Improved carriers injection capacity in perovskite solar cells by introducing A-site interstitial defects

Organic–inorganic hybrid perovskite solar cells have emerged as a promising candidate for next generation solar cells. The most extensively used perovskite absorber is methylammonium lead iodide (MAPbI 3 ). Defect types and quantities, particularly for the defects involving A-site cation (MA + ), ap...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 5; no. 17; pp. 7905 - 7911
Main Authors Zhao, Pengjun, Yin, Wenping, Kim, Minwoo, Han, Manhyung, Song, Young Jae, Ahn, Tae Kyu, Jung, Hyun Suk
Format Journal Article
LanguageEnglish
Published 2017
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
2050-7496
DOI10.1039/C7TA01203A

Cover

Abstract Organic–inorganic hybrid perovskite solar cells have emerged as a promising candidate for next generation solar cells. The most extensively used perovskite absorber is methylammonium lead iodide (MAPbI 3 ). Defect types and quantities, particularly for the defects involving A-site cation (MA + ), appear to have significant influence on material properties and on the solar cell performance. In this report, by introducing a smaller sized potassium cation (K + ) into the lattice structure of MAPbI 3 , the photovoltaic performance of mixed-cation perovskite solar cells was enhanced. X-ray diffraction data indicate that the K + mainly occupied the interstitial position in the perovskite crystal lattice. Systematic study has demonstrated that there are several benefits of introducing the proper amount of K + to MAPbI 3 . The increased crystallinity, red shifted photoluminescence (PL) spectra and decreased surface potential result in eminent carrier separation properties and thus reduce the charge recombination in solar cell devices. The optimized mixing range has been investigated; when 0 ≤ K + content of x ( x is the ratio of K +  : Pb 2+ ) ≤ 0.2, the modified mixed perovskite solar cell exhibited better photoelectric conversion efficiencies than that of pristine MAPbI 3 . Particularly, the perovskite solar cell presents balanced injection capacity for both holes and electrons when x = 0.2, and a conversion efficiency of 19.3% is obtained.
AbstractList Organic-inorganic hybrid perovskite solar cells have emerged as a promising candidate for next generation solar cells. The most extensively used perovskite absorber is methylammonium lead iodide (MAPbI3). Defect types and quantities, particularly for the defects involving A-site cation (MA+), appear to have significant influence on material properties and on the solar cell performance. In this report, by introducing a smaller sized potassium cation (K+) into the lattice structure of MAPbI3, the photovoltaic performance of mixed-cation perovskite solar cells was enhanced. X-ray diffraction data indicate that the K+ mainly occupied the interstitial position in the perovskite crystal lattice. Systematic study has demonstrated that there are several benefits of introducing the proper amount of K+ to MAPbI3. The increased crystallinity, red shifted photoluminescence (PL) spectra and decreased surface potential result in eminent carrier separation properties and thus reduce the charge recombination in solar cell devices. The optimized mixing range has been investigated; when 0 less than or equal to K+ content of x (x is the ratio of K+ : Pb2+) less than or equal to 0.2, the modified mixed perovskite solar cell exhibited better photoelectric conversion efficiencies than that of pristine MAPbI3. Particularly, the perovskite solar cell presents balanced injection capacity for both holes and electrons when x = 0.2, and a conversion efficiency of 19.3% is obtained.
Organic–inorganic hybrid perovskite solar cells have emerged as a promising candidate for next generation solar cells. The most extensively used perovskite absorber is methylammonium lead iodide (MAPbI₃). Defect types and quantities, particularly for the defects involving A-site cation (MA⁺), appear to have significant influence on material properties and on the solar cell performance. In this report, by introducing a smaller sized potassium cation (K⁺) into the lattice structure of MAPbI₃, the photovoltaic performance of mixed-cation perovskite solar cells was enhanced. X-ray diffraction data indicate that the K⁺ mainly occupied the interstitial position in the perovskite crystal lattice. Systematic study has demonstrated that there are several benefits of introducing the proper amount of K⁺ to MAPbI₃. The increased crystallinity, red shifted photoluminescence (PL) spectra and decreased surface potential result in eminent carrier separation properties and thus reduce the charge recombination in solar cell devices. The optimized mixing range has been investigated; when 0 ≤ K⁺ content of x (x is the ratio of K⁺ : Pb²⁺) ≤ 0.2, the modified mixed perovskite solar cell exhibited better photoelectric conversion efficiencies than that of pristine MAPbI₃. Particularly, the perovskite solar cell presents balanced injection capacity for both holes and electrons when x = 0.2, and a conversion efficiency of 19.3% is obtained.
Organic–inorganic hybrid perovskite solar cells have emerged as a promising candidate for next generation solar cells. The most extensively used perovskite absorber is methylammonium lead iodide (MAPbI 3 ). Defect types and quantities, particularly for the defects involving A-site cation (MA + ), appear to have significant influence on material properties and on the solar cell performance. In this report, by introducing a smaller sized potassium cation (K + ) into the lattice structure of MAPbI 3 , the photovoltaic performance of mixed-cation perovskite solar cells was enhanced. X-ray diffraction data indicate that the K + mainly occupied the interstitial position in the perovskite crystal lattice. Systematic study has demonstrated that there are several benefits of introducing the proper amount of K + to MAPbI 3 . The increased crystallinity, red shifted photoluminescence (PL) spectra and decreased surface potential result in eminent carrier separation properties and thus reduce the charge recombination in solar cell devices. The optimized mixing range has been investigated; when 0 ≤ K + content of x ( x is the ratio of K +  : Pb 2+ ) ≤ 0.2, the modified mixed perovskite solar cell exhibited better photoelectric conversion efficiencies than that of pristine MAPbI 3 . Particularly, the perovskite solar cell presents balanced injection capacity for both holes and electrons when x = 0.2, and a conversion efficiency of 19.3% is obtained.
Author Yin, Wenping
Han, Manhyung
Kim, Minwoo
Song, Young Jae
Zhao, Pengjun
Jung, Hyun Suk
Ahn, Tae Kyu
Author_xml – sequence: 1
  givenname: Pengjun
  surname: Zhao
  fullname: Zhao, Pengjun
  organization: School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Korea
– sequence: 2
  givenname: Wenping
  surname: Yin
  fullname: Yin, Wenping
  organization: Department of Energy Science, Sungkyunkwan University, Suwon, Korea
– sequence: 3
  givenname: Minwoo
  surname: Kim
  fullname: Kim, Minwoo
  organization: SKKU Advanced Institute of Nanotechnology (SAINT), Department of Physics, Sungkyunkwan University, Suwon, Korea
– sequence: 4
  givenname: Manhyung
  surname: Han
  fullname: Han, Manhyung
  organization: School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Korea
– sequence: 5
  givenname: Young Jae
  surname: Song
  fullname: Song, Young Jae
  organization: SKKU Advanced Institute of Nanotechnology (SAINT), Department of Physics, Sungkyunkwan University, Suwon, Korea
– sequence: 6
  givenname: Tae Kyu
  orcidid: 0000-0002-7474-6513
  surname: Ahn
  fullname: Ahn, Tae Kyu
  organization: Department of Energy Science, Sungkyunkwan University, Suwon, Korea
– sequence: 7
  givenname: Hyun Suk
  orcidid: 0000-0002-7803-6930
  surname: Jung
  fullname: Jung, Hyun Suk
  organization: School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Korea
BookMark eNqNkV1LwzAUhoNMcM7d-AtyKUL15KtNLsfwYzDwZl6XNE0ls2trkgn796ZMFETQ3CS8ec7LOe85R5Ou7yxClwRuCDB1uyw2CyAU2OIETSkIyAqu8snXW8ozNA9hC-lIgFypKXKr3eD7d1tjo7131gfsuq010fVdkgZtXDwkCQ82YeHVRYtD32qPjW3bgKvxM_q-3hvXveBFFkYiSckpuuh0i2vbJL9wgU4b3QY7_7xn6Pn-brN8zNZPD6vlYp0ZpvKYMUOJLqRlnAhSM60lKXRF6jpnWlDITcO5UsqqXIDUVjDLUwmteEWFoYyyGbo6-qa53vY2xHLnwtis7my_DyWlBZE5CEn-RIkCTkGBUP9BScEpy2VCr4-o8X0I3jbl4N1O-0NJoBwXVX4vKsHwA06B6zH96LVrfyv5API5lsA
CitedBy_id crossref_primary_10_1016_j_synthmet_2022_117261
crossref_primary_10_1039_C8CS00853A
crossref_primary_10_1039_D1TC01284C
crossref_primary_10_1021_acs_chemmater_8b02989
crossref_primary_10_1021_acsnano_4c06396
crossref_primary_10_1002_aenm_201902492
crossref_primary_10_1016_j_orgel_2021_106080
crossref_primary_10_1021_acs_jpclett_1c03399
crossref_primary_10_1016_j_solmat_2021_111512
crossref_primary_10_1002_aenm_201902579
crossref_primary_10_1038_nature25989
crossref_primary_10_3390_ma11091605
crossref_primary_10_1002_smll_202105783
crossref_primary_10_1007_s40843_022_2060_9
crossref_primary_10_1016_j_ijleo_2021_168294
crossref_primary_10_1021_acs_jpcc_3c07066
crossref_primary_10_3390_ijms231911792
crossref_primary_10_1016_j_jallcom_2020_158207
crossref_primary_10_1016_j_apmt_2021_100946
crossref_primary_10_1016_j_cattod_2023_114247
crossref_primary_10_1039_D0TA01944E
crossref_primary_10_1088_1361_6463_abd0ad
crossref_primary_10_1002_adfm_201804394
crossref_primary_10_1002_aelm_202100291
crossref_primary_10_1016_j_solener_2023_112087
crossref_primary_10_1016_j_jlumin_2021_118333
crossref_primary_10_1016_j_electacta_2022_141259
crossref_primary_10_1039_C8TA09026B
crossref_primary_10_1039_D1NR07732E
crossref_primary_10_1002_appl_202200077
crossref_primary_10_1021_jacs_0c07338
crossref_primary_10_1021_jacs_8b03191
crossref_primary_10_1002_slct_201800771
crossref_primary_10_3390_nano11061607
crossref_primary_10_1021_acsaem_1c01017
crossref_primary_10_1021_acs_jpcc_9b08859
crossref_primary_10_1002_pssr_202000335
crossref_primary_10_1039_C7CS00868F
crossref_primary_10_1002_solr_202100112
crossref_primary_10_1016_j_cplett_2020_137179
crossref_primary_10_1002_smtd_201700295
crossref_primary_10_1002_adma_201707350
crossref_primary_10_1002_adma_201902037
crossref_primary_10_1016_j_surfin_2023_103145
crossref_primary_10_1039_D2TC00882C
crossref_primary_10_1016_j_jallcom_2021_161355
crossref_primary_10_1002_adma_202000004
crossref_primary_10_1039_C8QI01020J
crossref_primary_10_1088_1361_6463_ab9134
crossref_primary_10_1088_2053_1591_ac66c7
crossref_primary_10_1002_adom_202000742
crossref_primary_10_1002_eom2_12015
crossref_primary_10_1002_smll_202406784
crossref_primary_10_1016_j_cej_2022_135687
crossref_primary_10_1016_j_orgel_2020_105937
crossref_primary_10_1002_solr_201800339
crossref_primary_10_1016_j_jmst_2020_05_029
crossref_primary_10_1038_s41563_022_01390_3
crossref_primary_10_1039_D2TC04529J
crossref_primary_10_1002_solr_202000098
crossref_primary_10_1016_j_matt_2019_10_005
crossref_primary_10_1021_acsenergylett_4c00840
crossref_primary_10_1039_D0RA07107B
crossref_primary_10_1016_j_nanoen_2017_12_047
crossref_primary_10_1002_adma_201805214
crossref_primary_10_1016_j_surfin_2024_104274
crossref_primary_10_1021_acs_chemrev_8b00539
crossref_primary_10_1039_C9TA08130E
crossref_primary_10_1002_smll_202303060
crossref_primary_10_1039_C9TA07657C
crossref_primary_10_1002_ejic_202001109
crossref_primary_10_1016_j_jpcs_2024_112145
crossref_primary_10_1021_jacs_7b07223
crossref_primary_10_1039_C9TA03180D
crossref_primary_10_1016_j_xcrp_2020_100045
crossref_primary_10_1088_1361_6463_abfc8b
crossref_primary_10_1002_adma_201703682
crossref_primary_10_1039_D0CS01316A
crossref_primary_10_1007_s12598_020_01579_y
crossref_primary_10_1039_C9TA08081C
crossref_primary_10_1021_acsanm_3c04311
crossref_primary_10_1039_D1CC07125D
crossref_primary_10_1002_solr_201900053
crossref_primary_10_1021_acsaem_9b00391
crossref_primary_10_1039_D4TA06793B
crossref_primary_10_1002_ente_202401684
crossref_primary_10_1016_j_jpowsour_2019_227065
crossref_primary_10_1016_j_nanoen_2017_10_048
crossref_primary_10_1002_admi_201901885
crossref_primary_10_1016_j_jallcom_2020_156696
crossref_primary_10_1039_C9TA07595J
crossref_primary_10_1364_OE_522663
crossref_primary_10_1039_D0TA08656H
crossref_primary_10_1002_solr_202100893
crossref_primary_10_1039_C9MH00500E
Cites_doi 10.1126/science.1243167
10.1063/1.4864778
10.1039/C5TA02843D
10.1038/ncomms8497
10.1021/nl404454h
10.1021/ja1068596
10.1038/nmat4150
10.1039/c3ee43822h
10.1126/science.1254050
10.1039/C5EE03255E
10.1021/jacs.5b04930
10.1038/nmat4014
10.1039/C5CP02605A
10.1038/nmat4065
10.1002/anie.201309361
10.1007/s12274-015-0755-5
10.1021/acs.jpclett.5b01017
10.1126/science.1243982
10.1016/j.cplett.2010.04.023
10.1002/aenm.201500615
10.1021/cm200958r
10.1021/acs.jpclett.5b00182
10.1021/nn406020d
10.1039/C4CP04479G
10.1021/nl5012992
10.1063/1.4914544
10.1021/jz500370k
10.1016/S0042-207X(98)00186-9
10.1126/science.aaa0472
10.1038/ncomms8269
10.1063/1.2884693
10.1021/acs.jpcc.5b08537
ContentType Journal Article
DBID AAYXX
CITATION
7ST
C1K
SOI
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
DOI 10.1039/C7TA01203A
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Environment Abstracts
Materials Research Database
AGRICOLA
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 7911
ExternalDocumentID 10_1039_C7TA01203A
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7ST
C1K
SOI
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c396t-3c21a78e34151d3aa817ab1dd63a5206cf44999e96508ae53e43c22b4b25c2323
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 07:51:13 EDT 2025
Thu Jul 10 20:56:20 EDT 2025
Fri Jul 11 05:08:19 EDT 2025
Tue Jul 01 03:13:37 EDT 2025
Thu Apr 24 23:08:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-3c21a78e34151d3aa817ab1dd63a5206cf44999e96508ae53e43c22b4b25c2323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7803-6930
0000-0002-7474-6513
PQID 1901742368
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_2271860581
proquest_miscellaneous_1904209059
proquest_miscellaneous_1901742368
crossref_primary_10_1039_C7TA01203A
crossref_citationtrail_10_1039_C7TA01203A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2017
References Jeon (C7TA01203A-(cit2)/*[position()=1]) 2014; 13
Stranks (C7TA01203A-(cit3)/*[position()=1]) 2013; 342
You (C7TA01203A-(cit30)/*[position()=1]) 2014; 8
Luo (C7TA01203A-(cit27)/*[position()=1]) 2015; 119
Zhao (C7TA01203A-(cit23)/*[position()=1]) 2015; 6
Amat (C7TA01203A-(cit18)/*[position()=1]) 2014; 14
Liu (C7TA01203A-(cit24)/*[position()=1]) 2010; 132
Shi (C7TA01203A-(cit10)/*[position()=1]) 2015; 106
Yi (C7TA01203A-(cit13)/*[position()=1]) 2016; 9
Xing (C7TA01203A-(cit4)/*[position()=1]) 2013; 342
Zelaya-Angel (C7TA01203A-(cit14)/*[position()=1]) 1999; 52
Yang (C7TA01203A-(cit16)/*[position()=1]) 2010; 492
Nie (C7TA01203A-(cit32)/*[position()=1]) 2015; 347
Yin (C7TA01203A-(cit7)/*[position()=1]) 2014; 104
Pellet (C7TA01203A-(cit12)/*[position()=1]) 2014; 53
Yun (C7TA01203A-(cit21)/*[position()=1]) 2015; 6
Duan (C7TA01203A-(cit8)/*[position()=1]) 2015; 17
Sabouret (C7TA01203A-(cit31)/*[position()=1]) 2008; 92
Gratzel (C7TA01203A-(cit1)/*[position()=1]) 2014; 13
Ahn (C7TA01203A-(cit17)/*[position()=1]) 2015; 137
Chen (C7TA01203A-(cit29)/*[position()=1]) 2015; 6
Yuan (C7TA01203A-(cit20)/*[position()=1]) 2015; 5
Yin (C7TA01203A-(cit26)/*[position()=1]) 2015; 3
Eames (C7TA01203A-(cit9)/*[position()=1]) 2015; 6
Yan (C7TA01203A-(cit25)/*[position()=1]) 2015; 8
Kong (C7TA01203A-(cit28)/*[position()=1]) 2015; 17
Lu (C7TA01203A-(cit15)/*[position()=1]) 2011; 23
Edri (C7TA01203A-(cit22)/*[position()=1]) 2014; 14
Zhou (C7TA01203A-(cit5)/*[position()=1]) 2014; 345
Eperon (C7TA01203A-(cit11)/*[position()=1]) 2014; 7
Xiao (C7TA01203A-(cit19)/*[position()=1]) 2015; 14
Kim (C7TA01203A-(cit6)/*[position()=1]) 2014; 5
References_xml – volume: 342
  start-page: 344
  year: 2013
  ident: C7TA01203A-(cit4)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1243167
– volume: 104
  start-page: 063903
  year: 2014
  ident: C7TA01203A-(cit7)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4864778
– volume: 3
  start-page: 16860
  year: 2015
  ident: C7TA01203A-(cit26)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02843D
– volume: 6
  start-page: 7497
  year: 2015
  ident: C7TA01203A-(cit9)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8497
– volume: 14
  start-page: 1000
  year: 2014
  ident: C7TA01203A-(cit22)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl404454h
– volume: 132
  start-page: 14385
  year: 2010
  ident: C7TA01203A-(cit24)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1068596
– volume: 14
  start-page: 193
  year: 2015
  ident: C7TA01203A-(cit19)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4150
– volume: 7
  start-page: 982
  year: 2014
  ident: C7TA01203A-(cit11)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43822h
– volume: 345
  start-page: 542
  year: 2014
  ident: C7TA01203A-(cit5)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1254050
– volume: 9
  start-page: 656
  year: 2016
  ident: C7TA01203A-(cit13)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03255E
– volume: 137
  start-page: 8696
  year: 2015
  ident: C7TA01203A-(cit17)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04930
– volume: 13
  start-page: 897
  year: 2014
  ident: C7TA01203A-(cit2)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4014
– volume: 17
  start-page: 16405
  year: 2015
  ident: C7TA01203A-(cit28)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP02605A
– volume: 13
  start-page: 838
  year: 2014
  ident: C7TA01203A-(cit1)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4065
– volume: 53
  start-page: 3151
  year: 2014
  ident: C7TA01203A-(cit12)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201309361
– volume: 8
  start-page: 2474
  year: 2015
  ident: C7TA01203A-(cit25)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0755-5
– volume: 6
  start-page: 2622
  year: 2015
  ident: C7TA01203A-(cit23)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01017
– volume: 342
  start-page: 341
  year: 2013
  ident: C7TA01203A-(cit3)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1243982
– volume: 492
  start-page: 40
  year: 2010
  ident: C7TA01203A-(cit16)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2010.04.023
– volume: 5
  start-page: 1500615
  year: 2015
  ident: C7TA01203A-(cit20)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500615
– volume: 23
  start-page: 3210
  year: 2011
  ident: C7TA01203A-(cit15)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm200958r
– volume: 6
  start-page: 875
  year: 2015
  ident: C7TA01203A-(cit21)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00182
– volume: 8
  start-page: 1674
  year: 2014
  ident: C7TA01203A-(cit30)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn406020d
– volume: 17
  start-page: 112
  year: 2015
  ident: C7TA01203A-(cit8)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP04479G
– volume: 14
  start-page: 3608
  year: 2014
  ident: C7TA01203A-(cit18)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl5012992
– volume: 106
  start-page: 103902
  year: 2015
  ident: C7TA01203A-(cit10)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4914544
– volume: 5
  start-page: 1312
  year: 2014
  ident: C7TA01203A-(cit6)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500370k
– volume: 52
  start-page: 99
  year: 1999
  ident: C7TA01203A-(cit14)/*[position()=1]
  publication-title: Vacuum
  doi: 10.1016/S0042-207X(98)00186-9
– volume: 347
  start-page: 522
  year: 2015
  ident: C7TA01203A-(cit32)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaa0472
– volume: 6
  start-page: 7269
  year: 2015
  ident: C7TA01203A-(cit29)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8269
– volume: 92
  start-page: 082104
  year: 2008
  ident: C7TA01203A-(cit31)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2884693
– volume: 119
  start-page: 26672
  year: 2015
  ident: C7TA01203A-(cit27)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b08537
SSID ssj0000800699
Score 2.5069728
Snippet Organic–inorganic hybrid perovskite solar cells have emerged as a promising candidate for next generation solar cells. The most extensively used perovskite...
Organic-inorganic hybrid perovskite solar cells have emerged as a promising candidate for next generation solar cells. The most extensively used perovskite...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 7905
SubjectTerms Cations
Conversion
Crystal defects
crystal structure
Devices
Efficiency
electrons
lead
mixing
Perovskites
photoluminescence
Photovoltaic cells
potassium
Solar cells
X-ray diffraction
Title Improved carriers injection capacity in perovskite solar cells by introducing A-site interstitial defects
URI https://www.proquest.com/docview/1901742368
https://www.proquest.com/docview/1904209059
https://www.proquest.com/docview/2271860581
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4ED4lOMLxnBBVUZiZ04yTGaOg3UjUsqCpfIcZytE0qntjnAf8J_y3t2nGZiQ4NLVDmvVuv3i9_PL--DkHeS67KqReKpgAsvlNz3yrCuPB2lcBgLApHWeFA8ORXH8_DTIlqMRr8GUUvttjxQP6_NK_kfrcIY6BWzZP9Bs_2kMACfQb9wBQ3D9VY6th4BoIxKrrHzHMZWXWjb_FuBFVRIsU2YOIht0E872eBRdoLu-g0yzyUGqletMs4RD98kmwISa4wgQF96pU24xw0UFtiu_ZsT5frGHUwymwLk7piS4jbB0PjoXcIWxuT27vxv53Jlo4Wbs4u2x-tXW-Dgi24unYWVfQPokyXGC-12UBuULJvzH20n2zkzbNam3e2YH_lY2NRuxno4Zlveuu06GqIyHuy9WGpsYMfj1O7if9gIn2OJVRVvJSYO84EldG__Tz8XR_PZrMini_wO2WOxEGxM9rJp_nHWO_CQagvTn7T_6a78LU8_7Ka_Sniu2ntDYvIH5H6nOppZKD0kI908IvcGNSkfk6UDFXWgoj2oqAMVDNEdqKgBFTWgoiXe7EFFLajoEFS0A9UTMj-a5ofHXtePw1M8FVuPKxbIONFAfKKg4lImQSzLoKoElxHzhapDPD_rFFm_1BHXIXyFlWHJIgXMnT8l42bV6GeEilpGsRR1UgVJqESZ6lqlMVOVBiOhudon792iFaorVo89U74XJmiCp8VhnGdmgbN98raXvbQlWq6VeuPWvoAHApdENnrVbgqkxBivIJK_yoTMB4ClN8swBjwPowyC57eY5wW5iw-A9ea9JOPtutWvgN9uy9cd0n4DJLuvUA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+carriers+injection+capacity+in+perovskite+solar+cells+by+introducing+A-site+interstitial+defects&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zhao%2C+Pengjun&rft.au=Yin%2C+Wenping&rft.au=Kim%2C+Minwoo&rft.au=Han%2C+Manhyung&rft.date=2017&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=5&rft.issue=17&rft.spage=7905&rft.epage=7911&rft_id=info:doi/10.1039%2Fc7ta01203a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon