ESPSA: A prediction-based algorithm for streaming time series segmentation
•We propose exponential smoothing prediction-based segmentation algorithm.•The single exponential smoothing method is used to predict future data elements.•The prediction error criterion is proposed to determine segmenting key points.•The experiments demonstrate the effectiveness and efficiency of t...
        Saved in:
      
    
          | Published in | Expert systems with applications Vol. 41; no. 14; pp. 6098 - 6105 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier Ltd
    
        15.10.2014
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0957-4174 1873-6793  | 
| DOI | 10.1016/j.eswa.2014.03.043 | 
Cover
| Abstract | •We propose exponential smoothing prediction-based segmentation algorithm.•The single exponential smoothing method is used to predict future data elements.•The prediction error criterion is proposed to determine segmenting key points.•The experiments demonstrate the effectiveness and efficiency of the proposed algorithm.
Streaming time series segmentation is one of the major problems in streaming time series mining, which can create the high-level representation of streaming time series, and thus can provide important supports for many time series mining tasks, such as indexing, clustering, classification, and discord discovery. However, the data elements in streaming time series, which usually arrive online, are fast-changing and unbounded in size, consequently, leading to a higher requirement for the computing efficiency of time series segmentation. Thus, it is a challenging task how to segment streaming time series accurately under the constraint of computing efficiency. In this paper, we propose exponential smoothing prediction-based segmentation algorithm (ESPSA). The proposed algorithm is developed based on a sliding window model, and uses the typical exponential smoothing method to calculate the smoothing value of arrived data element of streaming time series as the prediction value of the future data. Besides, to determine whether a data element is a segmenting key point, we study the statistical characteristics of the prediction error and then deduce the relationship between the prediction error and the compression rate. The extensive experiments on both synthetic and real datasets demonstrate that the proposed algorithm can segment streaming time series effectively and efficiently. More importantly, compared with candidate algorithms, the proposed algorithm can reduce the computing time by orders of magnitude. | 
    
|---|---|
| AbstractList | Streaming time series segmentation is one of the major problems in streaming time series mining, which can create the high-level representation of streaming time series, and thus can provide important supports for many time series mining tasks, such as indexing, clustering, classification, and discord discovery. However, the data elements in streaming time series, which usually arrive online, are fast-changing and unbounded in size, consequently, leading to a higher requirement for the computing efficiency of time series segmentation. Thus, it is a challenging task how to segment streaming time series accurately under the constraint of computing efficiency. In this paper, we propose exponential smoothing prediction-based segmentation algorithm (ESPSA). The proposed algorithm is developed based on a sliding window model, and uses the typical exponential smoothing method to calculate the smoothing value of arrived data element of streaming time series as the prediction value of the future data. Besides, to determine whether a data element is a segmenting key point, we study the statistical characteristics of the prediction error and then deduce the relationship between the prediction error and the compression rate. The extensive experiments on both synthetic and real datasets demonstrate that the proposed algorithm can segment streaming time series effectively and efficiently. More importantly, compared with candidate algorithms, the proposed algorithm can reduce the computing time by orders of magnitude. •We propose exponential smoothing prediction-based segmentation algorithm.•The single exponential smoothing method is used to predict future data elements.•The prediction error criterion is proposed to determine segmenting key points.•The experiments demonstrate the effectiveness and efficiency of the proposed algorithm. Streaming time series segmentation is one of the major problems in streaming time series mining, which can create the high-level representation of streaming time series, and thus can provide important supports for many time series mining tasks, such as indexing, clustering, classification, and discord discovery. However, the data elements in streaming time series, which usually arrive online, are fast-changing and unbounded in size, consequently, leading to a higher requirement for the computing efficiency of time series segmentation. Thus, it is a challenging task how to segment streaming time series accurately under the constraint of computing efficiency. In this paper, we propose exponential smoothing prediction-based segmentation algorithm (ESPSA). The proposed algorithm is developed based on a sliding window model, and uses the typical exponential smoothing method to calculate the smoothing value of arrived data element of streaming time series as the prediction value of the future data. Besides, to determine whether a data element is a segmenting key point, we study the statistical characteristics of the prediction error and then deduce the relationship between the prediction error and the compression rate. The extensive experiments on both synthetic and real datasets demonstrate that the proposed algorithm can segment streaming time series effectively and efficiently. More importantly, compared with candidate algorithms, the proposed algorithm can reduce the computing time by orders of magnitude.  | 
    
| Author | Li, Guiling Kang, Xiaojun Cai, Zhihua Wang, Yuanzhen Wu, Zongda  | 
    
| Author_xml | – sequence: 1 givenname: Guiling surname: Li fullname: Li, Guiling email: guiling@cug.edu.cn organization: School of Computer Science, China University of Geosciences, Wuhan 430074, China – sequence: 2 givenname: Zhihua surname: Cai fullname: Cai, Zhihua email: zhcai@cug.edu.cn organization: School of Computer Science, China University of Geosciences, Wuhan 430074, China – sequence: 3 givenname: Xiaojun surname: Kang fullname: Kang, Xiaojun email: xj_kang@126.com organization: School of Computer Science, China University of Geosciences, Wuhan 430074, China – sequence: 4 givenname: Zongda surname: Wu fullname: Wu, Zongda email: zongda1983@163.com organization: Oujiang College, Wenzhou University, Wenzhou 325035, China – sequence: 5 givenname: Yuanzhen surname: Wang fullname: Wang, Yuanzhen email: wangyz2005@163.com organization: School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28534577$$DView record in Pascal Francis | 
    
| BookMark | eNqFkTtLBDEQgIMoeD7-gNU2gs2uySbZbMTmEJ8ICmod5pLZM8c-ziSn-O_d47Sx0Gqa7xuY-fbIdj_0SMgRowWjrDpdFBg_oCgpEwXlBRV8i0xYrXheKc23yYRqqXLBlNglezEuKGWKUjUhd5dPj0_Ts2yaLQM6b5Mf-nwGEV0G7XwIPr12WTOELKaA0Pl-niXfYRYxeIzjmHfYJ1hrB2SngTbi4ffcJy9Xl88XN_n9w_XtxfQ-t1xXKeeKsxljTlioJSpk2jbSIoAFNdOyLGtOpQMhwdU1V6VUzmkBTuva0qZEvk9ONnuXYXhbYUym89Fi20KPwyoaVqnxZilL-T8qK8UYF7oa0eNvFKKFtgnQWx_NMvgOwqcpa8mFVGrk6g1nwxBjwMZYv7k_BfCtYdSsi5iFWRcx6yKGcjMWGdXyl_qz_U_pfCPh-NJ3j8FE67G3Y6yANhk3-L_0L8ROpks | 
    
| CitedBy_id | crossref_primary_10_1016_j_eswa_2022_117302 crossref_primary_10_1155_2014_845807 crossref_primary_10_1007_s12667_018_0300_1 crossref_primary_10_1016_j_cie_2019_02_029 crossref_primary_10_1016_j_asoc_2015_09_054 crossref_primary_10_1016_j_eswa_2015_09_030 crossref_primary_10_1016_j_eswa_2015_01_026 crossref_primary_10_1016_j_renene_2018_08_092 crossref_primary_10_3390_info14050258 crossref_primary_10_1109_ACCESS_2018_2828320 crossref_primary_10_3390_app9153143 crossref_primary_10_1007_s10586_020_03050_0  | 
    
| Cites_doi | 10.1109/TPAMI.2010.44 10.1109/TKDE.2007.190666 10.1016/j.eswa.2011.02.079 10.1016/0031-3203(95)00052-6 10.1049/cp:19991109 10.1109/TKDE.2008.29 10.1360/aas-007-0197  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS  | 
    
| Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS  | 
    
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.eswa.2014.03.043 | 
    
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science Mathematics Applied Sciences Statistics  | 
    
| EISSN | 1873-6793 | 
    
| EndPage | 6105 | 
    
| ExternalDocumentID | 28534577 10_1016_j_eswa_2014_03_043 S095741741400181X  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c396t-3731b11d4ca85e7e19cf5ceaaca7b95228305da45ad8837257dd94ad998c0f2e3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0957-4174 | 
    
| IngestDate | Wed Oct 01 13:49:54 EDT 2025 Mon Sep 29 06:21:43 EDT 2025 Wed Apr 02 08:10:22 EDT 2025 Thu Apr 24 23:05:58 EDT 2025 Wed Oct 01 03:51:42 EDT 2025 Fri Feb 23 02:29:05 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 14 | 
    
| Keywords | Exponential smoothing Streaming time series Segmentation Sliding window Streaming Smoothing methods Statistical analysis Error estimation Time series Algorithmics Cluster Data mining Data smoothing Modeling Data flow Compression ratio Efficiency Classification NP hard problem Exponential time Indexing  | 
    
| Language | English | 
    
| License | CC BY 4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c396t-3731b11d4ca85e7e19cf5ceaaca7b95228305da45ad8837257dd94ad998c0f2e3 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2  | 
    
| PQID | 1567113496 | 
    
| PQPubID | 23500 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | proquest_miscellaneous_1677935525 proquest_miscellaneous_1567113496 pascalfrancis_primary_28534577 crossref_citationtrail_10_1016_j_eswa_2014_03_043 crossref_primary_10_1016_j_eswa_2014_03_043 elsevier_sciencedirect_doi_10_1016_j_eswa_2014_03_043  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-10-15 | 
    
| PublicationDateYYYYMMDD | 2014-10-15 | 
    
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationTitle | Expert systems with applications | 
    
| PublicationYear | 2014 | 
    
| Publisher | Elsevier Ltd Elsevier  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier  | 
    
| References | Mori, Nejigane, Shimosaka (b0075) 2005 Keogh, Smyth (b0050) 1997 Liu, Lin, Wang (b0070) 2008; 20 Keogh, Selina, David (b0045) 2001 Frantti, Koivula (b0025) 2011; 38 Kohlmorgen, J., Lemm, S., & Muller, K. R., et al. (1999). Fast change point detection in switching dynamics using a hidden markov model of prediction experts. In Koski, Juhola, Meriste (b0060) 1995; 28 Bowerman, O’Connell (b0010) 2010 (pp. 204–209). Edinburgh, UK. Vullings, Verhaegen, Verbruggen (b0090) 1997 Keogh, Lin, Fu (b0040) 2005 Yan, Xia (b0110) 2010; 38 Bu, Chen, Fu (b0020) 2009 Wu, Salzberg, Zhang (b0105) 2004 Brown (b0015) 2004 Gionis, A., & Mannila, H. (2005). Segmentation algorithms for time series and sequence data. In Lian, Chen (b0065) 2008; 20 1–114. Zhang, Kao, Cheung (b0120) 2007; 1 Park, Kim, Chu (b0080) 2001 Yi, Sidiropoulos, Johnson (b0115) 2000 Fuchs, Gruber, Nitschke (b0030) 2010; 32 Shatkay, Zdonik (b0085) 1996 Babcock, Bahu, Datar (b0005) 2002 Wang, Zhou, Xu (b0095) 2007; 33 Wu, Ke, Yu (b0100) 2010 Bu (10.1016/j.eswa.2014.03.043_b0020) 2009 Keogh (10.1016/j.eswa.2014.03.043_b0050) 1997 Wu (10.1016/j.eswa.2014.03.043_b0105) 2004 Keogh (10.1016/j.eswa.2014.03.043_b0040) 2005 Keogh (10.1016/j.eswa.2014.03.043_b0045) 2001 10.1016/j.eswa.2014.03.043_b0055 Brown (10.1016/j.eswa.2014.03.043_b0015) 2004 Babcock (10.1016/j.eswa.2014.03.043_b0005) 2002 Yan (10.1016/j.eswa.2014.03.043_b0110) 2010; 38 Liu (10.1016/j.eswa.2014.03.043_b0070) 2008; 20 Zhang (10.1016/j.eswa.2014.03.043_b0120) 2007; 1 Fuchs (10.1016/j.eswa.2014.03.043_b0030) 2010; 32 Lian (10.1016/j.eswa.2014.03.043_b0065) 2008; 20 Frantti (10.1016/j.eswa.2014.03.043_b0025) 2011; 38 Koski (10.1016/j.eswa.2014.03.043_b0060) 1995; 28 Shatkay (10.1016/j.eswa.2014.03.043_b0085) 1996 Wang (10.1016/j.eswa.2014.03.043_b0095) 2007; 33 Vullings (10.1016/j.eswa.2014.03.043_b0090) 1997 Bowerman (10.1016/j.eswa.2014.03.043_b0010) 2010 Mori (10.1016/j.eswa.2014.03.043_b0075) 2005 10.1016/j.eswa.2014.03.043_b0035 Wu (10.1016/j.eswa.2014.03.043_b0100) 2010 Yi (10.1016/j.eswa.2014.03.043_b0115) 2000 Park (10.1016/j.eswa.2014.03.043_b0080) 2001  | 
    
| References_xml | – start-page: 13 year: 2000 end-page: 22 ident: b0115 article-title: Online data mining for co-evolving time sequence publication-title: Proceedings of international conference on data engineering, San Diego, California, USA, 2000 – start-page: 248 year: 2001 end-page: 252 ident: b0080 article-title: Segment-based approach for subsequence searches in sequence databases publication-title: Proceedings of the 16th ACM symposium on applied computing, Las Vegas, Nevada, USA, 2001 – volume: 38 start-page: 10188 year: 2011 end-page: 10198 ident: b0025 article-title: Fuzzy package size control for delay sensitive traffic in ad hoc networks publication-title: Expert Systems with Applications – year: 2010 ident: b0010 article-title: Business statistics in practice – volume: 32 start-page: 2232 year: 2010 end-page: 2245 ident: b0030 article-title: Online segmentation of time series based on polynomial least-squares approximations publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 33 start-page: 197 year: 2007 end-page: 201 ident: b0095 article-title: An adaptive forecasting method for time-series data streams publication-title: Acta Automatica Sinica – reference: , 1–114. – start-page: 226 year: 2005 end-page: 233 ident: b0040 article-title: HOT SAX: Efficiently finding the most unusual time series subsequence publication-title: ICDM, Houston, Texas, 2005 – volume: 1 start-page: 1 year: 2007 end-page: 39 ident: b0120 article-title: Mining periodic patterns with gap requirement for sequences publication-title: ACM Transaction on Knowledge Discovery from Data – start-page: 1 year: 2002 end-page: 16 ident: b0005 article-title: Models and issues in data stream systems publication-title: Proceedings of 21st ACM symposium on principles of database systems, New York, USA, 2002 – start-page: 159 year: 2009 end-page: 168 ident: b0020 article-title: Efficient anomaly monitoring over moving object trajectory streams publication-title: Proceedings of ACM SIGKDD, Paris, France, 2009 – start-page: 352 year: 2010 end-page: 367 ident: b0100 article-title: Detecting leaders from correlated time series publication-title: Proceedings of DASFAA, Tsukuba, Japan, 2010 – start-page: 419 year: 1997 end-page: 429 ident: b0050 article-title: A probabilistic approach to fast pattern matching in time series databases publication-title: Proceedings of third International Conference on Knowledge Discovery and Data Mining, Newport Beach, CA, USA, 1997 – start-page: 23 year: 2004 end-page: 34 ident: b0105 article-title: Online event-driven subsequence matching over financial data streams publication-title: Proceedings of ACM SIGMOD, Paris, France, 2004 – volume: 28 start-page: 1927 year: 1995 end-page: 1940 ident: b0060 article-title: Syntactic recognition of ecg signals by attributed finite automata publication-title: Pattern Recognition – start-page: 536 year: 1996 end-page: 545 ident: b0085 article-title: Approximate queries and representations for large data sequences publication-title: Proceedings of the 12th International Conference on Data Engineering, New Orleans, Louisiana, 1996 – reference: (pp. 204–209). Edinburgh, UK. – volume: 20 start-page: 1616 year: 2008 end-page: 1626 ident: b0070 article-title: Novel online methods for time series segmentation publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: Gionis, A., & Mannila, H. (2005). Segmentation algorithms for time series and sequence data. In – start-page: 289 year: 2001 end-page: 296 ident: b0045 article-title: An online algorithm for segmenting time series publication-title: ICDM, CA, USA, 2001 – volume: 38 start-page: 443 year: 2010 end-page: 448 ident: b0110 article-title: A piecewise linear fitting algorithm for infinite time series publication-title: Acta Electronica Sinica – reference: Kohlmorgen, J., Lemm, S., & Muller, K. R., et al. (1999). Fast change point detection in switching dynamics using a hidden markov model of prediction experts. In – start-page: 275 year: 1997 end-page: 285 ident: b0090 article-title: ECG segmentation using time-warping publication-title: Proceedings of the second international symposium on intelligent data analysis, London, UK, 1997 – volume: 20 start-page: 40 year: 2008 end-page: 54 ident: b0065 article-title: Efficient similarity search over future stream time series publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 2856 year: 2005 end-page: 2863 ident: b0075 article-title: Online recognition and segmentation for time-series motion with HMM and conceptual relation of actions publication-title: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, Alberta, Canada, 2005 – year: 2004 ident: b0015 article-title: Smoothing, forecasting and prediction of discrete time series – volume: 32 start-page: 2232 issue: 12 year: 2010 ident: 10.1016/j.eswa.2014.03.043_b0030 article-title: Online segmentation of time series based on polynomial least-squares approximations publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2010.44 – start-page: 1 year: 2002 ident: 10.1016/j.eswa.2014.03.043_b0005 article-title: Models and issues in data stream systems – volume: 20 start-page: 40 issue: 1 year: 2008 ident: 10.1016/j.eswa.2014.03.043_b0065 article-title: Efficient similarity search over future stream time series publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2007.190666 – start-page: 352 year: 2010 ident: 10.1016/j.eswa.2014.03.043_b0100 article-title: Detecting leaders from correlated time series – volume: 38 start-page: 10188 issue: 8 year: 2011 ident: 10.1016/j.eswa.2014.03.043_b0025 article-title: Fuzzy package size control for delay sensitive traffic in ad hoc networks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.02.079 – volume: 28 start-page: 1927 issue: 12 year: 1995 ident: 10.1016/j.eswa.2014.03.043_b0060 article-title: Syntactic recognition of ecg signals by attributed finite automata publication-title: Pattern Recognition doi: 10.1016/0031-3203(95)00052-6 – start-page: 536 year: 1996 ident: 10.1016/j.eswa.2014.03.043_b0085 article-title: Approximate queries and representations for large data sequences – ident: 10.1016/j.eswa.2014.03.043_b0055 doi: 10.1049/cp:19991109 – start-page: 289 year: 2001 ident: 10.1016/j.eswa.2014.03.043_b0045 article-title: An online algorithm for segmenting time series – ident: 10.1016/j.eswa.2014.03.043_b0035 – volume: 20 start-page: 1616 issue: 12 year: 2008 ident: 10.1016/j.eswa.2014.03.043_b0070 article-title: Novel online methods for time series segmentation publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2008.29 – start-page: 2856 year: 2005 ident: 10.1016/j.eswa.2014.03.043_b0075 article-title: Online recognition and segmentation for time-series motion with HMM and conceptual relation of actions – start-page: 419 year: 1997 ident: 10.1016/j.eswa.2014.03.043_b0050 article-title: A probabilistic approach to fast pattern matching in time series databases – volume: 38 start-page: 443 issue: 2 year: 2010 ident: 10.1016/j.eswa.2014.03.043_b0110 article-title: A piecewise linear fitting algorithm for infinite time series publication-title: Acta Electronica Sinica – start-page: 159 year: 2009 ident: 10.1016/j.eswa.2014.03.043_b0020 article-title: Efficient anomaly monitoring over moving object trajectory streams – volume: 33 start-page: 197 issue: 2 year: 2007 ident: 10.1016/j.eswa.2014.03.043_b0095 article-title: An adaptive forecasting method for time-series data streams publication-title: Acta Automatica Sinica doi: 10.1360/aas-007-0197 – year: 2004 ident: 10.1016/j.eswa.2014.03.043_b0015 – start-page: 23 year: 2004 ident: 10.1016/j.eswa.2014.03.043_b0105 article-title: Online event-driven subsequence matching over financial data streams – start-page: 275 year: 1997 ident: 10.1016/j.eswa.2014.03.043_b0090 article-title: ECG segmentation using time-warping – volume: 1 start-page: 1 issue: 2 year: 2007 ident: 10.1016/j.eswa.2014.03.043_b0120 article-title: Mining periodic patterns with gap requirement for sequences publication-title: ACM Transaction on Knowledge Discovery from Data – year: 2010 ident: 10.1016/j.eswa.2014.03.043_b0010 – start-page: 226 year: 2005 ident: 10.1016/j.eswa.2014.03.043_b0040 article-title: HOT SAX: Efficiently finding the most unusual time series subsequence – start-page: 248 year: 2001 ident: 10.1016/j.eswa.2014.03.043_b0080 article-title: Segment-based approach for subsequence searches in sequence databases – start-page: 13 year: 2000 ident: 10.1016/j.eswa.2014.03.043_b0115 article-title: Online data mining for co-evolving time sequence  | 
    
| SSID | ssj0017007 | 
    
| Score | 2.2007458 | 
    
| Snippet | •We propose exponential smoothing prediction-based segmentation algorithm.•The single exponential smoothing method is used to predict future data elements.•The... Streaming time series segmentation is one of the major problems in streaming time series mining, which can create the high-level representation of streaming...  | 
    
| SourceID | proquest pascalfrancis crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 6098 | 
    
| SubjectTerms | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Computational efficiency Computer science; control theory; systems Computing time Data processing. List processing. Character string processing Error analysis Exact sciences and technology Exponential smoothing Inference from stochastic processes; time series analysis Mathematical models Mathematics Memory organisation. Data processing Probability and statistics Sciences and techniques of general use Segmentation Sliding window Smoothing Software Statistics Streaming time series Theoretical computing Time series  | 
    
| Title | ESPSA: A prediction-based algorithm for streaming time series segmentation | 
    
| URI | https://dx.doi.org/10.1016/j.eswa.2014.03.043 https://www.proquest.com/docview/1567113496 https://www.proquest.com/docview/1677935525  | 
    
| Volume | 41 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelfSmMbe02lnUNKuxtuIlkyYr2FkpL1tEySAt5E_pyl9E4IUnZW__23dlyoJTmoWAwNjIWd7oPobvfj5BvnnutVa4zFyXPhC5C5lyZZ9IFSJdDsDpgc_LVdTG6FZcTOdkhZ20vDJZVJt_f-PTaW6c3vSTN3mI67Y0hOYBwCJdAZjk2wQ52oZDF4PRxU-aB8HOqwdtTGY5OjTNNjVdc_UPsISZqoFORvxSc3izsCkRWNlwXz9x2HYsu3pO3KYmkw2aeB2QnVofkXUvQQJO9fiCX5-Pf4-EPOqSLJR7IoBIyjFuB2vu7-XK6_jOjkLVS7BixM4hiFLnmKS7LuILb3Sy1JlUfye3F-c3ZKEvkCZnPdbEGx5Ezx1gQ3g5kVJFpX0ofrfVWOS1r4C8ZrJA2DGCTCpYbghY2wPbL90se809kt5pX8TOhbBDBULkPvnQCW7XKwsWCl9xz29dlv0NYKzXjE7I4Elzcm7aE7K9BSRuUtOnnBiTdId833ywaXI2to2WrDPNkdRhw_Fu_6z7R3OZXHLIUIZXqkJNWlQbsCg9LbBXnDysD-1rFELux2DKmUArx6bn88soJHpF9fMJgyORXsrtePsRjyHLWrlsv4y7ZG_78Nbr-D8VI_OA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdd-7DB2LpuZdlHp0LfhpdIlqxob6G0ZF1bCmkhb0JfblMaJyQpe9vfvjtbDpSxPAwMBkvC4k73he5-R8iR515rlevMRckzoYuQOVfmmXQB3OUQrA5YnHxxWQxvxNlYjrfIcVsLg2mVSfc3Or3W1ulLN1GzO59MuiNwDsAcwiOwsxwbPyM7QnKFEdi33-s8D8SfUw3gnspweqqcaZK84vIXgg8xUSOdivxf1unl3C6BZmXT7OIvvV0bo9Nd8ip5kXTQbPQN2YrVHnnddmigSWDfkrOT0dVo8J0O6HyBNzLIhQwNV6D24Xa2mKzuphTcVoolI3YKZoxis3mK5zIu4XU7TbVJ1Ttyc3pyfTzMUveEzOe6WIHmyJljLAhv-zKqyLQvpY_WequcljXylwxWSBv6EKWC6IaghQ0Qf_leyWO-T7arWRXfE8r6ESSV--BLJ7BWqyxcLHjJPbc9XfY6hLVUMz5Bi2OHiwfT5pDdG6S0QUqbXm6A0h3ydb1m3gBrbJwtW2aYJ8fDgObfuO7gCefWv-LgpgipVIcctqw0IFh4W2KrOHtcGghsFUPwxmLDnEIpBKjn8sN_bvALeT68vjg35z8uf34kL3AELSOTn8j2avEYP4PLs3IH9ZH-A5XM_nU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ESPSA%3A+A+prediction-based+algorithm+for+streaming+time+series+segmentation&rft.jtitle=Expert+systems+with+applications&rft.au=Li%2C+Guiling&rft.au=Cai%2C+Zhihua&rft.au=Kang%2C+Xiaojun&rft.au=Wu%2C+Zongda&rft.date=2014-10-15&rft.issn=0957-4174&rft.volume=41&rft.issue=14&rft.spage=6098&rft.epage=6105&rft_id=info:doi/10.1016%2Fj.eswa.2014.03.043&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |