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4065 – volume: 53 start-page: 3151 year: 2014 ident: C7TA01203A-(cit12)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/anie.201309361 – volume: 8 start-page: 2474 year: 2015 ident: C7TA01203A-(cit25)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-015-0755-5 – volume: 6 start-page: 2622 year: 2015 ident: C7TA01203A-(cit23)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01017 – volume: 342 start-page: 341 year: 2013 ident: C7TA01203A-(cit3)/*[position()=1] publication-title: Science doi: 10.1126/science.1243982 – volume: 492 start-page: 40 year: 2010 ident: C7TA01203A-(cit16)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2010.04.023 – volume: 5 start-page: 1500615 year: 2015 ident: C7TA01203A-(cit20)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500615 – volume: 23 start-page: 3210 year: 2011 ident: C7TA01203A-(cit15)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm200958r – volume: 6 start-page: 875 year: 2015 ident: C7TA01203A-(cit21)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00182 – volume: 8 start-page: 1674 year: 2014 ident: C7TA01203A-(cit30)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn406020d – volume: 17 start-page: 112 year: 2015 ident: C7TA01203A-(cit8)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04479G – volume: 14 start-page: 3608 year: 2014 ident: C7TA01203A-(cit18)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl5012992 – volume: 106 start-page: 103902 year: 2015 ident: C7TA01203A-(cit10)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4914544 – volume: 5 start-page: 1312 year: 2014 ident: C7TA01203A-(cit6)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500370k – volume: 52 start-page: 99 year: 1999 ident: C7TA01203A-(cit14)/*[position()=1] publication-title: Vacuum doi: 10.1016/S0042-207X(98)00186-9 – volume: 347 start-page: 522 year: 2015 ident: C7TA01203A-(cit32)/*[position()=1] publication-title: Science doi: 10.1126/science.aaa0472 – volume: 6 start-page: 7269 year: 2015 ident: C7TA01203A-(cit29)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms8269 – volume: 92 start-page: 082104 year: 2008 ident: C7TA01203A-(cit31)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2884693 – volume: 119 start-page: 26672 year: 2015 ident: C7TA01203A-(cit27)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b08537 |
SSID | ssj0000800699 |
Score | 2.5069728 |
Snippet | Organic–inorganic hybrid perovskite solar cells have emerged as a promising candidate for next generation solar cells. The most extensively used perovskite... Organic-inorganic hybrid perovskite solar cells have emerged as a promising candidate for next generation solar cells. The most extensively used perovskite... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 7905 |
SubjectTerms | Cations Conversion Crystal defects crystal structure Devices Efficiency electrons lead mixing Perovskites photoluminescence Photovoltaic cells potassium Solar cells X-ray diffraction |
Title | Improved carriers injection capacity in perovskite solar cells by introducing A-site interstitial defects |
URI | https://www.proquest.com/docview/1901742368 https://www.proquest.com/docview/1904209059 https://www.proquest.com/docview/2271860581 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4ED4lOMLxnBBVUZiZ04yTGaOg3UjUsqCpfIcZytE0qntjnAf8J_y3t2nGZiQ4NLVDmvVuv3i9_PL--DkHeS67KqReKpgAsvlNz3yrCuPB2lcBgLApHWeFA8ORXH8_DTIlqMRr8GUUvttjxQP6_NK_kfrcIY6BWzZP9Bs_2kMACfQb9wBQ3D9VY6th4BoIxKrrHzHMZWXWjb_FuBFVRIsU2YOIht0E872eBRdoLu-g0yzyUGqletMs4RD98kmwISa4wgQF96pU24xw0UFtiu_ZsT5frGHUwymwLk7piS4jbB0PjoXcIWxuT27vxv53Jlo4Wbs4u2x-tXW-Dgi24unYWVfQPokyXGC-12UBuULJvzH20n2zkzbNam3e2YH_lY2NRuxno4Zlveuu06GqIyHuy9WGpsYMfj1O7if9gIn2OJVRVvJSYO84EldG__Tz8XR_PZrMini_wO2WOxEGxM9rJp_nHWO_CQagvTn7T_6a78LU8_7Ka_Sniu2ntDYvIH5H6nOppZKD0kI908IvcGNSkfk6UDFXWgoj2oqAMVDNEdqKgBFTWgoiXe7EFFLajoEFS0A9UTMj-a5ofHXtePw1M8FVuPKxbIONFAfKKg4lImQSzLoKoElxHzhapDPD_rFFm_1BHXIXyFlWHJIgXMnT8l42bV6GeEilpGsRR1UgVJqESZ6lqlMVOVBiOhudon792iFaorVo89U74XJmiCp8VhnGdmgbN98raXvbQlWq6VeuPWvoAHApdENnrVbgqkxBivIJK_yoTMB4ClN8swBjwPowyC57eY5wW5iw-A9ea9JOPtutWvgN9uy9cd0n4DJLuvUA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+carriers+injection+capacity+in+perovskite+solar+cells+by+introducing+A-site+interstitial+defects&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zhao%2C+Pengjun&rft.au=Yin%2C+Wenping&rft.au=Kim%2C+Minwoo&rft.au=Han%2C+Manhyung&rft.date=2017&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=5&rft.issue=17&rft.spage=7905&rft.epage=7911&rft_id=info:doi/10.1039%2Fc7ta01203a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |