Clustering of web search results based on the cuckoo search algorithm and Balanced Bayesian Information Criterion
The clustering of web search results – or web document clustering – has become a very interesting research area among academic and scientific communities involved in information retrieval. Web search result clustering systems, also called Web Clustering Engines, seek to increase the coverage of docu...
Saved in:
| Published in | Information sciences Vol. 281; pp. 248 - 264 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
10.10.2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0020-0255 1872-6291 |
| DOI | 10.1016/j.ins.2014.05.047 |
Cover
| Abstract | The clustering of web search results – or web document clustering – has become a very interesting research area among academic and scientific communities involved in information retrieval. Web search result clustering systems, also called Web Clustering Engines, seek to increase the coverage of documents presented for the user to review, while reducing the time spent reviewing them. Several algorithms for clustering web results already exist, but results show room for more to be done. This paper introduces a new description-centric algorithm for the clustering of web results, called WDC-CSK, which is based on the cuckoo search meta-heuristic algorithm, k-means algorithm, Balanced Bayesian Information Criterion, split and merge methods on clusters, and frequent phrases approach for cluster labeling. The cuckoo search meta-heuristic provides a combined global and local search strategy in the solution space. Split and merge methods replace the original Lévy flights operation and try to improve existing solutions (nests), so they can be considered as local search methods. WDC-CSK includes an abandon operation that provides diversity and prevents the population nests from converging too quickly. Balanced Bayesian Information Criterion is used as a fitness function and allows defining the number of clusters automatically. WDC-CSK was tested with four data sets (DMOZ-50, AMBIENT, MORESQUE and ODP-239) over 447 queries. The algorithm was also compared against other established web document clustering algorithms, including Suffix Tree Clustering (STC), Lingo, and Bisecting k-means. The results show a considerable improvement upon the other algorithms as measured by recall, F-measure, fall-out, accuracy and SSLk. |
|---|---|
| AbstractList | The clustering of web search results – or web document clustering – has become a very interesting research area among academic and scientific communities involved in information retrieval. Web search result clustering systems, also called Web Clustering Engines, seek to increase the coverage of documents presented for the user to review, while reducing the time spent reviewing them. Several algorithms for clustering web results already exist, but results show room for more to be done. This paper introduces a new description-centric algorithm for the clustering of web results, called WDC-CSK, which is based on the cuckoo search meta-heuristic algorithm, k-means algorithm, Balanced Bayesian Information Criterion, split and merge methods on clusters, and frequent phrases approach for cluster labeling. The cuckoo search meta-heuristic provides a combined global and local search strategy in the solution space. Split and merge methods replace the original Lévy flights operation and try to improve existing solutions (nests), so they can be considered as local search methods. WDC-CSK includes an abandon operation that provides diversity and prevents the population nests from converging too quickly. Balanced Bayesian Information Criterion is used as a fitness function and allows defining the number of clusters automatically. WDC-CSK was tested with four data sets (DMOZ-50, AMBIENT, MORESQUE and ODP-239) over 447 queries. The algorithm was also compared against other established web document clustering algorithms, including Suffix Tree Clustering (STC), Lingo, and Bisecting k-means. The results show a considerable improvement upon the other algorithms as measured by recall, F-measure, fall-out, accuracy and SSLk. The clustering of web search results - or web document clustering - has become a very interesting research area among academic and scientific communities involved in information retrieval. Web search result clustering systems, also called Web Clustering Engines, seek to increase the coverage of documents presented for the user to review, while reducing the time spent reviewing them. Several algorithms for clustering web results already exist, but results show room for more to be done. This paper introduces a new description-centric algorithm for the clustering of web results, called WDC-CSK, which is based on the cuckoo search meta-heuristic algorithm, k-means algorithm, Balanced Bayesian Information Criterion, split and merge methods on clusters, and frequent phrases approach for cluster labeling. The cuckoo search meta-heuristic provides a combined global and local search strategy in the solution space. Split and merge methods replace the original Levy flights operation and try to improve existing solutions (nests), so they can be considered as local search methods. WDC-CSK includes an abandon operation that provides diversity and prevents the population nests from converging too quickly. Balanced Bayesian Information Criterion is used as a fitness function and allows defining the number of clusters automatically. WDC-CSK was tested with four data sets (DMOZ-50, AMBIENT, MORESQUE and ODP-239) over 447 queries. The algorithm was also compared against other established web document clustering algorithms, including Suffix Tree Clustering (STC), Lingo, and Bisecting k-means. The results show a considerable improvement upon the other algorithms as measured by recall, F-measure, fall-out, accuracy and SSL k . |
| Author | León, Elizabeth Herrera-Viedma, Enrique Urbano-Muñoz, Richar Cobos, Carlos Mendoza, Martha Muñoz-Collazos, Henry |
| Author_xml | – sequence: 1 givenname: Carlos orcidid: 0000-0002-6263-1911 surname: Cobos fullname: Cobos, Carlos email: ccobos@unicauca.edu.co organization: Information Technology Research Group (GTI) Members, Universidad del Cauca, Sector Tulcán Office 422 FIET, Popayán, Colombia – sequence: 2 givenname: Henry surname: Muñoz-Collazos fullname: Muñoz-Collazos, Henry organization: Information Technology Research Group (GTI) Members, Universidad del Cauca, Sector Tulcán Office 422 FIET, Popayán, Colombia – sequence: 3 givenname: Richar surname: Urbano-Muñoz fullname: Urbano-Muñoz, Richar organization: Information Technology Research Group (GTI) Members, Universidad del Cauca, Sector Tulcán Office 422 FIET, Popayán, Colombia – sequence: 4 givenname: Martha surname: Mendoza fullname: Mendoza, Martha organization: Information Technology Research Group (GTI) Members, Universidad del Cauca, Sector Tulcán Office 422 FIET, Popayán, Colombia – sequence: 5 givenname: Elizabeth surname: León fullname: León, Elizabeth organization: Systems and Industrial Engineering Department, Engineering Faculty, Universidad Nacional de Colombia, Colombia – sequence: 6 givenname: Enrique surname: Herrera-Viedma fullname: Herrera-Viedma, Enrique organization: Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain |
| BookMark | eNp9kD1PwzAQhi0EEi3wA9g8siScncRJxAQVXxISC8yW61yoS2q3tgPi3-NSWBg6nYf38b33TMmhdRYJOWeQM2DicpkbG3IOrMyhyqGsD8iENTXPBG_ZIZkAcMiAV9UxmYawBEgRISZkMxvGENEb-0ZdTz9xTgMqrxfUYxiHGOhcBeyoszQukOpRvzv3F1HDm_MmLlZU2Y7eqEFZjdvHFwajLH20vfMrFU2iZymY1jh7So56NQQ8-50n5PXu9mX2kD093z_Orp8yXbQiZhy7RggQnVZtaloUPUBfl71qeFvUWvRN3bWVLoHN24LPtYKu5CiaqmwapTgUJ-Ri9-_au82IIcqVCRqHVBLdGCQTJeclT05StN5FtXcheOylNvGndvTKDJKB3EqWS5kky61kCZVMBhPJ_pFrb1bKf-1lrnYMpus_DHoZtMGtOeNRR9k5s4f-Brh7l_4 |
| CitedBy_id | crossref_primary_10_1007_s10044_024_01228_5 crossref_primary_10_1002_prp2_687 crossref_primary_10_1016_j_cie_2019_06_008 crossref_primary_10_1080_14680629_2020_1753100 crossref_primary_10_1016_j_dss_2016_11_003 crossref_primary_10_1007_s11042_023_14716_3 crossref_primary_10_1016_j_eswa_2023_120705 crossref_primary_10_1016_j_eswa_2023_122128 crossref_primary_10_1002_dac_4133 crossref_primary_10_1134_S1054661819030052 crossref_primary_10_1007_s10489_018_1190_6 crossref_primary_10_1142_S0219649218500338 crossref_primary_10_1177_0165551515591724 crossref_primary_10_1007_s00024_021_02665_7 crossref_primary_10_1016_j_ins_2022_05_020 crossref_primary_10_7232_JKIIE_2021_47_6_529 crossref_primary_10_1109_TETCI_2017_2739124 crossref_primary_10_1007_s00500_015_1993_x crossref_primary_10_1007_s13278_024_01246_5 crossref_primary_10_1166_jctn_2020_9460 crossref_primary_10_1007_s10115_021_01650_9 crossref_primary_10_1007_s11042_022_14229_5 crossref_primary_10_1016_j_ins_2014_11_042 crossref_primary_10_1371_journal_pone_0217686 crossref_primary_10_1016_j_cherd_2016_09_025 crossref_primary_10_1016_j_procs_2020_03_380 crossref_primary_10_7472_jksii_2015_16_6_79 crossref_primary_10_1016_j_sigpro_2024_109735 crossref_primary_10_1016_j_cmpb_2022_106752 crossref_primary_10_1016_j_aci_2017_05_003 crossref_primary_10_1007_s00521_016_2464_8 crossref_primary_10_1109_TNNLS_2018_2844242 crossref_primary_10_1002_qj_3818 crossref_primary_10_1016_j_apm_2015_10_052 crossref_primary_10_3390_su10030682 crossref_primary_10_1016_j_aap_2024_107844 crossref_primary_10_1080_21642583_2018_1496042 crossref_primary_10_1109_ACCESS_2020_3012606 crossref_primary_10_1016_j_asoc_2016_09_048 crossref_primary_10_3389_fphys_2023_1177351 crossref_primary_10_1007_s13278_020_0633_3 crossref_primary_10_1016_j_ins_2014_10_037 crossref_primary_10_1007_s13369_016_2270_8 crossref_primary_10_1016_j_asoc_2017_06_059 crossref_primary_10_1007_s10796_020_10021_8 crossref_primary_10_32604_cmc_2022_029400 crossref_primary_10_1016_j_isatra_2017_10_001 crossref_primary_10_1007_s10044_022_01065_4 crossref_primary_10_1016_j_eswa_2017_11_044 crossref_primary_10_1108_GM_12_2019_0240 crossref_primary_10_1007_s12652_021_03603_0 crossref_primary_10_1016_j_asoc_2017_02_034 crossref_primary_10_1016_j_swevo_2020_100751 crossref_primary_10_2139_ssrn_4075461 crossref_primary_10_1587_transinf_2019EDP7013 crossref_primary_10_1007_s10791_015_9271_1 crossref_primary_10_1109_ACCESS_2020_2990972 crossref_primary_10_1016_j_eswa_2015_03_013 |
| Cites_doi | 10.1145/331499.331504 10.1109/ICADIWT.2009.5273918 10.1145/2124295.2124324 10.1109/MIS.2005.38 10.1016/j.ins.2011.01.012 10.1145/860435.860485 10.1109/ISECS.2009.16 10.1109/CEC.2009.4982974 10.1162/08997660152469387 10.1109/WICT.2011.6141370 10.1016/j.amc.2007.12.058 10.1109/CEC.2011.5949773 10.1016/j.datak.2007.08.001 10.1007/s10115-007-0114-2 10.1016/j.dss.2009.04.002 10.1016/j.ins.2012.02.067 10.1109/ICMLC.2005.1527337 10.1007/11495772_68 10.1007/978-3-540-24655-8_8 10.1016/j.ipm.2009.08.003 10.1109/ICMLC.2011.6017004 10.1145/1835449.1835480 10.1016/j.neucom.2013.05.046 10.1109/CEC.2010.5586016 10.1145/1541880.1541884 10.1016/j.datak.2006.10.006 10.1016/j.ipm.2011.08.004 10.1016/j.patrec.2007.01.001 10.1007/s10462-011-9203-4 10.1093/comjnl/41.8.578 10.1198/016214501753168398 10.1016/j.ins.2011.08.026 10.1109/4235.585893 10.1177/003754970107600201 10.1109/FUZZY.2010.5584771 10.1016/j.ins.2011.08.022 10.1016/j.patrec.2009.04.001 10.1137/1.9781611972733.6 10.1016/j.protcy.2012.05.061 10.1109/TSMCB.2012.2188509 10.1109/WI-IAT.2009.37 10.4324/9780203468029_chapter_8 10.1109/TFUZZ.2006.889970 10.1007/s10618-008-0123-0 10.1016/j.ipm.2012.12.002 10.1109/TEVC.2002.800880 10.1109/CEC.2010.5586109 10.1145/775047.775110 10.1109/DEXA.2009.39 10.1016/j.eswa.2008.12.046 10.3233/IDA-2007-11602 10.1109/CEC.2007.4424770 10.1109/JSTARS.2012.2217941 10.1109/JSTARS.2012.2187432 10.1145/1008992.1009030 10.1016/j.amc.2011.07.073 10.1007/11735106_16 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Inc. |
| Copyright_xml | – notice: 2014 Elsevier Inc. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ins.2014.05.047 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 264 |
| ExternalDocumentID | 10_1016_j_ins_2014_05_047 S0020025514006100 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ WH7 XPP ZMT ~02 ~G- 1OL 29I 77I AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ H~9 R2- SBC SDS SEW UHS WUQ YYP ZY4 ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c396t-2ed86606dca976633f00f74fa82937c6f87d95c401b932bca0d42e685488aa203 |
| IEDL.DBID | .~1 |
| ISSN | 0020-0255 |
| IngestDate | Sat Sep 27 17:17:59 EDT 2025 Wed Oct 01 08:29:34 EDT 2025 Thu Apr 24 23:11:58 EDT 2025 Fri Feb 23 02:23:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Balanced Bayesian Information Criterion Clustering of web result k-Mean Web document clustering Cuckoo search algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c396t-2ed86606dca976633f00f74fa82937c6f87d95c401b932bca0d42e685488aa203 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-6263-1911 |
| PQID | 1642242025 |
| PQPubID | 23500 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_1642242025 crossref_citationtrail_10_1016_j_ins_2014_05_047 crossref_primary_10_1016_j_ins_2014_05_047 elsevier_sciencedirect_doi_10_1016_j_ins_2014_05_047 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-10-10 |
| PublicationDateYYYYMMDD | 2014-10-10 |
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationTitle | Information sciences |
| PublicationYear | 2014 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Wu, Kumar, Ross Quinlan, Ghosh, Yang, Motoda, McLachlan, Ng, Liu, Yu, Zhou, Steinbach, Hand, Steinberg (b0370) 2008; 14 L. Jing, Survey of Text Clustering, 2008. Webb (b0440) 2002 Li, Chung, Holt (b0205) 2008; 64 Q.H. Nguyen, Y.S. Ong, N. Krasnogor, A study on the design issues of Memetic Algorithm, in: IEEE Congress on Evolutionary Computation, 2007. CEC 2007, 2007, pp. 2390–2397. Hansen, Yu (b0165) 2001; 96 Cantu-Paz (b0055) 2000 C. Carpineto, G. Romano, Optimal meta search results clustering, in: Proceedings of the 33rd international ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, Geneva, Switzerland, 2010, pp. 170–177. Fraley, Raftery (b0135) 1998; 41 J. Han, M. Kamber, A.K.H. Tung, Spatial clustering methods in data mining: a survey, in: Geographic Data Mining and Knowledge Discovery, Taylor and Francis, 2001, pp. 1–29. Y. Xin-She, S. Deb, Cuckoo search via lévy flights, in: World Congress on Nature & Biologically Inspired Computing, 2009. NaBIC 2009, 2009, pp. 210–214. Z. Zhong-Yuan, J. Zhang, Survey on the variations and applications of nonnegative matrix factorization, in: ISORA’10: The Ninth International Symposium on Operations Research and Its Applications, ORSC & APORC, Chengdu-Jiuzhaigou, China, 2010, pp. 317–323. Cobos, Rodriguez, Rivera, Betancourt, Mendoza, León, Herrera-Viedma (b0105) 2013; 49 H.-J. Zeng, Q.-C. He, Z. Chen, W.-Y. Ma, J. Ma, Learning to cluster web search results, in: Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, ACM, Sheffield, United Kingdom, 2004, pp. 210–217. Data Clustering: Algorithms and Applications. CRC Press; 2014. Cobos, Estupiñán, Pérez (b0085) 2011; 218 Lee, Lee (b0200) 2012; 6 S. Goel, A. Sharma, P. Bedi, Cuckoo search clustering algorithm: a novel strategy of biomimicry, in: 2011 World Congress on Information and Communication Technologies (WICT), 2011, pp. 916–921. Fersini, Messina, Archetti (b0125) 2010; 46 S. Zheng, X. Zhao, B. Zhang, H. Bu, Web document clustering research based on granular computing, in: Second International Symposium on Electronic Commerce and Security, 2009. ISECS ‘09, 2009, pp. 446–450. M. Hemalatha, D. Sathyasrinivas, Hybrid neural network model for web document clustering, in: Second International Conference on the Applications of Digital Information and Web Technologies, 2009. ICADIWT ‘09, 2009, pp. 531–538. Yang (b0395) 2008 Mecca, Raunich, Pappalardo (b0245) 2007; 62 X. He, J.-B. Wang, Z.-X. Zhang, Y.-R. Cai, Clustering web documents based on Multiclass spectral clustering, in: 2011 International conference on machine learning and cybernetics (ICMLC), 2011, pp. 1466–1471. Senthilnath, Omkar, Mani, Karnwal, Shreyas (b0315) 2013; 6 A. Bernardini, C. Carpineto, M. D’Amico, Full-Subtopic Retrieval with Keyphrase-Based Search Results Clustering, in: WI-IAT ‘09: IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, 2009, pp. 206–213. Carpineto, Osiński, Romano, Weiss (b0065) 2009; 41 Xu, Xu, Wunsch (b0385) 2012; 42 Valian, Mohanna, Tavakoli (b0350) 2011; 2 Naldi, Campello (b0255) 2014; 127 Osiński, Weiss (b0285) 2005; 20 Z. Oren, E. Oren, Web document clustering: a feasibility demonstration, in: Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval, ACM, Melbourne, Australia, 1998, pp. 46–54. Mahdavi, Chehreghani, Abolhassani, Forsati (b0230) 2008; 201 Mahamed, Andries, Ayed (b0220) 2007; 11 S. Osiński, Improving quality of search results clustering with approximate matrix factorizations, in: 28th European Conference on IR Research (ECIR 2006), London, UK, 2006, pp. 167–178. Senthilnath, Omkar, Mani, Tejovanth, Diwakar, Shenoy (b0435) 2012; 5 N. Bacanin, An object-oriented software implementation of a novel cuckoo search algorithm, in: Proceedings of the 5th European Conference on European Computing Conference, World Scientific and Engineering Academy and Society (WSEAS), Paris, France, 2011, pp. 245–250. Mahdavi, Abolhassani (b0225) 2009; 18 Porcel, Tejeda-Lorente, Martínez, Herrera-Viedma (b0290) 2012; 184 U. Scaiella, P. Ferragina, A. Marino, M. Ciaramita, Topical clustering of search results, in: Proceedings of the fifth ACM international conference on Web search and data mining, ACM, Seattle, Washington, USA, 2012, pp. 223–232. Ahmadi-Abkenari, Selamat (b0010) 2012; 184 Loia, Pedrycz, Senatore (b0210) 2007; 15 D. Zhang, Y. Dong, Semantic, hierarchical, online clustering of web search results, in: Advanced Web Technologies and Applications, 2004, pp. 69–78. B. Fung, K. Wang, M. Ester, Hierarchical document clustering using frequent itemsets, in: Proceedings of the SIAM International Conference on Data Mining, 2003, pp. 59–70. M. Muhr, M. Granitzer, Automatic cluster number selection using a split and merge K-means approach, in: 20th International Workshop on Database and Expert Systems Application, 2009. DEXA ‘09, 2009, pp. 363–367. Cobos, Muñoz, Mendoza, León, Herrera-Viedma (b0100) 2012 Senthilnath, Das, Omkar, Mani (b0310) 2013 C. Cobos, J. Andrade, W. Constain, M. Mendoza, E. León, Web document clustering based on Global-Best Harmony Search, K-means, Frequent Term Sets and Bayesian Information Criterion, in: 2010 IEEE Congress on Evolutionary Computation (CEC), IEEE, Barcelona, Spain, 2010, pp. 4637–4644. Jain, Dubes (b0180) 1988 Berkhin, Kogan, Nicholas, Teboulle (b0430) 2006 Manning, Raghavan, Schütze (b0235) 2008 M. Steinbach, G. Karypis, V. Kumar, A comparison of document clustering techniques, in: KDD workshop on text mining, ACM Boston, MA, USA., 2000, pp. 1–20. Baeza-Yates, Ribeiro-Neto (b0030) 1999 Reddy, Jana (b0295) 2012; 4 C. Cobos, M. Mendoza, E. Leon, A hyper-heuristic approach to design and tuning heuristic methods for web document clustering, in: 2011 IEEE Congress on Evolutionary Computation (CEC), IEEE, New Orleans, USA, 2011, pp. 1350–1358. Geem, Kim, Loganathan (b0145) 2001; 76 Jain, Murty, Flynn (b0185) 1999; 31 Wolpert, Macready (b0365) 1997; 1 Carullo, Binaghi, Gallo (b0075) 2009; 30 Yang (b0390) 2008 K. Hammouda, Web Mining: Clustering Web Documents A Preliminary Review, 2001, pp. 1–13. Song, Li, Park (b0335) 2009; 36 Alba (b0015) 2005 Lee, On (b0195) 2011; 36 Berkhin (b0425) 2002 Carpineto, D’Amico, Romano (b0060) 2012; 48 Eiben, Smit (b0120) 2012 T. Matsumoto, E. Hung, Fuzzy clustering and relevance ranking of web search results with differentiating cluster label generation, in: 2010 IEEE International Conference on Fuzzy Systems (FUZZ), 2010, pp. 1–8. S. Osiński, D. Weiss, Carrot 2: Design of a Flexible and Efficient Web Information Retrieval Framework, in: Advances in Web Intelligence, 2005, pp. 439–444. L. Xiang-Wei, H. Pi-Lian, W. Hui-Ying, The research of text clustering algorithms based on frequent term sets, in: Proceedings of 2005 International Conference on Machine Learning and Cybernetics, 2005, vol. 2354, 2005, pp. 2352–2356. Serrano-Guerrero, Herrera-Viedma, Olivas, Cerezo, Romero (b0325) 2011; 181 S.K. Smit, A.E. Eiben, Comparing parameter tuning methods for evolutionary algorithms, in: IEEE Congress on Evolutionary Computation, 2009. CEC ‘09, 2009, pp. 399–406. Chehreghani, Abolhassani, Chehreghani (b0110) 2009; 47 Redmond, Heneghan (b0300) 2007; 28 Domingo-Ferrer, González-Nicolás (b0115) 2012; 200 X. Wei, L. Xin, G. Yihong, Document clustering based on non-negative matrix factorization, in: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval, ACM, Toronto, Canada, 2003, pp. 267–273. Luque, Alba (b0215) 2011 R. Navigli, G. Crisafulli, Inducing word senses to improve web search result clustering, in: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Cambridge, Massachusetts, 2010, pp. 116–126. Alba, Tomassini (b0020) 2002; 6 C. Cobos, C. Montealegre, M. Mejía, M. Mendoza, E. León, Web document clustering based on a new niching memetic algorithm, term-document matrix and Bayesian information criterion, in: 2010 IEEE Congress on Evolutionary Computation (CEC), IEEE, Barcelona, Spain, 2010, pp. 4629–4636. Forgy (b0130) 1965; 21 F. Beil, M. Ester, X. Xu, Frequent term-based text clustering, in: KDD ‘02: International conference on Knowledge discovery and data mining (ACM SIGKDD), ACM, Edmonton, Alberta, Canada, 2002, pp. 436–442. Sugiyama, Ogawa (b0345) 2001; 13 Yang, Deb (b0400) 2010; 1 10.1016/j.ins.2014.05.047_b0305 Domingo-Ferrer (10.1016/j.ins.2014.05.047_b0115) 2012; 200 Valian (10.1016/j.ins.2014.05.047_b0350) 2011; 2 Wolpert (10.1016/j.ins.2014.05.047_b0365) 1997; 1 Senthilnath (10.1016/j.ins.2014.05.047_b0315) 2013; 6 Eiben (10.1016/j.ins.2014.05.047_b0120) 2012 Lee (10.1016/j.ins.2014.05.047_b0200) 2012; 6 Mahdavi (10.1016/j.ins.2014.05.047_b0230) 2008; 201 Chehreghani (10.1016/j.ins.2014.05.047_b0110) 2009; 47 Senthilnath (10.1016/j.ins.2014.05.047_b0435) 2012; 5 10.1016/j.ins.2014.05.047_b0070 Mahamed (10.1016/j.ins.2014.05.047_b0220) 2007; 11 10.1016/j.ins.2014.05.047_b0190 Fraley (10.1016/j.ins.2014.05.047_b0135) 1998; 41 10.1016/j.ins.2014.05.047_b0150 10.1016/j.ins.2014.05.047_b0270 Alba (10.1016/j.ins.2014.05.047_b0015) 2005 10.1016/j.ins.2014.05.047_b0155 10.1016/j.ins.2014.05.047_b0275 Fersini (10.1016/j.ins.2014.05.047_b0125) 2010; 46 10.1016/j.ins.2014.05.047_b0035 Cobos (10.1016/j.ins.2014.05.047_b0100) 2012 Hansen (10.1016/j.ins.2014.05.047_b0165) 2001; 96 Mecca (10.1016/j.ins.2014.05.047_b0245) 2007; 62 Baeza-Yates (10.1016/j.ins.2014.05.047_b0030) 1999 Jain (10.1016/j.ins.2014.05.047_b0180) 1988 Mahdavi (10.1016/j.ins.2014.05.047_b0225) 2009; 18 Senthilnath (10.1016/j.ins.2014.05.047_b0310) 2013 Alba (10.1016/j.ins.2014.05.047_b0020) 2002; 6 10.1016/j.ins.2014.05.047_b0080 Cobos (10.1016/j.ins.2014.05.047_b0085) 2011; 218 Serrano-Guerrero (10.1016/j.ins.2014.05.047_b0325) 2011; 181 Lee (10.1016/j.ins.2014.05.047_b0195) 2011; 36 Redmond (10.1016/j.ins.2014.05.047_b0300) 2007; 28 Cobos (10.1016/j.ins.2014.05.047_b0105) 2013; 49 Porcel (10.1016/j.ins.2014.05.047_b0290) 2012; 184 10.1016/j.ins.2014.05.047_b0360 10.1016/j.ins.2014.05.047_b0160 10.1016/j.ins.2014.05.047_b0280 Carpineto (10.1016/j.ins.2014.05.047_b0065) 2009; 41 Yang (10.1016/j.ins.2014.05.047_b0395) 2008 Li (10.1016/j.ins.2014.05.047_b0205) 2008; 64 10.1016/j.ins.2014.05.047_b0240 Sugiyama (10.1016/j.ins.2014.05.047_b0345) 2001; 13 10.1016/j.ins.2014.05.047_b0005 Ahmadi-Abkenari (10.1016/j.ins.2014.05.047_b0010) 2012; 184 Naldi (10.1016/j.ins.2014.05.047_b0255) 2014; 127 Manning (10.1016/j.ins.2014.05.047_b0235) 2008 10.1016/j.ins.2014.05.047_b0405 Loia (10.1016/j.ins.2014.05.047_b0210) 2007; 15 Luque (10.1016/j.ins.2014.05.047_b0215) 2011 Osiński (10.1016/j.ins.2014.05.047_b0285) 2005; 20 10.1016/j.ins.2014.05.047_b0090 Yang (10.1016/j.ins.2014.05.047_b0400) 2010; 1 10.1016/j.ins.2014.05.047_b0250 10.1016/j.ins.2014.05.047_b0095 10.1016/j.ins.2014.05.047_b0050 10.1016/j.ins.2014.05.047_b0170 10.1016/j.ins.2014.05.047_b0375 10.1016/j.ins.2014.05.047_b0330 10.1016/j.ins.2014.05.047_b0175 Xu (10.1016/j.ins.2014.05.047_b0385) 2012; 42 10.1016/j.ins.2014.05.047_b0410 Wu (10.1016/j.ins.2014.05.047_b0370) 2008; 14 10.1016/j.ins.2014.05.047_b0415 Carpineto (10.1016/j.ins.2014.05.047_b0060) 2012; 48 Reddy (10.1016/j.ins.2014.05.047_b0295) 2012; 4 Cantu-Paz (10.1016/j.ins.2014.05.047_b0055) 2000 10.1016/j.ins.2014.05.047_b0140 10.1016/j.ins.2014.05.047_b0260 Webb (10.1016/j.ins.2014.05.047_b0440) 2002 Forgy (10.1016/j.ins.2014.05.047_b0130) 1965; 21 Song (10.1016/j.ins.2014.05.047_b0335) 2009; 36 10.1016/j.ins.2014.05.047_b0380 Carullo (10.1016/j.ins.2014.05.047_b0075) 2009; 30 Jain (10.1016/j.ins.2014.05.047_b0185) 1999; 31 10.1016/j.ins.2014.05.047_b0265 Berkhin (10.1016/j.ins.2014.05.047_b0425) 2002 Berkhin (10.1016/j.ins.2014.05.047_b0430) 2006 10.1016/j.ins.2014.05.047_b0340 Yang (10.1016/j.ins.2014.05.047_b0390) 2008 10.1016/j.ins.2014.05.047_b0025 Geem (10.1016/j.ins.2014.05.047_b0145) 2001; 76 10.1016/j.ins.2014.05.047_b0420 |
| References_xml | – volume: 127 start-page: 30 year: 2014 end-page: 42 ident: b0255 article-title: Evolutionary k-means for distributed data sets publication-title: Neurocomputing – volume: 62 start-page: 504 year: 2007 end-page: 522 ident: b0245 article-title: A new algorithm for clustering search results publication-title: Data Knowl. Eng. – reference: N. Bacanin, An object-oriented software implementation of a novel cuckoo search algorithm, in: Proceedings of the 5th European Conference on European Computing Conference, World Scientific and Engineering Academy and Society (WSEAS), Paris, France, 2011, pp. 245–250. – volume: 47 start-page: 374 year: 2009 end-page: 382 ident: b0110 article-title: Density link-based methods for clustering web pages publication-title: Decis. Support Syst. – volume: 36 start-page: 69 year: 2011 end-page: 85 ident: b0195 article-title: An effective web document clustering algorithm based on bisection and merge publication-title: Artif. Intell. Rev. – year: 1999 ident: b0030 article-title: Modern Information Retrieval – reference: C. Cobos, C. Montealegre, M. Mejía, M. Mendoza, E. León, Web document clustering based on a new niching memetic algorithm, term-document matrix and Bayesian information criterion, in: 2010 IEEE Congress on Evolutionary Computation (CEC), IEEE, Barcelona, Spain, 2010, pp. 4629–4636. – reference: L. Xiang-Wei, H. Pi-Lian, W. Hui-Ying, The research of text clustering algorithms based on frequent term sets, in: Proceedings of 2005 International Conference on Machine Learning and Cybernetics, 2005, vol. 2354, 2005, pp. 2352–2356. – year: 2002 ident: b0425 article-title: Survey of Clustering Data Mining Techniques – reference: Z. Oren, E. Oren, Web document clustering: a feasibility demonstration, in: Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval, ACM, Melbourne, Australia, 1998, pp. 46–54. – reference: S. Osiński, Improving quality of search results clustering with approximate matrix factorizations, in: 28th European Conference on IR Research (ECIR 2006), London, UK, 2006, pp. 167–178. – volume: 6 start-page: 861 year: 2013 end-page: 866 ident: b0315 article-title: Crop stage classification of hyperspectral data using unsupervised techniques publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing – volume: 11 start-page: 583 year: 2007 end-page: 605 ident: b0220 article-title: An overview of clustering methods publication-title: Intell. Data Anal. – start-page: 65 year: 2013 end-page: 75 ident: b0310 article-title: Clustering using levy flight cuckoo search publication-title: Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012) – volume: 64 start-page: 381 year: 2008 end-page: 404 ident: b0205 article-title: Text document clustering based on frequent word meaning sequences publication-title: Data Knowl. Eng. – volume: 5 start-page: 762 year: 2012 end-page: 768 ident: b0435 article-title: Hierarchical clustering algorithm for land cover mapping using satellite images publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing – year: 2008 ident: b0390 article-title: Nature-Inspired Metaheuristic Algorithms – reference: Data Clustering: Algorithms and Applications. CRC Press; 2014. – reference: S. Zheng, X. Zhao, B. Zhang, H. Bu, Web document clustering research based on granular computing, in: Second International Symposium on Electronic Commerce and Security, 2009. ISECS ‘09, 2009, pp. 446–450. – reference: J. Han, M. Kamber, A.K.H. Tung, Spatial clustering methods in data mining: a survey, in: Geographic Data Mining and Knowledge Discovery, Taylor and Francis, 2001, pp. 1–29. – volume: 184 start-page: 1 year: 2012 end-page: 19 ident: b0290 article-title: A hybrid recommender system for the selective dissemination of research resources in a Technology Transfer Office publication-title: Inf. Sci. – volume: 6 start-page: 443 year: 2002 end-page: 462 ident: b0020 article-title: Parallelism and evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. – start-page: 128 year: 2008 ident: b0395 publication-title: Nature-Inspired Metaheuristic Algorithms – volume: 1 start-page: 330 year: 2010 end-page: 343 ident: b0400 article-title: Engineering optimisation by cuckoo search publication-title: Int. J. Math. Modell. Numer. Optim. – volume: 6 start-page: 449 year: 2012 end-page: 454 ident: b0200 article-title: Evaluation of time complexity based on max average distance for K-means clustering publication-title: Int. J. Security Appl. – reference: M. Muhr, M. Granitzer, Automatic cluster number selection using a split and merge K-means approach, in: 20th International Workshop on Database and Expert Systems Application, 2009. DEXA ‘09, 2009, pp. 363–367. – reference: S. Goel, A. Sharma, P. Bedi, Cuckoo search clustering algorithm: a novel strategy of biomimicry, in: 2011 World Congress on Information and Communication Technologies (WICT), 2011, pp. 916–921. – volume: 28 start-page: 965 year: 2007 end-page: 973 ident: b0300 article-title: A method for initialising the K-means clustering algorithm using kd-trees publication-title: Pattern Recogn. Lett. – year: 1988 ident: b0180 article-title: Algorithms for clustering data – year: 2005 ident: b0015 article-title: Parallel Metaheuristics: A New Class of Algorithms – reference: H.-J. Zeng, Q.-C. He, Z. Chen, W.-Y. Ma, J. Ma, Learning to cluster web search results, in: Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, ACM, Sheffield, United Kingdom, 2004, pp. 210–217. – start-page: 179 year: 2012 end-page: 188 ident: b0100 article-title: Fitness function obtained from a genetic programming approach for web document clustering using evolutionary algorithms publication-title: Advances in Artificial Intelligence – IBERAMIA 2012 – year: 2002 ident: b0440 article-title: Statistical Pattern Recognition – start-page: 25 year: 2006 end-page: 71 ident: b0430 article-title: A survey of clustering data mining techniques publication-title: Grouping Multidimensional Data – volume: 48 start-page: 358 year: 2012 end-page: 373 ident: b0060 article-title: Evaluating subtopic retrieval methods: clustering versus diversification of search results publication-title: Inf. Process. Manage. – start-page: 15 year: 2012 end-page: 36 ident: b0120 article-title: Evolutionary Algorithm Parameters and Methods to Tune Them publication-title: Autonomous Search – volume: 4 start-page: 395 year: 2012 end-page: 400 ident: b0295 article-title: Initialization for K-means clustering using voronoi diagram publication-title: Procedia Technol. – reference: K. Hammouda, Web Mining: Clustering Web Documents A Preliminary Review, 2001, pp. 1–13. – volume: 18 start-page: 370 year: 2009 end-page: 391 ident: b0225 article-title: Harmony K-means algorithm for document clustering publication-title: Data Min. Knowl. Disc. – volume: 181 start-page: 1503 year: 2011 end-page: 1516 ident: b0325 article-title: A google wave-based fuzzy recommender system to disseminate information in University Digital Libraries 2.0 publication-title: Inf. Sci. – reference: S. Osiński, D. Weiss, Carrot 2: Design of a Flexible and Efficient Web Information Retrieval Framework, in: Advances in Web Intelligence, 2005, pp. 439–444. – year: 2008 ident: b0235 article-title: Introduction to Information Retrieval – reference: S.K. Smit, A.E. Eiben, Comparing parameter tuning methods for evolutionary algorithms, in: IEEE Congress on Evolutionary Computation, 2009. CEC ‘09, 2009, pp. 399–406. – volume: 20 start-page: 48 year: 2005 end-page: 54 ident: b0285 article-title: A concept-driven algorithm for clustering search results publication-title: Intell. Syst. – year: 2011 ident: b0215 article-title: Parallel Genetic Algorithms: Theory and Real World Applications – volume: 13 start-page: 1863 year: 2001 end-page: 1889 ident: b0345 article-title: Subspace information criterion for model selection publication-title: Neural Comput. – volume: 21 start-page: 768 year: 1965 end-page: 769 ident: b0130 article-title: Cluster analysis of multivariate data: efficiency versus interpretability of classifications publication-title: Biometrics – reference: X. Wei, L. Xin, G. Yihong, Document clustering based on non-negative matrix factorization, in: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval, ACM, Toronto, Canada, 2003, pp. 267–273. – reference: L. Jing, Survey of Text Clustering, 2008. – reference: Q.H. Nguyen, Y.S. Ong, N. Krasnogor, A study on the design issues of Memetic Algorithm, in: IEEE Congress on Evolutionary Computation, 2007. CEC 2007, 2007, pp. 2390–2397. – reference: Y. Xin-She, S. Deb, Cuckoo search via lévy flights, in: World Congress on Nature & Biologically Inspired Computing, 2009. NaBIC 2009, 2009, pp. 210–214. – reference: Z. Zhong-Yuan, J. Zhang, Survey on the variations and applications of nonnegative matrix factorization, in: ISORA’10: The Ninth International Symposium on Operations Research and Its Applications, ORSC & APORC, Chengdu-Jiuzhaigou, China, 2010, pp. 317–323. – reference: C. Carpineto, G. Romano, Optimal meta search results clustering, in: Proceedings of the 33rd international ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, Geneva, Switzerland, 2010, pp. 170–177. – reference: C. Cobos, M. Mendoza, E. Leon, A hyper-heuristic approach to design and tuning heuristic methods for web document clustering, in: 2011 IEEE Congress on Evolutionary Computation (CEC), IEEE, New Orleans, USA, 2011, pp. 1350–1358. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b0365 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 184 start-page: 266 year: 2012 end-page: 281 ident: b0010 article-title: An architecture for a focused trend parallel Web crawler with the application of clickstream analysis publication-title: Inf. Sci. – volume: 2 start-page: 8 year: 2011 ident: b0350 article-title: Improved cuckoo search algorithm for feedforward neural network training publication-title: Int. J. Artif. Intell. Appl. (IJAIA) – volume: 42 start-page: 1243 year: 2012 end-page: 1256 ident: b0385 article-title: A comparison study of validity indices on swarm-intelligence-based clustering publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. – reference: B. Fung, K. Wang, M. Ester, Hierarchical document clustering using frequent itemsets, in: Proceedings of the SIAM International Conference on Data Mining, 2003, pp. 59–70. – reference: D. Zhang, Y. Dong, Semantic, hierarchical, online clustering of web search results, in: Advanced Web Technologies and Applications, 2004, pp. 69–78. – volume: 76 start-page: 60 year: 2001 end-page: 68 ident: b0145 article-title: A new heuristic optimization algorithm: harmony search publication-title: Simulation – reference: U. Scaiella, P. Ferragina, A. Marino, M. Ciaramita, Topical clustering of search results, in: Proceedings of the fifth ACM international conference on Web search and data mining, ACM, Seattle, Washington, USA, 2012, pp. 223–232. – reference: X. He, J.-B. Wang, Z.-X. Zhang, Y.-R. Cai, Clustering web documents based on Multiclass spectral clustering, in: 2011 International conference on machine learning and cybernetics (ICMLC), 2011, pp. 1466–1471. – volume: 200 start-page: 123 year: 2012 end-page: 134 ident: b0115 article-title: Rational behavior in peer-to-peer profile obfuscation for anonymous keyword search: the multi-hop scenario publication-title: Inf. Sci. – volume: 30 start-page: 870 year: 2009 end-page: 876 ident: b0075 article-title: An online document clustering technique for short web contents publication-title: Pattern Recogn. Lett. – volume: 41 start-page: 578 year: 1998 end-page: 588 ident: b0135 article-title: How many clusters? Which clustering method? Answers via model-based cluster analysis publication-title: Comput. J. – year: 2000 ident: b0055 article-title: Efficient and Accurate Parallel Genetic Algorithms – reference: M. Steinbach, G. Karypis, V. Kumar, A comparison of document clustering techniques, in: KDD workshop on text mining, ACM Boston, MA, USA., 2000, pp. 1–20. – reference: C. Cobos, J. Andrade, W. Constain, M. Mendoza, E. León, Web document clustering based on Global-Best Harmony Search, K-means, Frequent Term Sets and Bayesian Information Criterion, in: 2010 IEEE Congress on Evolutionary Computation (CEC), IEEE, Barcelona, Spain, 2010, pp. 4637–4644. – volume: 15 start-page: 1294 year: 2007 end-page: 1312 ident: b0210 article-title: Semantic web content analysis: a study in proximity-based collaborative clustering publication-title: IEEE Trans. Fuzzy Syst. – volume: 36 start-page: 9095 year: 2009 end-page: 9104 ident: b0335 article-title: Genetic algorithm for text clustering using ontology and evaluating the validity of various semantic similarity measures publication-title: Expert Syst. Appl. – volume: 46 start-page: 117 year: 2010 end-page: 130 ident: b0125 article-title: A probabilistic relational approach for web document clustering publication-title: Inf. Process. Manage. – volume: 201 start-page: 441 year: 2008 end-page: 451 ident: b0230 article-title: Novel meta-heuristic algorithms for clustering web documents publication-title: Appl. Math. Comput. – volume: 96 start-page: 746 year: 2001 end-page: 774 ident: b0165 article-title: Model selection and the principle of minimum description length publication-title: J. Am. Stat. Assoc. – volume: 14 start-page: 1 year: 2008 end-page: 37 ident: b0370 article-title: Top 10 algorithms in data mining publication-title: Knowl. Inf. Syst. – reference: T. Matsumoto, E. Hung, Fuzzy clustering and relevance ranking of web search results with differentiating cluster label generation, in: 2010 IEEE International Conference on Fuzzy Systems (FUZZ), 2010, pp. 1–8. – reference: R. Navigli, G. Crisafulli, Inducing word senses to improve web search result clustering, in: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Cambridge, Massachusetts, 2010, pp. 116–126. – volume: 49 start-page: 607 year: 2013 end-page: 625 ident: b0105 article-title: A hybrid system of pedagogical pattern recommendations based on singular value decomposition and variable data attributes publication-title: Inf. Process. Manage. – volume: 31 start-page: 264 year: 1999 end-page: 323 ident: b0185 article-title: Data clustering: a review publication-title: ACM Comput. Surv. – reference: A. Bernardini, C. Carpineto, M. D’Amico, Full-Subtopic Retrieval with Keyphrase-Based Search Results Clustering, in: WI-IAT ‘09: IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, 2009, pp. 206–213. – volume: 218 start-page: 2558 year: 2011 end-page: 2578 ident: b0085 article-title: GHS publication-title: Appl. Math. Comput. – reference: F. Beil, M. Ester, X. Xu, Frequent term-based text clustering, in: KDD ‘02: International conference on Knowledge discovery and data mining (ACM SIGKDD), ACM, Edmonton, Alberta, Canada, 2002, pp. 436–442. – reference: M. Hemalatha, D. Sathyasrinivas, Hybrid neural network model for web document clustering, in: Second International Conference on the Applications of Digital Information and Web Technologies, 2009. ICADIWT ‘09, 2009, pp. 531–538. – volume: 41 start-page: 1 year: 2009 end-page: 38 ident: b0065 article-title: A survey of Web clustering engines publication-title: ACM Comput. Surv. – volume: 31 start-page: 264 year: 1999 ident: 10.1016/j.ins.2014.05.047_b0185 article-title: Data clustering: a review publication-title: ACM Comput. Surv. doi: 10.1145/331499.331504 – start-page: 25 year: 2006 ident: 10.1016/j.ins.2014.05.047_b0430 article-title: A survey of clustering data mining techniques – ident: 10.1016/j.ins.2014.05.047_b0175 doi: 10.1109/ICADIWT.2009.5273918 – ident: 10.1016/j.ins.2014.05.047_b0305 doi: 10.1145/2124295.2124324 – volume: 20 start-page: 48 year: 2005 ident: 10.1016/j.ins.2014.05.047_b0285 article-title: A concept-driven algorithm for clustering search results publication-title: Intell. Syst. doi: 10.1109/MIS.2005.38 – volume: 181 start-page: 1503 year: 2011 ident: 10.1016/j.ins.2014.05.047_b0325 article-title: A google wave-based fuzzy recommender system to disseminate information in University Digital Libraries 2.0 publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.01.012 – ident: 10.1016/j.ins.2014.05.047_b0360 doi: 10.1145/860435.860485 – start-page: 179 year: 2012 ident: 10.1016/j.ins.2014.05.047_b0100 article-title: Fitness function obtained from a genetic programming approach for web document clustering using evolutionary algorithms – ident: 10.1016/j.ins.2014.05.047_b0025 – ident: 10.1016/j.ins.2014.05.047_b0415 doi: 10.1109/ISECS.2009.16 – ident: 10.1016/j.ins.2014.05.047_b0330 doi: 10.1109/CEC.2009.4982974 – volume: 13 start-page: 1863 year: 2001 ident: 10.1016/j.ins.2014.05.047_b0345 article-title: Subspace information criterion for model selection publication-title: Neural Comput. doi: 10.1162/08997660152469387 – start-page: 65 year: 2013 ident: 10.1016/j.ins.2014.05.047_b0310 article-title: Clustering using levy flight cuckoo search – ident: 10.1016/j.ins.2014.05.047_b0150 doi: 10.1109/WICT.2011.6141370 – volume: 201 start-page: 441 year: 2008 ident: 10.1016/j.ins.2014.05.047_b0230 article-title: Novel meta-heuristic algorithms for clustering web documents publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2007.12.058 – start-page: 15 year: 2012 ident: 10.1016/j.ins.2014.05.047_b0120 article-title: Evolutionary Algorithm Parameters and Methods to Tune Them – ident: 10.1016/j.ins.2014.05.047_b0090 doi: 10.1109/CEC.2011.5949773 – volume: 64 start-page: 381 year: 2008 ident: 10.1016/j.ins.2014.05.047_b0205 article-title: Text document clustering based on frequent word meaning sequences publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2007.08.001 – year: 2000 ident: 10.1016/j.ins.2014.05.047_b0055 – volume: 14 start-page: 1 year: 2008 ident: 10.1016/j.ins.2014.05.047_b0370 article-title: Top 10 algorithms in data mining publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-007-0114-2 – volume: 47 start-page: 374 year: 2009 ident: 10.1016/j.ins.2014.05.047_b0110 article-title: Density link-based methods for clustering web pages publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2009.04.002 – volume: 200 start-page: 123 year: 2012 ident: 10.1016/j.ins.2014.05.047_b0115 article-title: Rational behavior in peer-to-peer profile obfuscation for anonymous keyword search: the multi-hop scenario publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.02.067 – ident: 10.1016/j.ins.2014.05.047_b0375 doi: 10.1109/ICMLC.2005.1527337 – ident: 10.1016/j.ins.2014.05.047_b0280 doi: 10.1007/11495772_68 – ident: 10.1016/j.ins.2014.05.047_b0410 doi: 10.1007/978-3-540-24655-8_8 – volume: 46 start-page: 117 year: 2010 ident: 10.1016/j.ins.2014.05.047_b0125 article-title: A probabilistic relational approach for web document clustering publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2009.08.003 – ident: 10.1016/j.ins.2014.05.047_b0170 doi: 10.1109/ICMLC.2011.6017004 – volume: 21 start-page: 768 year: 1965 ident: 10.1016/j.ins.2014.05.047_b0130 article-title: Cluster analysis of multivariate data: efficiency versus interpretability of classifications publication-title: Biometrics – ident: 10.1016/j.ins.2014.05.047_b0070 doi: 10.1145/1835449.1835480 – volume: 127 start-page: 30 year: 2014 ident: 10.1016/j.ins.2014.05.047_b0255 article-title: Evolutionary k-means for distributed data sets publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.05.046 – ident: 10.1016/j.ins.2014.05.047_b0095 doi: 10.1109/CEC.2010.5586016 – volume: 41 start-page: 1 year: 2009 ident: 10.1016/j.ins.2014.05.047_b0065 article-title: A survey of Web clustering engines publication-title: ACM Comput. Surv. doi: 10.1145/1541880.1541884 – volume: 62 start-page: 504 year: 2007 ident: 10.1016/j.ins.2014.05.047_b0245 article-title: A new algorithm for clustering search results publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2006.10.006 – volume: 48 start-page: 358 year: 2012 ident: 10.1016/j.ins.2014.05.047_b0060 article-title: Evaluating subtopic retrieval methods: clustering versus diversification of search results publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2011.08.004 – ident: 10.1016/j.ins.2014.05.047_b0270 – volume: 28 start-page: 965 year: 2007 ident: 10.1016/j.ins.2014.05.047_b0300 article-title: A method for initialising the K-means clustering algorithm using kd-trees publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2007.01.001 – volume: 36 start-page: 69 year: 2011 ident: 10.1016/j.ins.2014.05.047_b0195 article-title: An effective web document clustering algorithm based on bisection and merge publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-011-9203-4 – volume: 41 start-page: 578 year: 1998 ident: 10.1016/j.ins.2014.05.047_b0135 article-title: How many clusters? Which clustering method? Answers via model-based cluster analysis publication-title: Comput. J. doi: 10.1093/comjnl/41.8.578 – year: 2002 ident: 10.1016/j.ins.2014.05.047_b0425 – volume: 96 start-page: 746 year: 2001 ident: 10.1016/j.ins.2014.05.047_b0165 article-title: Model selection and the principle of minimum description length publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753168398 – year: 1988 ident: 10.1016/j.ins.2014.05.047_b0180 – ident: 10.1016/j.ins.2014.05.047_b0190 – volume: 184 start-page: 1 year: 2012 ident: 10.1016/j.ins.2014.05.047_b0290 article-title: A hybrid recommender system for the selective dissemination of research resources in a Technology Transfer Office publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.08.026 – volume: 1 start-page: 67 year: 1997 ident: 10.1016/j.ins.2014.05.047_b0365 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 76 start-page: 60 year: 2001 ident: 10.1016/j.ins.2014.05.047_b0145 article-title: A new heuristic optimization algorithm: harmony search publication-title: Simulation doi: 10.1177/003754970107600201 – ident: 10.1016/j.ins.2014.05.047_b0240 doi: 10.1109/FUZZY.2010.5584771 – volume: 184 start-page: 266 year: 2012 ident: 10.1016/j.ins.2014.05.047_b0010 article-title: An architecture for a focused trend parallel Web crawler with the application of clickstream analysis publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.08.022 – volume: 30 start-page: 870 year: 2009 ident: 10.1016/j.ins.2014.05.047_b0075 article-title: An online document clustering technique for short web contents publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2009.04.001 – year: 1999 ident: 10.1016/j.ins.2014.05.047_b0030 – year: 2008 ident: 10.1016/j.ins.2014.05.047_b0390 – ident: 10.1016/j.ins.2014.05.047_b0155 – ident: 10.1016/j.ins.2014.05.047_b0140 doi: 10.1137/1.9781611972733.6 – ident: 10.1016/j.ins.2014.05.047_b0260 – volume: 4 start-page: 395 year: 2012 ident: 10.1016/j.ins.2014.05.047_b0295 article-title: Initialization for K-means clustering using voronoi diagram publication-title: Procedia Technol. doi: 10.1016/j.protcy.2012.05.061 – volume: 42 start-page: 1243 year: 2012 ident: 10.1016/j.ins.2014.05.047_b0385 article-title: A comparison study of validity indices on swarm-intelligence-based clustering publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. doi: 10.1109/TSMCB.2012.2188509 – start-page: 128 year: 2008 ident: 10.1016/j.ins.2014.05.047_b0395 publication-title: Nature-Inspired Metaheuristic Algorithms – ident: 10.1016/j.ins.2014.05.047_b0050 doi: 10.1109/WI-IAT.2009.37 – ident: 10.1016/j.ins.2014.05.047_b0160 doi: 10.4324/9780203468029_chapter_8 – ident: 10.1016/j.ins.2014.05.047_b0380 – year: 2005 ident: 10.1016/j.ins.2014.05.047_b0015 – volume: 15 start-page: 1294 year: 2007 ident: 10.1016/j.ins.2014.05.047_b0210 article-title: Semantic web content analysis: a study in proximity-based collaborative clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2006.889970 – volume: 18 start-page: 370 year: 2009 ident: 10.1016/j.ins.2014.05.047_b0225 article-title: Harmony K-means algorithm for document clustering publication-title: Data Min. Knowl. Disc. doi: 10.1007/s10618-008-0123-0 – ident: 10.1016/j.ins.2014.05.047_b0340 – volume: 49 start-page: 607 year: 2013 ident: 10.1016/j.ins.2014.05.047_b0105 article-title: A hybrid system of pedagogical pattern recommendations based on singular value decomposition and variable data attributes publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2012.12.002 – volume: 6 start-page: 443 year: 2002 ident: 10.1016/j.ins.2014.05.047_b0020 article-title: Parallelism and evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2002.800880 – ident: 10.1016/j.ins.2014.05.047_b0080 doi: 10.1109/CEC.2010.5586109 – ident: 10.1016/j.ins.2014.05.047_b0420 – volume: 6 start-page: 449 year: 2012 ident: 10.1016/j.ins.2014.05.047_b0200 article-title: Evaluation of time complexity based on max average distance for K-means clustering publication-title: Int. J. Security Appl. – year: 2008 ident: 10.1016/j.ins.2014.05.047_b0235 – year: 2002 ident: 10.1016/j.ins.2014.05.047_b0440 – ident: 10.1016/j.ins.2014.05.047_b0035 doi: 10.1145/775047.775110 – year: 2011 ident: 10.1016/j.ins.2014.05.047_b0215 – ident: 10.1016/j.ins.2014.05.047_b0250 doi: 10.1109/DEXA.2009.39 – volume: 36 start-page: 9095 year: 2009 ident: 10.1016/j.ins.2014.05.047_b0335 article-title: Genetic algorithm for text clustering using ontology and evaluating the validity of various semantic similarity measures publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.12.046 – volume: 1 start-page: 330 year: 2010 ident: 10.1016/j.ins.2014.05.047_b0400 article-title: Engineering optimisation by cuckoo search publication-title: Int. J. Math. Modell. Numer. Optim. – volume: 2 start-page: 8 year: 2011 ident: 10.1016/j.ins.2014.05.047_b0350 article-title: Improved cuckoo search algorithm for feedforward neural network training publication-title: Int. J. Artif. Intell. Appl. (IJAIA) – volume: 11 start-page: 583 year: 2007 ident: 10.1016/j.ins.2014.05.047_b0220 article-title: An overview of clustering methods publication-title: Intell. Data Anal. doi: 10.3233/IDA-2007-11602 – ident: 10.1016/j.ins.2014.05.047_b0265 doi: 10.1109/CEC.2007.4424770 – volume: 6 start-page: 861 year: 2013 ident: 10.1016/j.ins.2014.05.047_b0315 article-title: Crop stage classification of hyperspectral data using unsupervised techniques publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing doi: 10.1109/JSTARS.2012.2217941 – volume: 5 start-page: 762 year: 2012 ident: 10.1016/j.ins.2014.05.047_b0435 article-title: Hierarchical clustering algorithm for land cover mapping using satellite images publication-title: IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing doi: 10.1109/JSTARS.2012.2187432 – ident: 10.1016/j.ins.2014.05.047_b0005 – ident: 10.1016/j.ins.2014.05.047_b0405 doi: 10.1145/1008992.1009030 – volume: 218 start-page: 2558 year: 2011 ident: 10.1016/j.ins.2014.05.047_b0085 article-title: GHS+LEM: global-best harmony search using learnable evolution models publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2011.07.073 – ident: 10.1016/j.ins.2014.05.047_b0275 doi: 10.1007/11735106_16 |
| SSID | ssj0004766 |
| Score | 2.4036255 |
| Snippet | The clustering of web search results – or web document clustering – has become a very interesting research area among academic and scientific communities... The clustering of web search results - or web document clustering - has become a very interesting research area among academic and scientific communities... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 248 |
| SubjectTerms | Algorithms Balanced Bayesian Information Criterion Balancing Bayesian analysis Clustering Clustering of web result Clusters Criteria Cuckoo search algorithm Heuristic methods k-Mean Searching Web document clustering |
| Title | Clustering of web search results based on the cuckoo search algorithm and Balanced Bayesian Information Criterion |
| URI | https://dx.doi.org/10.1016/j.ins.2014.05.047 https://www.proquest.com/docview/1642242025 |
| Volume | 281 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AKRWK dateStart: 19681201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wTQTwI1bTNpu1RF2VV9KTgLeRVXV3bVduDF3-7M23qC_HgrS2TtsxMZr4h8yBkR5tEOOXiIAm1CLgQKsiMEAGgX61CbZluTvAvLsXgmp_d9G4mSL-rhcG0Sm_7W5veWGv_5MBz82A8HGKNb9QgYggRwCkxjNs5T3CKwf7bZ5oHT9rzSgyTkLo72WxyvIYFduwOedO8Eyes_O6bfljpxvWczJFZjxnpYftb82TCFQtk5ksnwQWy6esP6C71BUbIcOp37iJ56o9qbIkAxLTMKdhO2uo4hXC7HlUvFN2ZpbAGECE1tXkoy45EjW7L52F190hVYekRJkMC3-Di1WEJ5rcv4ugE-ExZLJHrk-Or_iDw0xYCE2eiCiJnUwHhjDUKIIqI45yxPOG5SgERJEbkaWKznoF4TAPm00YxyyMnUgh5UqUiFi-TyaIs3AqhOs1MxrI0ykXEDTc6BCBnVc_i1DzH3SphHZ-l8a3IcSLGSHY5Z_cSRCNRNJL1JIhmlex9LBm3fTj-Iuad8OQ3ZZLgJ_5att0JWsImw5MTVbiyfpEQUwLUiUB_1v736nUyjXfo9EK2QSar59ptApqp9Fajrltk6vD0fHD5DgS69EE |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLemcmA7IBiglTEw0sQBKauTOE5yhIqqQNvTJvVm-SssoyTdlhy48LfzXuLAhlAP3KLkOYn87Pd-P_l9EHKqTSqccnGQhloEXAgV5EaIANCvVqG2THcn-MuVmF_wz-tkvUemQy4MhlV629_b9M5a-zsTP5uTbVlijm_UIWKgCOCUGPD2BzyJUmRgZz__xHnwtD-wRJ6E4sPRZhfkVVZYsjvkXfVObLHyb-f0l5nufM_sMXnkQSN93__XE7LnqkNycKeU4CE58QkI9C31GUY449Rv3afkerppsSYCCNO6oGA8ab_IKfDtdtPcUvRnlsIYgITUtOZbXQ8iavO1vimby-9UVZZ-wGhImDi4-OEwB_PeF7F3Anymrp6Ri9nH8-k88O0WAhPnogkiZzMBfMYaBRhFxHHBWJHyQmUACVIjiiy1eWKAkGkAfdooZnnkRAacJ1MqYvFzMqrqyh0RqrPc5CzPokJE3HCjQ0ByViUW2-Y57saEDfMsja9Fji0xNnIIOruSoBqJqpEskaCaMXn3e8i2L8SxS5gPypP3VpMER7Fr2JtB0RJ2GR6dqMrV7a0EUglYJ4L18-L_Xv2aPJyfLxdy8Wn15Zjs4xP0gCF7SUbNTetOANo0-lW3dH8BrN711g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+of+web+search+results+based+on+the+cuckoo+search+algorithm+and+Balanced+Bayesian+Information+Criterion&rft.jtitle=Information+sciences&rft.au=Cobos%2C+Carlos&rft.au=Mu%C3%B1oz-Collazos%2C+Henry&rft.au=Urbano-Mu%C3%B1oz%2C+Richar&rft.au=Mendoza%2C+Martha&rft.date=2014-10-10&rft.issn=0020-0255&rft.volume=281&rft.spage=248&rft.epage=264&rft_id=info:doi/10.1016%2Fj.ins.2014.05.047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2014_05_047 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |