A genetic algorithm approach for SMEs bankruptcy prediction: Empirical evidence from Italy
•GAs are a very promising method in SMEs default prediction analysis.•GAs are capable of extracting rules that are easy to understand for users.•GAs give a better SMEs default prediction accuracy rate compared with SVM and LR.•GAs significantly reduce misclassification costs compared to SVM and LR.•...
        Saved in:
      
    
          | Published in | Expert systems with applications Vol. 41; no. 14; pp. 6433 - 6445 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier Ltd
    
        15.10.2014
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0957-4174 1873-6793  | 
| DOI | 10.1016/j.eswa.2014.04.026 | 
Cover
| Abstract | •GAs are a very promising method in SMEs default prediction analysis.•GAs are capable of extracting rules that are easy to understand for users.•GAs give a better SMEs default prediction accuracy rate compared with SVM and LR.•GAs significantly reduce misclassification costs compared to SVM and LR.•The prediction accuracy rate of GAs is markedly higher for the smallest sized firms and in the firms operating in the north.
Bankruptcy prediction is a topic, which affect the economic well being of all countries. Having an accurate company default prediction model, which can pick up on time the signs of financial distress, is vital for all firms, especially for small and medium-sized enterprises (SMEs). These firms represent the backbone of the economy of every country. Therefore, they need a prediction model easily adaptable to their characteristics. For this purpose, this study explores and compares the potential of genetic algorithms (GAs) with those of logistic regression (LR) and support vector machine (SVM). GAs are applied to a large sample of 3.100 Italian manufacturing SMEs, three, two and one year prior to bankruptcy. The results indicate that GAs are a very effective and promising instrument in assessing the likelihood of SMEs bankruptcy compared with LR and SVM, especially in reducing Type II misclassification rate. Of particular interest, results show that GAs prediction accuracy rate increases when the model is applied according to size and geographical area, with a marked improvement in the smallest sized firms and in the firms operating in north Italy. | 
    
|---|---|
| AbstractList | Bankruptcy prediction is a topic, which affect the economic well being of all countries. Having an accurate company default prediction model, which can pick up on time the signs of financial distress, is vital for all firms, especially for small and medium-sized enterprises (SMEs). These firms represent the backbone of the economy of every country. Therefore, they need a prediction model easily adaptable to their characteristics. For this purpose, this study explores and compares the potential of genetic algorithms (GAs) with those of logistic regression (LR) and support vector machine (SVM). GAs are applied to a large sample of 3.100 Italian manufacturing SMEs, three, two and one year prior to bankruptcy. The results indicate that GAs are a very effective and promising instrument in assessing the likelihood of SMEs bankruptcy compared with LR and SVM, especially in reducing Type II misdassification rate. Of particular interest, results show that GAs prediction accuracy rate increases when the model is applied according to size and geographical area, with a marked improvement in the smallest sized firms and in the firms operating in north Italy. •GAs are a very promising method in SMEs default prediction analysis.•GAs are capable of extracting rules that are easy to understand for users.•GAs give a better SMEs default prediction accuracy rate compared with SVM and LR.•GAs significantly reduce misclassification costs compared to SVM and LR.•The prediction accuracy rate of GAs is markedly higher for the smallest sized firms and in the firms operating in the north. Bankruptcy prediction is a topic, which affect the economic well being of all countries. Having an accurate company default prediction model, which can pick up on time the signs of financial distress, is vital for all firms, especially for small and medium-sized enterprises (SMEs). These firms represent the backbone of the economy of every country. Therefore, they need a prediction model easily adaptable to their characteristics. For this purpose, this study explores and compares the potential of genetic algorithms (GAs) with those of logistic regression (LR) and support vector machine (SVM). GAs are applied to a large sample of 3.100 Italian manufacturing SMEs, three, two and one year prior to bankruptcy. The results indicate that GAs are a very effective and promising instrument in assessing the likelihood of SMEs bankruptcy compared with LR and SVM, especially in reducing Type II misclassification rate. Of particular interest, results show that GAs prediction accuracy rate increases when the model is applied according to size and geographical area, with a marked improvement in the smallest sized firms and in the firms operating in north Italy.  | 
    
| Author | Gordini, Niccolò | 
    
| Author_xml | – sequence: 1 givenname: Niccolò orcidid: 0000-0002-1279-4309 surname: Gordini fullname: Gordini, Niccolò email: niccolo.gordini@unimib.it organization: University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, zipcode 20126 Milano, Italy  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28534604$$DView record in Pascal Francis | 
    
| BookMark | eNqFkU9v1DAQxS3USmwLX4CTL0hcsvhf4gRxqaoFKhVxaHvhYs0649ZLEgfbW7TfHoctFw5FGskHv9_TzHtn5GQKExLyhrM1Z7x5v1tj-gVrwbhaszKieUFWvNWyanQnT8iKdbWuFNfqJTlLaccY14zpFfl-Qe9xwuwtheE-RJ8fRgrzHAPYB-pCpDdfN4luYfoR93O2BzpH7L3NPkwf6GacffQWBoqPvsfJInUxjPQqw3B4RU4dDAlfP73n5O7T5vbyS3X97fPV5cV1ZWXX5Ep0vMNtW7fMMRC10q6szBxYVyurZG23onwjul5qKW0vOhDCIeMolew5l-fk3dG3LP1zjymb0SeLwwAThn0yvNG6E3XH1P-ldaOLoxKL9O2TFFI50EWYrE9mjn6EeDCiraVq_li2R52NIaWIzlifYYknR_CD4cwsDZmdWRoyS0OGlRFNQcU_6F_3Z6GPRwhLpI8eo0nWL8n3PqLNpg_-Ofw3_sisEw | 
    
| CitedBy_id | crossref_primary_10_1142_S0219622021500334 crossref_primary_10_3233_JIFS_189569 crossref_primary_10_3390_jrfm12010030 crossref_primary_10_1002_for_2770 crossref_primary_10_1108_IJLMA_06_2015_0028 crossref_primary_10_1016_j_econmod_2019_04_003 crossref_primary_10_1016_j_indmarman_2016_08_003 crossref_primary_10_13088_jiis_2014_20_4_43 crossref_primary_10_3390_su11215977 crossref_primary_10_3390_su152115304 crossref_primary_10_1016_j_eswa_2021_114840 crossref_primary_10_1111_exsy_12335 crossref_primary_10_18267_j_polek_1226 crossref_primary_10_1016_j_gaceta_2018_01_001 crossref_primary_10_1057_s41274_016_0166_3 crossref_primary_10_1016_j_jcae_2024_100403 crossref_primary_10_1155_2021_6031324 crossref_primary_10_2139_ssrn_2635773 crossref_primary_10_21307_stattrans_2021_010 crossref_primary_10_3233_JIFS_189575 crossref_primary_10_1016_j_procs_2015_05_292 crossref_primary_10_1016_j_eswa_2014_12_036 crossref_primary_10_1155_2021_3585878 crossref_primary_10_1155_2022_9965427 crossref_primary_10_1155_2022_1928511 crossref_primary_10_1108_EBR_12_2018_0209 crossref_primary_10_3390_su152316482 crossref_primary_10_1016_j_eswa_2023_121418 crossref_primary_10_1016_j_eswa_2014_11_028 crossref_primary_10_1016_j_eswa_2019_112926 crossref_primary_10_11118_actaun201765020641 crossref_primary_10_1155_2022_3019440 crossref_primary_10_5937_AnEkSub2200005K crossref_primary_10_1371_journal_pone_0166693 crossref_primary_10_1080_17421772_2021_1977377 crossref_primary_10_1016_j_jbusres_2023_114290 crossref_primary_10_1016_j_ijforecast_2021_09_006 crossref_primary_10_1155_2022_8807215 crossref_primary_10_1155_2022_4140905 crossref_primary_10_3934_NAR_2021012 crossref_primary_10_1007_s10479_021_04183_0 crossref_primary_10_1155_2022_1645232 crossref_primary_10_3934_NAR_2021015 crossref_primary_10_1016_j_orp_2019_100121 crossref_primary_10_1080_01446193_2016_1219037 crossref_primary_10_1016_j_eswa_2017_03_017 crossref_primary_10_1016_j_eswa_2017_10_040 crossref_primary_10_1016_j_eswa_2014_09_038 crossref_primary_10_3390_sym10080337 crossref_primary_10_1155_2022_9310697 crossref_primary_10_1016_j_eswa_2015_04_053 crossref_primary_10_1111_exsy_12363 crossref_primary_10_1016_j_heliyon_2019_e02997 crossref_primary_10_1142_S0219265921450122 crossref_primary_10_1002_for_2842 crossref_primary_10_1002_isaf_1395 crossref_primary_10_3390_en16041642 crossref_primary_10_3233_JIFS_189242 crossref_primary_10_1016_j_eswa_2017_07_025 crossref_primary_10_1016_j_eswa_2018_09_039 crossref_primary_10_1007_s11277_024_10961_3 crossref_primary_10_1016_j_eswa_2017_07_027 crossref_primary_10_1155_2022_2173402 crossref_primary_10_1155_2021_5591811 crossref_primary_10_1016_j_eswa_2015_04_064 crossref_primary_10_1155_2020_6623108 crossref_primary_10_37394_232032_2023_1_3 crossref_primary_10_1051_shsconf_20173901013 crossref_primary_10_21272_mmi_2019_4_19 crossref_primary_10_1016_j_eswa_2016_07_033 crossref_primary_10_1016_j_dss_2018_06_011 crossref_primary_10_24136_oc_2019_034 crossref_primary_10_3233_JIFS_189497 crossref_primary_10_1080_00405000_2017_1315794 crossref_primary_10_1108_MRR_02_2016_0039 crossref_primary_10_1016_j_micpro_2022_104680 crossref_primary_10_3233_JIFS_189535 crossref_primary_10_3233_JIFS_200866 crossref_primary_10_1016_j_techfore_2021_120658 crossref_primary_10_1007_s13369_019_03930_7 crossref_primary_10_1080_00036846_2020_1730762 crossref_primary_10_1080_14697688_2019_1588468 crossref_primary_10_1016_j_eswa_2024_123839 crossref_primary_10_1108_SEF_08_2016_0207 crossref_primary_10_36962_PAHTEI31082023_329 crossref_primary_10_1016_j_eswa_2016_09_016 crossref_primary_10_1007_s00521_021_06312_z crossref_primary_10_1109_ACCESS_2019_2927517 crossref_primary_10_1155_2022_9085349 crossref_primary_10_3233_JIFS_189317 crossref_primary_10_1016_j_eswa_2014_12_003 crossref_primary_10_1007_s11227_018_2619_8 crossref_primary_10_3233_IDT_160269 crossref_primary_10_1155_2021_2860206 crossref_primary_10_1155_2022_2296823 crossref_primary_10_1002_asmb_2803 crossref_primary_10_3233_JIFS_189555 crossref_primary_10_3233_JIFS_189556  | 
    
| Cites_doi | 10.1016/S0957-4174(03)00102-7 10.1111/j.1540-627X.2007.00195.x 10.1016/0378-7206(93)90064-Z 10.1111/j.1468-5957.1987.tb00113.x 10.1111/j.1468-5957.1982.tb00972.x 10.2307/256801 10.1007/s10693-005-4355-5 10.2307/2329929 10.1016/S0957-4174(98)00063-3 10.2307/2490590 10.1111/j.1468-5957.1992.tb00618.x 10.1086/497044 10.1162/089976698300017197 10.2307/2490395 10.1016/S0305-0548(02)00229-0 10.1016/j.asoc.2008.08.002 10.1016/0378-4266(77)90022-X 10.1109/IJCNN.1990.137710 10.1109/CIFER.2003.1196234 10.2307/2490171 10.1016/0278-4254(83)90032-7 10.2307/2490225 10.1002/isaf.203 10.1111/j.1540-627X.2012.00376.x 10.1111/1540-627X.00092 10.1016/0305-0483(91)90060-7 10.1111/j.1467-6281.2007.00234.x 10.1108/CG-03-2013-0030 10.1016/j.eswa.2008.01.012 10.1016/j.ejor.2006.08.043 10.1016/S0377-2217(98)00051-4 10.1111/j.1540-6261.1968.tb00843.x 10.1016/j.eswa.2005.09.070 10.1080/08839519008927951 10.1016/0167-9236(94)90024-8 10.1016/S0957-4174(96)00055-3 10.1016/j.amc.2005.05.027 10.1023/B:FINA.0000037542.16864.11 10.1111/j.1540-5915.1988.tb00270.x 10.1111/j.1540-5915.2000.tb01633.x 10.1016/j.ejor.2009.03.036 10.1002/(SICI)1099-1174(199709)6:3<195::AID-ISAF132>3.0.CO;2-F 10.1016/j.ijforecast.2011.01.010 10.1016/j.inffus.2008.11.003 10.1016/S0378-4266(98)00059-4 10.1111/j.1540-5915.1992.tb00425.x 10.1016/S0957-4174(97)00011-0 10.1111/j.1540-627X.2007.00209.x 10.2307/2490525 10.1002/(SICI)1099-1174(199809)7:3<187::AID-ISAF144>3.0.CO;2-7 10.1007/s10693-005-5106-3 10.2307/3665934 10.1111/j.1540-627X.2006.00187.x 10.1016/j.jbusvent.2004.07.003 10.1016/S0957-4174(02)00045-3 10.1016/S0957-4174(02)00051-9 10.1108/02686900610705000 10.1016/j.eswa.2004.12.008  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS  | 
    
| Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS  | 
    
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.eswa.2014.04.026 | 
    
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science Economics Applied Sciences  | 
    
| EISSN | 1873-6793 | 
    
| EndPage | 6445 | 
    
| ExternalDocumentID | 28534604 10_1016_j_eswa_2014_04_026 S0957417414002486  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c396t-2919eb8580f0a2547f6790facf54c435cb2eb8eefd3733cd29a22fe01e343d113 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0957-4174 | 
    
| IngestDate | Thu Oct 02 06:32:16 EDT 2025 Sun Sep 28 11:14:44 EDT 2025 Wed Apr 02 07:26:05 EDT 2025 Wed Oct 01 03:51:43 EDT 2025 Thu Apr 24 23:01:07 EDT 2025 Fri Feb 23 02:29:05 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 14 | 
    
| Keywords | Logistic regression Support vector machine Small and medium sized enterprises Default prediction modeling Genetic algorithms Data analysis Empirical method Financial management Well being Regression analysis Economic sciences Modeling Stress Business model Genetic algorithm Vector support machine Firm management Bankruptcy Small medium sized firm  | 
    
| Language | English | 
    
| License | CC BY 4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c396t-2919eb8580f0a2547f6790facf54c435cb2eb8eefd3733cd29a22fe01e343d113 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2  | 
    
| ORCID | 0000-0002-1279-4309 | 
    
| PQID | 1567113424 | 
    
| PQPubID | 23500 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | proquest_miscellaneous_1677925904 proquest_miscellaneous_1567113424 pascalfrancis_primary_28534604 crossref_citationtrail_10_1016_j_eswa_2014_04_026 crossref_primary_10_1016_j_eswa_2014_04_026 elsevier_sciencedirect_doi_10_1016_j_eswa_2014_04_026  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-10-15 | 
    
| PublicationDateYYYYMMDD | 2014-10-15 | 
    
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationTitle | Expert systems with applications | 
    
| PublicationYear | 2014 | 
    
| Publisher | Elsevier Ltd Elsevier  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier  | 
    
| References | Park, Han (b0345) 2002; 23 Nanda, Pendharkar (b0315) 2001; 10 Coats, Fant (b0145) 1993; 22 Jo, Han, Lee (b0230) 1997; 13 O’Leary (b0335) 1998; 7 Zhang, Hu, Patuwo, Indro (b0460) 1999; 116 Huang, Tzeng, Ong (b0225) 2006; 174 Behr, Güttler (b0075) 2007; 45 Bauer (b0060) 1994 Deakin (b0165) 1976; 10 Van Gestel, T., Baesens, B., Suykens, J., Espinoza, M., Baestaens, D. E., Vanthienen, J., et al. (2003). Bankruptcy prediction with least squares support vector machine classifiers. In Fletcher, Goss (b0205) 1993; 24 Carter, Van Auken (b0115) 2006; 44 Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley. Bozsik, J. (2010). Genetic algorithm in default forecast. In Kingdom, J., & Feldman, K. (1995). Genetic algorithms for bankruptcy prediction. London, UK: Search Space Research Report No. 01–95, Search Space Ltd. Odom, M., & Sharda, R. (1990). A neural Network for bankruptcy prediction. In Ciampi, Gordini (b0135) 2009; 8 Jones (b0240) 1987; 6 Morrison, Breen, Ali (b0310) 2003; 41 Joachimsthaler, Stam (b0235) 1998; 19 Abatecola, G., Farina, V., & Gordini, N. (2013). Boards of directors in troubled waters! Enhancing the survival chances of distressed firms. In A. Caretta & G. Mattiacci (Eds.) Altman (b0025) 1993 Holland (b0220) 1975 Dopuch, Holthausen, Leftwich (b0180) 1987; 62 14(5), forthcoming. Altman, Brady, Resti, Sironi (b0035) 2005; 786 Barnes (b0055) 1982; 9 Dos Santos, Sabourin, Maupin (b0185) 2009; 10 Caramanis, Spathis (b0110) 2006; 21 Berger (b0080) 2006; 29 Vallini, C., Ciampi, F., & Gordini, N. (2009a). Using artificial neural networks analysis for small enterprise default prediction modeling: Statistical evidence from Italian firms. In Ciampi, Gordini (b0140) 2013; 51 Ahn, Kim (b0015) 2009; 9 Zopounidis, Dimitras (b0465) 1998 Dietterich (b0175) 1998; 10 Davis (b0160) 1991 Kim, Sohn (b0270) 2010; 201 Studenmund (b0400) 2006 Vapnik (b0435) 1995 Altman, E.I. (2004). Daily, Dalton (b0150) 1994; 37 Blum (b0090) 1974; 12 Edmister (b0190) 1972; 7 Altman, Sabato (b0045) 2007; 43 Demsar (b0170) 2006; 7 Pompe, Bilderbeek (b0355) 2005; 20 (pp. 9–18). London, UK: Routledge. Leow, Mues (b0285) 2012; 28 Vallini, C., Ciampi, F., Gordini, N., & Benvenuti, M. (2008). Can credit scoring models effectively predict small enterprise default? Statistical evidence from Italian firms. In Bryant (b0100) 1997; 6 Abatecola, G., Farina, V., & Gordini, N. (2014). Board effectiveness in corporate crises. Lessons from the evolving empirical research. Corporate governance. Karr (b0255) 1995 Back, Laitinen, Sere (b0050) 1996; 11 Neter, Kutner, Nachtsheim, Wasserman (b0320) 1996 Shin, Ham (b0385) 1999; 16 Watts, Zimmerman (b0450) 1986 Beaver (b0070) 1968; 43 Tam, Kiang (b0410) 1992; 4 Judge, Hill, Griffiths, Lutkepohl, Lee (b0245) 1987 Kim, Han (b0265) 2003; 25 Etheridge, Sriram, Hsu (b0200) 2000; 31 Min, Lee, Han (b0300) 2006; 31 (pp. 1–21). Oxford, UK. Salcedo-Sanz, Fernandez-Villacanas, Segovia-Vargas, Bousono-Calzon (b0365) 2005 (pp. 1–26). Oxford, UK. New York, NY: New York University Working Paper. Saurina, Trucharte (b0375) 2004; 26 Martin (b0290) 1977; 1 (pp. 1–8). Min, Lee (b0295) 2005; 28 Ciampi, F., & Gordini, N. (2013b). The potential of corporate governance variables for small enterprise default prediction modeling. Statistical evidence from Italian manufacturing firms. In Berger, Frame (b0085) 2007; 45 Buta (b0105) 1994; 9 Montgomery, Peck (b0305) 1992 (pp. 147–154), Bologna, IT: Il Mulino. (pp. 1–23), Florence, ITA. Beaver (b0065) 1967; 4 Koh (b0280) 1992; 17 (pp. 1–19). Cambridge, UK. Ravi Kumar, Ravi (b0360) 2007; 180 Tam (b0405) 1991; 19 Vallini, Ciampi, Gordini, Benvenuti (b0415) 2009; 8 Walker, Haasdijk, Gerrets (b0445) 1995 Karels, Prakash (b0250) 1987; 14 Altman, Sabato (b0040) 2005; 28 Sharda, Wilson (b0380) 1996; 1 Darwin (b0155) 1859 Etemadi, Rostamy, Dehkordi (b0195) 2009; 36 San Diego, CA. Salchenberger, Cinar, Lash (b0370) 1992; 23 Siegel (b0395) 1956 Ciampi, F., & Gordini, N. (2013c). L’impiego di variabili relative al management per la predizione del default della piccola impresa. Primi risultati di un’analisi statistica sulle imprese italiane. In P. Adinolfi, R. Cafferata & A. Tommasetti (Eds.) Shin, Lee (b0390) 2002; 23 Pampel (b0340) 2000 (pp. 41–51). Eger, Hungary. Hamer (b0215) 1983; 2 Altman (b0020) 1968; 23 Kida (b0260) 1980; 22 Wilson, Sharda (b0455) 1994; 11 Ciampi, F., & Gordini, N. (2008). Using economic–financial ratios for small enterprise default prediction modeling: An empirical analysis. In Ohlson (b0330) 1980; 18 Pendharkar, Rodger (b0350) 2004; 31 Varetto (b0440) 1998; 22 Koh (10.1016/j.eswa.2014.04.026_b0280) 1992; 17 Demsar (10.1016/j.eswa.2014.04.026_b0170) 2006; 7 Jo (10.1016/j.eswa.2014.04.026_b0230) 1997; 13 Morrison (10.1016/j.eswa.2014.04.026_b0310) 2003; 41 Ciampi (10.1016/j.eswa.2014.04.026_b0140) 2013; 51 Kim (10.1016/j.eswa.2014.04.026_b0265) 2003; 25 Min (10.1016/j.eswa.2014.04.026_b0300) 2006; 31 Buta (10.1016/j.eswa.2014.04.026_b0105) 1994; 9 Judge (10.1016/j.eswa.2014.04.026_b0245) 1987 Altman (10.1016/j.eswa.2014.04.026_b0025) 1993 Caramanis (10.1016/j.eswa.2014.04.026_b0110) 2006; 21 Dos Santos (10.1016/j.eswa.2014.04.026_b0185) 2009; 10 Montgomery (10.1016/j.eswa.2014.04.026_b0305) 1992 10.1016/j.eswa.2014.04.026_b0130 10.1016/j.eswa.2014.04.026_b0010 10.1016/j.eswa.2014.04.026_b0095 Deakin (10.1016/j.eswa.2014.04.026_b0165) 1976; 10 Ciampi (10.1016/j.eswa.2014.04.026_b0135) 2009; 8 Huang (10.1016/j.eswa.2014.04.026_b0225) 2006; 174 Dopuch (10.1016/j.eswa.2014.04.026_b0180) 1987; 62 10.1016/j.eswa.2014.04.026_b0210 Altman (10.1016/j.eswa.2014.04.026_b0020) 1968; 23 Holland (10.1016/j.eswa.2014.04.026_b0220) 1975 Min (10.1016/j.eswa.2014.04.026_b0295) 2005; 28 Pampel (10.1016/j.eswa.2014.04.026_b0340) 2000 Blum (10.1016/j.eswa.2014.04.026_b0090) 1974; 12 Edmister (10.1016/j.eswa.2014.04.026_b0190) 1972; 7 Sharda (10.1016/j.eswa.2014.04.026_b0380) 1996; 1 Martin (10.1016/j.eswa.2014.04.026_b0290) 1977; 1 Neter (10.1016/j.eswa.2014.04.026_b0320) 1996 Wilson (10.1016/j.eswa.2014.04.026_b0455) 1994; 11 Nanda (10.1016/j.eswa.2014.04.026_b0315) 2001; 10 Etheridge (10.1016/j.eswa.2014.04.026_b0200) 2000; 31 Varetto (10.1016/j.eswa.2014.04.026_b0440) 1998; 22 Etemadi (10.1016/j.eswa.2014.04.026_b0195) 2009; 36 10.1016/j.eswa.2014.04.026_b0120 Fletcher (10.1016/j.eswa.2014.04.026_b0205) 1993; 24 O’Leary (10.1016/j.eswa.2014.04.026_b0335) 1998; 7 Barnes (10.1016/j.eswa.2014.04.026_b0055) 1982; 9 Bauer (10.1016/j.eswa.2014.04.026_b0060) 1994 Saurina (10.1016/j.eswa.2014.04.026_b0375) 2004; 26 10.1016/j.eswa.2014.04.026_b0325 Joachimsthaler (10.1016/j.eswa.2014.04.026_b0235) 1998; 19 Salchenberger (10.1016/j.eswa.2014.04.026_b0370) 1992; 23 10.1016/j.eswa.2014.04.026_b0125 10.1016/j.eswa.2014.04.026_b0005 Altman (10.1016/j.eswa.2014.04.026_b0040) 2005; 28 Beaver (10.1016/j.eswa.2014.04.026_b0065) 1967; 4 Ravi Kumar (10.1016/j.eswa.2014.04.026_b0360) 2007; 180 Coats (10.1016/j.eswa.2014.04.026_b0145) 1993; 22 Leow (10.1016/j.eswa.2014.04.026_b0285) 2012; 28 Pendharkar (10.1016/j.eswa.2014.04.026_b0350) 2004; 31 Salcedo-Sanz (10.1016/j.eswa.2014.04.026_b0365) 2005 Siegel (10.1016/j.eswa.2014.04.026_b0395) 1956 Shin (10.1016/j.eswa.2014.04.026_b0390) 2002; 23 Dietterich (10.1016/j.eswa.2014.04.026_b0175) 1998; 10 Darwin (10.1016/j.eswa.2014.04.026_b0155) 1859 Bryant (10.1016/j.eswa.2014.04.026_b0100) 1997; 6 Watts (10.1016/j.eswa.2014.04.026_b0450) 1986 10.1016/j.eswa.2014.04.026_b0030 Jones (10.1016/j.eswa.2014.04.026_b0240) 1987; 6 10.1016/j.eswa.2014.04.026_b0275 Karels (10.1016/j.eswa.2014.04.026_b0250) 1987; 14 10.1016/j.eswa.2014.04.026_b0430 Studenmund (10.1016/j.eswa.2014.04.026_b0400) 2006 Park (10.1016/j.eswa.2014.04.026_b0345) 2002; 23 Carter (10.1016/j.eswa.2014.04.026_b0115) 2006; 44 Vallini (10.1016/j.eswa.2014.04.026_b0415) 2009; 8 Kida (10.1016/j.eswa.2014.04.026_b0260) 1980; 22 Karr (10.1016/j.eswa.2014.04.026_b0255) 1995 Shin (10.1016/j.eswa.2014.04.026_b0385) 1999; 16 Tam (10.1016/j.eswa.2014.04.026_b0410) 1992; 4 Ahn (10.1016/j.eswa.2014.04.026_b0015) 2009; 9 Kim (10.1016/j.eswa.2014.04.026_b0270) 2010; 201 Zopounidis (10.1016/j.eswa.2014.04.026_b0465) 1998 Altman (10.1016/j.eswa.2014.04.026_b0045) 2007; 43 Ohlson (10.1016/j.eswa.2014.04.026_b0330) 1980; 18 Tam (10.1016/j.eswa.2014.04.026_b0405) 1991; 19 Davis (10.1016/j.eswa.2014.04.026_b0160) 1991 Behr (10.1016/j.eswa.2014.04.026_b0075) 2007; 45 Beaver (10.1016/j.eswa.2014.04.026_b0070) 1968; 43 10.1016/j.eswa.2014.04.026_b0420 Walker (10.1016/j.eswa.2014.04.026_b0445) 1995 Pompe (10.1016/j.eswa.2014.04.026_b0355) 2005; 20 Altman (10.1016/j.eswa.2014.04.026_b0035) 2005; 786 Berger (10.1016/j.eswa.2014.04.026_b0080) 2006; 29 10.1016/j.eswa.2014.04.026_b0425 Daily (10.1016/j.eswa.2014.04.026_b0150) 1994; 37 Back (10.1016/j.eswa.2014.04.026_b0050) 1996; 11 Hamer (10.1016/j.eswa.2014.04.026_b0215) 1983; 2 Vapnik (10.1016/j.eswa.2014.04.026_b0435) 1995 Berger (10.1016/j.eswa.2014.04.026_b0085) 2007; 45 Zhang (10.1016/j.eswa.2014.04.026_b0460) 1999; 116  | 
    
| References_xml | – volume: 45 start-page: 5 year: 2007 end-page: 22 ident: b0085 article-title: Small business credit scoring and credit availability publication-title: Journal of Small Business Management – volume: 4 start-page: 71 year: 1967 end-page: 111 ident: b0065 article-title: Financial ratios predictors of failure publication-title: Journal of Accounting Research – volume: 9 start-page: 599 year: 2009 end-page: 607 ident: b0015 article-title: Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach publication-title: Applied Soft Computing – reference: Ciampi, F., & Gordini, N. (2013c). L’impiego di variabili relative al management per la predizione del default della piccola impresa. Primi risultati di un’analisi statistica sulle imprese italiane. In P. Adinolfi, R. Cafferata & A. Tommasetti (Eds.), – reference: Odom, M., & Sharda, R. (1990). A neural Network for bankruptcy prediction. In – volume: 43 start-page: 113 year: 1968 end-page: 122 ident: b0070 article-title: Alternative accounting measures as predictors of failure publication-title: The Accounting Review – volume: 31 start-page: 531 year: 2000 end-page: 550 ident: b0200 article-title: A comparison of selected artificial neural networks that help auditors evaluate client financial viability publication-title: Decision Sciences – volume: 19 start-page: 322 year: 1998 end-page: 333 ident: b0235 article-title: Four approaches to the classification problem in discriminat analysis: An experimental study publication-title: Decision Sciences – reference: (pp. 1–19). Cambridge, UK. – volume: 10 start-page: 150 year: 2009 end-page: 162 ident: b0185 article-title: Overfitting cautious selection of classifier ensembles with genetic algorithms publication-title: Information Fusion – reference: Kingdom, J., & Feldman, K. (1995). Genetic algorithms for bankruptcy prediction. London, UK: Search Space Research Report No. 01–95, Search Space Ltd. – year: 1994 ident: b0060 article-title: Genetic algorithms and investment strategies – volume: 14 start-page: 573 year: 1987 end-page: 593 ident: b0250 article-title: Multivariate normality and forecasting of business bankruptcy publication-title: Journal of Business Finance and Accounting – year: 1859 ident: b0155 article-title: On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life – volume: 22 start-page: 142 year: 1993 end-page: 156 ident: b0145 article-title: Recognizing financial distress patterns using a neural network tool publication-title: Financial Management – year: 1995 ident: b0445 article-title: Credit evaluation using a genetic algorithm publication-title: Intelligent systems for finance and business – volume: 9 start-page: 34 year: 1994 end-page: 41 ident: b0105 article-title: Mining for financial knowledge with CBR publication-title: AI Expert – year: 1992 ident: b0305 article-title: Introduction to linear regression analysis – year: 1998 ident: b0465 article-title: Multicriteria decision aid methods for the prediction of business failure – volume: 36 start-page: 3199 year: 2009 end-page: 3207 ident: b0195 article-title: A genetic programming model for bankruptcy prediction: Empirical evidence from Iran publication-title: Expert System with Applications – volume: 24 start-page: 159 year: 1993 end-page: 167 ident: b0205 article-title: Forecasting with neural networks: An application using bankruptcy data publication-title: Information and Management – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b0170 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – reference: Van Gestel, T., Baesens, B., Suykens, J., Espinoza, M., Baestaens, D. E., Vanthienen, J., et al. (2003). Bankruptcy prediction with least squares support vector machine classifiers. In – volume: 8 start-page: 13 year: 2009 end-page: 29 ident: b0135 article-title: Default prediction modeling for small enterprises: Evidence from small manufacturing firms in northern and central Italy publication-title: Oxford Journal – volume: 7 start-page: 1477 year: 1972 end-page: 1493 ident: b0190 article-title: An empirical test of financial ratio analysis for small business failure prediction publication-title: Journal of Financial and Quantitative Analysis – volume: 8 start-page: 3 year: 2009 end-page: 18 ident: b0415 article-title: Are credit scoring models able to predict small enterprise default? Statistical evidence from Italian firms publication-title: International Journal of Business and Economics – volume: 6 start-page: 131 year: 1987 end-page: 164 ident: b0240 article-title: Current techniques in bankruptcy prediction publication-title: Journal of Accounting Literature – volume: 19 start-page: 429 year: 1991 end-page: 445 ident: b0405 article-title: Neural network models and the prediction of bank bankruptcy publication-title: OMEGA: The International Journal of Management Science – year: 1956 ident: b0395 article-title: Nonparametric statistics for the behavioral sciences – volume: 28 start-page: 603 year: 2005 end-page: 614 ident: b0295 article-title: Bankruptcy prediction using support vector machine (SVM) with optimal choice of kernel function parameters publication-title: Expert System with Applications – reference: Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley. – reference: Altman, E.I. (2004). – year: 1987 ident: b0245 article-title: Theory and practice of econometrics – volume: 20 start-page: 847 year: 2005 end-page: 868 ident: b0355 article-title: The prediction of bankruptcy of small-and medium-sized industrial firms publication-title: Journal of Business Venturing – volume: 16 start-page: 85 year: 1999 end-page: 95 ident: b0385 article-title: Case-based reasoning supported by genetic algorithms for corporate bond rating publication-title: Expert System with Applications – reference: Abatecola, G., Farina, V., & Gordini, N. (2014). Board effectiveness in corporate crises. Lessons from the evolving empirical research. Corporate governance. – volume: 37 start-page: 1603 year: 1994 end-page: 1617 ident: b0150 article-title: Bankruptcy and corporate governance: The impact of board composition and structure publication-title: Academy of Management Journal – year: 2006 ident: b0400 article-title: Using econometrics, a practical guide – volume: 31 start-page: 481 year: 2004 end-page: 498 ident: b0350 article-title: An empirical study of impact of crossover operators on the performance of non-binary genetic algorithm based neural approaches for classification publication-title: Computer and Operations Research – year: 1995 ident: b0255 article-title: Adaptive control of an exothermic chemical reaction system using fuzzy logic and genetic algorithms publication-title: Hybrid intelligent systems – volume: 41 start-page: 417 year: 2003 end-page: 425 ident: b0310 article-title: Small business growth: Intention, ability, and opportunity publication-title: Journal of Small Business Management – volume: 10 start-page: 167 year: 1976 end-page: 180 ident: b0165 article-title: A discriminant analysis of predictors of business failure publication-title: Journal of Accounting Research – reference: Abatecola, G., Farina, V., & Gordini, N. (2013). Boards of directors in troubled waters! Enhancing the survival chances of distressed firms. In A. Caretta & G. Mattiacci (Eds.), – volume: 116 start-page: 16 year: 1999 end-page: 32 ident: b0460 article-title: Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis publication-title: European Journal of Operational Research – volume: 22 start-page: 1421 year: 1998 end-page: 1439 ident: b0440 article-title: Genetic algorithms applications in the analysis of insolvency risk publication-title: Journal of Banking and Finance – volume: 174 start-page: 1039 year: 2006 end-page: 1053 ident: b0225 article-title: Two-stage genetic programming (2SGP) for the credit scoring model publication-title: Applied Mathematics and Computation – volume: 44 start-page: 493 year: 2006 end-page: 512 ident: b0115 article-title: Small firm bankruptcy publication-title: Journal of Small Business Management – volume: 25 start-page: 637 year: 2003 end-page: 646 ident: b0265 article-title: The discovery of experts’ decision rules from qualitative bankruptcy data using genetic algorithms publication-title: Expert Systems with Applications – volume: 31 start-page: 652 year: 2006 end-page: 660 ident: b0300 article-title: Hybrid genetic algorithms and support vector machines for bankruptcy prediction publication-title: Expert System with Applications – year: 1993 ident: b0025 article-title: Corporate financial distress and bankruptcy – reference: (pp. 1–21). Oxford, UK. – reference: (pp. 9–18). London, UK: Routledge. – volume: 7 start-page: 187 year: 1998 end-page: 197 ident: b0335 article-title: Using neural networks to predict corporate failure publication-title: International Journal of Intelligent Systems in Accounting Finance and Management – volume: 10 start-page: 1895 year: 1998 end-page: 1923 ident: b0175 article-title: Approximate statistical test for comparing supervised classification learning algorithms publication-title: Neural Computation – volume: 23 start-page: 321 year: 2002 end-page: 328 ident: b0390 article-title: Genetic algorithm application in bankruptcy prediction modeling publication-title: Expert System with Applications – reference: Vallini, C., Ciampi, F., & Gordini, N. (2009a). Using artificial neural networks analysis for small enterprise default prediction modeling: Statistical evidence from Italian firms. In – volume: 1 start-page: 107 year: 1996 end-page: 117 ident: b0380 article-title: Neural network experiments in business-failure forecasting: Predictive performance measurement issues publication-title: International Journal of Computational Intelligence and Organizations – volume: 180 start-page: 1 year: 2007 end-page: 28 ident: b0360 article-title: Bankruptcy prediction in banks and firms via statistical and intelligent techniques – a review publication-title: European Journal of Operational Research – reference: Ciampi, F., & Gordini, N. (2008). Using economic–financial ratios for small enterprise default prediction modeling: An empirical analysis. In – volume: 29 start-page: 5 year: 2006 end-page: 36 ident: b0080 article-title: Potential competitive effects of Basel II on banks in SME credit markets in the United States publication-title: Journal of Financial Services Research – year: 1986 ident: b0450 article-title: Positive accounting theory – volume: 786 start-page: 2203 year: 2005 end-page: 2227 ident: b0035 article-title: The link between default and recovery rates: Theory, empirical evidence, and implications publication-title: The Journal of Business – reference: (pp. 147–154), Bologna, IT: Il Mulino. – reference: (pp. 1–8). – volume: 2 start-page: 289 year: 1983 end-page: 307 ident: b0215 article-title: Failure prediction: Sensitivity of classification accuracy to alternative statistical methods and variable sets publication-title: Journal of Accounting and Public Policy – reference: 14(5), forthcoming. – year: 1975 ident: b0220 article-title: Adaptation in natural and artificial system – reference: (pp. 41–51). Eger, Hungary. – volume: 11 start-page: 545 year: 1994 end-page: 557 ident: b0455 article-title: Bankruptcy prediction using neural networks publication-title: Decision Support System – year: 1995 ident: b0435 article-title: The nature of statistical learning theory – reference: Vallini, C., Ciampi, F., Gordini, N., & Benvenuti, M. (2008). Can credit scoring models effectively predict small enterprise default? Statistical evidence from Italian firms. In – reference: . New York, NY: New York University Working Paper. – volume: 6 start-page: 195 year: 1997 end-page: 214 ident: b0100 article-title: A case-based reasoning approach to bankruptcy prediction modeling publication-title: International Journal of Intelligent System in Accounting, Finance and Management – volume: 26 start-page: 121 year: 2004 end-page: 144 ident: b0375 article-title: The impact of Basel II on lending to small-and-medium-sized firms: A regulatory policy assessment based on Spanish credit register data publication-title: Journal of Finance Services – volume: 23 start-page: 589 year: 1968 end-page: 609 ident: b0020 article-title: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy publication-title: The Journal of Finance – reference: Bozsik, J. (2010). Genetic algorithm in default forecast. In – volume: 201 start-page: 838 year: 2010 end-page: 846 ident: b0270 article-title: Support vector machines for default prediction of SMEs based on technology credit publication-title: European Journal of Operational Research – volume: 10 start-page: 155 year: 2001 end-page: 168 ident: b0315 article-title: Linear models for minimizing misclassification costs in bankruptcy prediction publication-title: International Journal of Intelligent Systems in Accounting, Finance and Management – volume: 1 start-page: 249 year: 1977 end-page: 276 ident: b0290 article-title: Early warning of bank failure: A logit regression approach publication-title: Journal of Banking and Finance – volume: 28 start-page: 15 year: 2005 end-page: 42 ident: b0040 article-title: Effects of the new Basel capital accord on bank capital requirements for SMEs publication-title: Journal of Financial Services Research – start-page: 32749 year: 2005 end-page: 32765 ident: b0365 article-title: Genetic programming for the prediction of insolvency in non-life insurance companies publication-title: Computers and Operations Research – volume: 4 start-page: 265 year: 1992 end-page: 282 ident: b0410 article-title: Predicting bank failure: A neural network approach publication-title: Applied Artificial Intelligence: An International Journal – volume: 9 start-page: 51 year: 1982 end-page: 62 ident: b0055 article-title: Methodological implications of non-normality distributed financial ratios publication-title: Journal of Business Finance and Accounting – volume: 23 start-page: 899 year: 1992 end-page: 916 ident: b0370 article-title: Neural networks: A new tool for predicting thrift failures publication-title: Decision Sciences – volume: 18 start-page: 109 year: 1980 end-page: 131 ident: b0330 article-title: Financial ratios and the probabilistic prediction of bankruptcy publication-title: Journal of Accounting Research – reference: (pp. 1–26). Oxford, UK. – year: 1996 ident: b0320 article-title: Applied linear statistical models – volume: 62 start-page: 431 year: 1987 end-page: 454 ident: b0180 article-title: Predicting audit qualifications with financial and market variables publication-title: The Accounting Review – volume: 51 start-page: 23 year: 2013 end-page: 45 ident: b0140 article-title: Small enterprise default prediction modeling through artificial neural networks: An empirical analysis of Italian small enterprises publication-title: Journal of Small Business Management – volume: 23 start-page: 255 year: 2002 end-page: 264 ident: b0345 article-title: A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction publication-title: Expert System with Applications – volume: 43 start-page: 332 year: 2007 end-page: 357 ident: b0045 article-title: Modeling credit risk for SMEs: Evidence from the US market publication-title: Abacus – volume: 17 start-page: 187 year: 1992 end-page: 197 ident: b0280 article-title: The sensitivity of optimal cutoff points to misclassification costs of type I and type II errors in the going-concern prediction context publication-title: Journal of Business Finance and Accounting – reference: , San Diego, CA. – volume: 21 start-page: 905 year: 2006 end-page: 920 ident: b0110 article-title: Auditee and audit firm characteristics as determinants of audit qualifications: Evidence from the Athens stock exchange publication-title: Managerial Auditing Journal – volume: 22 start-page: 506 year: 1980 end-page: 523 ident: b0260 article-title: An investigation into auditor’s continuity and related qualification judgments publication-title: Journal of Accounting Research – volume: 11 start-page: 407 year: 1996 end-page: 413 ident: b0050 article-title: Neural networks and genetic algorithms for bankruptcy predictions publication-title: Expert System with Applications – volume: 13 start-page: 97 year: 1997 end-page: 108 ident: b0230 article-title: Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis publication-title: Expert System with Applications – reference: (pp. 1–23), Florence, ITA. – volume: 12 start-page: 1 year: 1974 end-page: 25 ident: b0090 article-title: Failing company discriminant analysis publication-title: Journal of Accounting Research – year: 1991 ident: b0160 article-title: Handbook of genetic algorithms – volume: 28 start-page: 183 year: 2012 end-page: 195 ident: b0285 article-title: Predicting loss given default (LGD) for residential mortgage loans: A two-stage model and empirical evidence for UK bank data publication-title: International Journal of Forecasting – year: 2000 ident: b0340 article-title: Logistic regression – A premier – reference: Ciampi, F., & Gordini, N. (2013b). The potential of corporate governance variables for small enterprise default prediction modeling. Statistical evidence from Italian manufacturing firms. In – volume: 45 start-page: 194 year: 2007 end-page: 213 ident: b0075 article-title: Credit risk assessment and relationship lending: An empirical analysis of German small and medium-sized enterprises publication-title: Journal of Small Business Management – volume: 25 start-page: 637 issue: 4 year: 2003 ident: 10.1016/j.eswa.2014.04.026_b0265 article-title: The discovery of experts’ decision rules from qualitative bankruptcy data using genetic algorithms publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(03)00102-7 – volume: 45 start-page: 5 issue: 1 year: 2007 ident: 10.1016/j.eswa.2014.04.026_b0085 article-title: Small business credit scoring and credit availability publication-title: Journal of Small Business Management doi: 10.1111/j.1540-627X.2007.00195.x – volume: 24 start-page: 159 issue: 3 year: 1993 ident: 10.1016/j.eswa.2014.04.026_b0205 article-title: Forecasting with neural networks: An application using bankruptcy data publication-title: Information and Management doi: 10.1016/0378-7206(93)90064-Z – volume: 14 start-page: 573 issue: 4 year: 1987 ident: 10.1016/j.eswa.2014.04.026_b0250 article-title: Multivariate normality and forecasting of business bankruptcy publication-title: Journal of Business Finance and Accounting doi: 10.1111/j.1468-5957.1987.tb00113.x – year: 1991 ident: 10.1016/j.eswa.2014.04.026_b0160 – volume: 8 start-page: 3 issue: 1 year: 2009 ident: 10.1016/j.eswa.2014.04.026_b0415 article-title: Are credit scoring models able to predict small enterprise default? Statistical evidence from Italian firms publication-title: International Journal of Business and Economics – year: 2006 ident: 10.1016/j.eswa.2014.04.026_b0400 – volume: 9 start-page: 51 issue: 1 year: 1982 ident: 10.1016/j.eswa.2014.04.026_b0055 article-title: Methodological implications of non-normality distributed financial ratios publication-title: Journal of Business Finance and Accounting doi: 10.1111/j.1468-5957.1982.tb00972.x – volume: 37 start-page: 1603 issue: 6 year: 1994 ident: 10.1016/j.eswa.2014.04.026_b0150 article-title: Bankruptcy and corporate governance: The impact of board composition and structure publication-title: Academy of Management Journal doi: 10.2307/256801 – volume: 28 start-page: 15 issue: 1–3 year: 2005 ident: 10.1016/j.eswa.2014.04.026_b0040 article-title: Effects of the new Basel capital accord on bank capital requirements for SMEs publication-title: Journal of Financial Services Research doi: 10.1007/s10693-005-4355-5 – volume: 7 start-page: 1477 issue: 2 year: 1972 ident: 10.1016/j.eswa.2014.04.026_b0190 article-title: An empirical test of financial ratio analysis for small business failure prediction publication-title: Journal of Financial and Quantitative Analysis doi: 10.2307/2329929 – volume: 16 start-page: 85 issue: 2 year: 1999 ident: 10.1016/j.eswa.2014.04.026_b0385 article-title: Case-based reasoning supported by genetic algorithms for corporate bond rating publication-title: Expert System with Applications doi: 10.1016/S0957-4174(98)00063-3 – volume: 22 start-page: 506 issue: 1 year: 1980 ident: 10.1016/j.eswa.2014.04.026_b0260 article-title: An investigation into auditor’s continuity and related qualification judgments publication-title: Journal of Accounting Research doi: 10.2307/2490590 – ident: 10.1016/j.eswa.2014.04.026_b0420 – volume: 17 start-page: 187 year: 1992 ident: 10.1016/j.eswa.2014.04.026_b0280 article-title: The sensitivity of optimal cutoff points to misclassification costs of type I and type II errors in the going-concern prediction context publication-title: Journal of Business Finance and Accounting doi: 10.1111/j.1468-5957.1992.tb00618.x – year: 1996 ident: 10.1016/j.eswa.2014.04.026_b0320 – volume: 786 start-page: 2203 issue: 6 year: 2005 ident: 10.1016/j.eswa.2014.04.026_b0035 article-title: The link between default and recovery rates: Theory, empirical evidence, and implications publication-title: The Journal of Business doi: 10.1086/497044 – volume: 10 start-page: 1895 issue: 7 year: 1998 ident: 10.1016/j.eswa.2014.04.026_b0175 article-title: Approximate statistical test for comparing supervised classification learning algorithms publication-title: Neural Computation doi: 10.1162/089976698300017197 – volume: 62 start-page: 431 year: 1987 ident: 10.1016/j.eswa.2014.04.026_b0180 article-title: Predicting audit qualifications with financial and market variables publication-title: The Accounting Review – volume: 18 start-page: 109 issue: 1 year: 1980 ident: 10.1016/j.eswa.2014.04.026_b0330 article-title: Financial ratios and the probabilistic prediction of bankruptcy publication-title: Journal of Accounting Research doi: 10.2307/2490395 – volume: 31 start-page: 481 year: 2004 ident: 10.1016/j.eswa.2014.04.026_b0350 article-title: An empirical study of impact of crossover operators on the performance of non-binary genetic algorithm based neural approaches for classification publication-title: Computer and Operations Research doi: 10.1016/S0305-0548(02)00229-0 – volume: 9 start-page: 599 year: 2009 ident: 10.1016/j.eswa.2014.04.026_b0015 article-title: Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2008.08.002 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.eswa.2014.04.026_b0170 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – year: 1986 ident: 10.1016/j.eswa.2014.04.026_b0450 – volume: 8 start-page: 13 issue: 1 year: 2009 ident: 10.1016/j.eswa.2014.04.026_b0135 article-title: Default prediction modeling for small enterprises: Evidence from small manufacturing firms in northern and central Italy publication-title: Oxford Journal – year: 1993 ident: 10.1016/j.eswa.2014.04.026_b0025 – year: 1995 ident: 10.1016/j.eswa.2014.04.026_b0255 article-title: Adaptive control of an exothermic chemical reaction system using fuzzy logic and genetic algorithms – volume: 1 start-page: 249 issue: 3 year: 1977 ident: 10.1016/j.eswa.2014.04.026_b0290 article-title: Early warning of bank failure: A logit regression approach publication-title: Journal of Banking and Finance doi: 10.1016/0378-4266(77)90022-X – ident: 10.1016/j.eswa.2014.04.026_b0325 doi: 10.1109/IJCNN.1990.137710 – year: 1956 ident: 10.1016/j.eswa.2014.04.026_b0395 – year: 1995 ident: 10.1016/j.eswa.2014.04.026_b0445 article-title: Credit evaluation using a genetic algorithm – ident: 10.1016/j.eswa.2014.04.026_b0430 doi: 10.1109/CIFER.2003.1196234 – volume: 4 start-page: 71 year: 1967 ident: 10.1016/j.eswa.2014.04.026_b0065 article-title: Financial ratios predictors of failure publication-title: Journal of Accounting Research doi: 10.2307/2490171 – ident: 10.1016/j.eswa.2014.04.026_b0425 – volume: 2 start-page: 289 year: 1983 ident: 10.1016/j.eswa.2014.04.026_b0215 article-title: Failure prediction: Sensitivity of classification accuracy to alternative statistical methods and variable sets publication-title: Journal of Accounting and Public Policy doi: 10.1016/0278-4254(83)90032-7 – volume: 10 start-page: 167 issue: 1 year: 1976 ident: 10.1016/j.eswa.2014.04.026_b0165 article-title: A discriminant analysis of predictors of business failure publication-title: Journal of Accounting Research doi: 10.2307/2490225 – year: 1992 ident: 10.1016/j.eswa.2014.04.026_b0305 – volume: 10 start-page: 155 year: 2001 ident: 10.1016/j.eswa.2014.04.026_b0315 article-title: Linear models for minimizing misclassification costs in bankruptcy prediction publication-title: International Journal of Intelligent Systems in Accounting, Finance and Management doi: 10.1002/isaf.203 – ident: 10.1016/j.eswa.2014.04.026_b0125 – year: 1994 ident: 10.1016/j.eswa.2014.04.026_b0060 – year: 1859 ident: 10.1016/j.eswa.2014.04.026_b0155 – ident: 10.1016/j.eswa.2014.04.026_b0005 – ident: 10.1016/j.eswa.2014.04.026_b0030 – year: 1987 ident: 10.1016/j.eswa.2014.04.026_b0245 – volume: 9 start-page: 34 issue: 10 year: 1994 ident: 10.1016/j.eswa.2014.04.026_b0105 article-title: Mining for financial knowledge with CBR publication-title: AI Expert – volume: 51 start-page: 23 issue: 1 year: 2013 ident: 10.1016/j.eswa.2014.04.026_b0140 article-title: Small enterprise default prediction modeling through artificial neural networks: An empirical analysis of Italian small enterprises publication-title: Journal of Small Business Management doi: 10.1111/j.1540-627X.2012.00376.x – volume: 41 start-page: 417 issue: 4 year: 2003 ident: 10.1016/j.eswa.2014.04.026_b0310 article-title: Small business growth: Intention, ability, and opportunity publication-title: Journal of Small Business Management doi: 10.1111/1540-627X.00092 – year: 1975 ident: 10.1016/j.eswa.2014.04.026_b0220 – volume: 19 start-page: 429 issue: 5 year: 1991 ident: 10.1016/j.eswa.2014.04.026_b0405 article-title: Neural network models and the prediction of bank bankruptcy publication-title: OMEGA: The International Journal of Management Science doi: 10.1016/0305-0483(91)90060-7 – year: 1998 ident: 10.1016/j.eswa.2014.04.026_b0465 – volume: 43 start-page: 332 issue: 2 year: 2007 ident: 10.1016/j.eswa.2014.04.026_b0045 article-title: Modeling credit risk for SMEs: Evidence from the US market publication-title: Abacus doi: 10.1111/j.1467-6281.2007.00234.x – ident: 10.1016/j.eswa.2014.04.026_b0095 – ident: 10.1016/j.eswa.2014.04.026_b0010 doi: 10.1108/CG-03-2013-0030 – volume: 36 start-page: 3199 year: 2009 ident: 10.1016/j.eswa.2014.04.026_b0195 article-title: A genetic programming model for bankruptcy prediction: Empirical evidence from Iran publication-title: Expert System with Applications doi: 10.1016/j.eswa.2008.01.012 – volume: 180 start-page: 1 year: 2007 ident: 10.1016/j.eswa.2014.04.026_b0360 article-title: Bankruptcy prediction in banks and firms via statistical and intelligent techniques – a review publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.08.043 – volume: 116 start-page: 16 issue: 1 year: 1999 ident: 10.1016/j.eswa.2014.04.026_b0460 article-title: Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(98)00051-4 – volume: 23 start-page: 589 issue: 4 year: 1968 ident: 10.1016/j.eswa.2014.04.026_b0020 article-title: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.1968.tb00843.x – volume: 31 start-page: 652 year: 2006 ident: 10.1016/j.eswa.2014.04.026_b0300 article-title: Hybrid genetic algorithms and support vector machines for bankruptcy prediction publication-title: Expert System with Applications doi: 10.1016/j.eswa.2005.09.070 – volume: 4 start-page: 265 issue: 4 year: 1992 ident: 10.1016/j.eswa.2014.04.026_b0410 article-title: Predicting bank failure: A neural network approach publication-title: Applied Artificial Intelligence: An International Journal doi: 10.1080/08839519008927951 – volume: 11 start-page: 545 issue: 5 year: 1994 ident: 10.1016/j.eswa.2014.04.026_b0455 article-title: Bankruptcy prediction using neural networks publication-title: Decision Support System doi: 10.1016/0167-9236(94)90024-8 – volume: 11 start-page: 407 issue: 4 year: 1996 ident: 10.1016/j.eswa.2014.04.026_b0050 article-title: Neural networks and genetic algorithms for bankruptcy predictions publication-title: Expert System with Applications doi: 10.1016/S0957-4174(96)00055-3 – ident: 10.1016/j.eswa.2014.04.026_b0210 – volume: 174 start-page: 1039 year: 2006 ident: 10.1016/j.eswa.2014.04.026_b0225 article-title: Two-stage genetic programming (2SGP) for the credit scoring model publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2005.05.027 – volume: 26 start-page: 121 year: 2004 ident: 10.1016/j.eswa.2014.04.026_b0375 article-title: The impact of Basel II on lending to small-and-medium-sized firms: A regulatory policy assessment based on Spanish credit register data publication-title: Journal of Finance Services doi: 10.1023/B:FINA.0000037542.16864.11 – volume: 19 start-page: 322 year: 1998 ident: 10.1016/j.eswa.2014.04.026_b0235 article-title: Four approaches to the classification problem in discriminat analysis: An experimental study publication-title: Decision Sciences doi: 10.1111/j.1540-5915.1988.tb00270.x – volume: 31 start-page: 531 issue: 2 year: 2000 ident: 10.1016/j.eswa.2014.04.026_b0200 article-title: A comparison of selected artificial neural networks that help auditors evaluate client financial viability publication-title: Decision Sciences doi: 10.1111/j.1540-5915.2000.tb01633.x – volume: 201 start-page: 838 year: 2010 ident: 10.1016/j.eswa.2014.04.026_b0270 article-title: Support vector machines for default prediction of SMEs based on technology credit publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2009.03.036 – volume: 6 start-page: 195 issue: 3 year: 1997 ident: 10.1016/j.eswa.2014.04.026_b0100 article-title: A case-based reasoning approach to bankruptcy prediction modeling publication-title: International Journal of Intelligent System in Accounting, Finance and Management doi: 10.1002/(SICI)1099-1174(199709)6:3<195::AID-ISAF132>3.0.CO;2-F – ident: 10.1016/j.eswa.2014.04.026_b0120 – ident: 10.1016/j.eswa.2014.04.026_b0275 – volume: 43 start-page: 113 issue: 1 year: 1968 ident: 10.1016/j.eswa.2014.04.026_b0070 article-title: Alternative accounting measures as predictors of failure publication-title: The Accounting Review – volume: 28 start-page: 183 year: 2012 ident: 10.1016/j.eswa.2014.04.026_b0285 article-title: Predicting loss given default (LGD) for residential mortgage loans: A two-stage model and empirical evidence for UK bank data publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2011.01.010 – volume: 10 start-page: 150 year: 2009 ident: 10.1016/j.eswa.2014.04.026_b0185 article-title: Overfitting cautious selection of classifier ensembles with genetic algorithms publication-title: Information Fusion doi: 10.1016/j.inffus.2008.11.003 – volume: 1 start-page: 107 issue: 2 year: 1996 ident: 10.1016/j.eswa.2014.04.026_b0380 article-title: Neural network experiments in business-failure forecasting: Predictive performance measurement issues publication-title: International Journal of Computational Intelligence and Organizations – volume: 22 start-page: 1421 year: 1998 ident: 10.1016/j.eswa.2014.04.026_b0440 article-title: Genetic algorithms applications in the analysis of insolvency risk publication-title: Journal of Banking and Finance doi: 10.1016/S0378-4266(98)00059-4 – volume: 23 start-page: 899 issue: 4 year: 1992 ident: 10.1016/j.eswa.2014.04.026_b0370 article-title: Neural networks: A new tool for predicting thrift failures publication-title: Decision Sciences doi: 10.1111/j.1540-5915.1992.tb00425.x – volume: 13 start-page: 97 issue: 2 year: 1997 ident: 10.1016/j.eswa.2014.04.026_b0230 article-title: Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis publication-title: Expert System with Applications doi: 10.1016/S0957-4174(97)00011-0 – volume: 45 start-page: 194 issue: 2 year: 2007 ident: 10.1016/j.eswa.2014.04.026_b0075 article-title: Credit risk assessment and relationship lending: An empirical analysis of German small and medium-sized enterprises publication-title: Journal of Small Business Management doi: 10.1111/j.1540-627X.2007.00209.x – volume: 12 start-page: 1 issue: 1 year: 1974 ident: 10.1016/j.eswa.2014.04.026_b0090 article-title: Failing company discriminant analysis publication-title: Journal of Accounting Research doi: 10.2307/2490525 – volume: 6 start-page: 131 year: 1987 ident: 10.1016/j.eswa.2014.04.026_b0240 article-title: Current techniques in bankruptcy prediction publication-title: Journal of Accounting Literature – volume: 7 start-page: 187 issue: 3 year: 1998 ident: 10.1016/j.eswa.2014.04.026_b0335 article-title: Using neural networks to predict corporate failure publication-title: International Journal of Intelligent Systems in Accounting Finance and Management doi: 10.1002/(SICI)1099-1174(199809)7:3<187::AID-ISAF144>3.0.CO;2-7 – year: 2000 ident: 10.1016/j.eswa.2014.04.026_b0340 – volume: 29 start-page: 5 issue: 1 year: 2006 ident: 10.1016/j.eswa.2014.04.026_b0080 article-title: Potential competitive effects of Basel II on banks in SME credit markets in the United States publication-title: Journal of Financial Services Research doi: 10.1007/s10693-005-5106-3 – ident: 10.1016/j.eswa.2014.04.026_b0130 – volume: 22 start-page: 142 issue: 3 year: 1993 ident: 10.1016/j.eswa.2014.04.026_b0145 article-title: Recognizing financial distress patterns using a neural network tool publication-title: Financial Management doi: 10.2307/3665934 – volume: 44 start-page: 493 issue: 4 year: 2006 ident: 10.1016/j.eswa.2014.04.026_b0115 article-title: Small firm bankruptcy publication-title: Journal of Small Business Management doi: 10.1111/j.1540-627X.2006.00187.x – start-page: 32749 year: 2005 ident: 10.1016/j.eswa.2014.04.026_b0365 article-title: Genetic programming for the prediction of insolvency in non-life insurance companies publication-title: Computers and Operations Research – volume: 20 start-page: 847 year: 2005 ident: 10.1016/j.eswa.2014.04.026_b0355 article-title: The prediction of bankruptcy of small-and medium-sized industrial firms publication-title: Journal of Business Venturing doi: 10.1016/j.jbusvent.2004.07.003 – year: 1995 ident: 10.1016/j.eswa.2014.04.026_b0435 – volume: 23 start-page: 255 issue: 3 year: 2002 ident: 10.1016/j.eswa.2014.04.026_b0345 article-title: A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction publication-title: Expert System with Applications doi: 10.1016/S0957-4174(02)00045-3 – volume: 23 start-page: 321 year: 2002 ident: 10.1016/j.eswa.2014.04.026_b0390 article-title: Genetic algorithm application in bankruptcy prediction modeling publication-title: Expert System with Applications doi: 10.1016/S0957-4174(02)00051-9 – volume: 21 start-page: 905 issue: 9 year: 2006 ident: 10.1016/j.eswa.2014.04.026_b0110 article-title: Auditee and audit firm characteristics as determinants of audit qualifications: Evidence from the Athens stock exchange publication-title: Managerial Auditing Journal doi: 10.1108/02686900610705000 – volume: 28 start-page: 603 year: 2005 ident: 10.1016/j.eswa.2014.04.026_b0295 article-title: Bankruptcy prediction using support vector machine (SVM) with optimal choice of kernel function parameters publication-title: Expert System with Applications doi: 10.1016/j.eswa.2004.12.008  | 
    
| SSID | ssj0017007 | 
    
| Score | 2.4897897 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | •GAs are a very promising method in SMEs default prediction analysis.•GAs are capable of extracting rules that are easy to understand for users.•GAs give a... Bankruptcy prediction is a topic, which affect the economic well being of all countries. Having an accurate company default prediction model, which can pick up...  | 
    
| SourceID | proquest pascalfrancis crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 6433 | 
    
| SubjectTerms | Applied sciences Bankruptcies Computer science; control theory; systems Data processing. List processing. Character string processing Default prediction modeling Economics Exact sciences and technology Expert systems Firm modelling General aspects Genetic algorithms Logistic regression Mathematical models Memory organisation. Data processing Operational research and scientific management Operational research. Management science Regression Small and medium sized enterprises Small business Software Support vector machine Support vector machines  | 
    
| Title | A genetic algorithm approach for SMEs bankruptcy prediction: Empirical evidence from Italy | 
    
| URI | https://dx.doi.org/10.1016/j.eswa.2014.04.026 https://www.proquest.com/docview/1567113424 https://www.proquest.com/docview/1677925904  | 
    
| Volume | 41 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalfRmM_R7LtgYN9ja8yLJkWX0LJSXdaF-6QtmLkGVpS9c6JnEYfdnf3jtbDpSNPAz0YlvC4k7SfYfuviPkoxSVCtaGBMF8IlzuE11oBHIyL62sLO_Kt52d5_NL8eVKXu2R4yEXBsMq49nfn-ndaR3fTKI0J81iMbkAcADmEJroiLmQdlsIhVUMPv_Zhnkg_Zzq-fZUgr1j4kwf4-XXv5F7KBUd3SkSLPzbOD1u7BpEFvpaF38d250tOnlGnkQQSaf9PJ-TPV-_IE-HAg007teX5PuUwvrANEVqb34sV4v25y0dWMQpwFV6cTZb09LWv1abpnV3tFnhxQ0q64jObptFRyBCfSw9SjEZhZ4CXr97RS5PZt-O50ksppC4TOdtwnWqfVnIggVmwStUIVeaBeuCFA4wkys5fPY-VJnKMldxbTkPnqU-E1mVptlrsl8va_-GUFYVEv2qQiIeybhmvrTcSe1YBSZRjkg6SNG4yDSOBS9uzBBSdm1Q8gYlbxg0no_Ip-2YpufZ2NlbDsoxD1aLAUOwc9z4gSa3v-KAWkTOxIh8GFRrYJ_h5Ymt_XKzNuDnKpCC4Lv65Epp8CeZePufE3xHHuETGsdUvif77WrjDwH1tOW4W9ZjcjA9_To_vwecAgDJ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpemih9F26faQq9FbclWXJsnoLYcOmzeaSBEIvQpaldNvEa3a9lFz62ztjywuhZQ8FnSwJixlJ8w2a-YaQD1JUKlgbEgTziXC5T3ShEcjJvLSysrwr3zY7yafn4suFvNghB0MuDIZVxru_v9O72zp-GUdpjpv5fHwK4ADMITTREXPld8hdIblCD-zT702cB_LPqZ5wTyU4PGbO9EFefvULyYdS0fGdIsPCv63Tg8auQGahL3bx173dGaPDx-RhRJF0v1_oE7Lj66fk0VChgcYD-4x826ewQTBPkdqry8Vy3n6_pgONOAW8Sk9nkxUtbf1zuW5ad0ObJb7coLY-08l1M-8YRKiPtUcpZqPQIwDsN8_J-eHk7GCaxGoKict03iZcp9qXhSxYYBbcQhVypVmwLkjhADS5kkO396HKVJa5imvLefAs9ZnIqjTNXpDdelH7l4SyqpDoWBUSAUnGNfOl5U5qxyqwiXJE0kGKxkWqcax4cWWGmLIfBiVvUPKGQeP5iHzczGl6oo2to-WgHHNruxiwBFvn7d3S5OZXHGCLyJkYkfeDag0cNHw9sbVfrFcGHF0FUhB825hcKQ0OJROv_nOB78i96dns2BwfnXx9Te5jD1rKVL4hu-1y7d8CBGrLvW6L_wF-sQJe | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+genetic+algorithm+approach+for+SMEs+bankruptcy+prediction%3A+Empirical+evidence+from+Italy&rft.jtitle=Expert+systems+with+applications&rft.au=Gordini%2C+Niccolo&rft.date=2014-10-15&rft.issn=0957-4174&rft.volume=41&rft.issue=14&rft.spage=6433&rft.epage=6445&rft_id=info:doi/10.1016%2Fj.eswa.2014.04.026&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |