ESPSA: A prediction-based algorithm for streaming time series segmentation

•We propose exponential smoothing prediction-based segmentation algorithm.•The single exponential smoothing method is used to predict future data elements.•The prediction error criterion is proposed to determine segmenting key points.•The experiments demonstrate the effectiveness and efficiency of t...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 41; no. 14; pp. 6098 - 6105
Main Authors Li, Guiling, Cai, Zhihua, Kang, Xiaojun, Wu, Zongda, Wang, Yuanzhen
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 15.10.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2014.03.043

Cover

Abstract •We propose exponential smoothing prediction-based segmentation algorithm.•The single exponential smoothing method is used to predict future data elements.•The prediction error criterion is proposed to determine segmenting key points.•The experiments demonstrate the effectiveness and efficiency of the proposed algorithm. Streaming time series segmentation is one of the major problems in streaming time series mining, which can create the high-level representation of streaming time series, and thus can provide important supports for many time series mining tasks, such as indexing, clustering, classification, and discord discovery. However, the data elements in streaming time series, which usually arrive online, are fast-changing and unbounded in size, consequently, leading to a higher requirement for the computing efficiency of time series segmentation. Thus, it is a challenging task how to segment streaming time series accurately under the constraint of computing efficiency. In this paper, we propose exponential smoothing prediction-based segmentation algorithm (ESPSA). The proposed algorithm is developed based on a sliding window model, and uses the typical exponential smoothing method to calculate the smoothing value of arrived data element of streaming time series as the prediction value of the future data. Besides, to determine whether a data element is a segmenting key point, we study the statistical characteristics of the prediction error and then deduce the relationship between the prediction error and the compression rate. The extensive experiments on both synthetic and real datasets demonstrate that the proposed algorithm can segment streaming time series effectively and efficiently. More importantly, compared with candidate algorithms, the proposed algorithm can reduce the computing time by orders of magnitude.
AbstractList Streaming time series segmentation is one of the major problems in streaming time series mining, which can create the high-level representation of streaming time series, and thus can provide important supports for many time series mining tasks, such as indexing, clustering, classification, and discord discovery. However, the data elements in streaming time series, which usually arrive online, are fast-changing and unbounded in size, consequently, leading to a higher requirement for the computing efficiency of time series segmentation. Thus, it is a challenging task how to segment streaming time series accurately under the constraint of computing efficiency. In this paper, we propose exponential smoothing prediction-based segmentation algorithm (ESPSA). The proposed algorithm is developed based on a sliding window model, and uses the typical exponential smoothing method to calculate the smoothing value of arrived data element of streaming time series as the prediction value of the future data. Besides, to determine whether a data element is a segmenting key point, we study the statistical characteristics of the prediction error and then deduce the relationship between the prediction error and the compression rate. The extensive experiments on both synthetic and real datasets demonstrate that the proposed algorithm can segment streaming time series effectively and efficiently. More importantly, compared with candidate algorithms, the proposed algorithm can reduce the computing time by orders of magnitude.
•We propose exponential smoothing prediction-based segmentation algorithm.•The single exponential smoothing method is used to predict future data elements.•The prediction error criterion is proposed to determine segmenting key points.•The experiments demonstrate the effectiveness and efficiency of the proposed algorithm. Streaming time series segmentation is one of the major problems in streaming time series mining, which can create the high-level representation of streaming time series, and thus can provide important supports for many time series mining tasks, such as indexing, clustering, classification, and discord discovery. However, the data elements in streaming time series, which usually arrive online, are fast-changing and unbounded in size, consequently, leading to a higher requirement for the computing efficiency of time series segmentation. Thus, it is a challenging task how to segment streaming time series accurately under the constraint of computing efficiency. In this paper, we propose exponential smoothing prediction-based segmentation algorithm (ESPSA). The proposed algorithm is developed based on a sliding window model, and uses the typical exponential smoothing method to calculate the smoothing value of arrived data element of streaming time series as the prediction value of the future data. Besides, to determine whether a data element is a segmenting key point, we study the statistical characteristics of the prediction error and then deduce the relationship between the prediction error and the compression rate. The extensive experiments on both synthetic and real datasets demonstrate that the proposed algorithm can segment streaming time series effectively and efficiently. More importantly, compared with candidate algorithms, the proposed algorithm can reduce the computing time by orders of magnitude.
Author Li, Guiling
Kang, Xiaojun
Cai, Zhihua
Wang, Yuanzhen
Wu, Zongda
Author_xml – sequence: 1
  givenname: Guiling
  surname: Li
  fullname: Li, Guiling
  email: guiling@cug.edu.cn
  organization: School of Computer Science, China University of Geosciences, Wuhan 430074, China
– sequence: 2
  givenname: Zhihua
  surname: Cai
  fullname: Cai, Zhihua
  email: zhcai@cug.edu.cn
  organization: School of Computer Science, China University of Geosciences, Wuhan 430074, China
– sequence: 3
  givenname: Xiaojun
  surname: Kang
  fullname: Kang, Xiaojun
  email: xj_kang@126.com
  organization: School of Computer Science, China University of Geosciences, Wuhan 430074, China
– sequence: 4
  givenname: Zongda
  surname: Wu
  fullname: Wu, Zongda
  email: zongda1983@163.com
  organization: Oujiang College, Wenzhou University, Wenzhou 325035, China
– sequence: 5
  givenname: Yuanzhen
  surname: Wang
  fullname: Wang, Yuanzhen
  email: wangyz2005@163.com
  organization: School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28534577$$DView record in Pascal Francis
BookMark eNqFkTtLBDEQgIMoeD7-gNU2gs2uySbZbMTmEJ8ICmod5pLZM8c-ziSn-O_d47Sx0Gqa7xuY-fbIdj_0SMgRowWjrDpdFBg_oCgpEwXlBRV8i0xYrXheKc23yYRqqXLBlNglezEuKGWKUjUhd5dPj0_Ts2yaLQM6b5Mf-nwGEV0G7XwIPr12WTOELKaA0Pl-niXfYRYxeIzjmHfYJ1hrB2SngTbi4ffcJy9Xl88XN_n9w_XtxfQ-t1xXKeeKsxljTlioJSpk2jbSIoAFNdOyLGtOpQMhwdU1V6VUzmkBTuva0qZEvk9ONnuXYXhbYUym89Fi20KPwyoaVqnxZilL-T8qK8UYF7oa0eNvFKKFtgnQWx_NMvgOwqcpa8mFVGrk6g1nwxBjwMZYv7k_BfCtYdSsi5iFWRcx6yKGcjMWGdXyl_qz_U_pfCPh-NJ3j8FE67G3Y6yANhk3-L_0L8ROpks
CitedBy_id crossref_primary_10_1016_j_eswa_2022_117302
crossref_primary_10_1155_2014_845807
crossref_primary_10_1007_s12667_018_0300_1
crossref_primary_10_1016_j_cie_2019_02_029
crossref_primary_10_1016_j_asoc_2015_09_054
crossref_primary_10_1016_j_eswa_2015_09_030
crossref_primary_10_1016_j_eswa_2015_01_026
crossref_primary_10_1016_j_renene_2018_08_092
crossref_primary_10_3390_info14050258
crossref_primary_10_1109_ACCESS_2018_2828320
crossref_primary_10_3390_app9153143
crossref_primary_10_1007_s10586_020_03050_0
Cites_doi 10.1109/TPAMI.2010.44
10.1109/TKDE.2007.190666
10.1016/j.eswa.2011.02.079
10.1016/0031-3203(95)00052-6
10.1049/cp:19991109
10.1109/TKDE.2008.29
10.1360/aas-007-0197
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2014.03.043
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
Applied Sciences
Statistics
EISSN 1873-6793
EndPage 6105
ExternalDocumentID 28534577
10_1016_j_eswa_2014_03_043
S095741741400181X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c396t-3731b11d4ca85e7e19cf5ceaaca7b95228305da45ad8837257dd94ad998c0f2e3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Wed Oct 01 13:49:54 EDT 2025
Mon Sep 29 06:21:43 EDT 2025
Wed Apr 02 08:10:22 EDT 2025
Thu Apr 24 23:05:58 EDT 2025
Wed Oct 01 03:51:42 EDT 2025
Fri Feb 23 02:29:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Exponential smoothing
Streaming time series
Segmentation
Sliding window
Streaming
Smoothing methods
Statistical analysis
Error estimation
Time series
Algorithmics
Cluster
Data mining
Data smoothing
Modeling
Data flow
Compression ratio
Efficiency
Classification
NP hard problem
Exponential time
Indexing
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-3731b11d4ca85e7e19cf5ceaaca7b95228305da45ad8837257dd94ad998c0f2e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1567113496
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1677935525
proquest_miscellaneous_1567113496
pascalfrancis_primary_28534577
crossref_citationtrail_10_1016_j_eswa_2014_03_043
crossref_primary_10_1016_j_eswa_2014_03_043
elsevier_sciencedirect_doi_10_1016_j_eswa_2014_03_043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-15
PublicationDateYYYYMMDD 2014-10-15
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Mori, Nejigane, Shimosaka (b0075) 2005
Keogh, Smyth (b0050) 1997
Liu, Lin, Wang (b0070) 2008; 20
Keogh, Selina, David (b0045) 2001
Frantti, Koivula (b0025) 2011; 38
Kohlmorgen, J., Lemm, S., & Muller, K. R., et al. (1999). Fast change point detection in switching dynamics using a hidden markov model of prediction experts. In
Koski, Juhola, Meriste (b0060) 1995; 28
Bowerman, O’Connell (b0010) 2010
(pp. 204–209). Edinburgh, UK.
Vullings, Verhaegen, Verbruggen (b0090) 1997
Keogh, Lin, Fu (b0040) 2005
Yan, Xia (b0110) 2010; 38
Bu, Chen, Fu (b0020) 2009
Wu, Salzberg, Zhang (b0105) 2004
Brown (b0015) 2004
Gionis, A., & Mannila, H. (2005). Segmentation algorithms for time series and sequence data. In
Lian, Chen (b0065) 2008; 20
1–114.
Zhang, Kao, Cheung (b0120) 2007; 1
Park, Kim, Chu (b0080) 2001
Yi, Sidiropoulos, Johnson (b0115) 2000
Fuchs, Gruber, Nitschke (b0030) 2010; 32
Shatkay, Zdonik (b0085) 1996
Babcock, Bahu, Datar (b0005) 2002
Wang, Zhou, Xu (b0095) 2007; 33
Wu, Ke, Yu (b0100) 2010
Bu (10.1016/j.eswa.2014.03.043_b0020) 2009
Keogh (10.1016/j.eswa.2014.03.043_b0050) 1997
Wu (10.1016/j.eswa.2014.03.043_b0105) 2004
Keogh (10.1016/j.eswa.2014.03.043_b0040) 2005
Keogh (10.1016/j.eswa.2014.03.043_b0045) 2001
10.1016/j.eswa.2014.03.043_b0055
Brown (10.1016/j.eswa.2014.03.043_b0015) 2004
Babcock (10.1016/j.eswa.2014.03.043_b0005) 2002
Yan (10.1016/j.eswa.2014.03.043_b0110) 2010; 38
Liu (10.1016/j.eswa.2014.03.043_b0070) 2008; 20
Zhang (10.1016/j.eswa.2014.03.043_b0120) 2007; 1
Fuchs (10.1016/j.eswa.2014.03.043_b0030) 2010; 32
Lian (10.1016/j.eswa.2014.03.043_b0065) 2008; 20
Frantti (10.1016/j.eswa.2014.03.043_b0025) 2011; 38
Koski (10.1016/j.eswa.2014.03.043_b0060) 1995; 28
Shatkay (10.1016/j.eswa.2014.03.043_b0085) 1996
Wang (10.1016/j.eswa.2014.03.043_b0095) 2007; 33
Vullings (10.1016/j.eswa.2014.03.043_b0090) 1997
Bowerman (10.1016/j.eswa.2014.03.043_b0010) 2010
Mori (10.1016/j.eswa.2014.03.043_b0075) 2005
10.1016/j.eswa.2014.03.043_b0035
Wu (10.1016/j.eswa.2014.03.043_b0100) 2010
Yi (10.1016/j.eswa.2014.03.043_b0115) 2000
Park (10.1016/j.eswa.2014.03.043_b0080) 2001
References_xml – start-page: 13
  year: 2000
  end-page: 22
  ident: b0115
  article-title: Online data mining for co-evolving time sequence
  publication-title: Proceedings of international conference on data engineering, San Diego, California, USA, 2000
– start-page: 248
  year: 2001
  end-page: 252
  ident: b0080
  article-title: Segment-based approach for subsequence searches in sequence databases
  publication-title: Proceedings of the 16th ACM symposium on applied computing, Las Vegas, Nevada, USA, 2001
– volume: 38
  start-page: 10188
  year: 2011
  end-page: 10198
  ident: b0025
  article-title: Fuzzy package size control for delay sensitive traffic in ad hoc networks
  publication-title: Expert Systems with Applications
– year: 2010
  ident: b0010
  article-title: Business statistics in practice
– volume: 32
  start-page: 2232
  year: 2010
  end-page: 2245
  ident: b0030
  article-title: Online segmentation of time series based on polynomial least-squares approximations
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 33
  start-page: 197
  year: 2007
  end-page: 201
  ident: b0095
  article-title: An adaptive forecasting method for time-series data streams
  publication-title: Acta Automatica Sinica
– reference: , 1–114.
– start-page: 226
  year: 2005
  end-page: 233
  ident: b0040
  article-title: HOT SAX: Efficiently finding the most unusual time series subsequence
  publication-title: ICDM, Houston, Texas, 2005
– volume: 1
  start-page: 1
  year: 2007
  end-page: 39
  ident: b0120
  article-title: Mining periodic patterns with gap requirement for sequences
  publication-title: ACM Transaction on Knowledge Discovery from Data
– start-page: 1
  year: 2002
  end-page: 16
  ident: b0005
  article-title: Models and issues in data stream systems
  publication-title: Proceedings of 21st ACM symposium on principles of database systems, New York, USA, 2002
– start-page: 159
  year: 2009
  end-page: 168
  ident: b0020
  article-title: Efficient anomaly monitoring over moving object trajectory streams
  publication-title: Proceedings of ACM SIGKDD, Paris, France, 2009
– start-page: 352
  year: 2010
  end-page: 367
  ident: b0100
  article-title: Detecting leaders from correlated time series
  publication-title: Proceedings of DASFAA, Tsukuba, Japan, 2010
– start-page: 419
  year: 1997
  end-page: 429
  ident: b0050
  article-title: A probabilistic approach to fast pattern matching in time series databases
  publication-title: Proceedings of third International Conference on Knowledge Discovery and Data Mining, Newport Beach, CA, USA, 1997
– start-page: 23
  year: 2004
  end-page: 34
  ident: b0105
  article-title: Online event-driven subsequence matching over financial data streams
  publication-title: Proceedings of ACM SIGMOD, Paris, France, 2004
– volume: 28
  start-page: 1927
  year: 1995
  end-page: 1940
  ident: b0060
  article-title: Syntactic recognition of ecg signals by attributed finite automata
  publication-title: Pattern Recognition
– start-page: 536
  year: 1996
  end-page: 545
  ident: b0085
  article-title: Approximate queries and representations for large data sequences
  publication-title: Proceedings of the 12th International Conference on Data Engineering, New Orleans, Louisiana, 1996
– reference: (pp. 204–209). Edinburgh, UK.
– volume: 20
  start-page: 1616
  year: 2008
  end-page: 1626
  ident: b0070
  article-title: Novel online methods for time series segmentation
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: Gionis, A., & Mannila, H. (2005). Segmentation algorithms for time series and sequence data. In
– start-page: 289
  year: 2001
  end-page: 296
  ident: b0045
  article-title: An online algorithm for segmenting time series
  publication-title: ICDM, CA, USA, 2001
– volume: 38
  start-page: 443
  year: 2010
  end-page: 448
  ident: b0110
  article-title: A piecewise linear fitting algorithm for infinite time series
  publication-title: Acta Electronica Sinica
– reference: Kohlmorgen, J., Lemm, S., & Muller, K. R., et al. (1999). Fast change point detection in switching dynamics using a hidden markov model of prediction experts. In
– start-page: 275
  year: 1997
  end-page: 285
  ident: b0090
  article-title: ECG segmentation using time-warping
  publication-title: Proceedings of the second international symposium on intelligent data analysis, London, UK, 1997
– volume: 20
  start-page: 40
  year: 2008
  end-page: 54
  ident: b0065
  article-title: Efficient similarity search over future stream time series
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 2856
  year: 2005
  end-page: 2863
  ident: b0075
  article-title: Online recognition and segmentation for time-series motion with HMM and conceptual relation of actions
  publication-title: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, Alberta, Canada, 2005
– year: 2004
  ident: b0015
  article-title: Smoothing, forecasting and prediction of discrete time series
– volume: 32
  start-page: 2232
  issue: 12
  year: 2010
  ident: 10.1016/j.eswa.2014.03.043_b0030
  article-title: Online segmentation of time series based on polynomial least-squares approximations
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2010.44
– start-page: 1
  year: 2002
  ident: 10.1016/j.eswa.2014.03.043_b0005
  article-title: Models and issues in data stream systems
– volume: 20
  start-page: 40
  issue: 1
  year: 2008
  ident: 10.1016/j.eswa.2014.03.043_b0065
  article-title: Efficient similarity search over future stream time series
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2007.190666
– start-page: 352
  year: 2010
  ident: 10.1016/j.eswa.2014.03.043_b0100
  article-title: Detecting leaders from correlated time series
– volume: 38
  start-page: 10188
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2014.03.043_b0025
  article-title: Fuzzy package size control for delay sensitive traffic in ad hoc networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.02.079
– volume: 28
  start-page: 1927
  issue: 12
  year: 1995
  ident: 10.1016/j.eswa.2014.03.043_b0060
  article-title: Syntactic recognition of ecg signals by attributed finite automata
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(95)00052-6
– start-page: 536
  year: 1996
  ident: 10.1016/j.eswa.2014.03.043_b0085
  article-title: Approximate queries and representations for large data sequences
– ident: 10.1016/j.eswa.2014.03.043_b0055
  doi: 10.1049/cp:19991109
– start-page: 289
  year: 2001
  ident: 10.1016/j.eswa.2014.03.043_b0045
  article-title: An online algorithm for segmenting time series
– ident: 10.1016/j.eswa.2014.03.043_b0035
– volume: 20
  start-page: 1616
  issue: 12
  year: 2008
  ident: 10.1016/j.eswa.2014.03.043_b0070
  article-title: Novel online methods for time series segmentation
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2008.29
– start-page: 2856
  year: 2005
  ident: 10.1016/j.eswa.2014.03.043_b0075
  article-title: Online recognition and segmentation for time-series motion with HMM and conceptual relation of actions
– start-page: 419
  year: 1997
  ident: 10.1016/j.eswa.2014.03.043_b0050
  article-title: A probabilistic approach to fast pattern matching in time series databases
– volume: 38
  start-page: 443
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2014.03.043_b0110
  article-title: A piecewise linear fitting algorithm for infinite time series
  publication-title: Acta Electronica Sinica
– start-page: 159
  year: 2009
  ident: 10.1016/j.eswa.2014.03.043_b0020
  article-title: Efficient anomaly monitoring over moving object trajectory streams
– volume: 33
  start-page: 197
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2014.03.043_b0095
  article-title: An adaptive forecasting method for time-series data streams
  publication-title: Acta Automatica Sinica
  doi: 10.1360/aas-007-0197
– year: 2004
  ident: 10.1016/j.eswa.2014.03.043_b0015
– start-page: 23
  year: 2004
  ident: 10.1016/j.eswa.2014.03.043_b0105
  article-title: Online event-driven subsequence matching over financial data streams
– start-page: 275
  year: 1997
  ident: 10.1016/j.eswa.2014.03.043_b0090
  article-title: ECG segmentation using time-warping
– volume: 1
  start-page: 1
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2014.03.043_b0120
  article-title: Mining periodic patterns with gap requirement for sequences
  publication-title: ACM Transaction on Knowledge Discovery from Data
– year: 2010
  ident: 10.1016/j.eswa.2014.03.043_b0010
– start-page: 226
  year: 2005
  ident: 10.1016/j.eswa.2014.03.043_b0040
  article-title: HOT SAX: Efficiently finding the most unusual time series subsequence
– start-page: 248
  year: 2001
  ident: 10.1016/j.eswa.2014.03.043_b0080
  article-title: Segment-based approach for subsequence searches in sequence databases
– start-page: 13
  year: 2000
  ident: 10.1016/j.eswa.2014.03.043_b0115
  article-title: Online data mining for co-evolving time sequence
SSID ssj0017007
Score 2.2007458
Snippet •We propose exponential smoothing prediction-based segmentation algorithm.•The single exponential smoothing method is used to predict future data elements.•The...
Streaming time series segmentation is one of the major problems in streaming time series mining, which can create the high-level representation of streaming...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6098
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Computational efficiency
Computer science; control theory; systems
Computing time
Data processing. List processing. Character string processing
Error analysis
Exact sciences and technology
Exponential smoothing
Inference from stochastic processes; time series analysis
Mathematical models
Mathematics
Memory organisation. Data processing
Probability and statistics
Sciences and techniques of general use
Segmentation
Sliding window
Smoothing
Software
Statistics
Streaming time series
Theoretical computing
Time series
Title ESPSA: A prediction-based algorithm for streaming time series segmentation
URI https://dx.doi.org/10.1016/j.eswa.2014.03.043
https://www.proquest.com/docview/1567113496
https://www.proquest.com/docview/1677935525
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelfSmMbe02lnUNKuxtuIlkyYr2FkpL1tEySAt5E_pyl9E4IUnZW__23dlyoJTmoWAwNjIWd7oPobvfj5BvnnutVa4zFyXPhC5C5lyZZ9IFSJdDsDpgc_LVdTG6FZcTOdkhZ20vDJZVJt_f-PTaW6c3vSTN3mI67Y0hOYBwCJdAZjk2wQ52oZDF4PRxU-aB8HOqwdtTGY5OjTNNjVdc_UPsISZqoFORvxSc3izsCkRWNlwXz9x2HYsu3pO3KYmkw2aeB2QnVofkXUvQQJO9fiCX5-Pf4-EPOqSLJR7IoBIyjFuB2vu7-XK6_jOjkLVS7BixM4hiFLnmKS7LuILb3Sy1JlUfye3F-c3ZKEvkCZnPdbEGx5Ezx1gQ3g5kVJFpX0ofrfVWOS1r4C8ZrJA2DGCTCpYbghY2wPbL90se809kt5pX8TOhbBDBULkPvnQCW7XKwsWCl9xz29dlv0NYKzXjE7I4Elzcm7aE7K9BSRuUtOnnBiTdId833ywaXI2to2WrDPNkdRhw_Fu_6z7R3OZXHLIUIZXqkJNWlQbsCg9LbBXnDysD-1rFELux2DKmUArx6bn88soJHpF9fMJgyORXsrtePsRjyHLWrlsv4y7ZG_78Nbr-D8VI_OA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdd-7DB2LpuZdlHp0LfhpdIlqxob6G0ZF1bCmkhb0JfblMaJyQpe9vfvjtbDpSxPAwMBkvC4k73he5-R8iR515rlevMRckzoYuQOVfmmXQB3OUQrA5YnHxxWQxvxNlYjrfIcVsLg2mVSfc3Or3W1ulLN1GzO59MuiNwDsAcwiOwsxwbPyM7QnKFEdi33-s8D8SfUw3gnspweqqcaZK84vIXgg8xUSOdivxf1unl3C6BZmXT7OIvvV0bo9Nd8ip5kXTQbPQN2YrVHnnddmigSWDfkrOT0dVo8J0O6HyBNzLIhQwNV6D24Xa2mKzuphTcVoolI3YKZoxis3mK5zIu4XU7TbVJ1Ttyc3pyfTzMUveEzOe6WIHmyJljLAhv-zKqyLQvpY_WequcljXylwxWSBv6EKWC6IaghQ0Qf_leyWO-T7arWRXfE8r6ESSV--BLJ7BWqyxcLHjJPbc9XfY6hLVUMz5Bi2OHiwfT5pDdG6S0QUqbXm6A0h3ydb1m3gBrbJwtW2aYJ8fDgObfuO7gCefWv-LgpgipVIcctqw0IFh4W2KrOHtcGghsFUPwxmLDnEIpBKjn8sN_bvALeT68vjg35z8uf34kL3AELSOTn8j2avEYP4PLs3IH9ZH-A5XM_nU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ESPSA%3A+A+prediction-based+algorithm+for+streaming+time+series+segmentation&rft.jtitle=Expert+systems+with+applications&rft.au=Li%2C+Guiling&rft.au=Cai%2C+Zhihua&rft.au=Kang%2C+Xiaojun&rft.au=Wu%2C+Zongda&rft.date=2014-10-15&rft.issn=0957-4174&rft.volume=41&rft.issue=14&rft.spage=6098&rft.epage=6105&rft_id=info:doi/10.1016%2Fj.eswa.2014.03.043&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon