A genetic algorithm approach for SMEs bankruptcy prediction: Empirical evidence from Italy

•GAs are a very promising method in SMEs default prediction analysis.•GAs are capable of extracting rules that are easy to understand for users.•GAs give a better SMEs default prediction accuracy rate compared with SVM and LR.•GAs significantly reduce misclassification costs compared to SVM and LR.•...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 41; no. 14; pp. 6433 - 6445
Main Author Gordini, Niccolò
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 15.10.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2014.04.026

Cover

Abstract •GAs are a very promising method in SMEs default prediction analysis.•GAs are capable of extracting rules that are easy to understand for users.•GAs give a better SMEs default prediction accuracy rate compared with SVM and LR.•GAs significantly reduce misclassification costs compared to SVM and LR.•The prediction accuracy rate of GAs is markedly higher for the smallest sized firms and in the firms operating in the north. Bankruptcy prediction is a topic, which affect the economic well being of all countries. Having an accurate company default prediction model, which can pick up on time the signs of financial distress, is vital for all firms, especially for small and medium-sized enterprises (SMEs). These firms represent the backbone of the economy of every country. Therefore, they need a prediction model easily adaptable to their characteristics. For this purpose, this study explores and compares the potential of genetic algorithms (GAs) with those of logistic regression (LR) and support vector machine (SVM). GAs are applied to a large sample of 3.100 Italian manufacturing SMEs, three, two and one year prior to bankruptcy. The results indicate that GAs are a very effective and promising instrument in assessing the likelihood of SMEs bankruptcy compared with LR and SVM, especially in reducing Type II misclassification rate. Of particular interest, results show that GAs prediction accuracy rate increases when the model is applied according to size and geographical area, with a marked improvement in the smallest sized firms and in the firms operating in north Italy.
AbstractList Bankruptcy prediction is a topic, which affect the economic well being of all countries. Having an accurate company default prediction model, which can pick up on time the signs of financial distress, is vital for all firms, especially for small and medium-sized enterprises (SMEs). These firms represent the backbone of the economy of every country. Therefore, they need a prediction model easily adaptable to their characteristics. For this purpose, this study explores and compares the potential of genetic algorithms (GAs) with those of logistic regression (LR) and support vector machine (SVM). GAs are applied to a large sample of 3.100 Italian manufacturing SMEs, three, two and one year prior to bankruptcy. The results indicate that GAs are a very effective and promising instrument in assessing the likelihood of SMEs bankruptcy compared with LR and SVM, especially in reducing Type II misdassification rate. Of particular interest, results show that GAs prediction accuracy rate increases when the model is applied according to size and geographical area, with a marked improvement in the smallest sized firms and in the firms operating in north Italy.
•GAs are a very promising method in SMEs default prediction analysis.•GAs are capable of extracting rules that are easy to understand for users.•GAs give a better SMEs default prediction accuracy rate compared with SVM and LR.•GAs significantly reduce misclassification costs compared to SVM and LR.•The prediction accuracy rate of GAs is markedly higher for the smallest sized firms and in the firms operating in the north. Bankruptcy prediction is a topic, which affect the economic well being of all countries. Having an accurate company default prediction model, which can pick up on time the signs of financial distress, is vital for all firms, especially for small and medium-sized enterprises (SMEs). These firms represent the backbone of the economy of every country. Therefore, they need a prediction model easily adaptable to their characteristics. For this purpose, this study explores and compares the potential of genetic algorithms (GAs) with those of logistic regression (LR) and support vector machine (SVM). GAs are applied to a large sample of 3.100 Italian manufacturing SMEs, three, two and one year prior to bankruptcy. The results indicate that GAs are a very effective and promising instrument in assessing the likelihood of SMEs bankruptcy compared with LR and SVM, especially in reducing Type II misclassification rate. Of particular interest, results show that GAs prediction accuracy rate increases when the model is applied according to size and geographical area, with a marked improvement in the smallest sized firms and in the firms operating in north Italy.
Author Gordini, Niccolò
Author_xml – sequence: 1
  givenname: Niccolò
  orcidid: 0000-0002-1279-4309
  surname: Gordini
  fullname: Gordini, Niccolò
  email: niccolo.gordini@unimib.it
  organization: University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, zipcode 20126 Milano, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28534604$$DView record in Pascal Francis
BookMark eNqFkU9v1DAQxS3USmwLX4CTL0hcsvhf4gRxqaoFKhVxaHvhYs0649ZLEgfbW7TfHoctFw5FGskHv9_TzHtn5GQKExLyhrM1Z7x5v1tj-gVrwbhaszKieUFWvNWyanQnT8iKdbWuFNfqJTlLaccY14zpFfl-Qe9xwuwtheE-RJ8fRgrzHAPYB-pCpDdfN4luYfoR93O2BzpH7L3NPkwf6GacffQWBoqPvsfJInUxjPQqw3B4RU4dDAlfP73n5O7T5vbyS3X97fPV5cV1ZWXX5Ep0vMNtW7fMMRC10q6szBxYVyurZG23onwjul5qKW0vOhDCIeMolew5l-fk3dG3LP1zjymb0SeLwwAThn0yvNG6E3XH1P-ldaOLoxKL9O2TFFI50EWYrE9mjn6EeDCiraVq_li2R52NIaWIzlifYYknR_CD4cwsDZmdWRoyS0OGlRFNQcU_6F_3Z6GPRwhLpI8eo0nWL8n3PqLNpg_-Ofw3_sisEw
CitedBy_id crossref_primary_10_1142_S0219622021500334
crossref_primary_10_3233_JIFS_189569
crossref_primary_10_3390_jrfm12010030
crossref_primary_10_1002_for_2770
crossref_primary_10_1108_IJLMA_06_2015_0028
crossref_primary_10_1016_j_econmod_2019_04_003
crossref_primary_10_1016_j_indmarman_2016_08_003
crossref_primary_10_13088_jiis_2014_20_4_43
crossref_primary_10_3390_su11215977
crossref_primary_10_3390_su152115304
crossref_primary_10_1016_j_eswa_2021_114840
crossref_primary_10_1111_exsy_12335
crossref_primary_10_18267_j_polek_1226
crossref_primary_10_1016_j_gaceta_2018_01_001
crossref_primary_10_1057_s41274_016_0166_3
crossref_primary_10_1016_j_jcae_2024_100403
crossref_primary_10_1155_2021_6031324
crossref_primary_10_2139_ssrn_2635773
crossref_primary_10_21307_stattrans_2021_010
crossref_primary_10_3233_JIFS_189575
crossref_primary_10_1016_j_procs_2015_05_292
crossref_primary_10_1016_j_eswa_2014_12_036
crossref_primary_10_1155_2021_3585878
crossref_primary_10_1155_2022_9965427
crossref_primary_10_1155_2022_1928511
crossref_primary_10_1108_EBR_12_2018_0209
crossref_primary_10_3390_su152316482
crossref_primary_10_1016_j_eswa_2023_121418
crossref_primary_10_1016_j_eswa_2014_11_028
crossref_primary_10_1016_j_eswa_2019_112926
crossref_primary_10_11118_actaun201765020641
crossref_primary_10_1155_2022_3019440
crossref_primary_10_5937_AnEkSub2200005K
crossref_primary_10_1371_journal_pone_0166693
crossref_primary_10_1080_17421772_2021_1977377
crossref_primary_10_1016_j_jbusres_2023_114290
crossref_primary_10_1016_j_ijforecast_2021_09_006
crossref_primary_10_1155_2022_8807215
crossref_primary_10_1155_2022_4140905
crossref_primary_10_3934_NAR_2021012
crossref_primary_10_1007_s10479_021_04183_0
crossref_primary_10_1155_2022_1645232
crossref_primary_10_3934_NAR_2021015
crossref_primary_10_1016_j_orp_2019_100121
crossref_primary_10_1080_01446193_2016_1219037
crossref_primary_10_1016_j_eswa_2017_03_017
crossref_primary_10_1016_j_eswa_2017_10_040
crossref_primary_10_1016_j_eswa_2014_09_038
crossref_primary_10_3390_sym10080337
crossref_primary_10_1155_2022_9310697
crossref_primary_10_1016_j_eswa_2015_04_053
crossref_primary_10_1111_exsy_12363
crossref_primary_10_1016_j_heliyon_2019_e02997
crossref_primary_10_1142_S0219265921450122
crossref_primary_10_1002_for_2842
crossref_primary_10_1002_isaf_1395
crossref_primary_10_3390_en16041642
crossref_primary_10_3233_JIFS_189242
crossref_primary_10_1016_j_eswa_2017_07_025
crossref_primary_10_1016_j_eswa_2018_09_039
crossref_primary_10_1007_s11277_024_10961_3
crossref_primary_10_1016_j_eswa_2017_07_027
crossref_primary_10_1155_2022_2173402
crossref_primary_10_1155_2021_5591811
crossref_primary_10_1016_j_eswa_2015_04_064
crossref_primary_10_1155_2020_6623108
crossref_primary_10_37394_232032_2023_1_3
crossref_primary_10_1051_shsconf_20173901013
crossref_primary_10_21272_mmi_2019_4_19
crossref_primary_10_1016_j_eswa_2016_07_033
crossref_primary_10_1016_j_dss_2018_06_011
crossref_primary_10_24136_oc_2019_034
crossref_primary_10_3233_JIFS_189497
crossref_primary_10_1080_00405000_2017_1315794
crossref_primary_10_1108_MRR_02_2016_0039
crossref_primary_10_1016_j_micpro_2022_104680
crossref_primary_10_3233_JIFS_189535
crossref_primary_10_3233_JIFS_200866
crossref_primary_10_1016_j_techfore_2021_120658
crossref_primary_10_1007_s13369_019_03930_7
crossref_primary_10_1080_00036846_2020_1730762
crossref_primary_10_1080_14697688_2019_1588468
crossref_primary_10_1016_j_eswa_2024_123839
crossref_primary_10_1108_SEF_08_2016_0207
crossref_primary_10_36962_PAHTEI31082023_329
crossref_primary_10_1016_j_eswa_2016_09_016
crossref_primary_10_1007_s00521_021_06312_z
crossref_primary_10_1109_ACCESS_2019_2927517
crossref_primary_10_1155_2022_9085349
crossref_primary_10_3233_JIFS_189317
crossref_primary_10_1016_j_eswa_2014_12_003
crossref_primary_10_1007_s11227_018_2619_8
crossref_primary_10_3233_IDT_160269
crossref_primary_10_1155_2021_2860206
crossref_primary_10_1155_2022_2296823
crossref_primary_10_1002_asmb_2803
crossref_primary_10_3233_JIFS_189555
crossref_primary_10_3233_JIFS_189556
Cites_doi 10.1016/S0957-4174(03)00102-7
10.1111/j.1540-627X.2007.00195.x
10.1016/0378-7206(93)90064-Z
10.1111/j.1468-5957.1987.tb00113.x
10.1111/j.1468-5957.1982.tb00972.x
10.2307/256801
10.1007/s10693-005-4355-5
10.2307/2329929
10.1016/S0957-4174(98)00063-3
10.2307/2490590
10.1111/j.1468-5957.1992.tb00618.x
10.1086/497044
10.1162/089976698300017197
10.2307/2490395
10.1016/S0305-0548(02)00229-0
10.1016/j.asoc.2008.08.002
10.1016/0378-4266(77)90022-X
10.1109/IJCNN.1990.137710
10.1109/CIFER.2003.1196234
10.2307/2490171
10.1016/0278-4254(83)90032-7
10.2307/2490225
10.1002/isaf.203
10.1111/j.1540-627X.2012.00376.x
10.1111/1540-627X.00092
10.1016/0305-0483(91)90060-7
10.1111/j.1467-6281.2007.00234.x
10.1108/CG-03-2013-0030
10.1016/j.eswa.2008.01.012
10.1016/j.ejor.2006.08.043
10.1016/S0377-2217(98)00051-4
10.1111/j.1540-6261.1968.tb00843.x
10.1016/j.eswa.2005.09.070
10.1080/08839519008927951
10.1016/0167-9236(94)90024-8
10.1016/S0957-4174(96)00055-3
10.1016/j.amc.2005.05.027
10.1023/B:FINA.0000037542.16864.11
10.1111/j.1540-5915.1988.tb00270.x
10.1111/j.1540-5915.2000.tb01633.x
10.1016/j.ejor.2009.03.036
10.1002/(SICI)1099-1174(199709)6:3<195::AID-ISAF132>3.0.CO;2-F
10.1016/j.ijforecast.2011.01.010
10.1016/j.inffus.2008.11.003
10.1016/S0378-4266(98)00059-4
10.1111/j.1540-5915.1992.tb00425.x
10.1016/S0957-4174(97)00011-0
10.1111/j.1540-627X.2007.00209.x
10.2307/2490525
10.1002/(SICI)1099-1174(199809)7:3<187::AID-ISAF144>3.0.CO;2-7
10.1007/s10693-005-5106-3
10.2307/3665934
10.1111/j.1540-627X.2006.00187.x
10.1016/j.jbusvent.2004.07.003
10.1016/S0957-4174(02)00045-3
10.1016/S0957-4174(02)00051-9
10.1108/02686900610705000
10.1016/j.eswa.2004.12.008
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2014.04.026
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Economics
Applied Sciences
EISSN 1873-6793
EndPage 6445
ExternalDocumentID 28534604
10_1016_j_eswa_2014_04_026
S0957417414002486
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c396t-2919eb8580f0a2547f6790facf54c435cb2eb8eefd3733cd29a22fe01e343d113
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Thu Oct 02 06:32:16 EDT 2025
Sun Sep 28 11:14:44 EDT 2025
Wed Apr 02 07:26:05 EDT 2025
Wed Oct 01 03:51:43 EDT 2025
Thu Apr 24 23:01:07 EDT 2025
Fri Feb 23 02:29:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Logistic regression
Support vector machine
Small and medium sized enterprises
Default prediction modeling
Genetic algorithms
Data analysis
Empirical method
Financial management
Well being
Regression analysis
Economic sciences
Modeling
Stress
Business model
Genetic algorithm
Vector support machine
Firm management
Bankruptcy
Small medium sized firm
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-2919eb8580f0a2547f6790facf54c435cb2eb8eefd3733cd29a22fe01e343d113
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0002-1279-4309
PQID 1567113424
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1677925904
proquest_miscellaneous_1567113424
pascalfrancis_primary_28534604
crossref_citationtrail_10_1016_j_eswa_2014_04_026
crossref_primary_10_1016_j_eswa_2014_04_026
elsevier_sciencedirect_doi_10_1016_j_eswa_2014_04_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-15
PublicationDateYYYYMMDD 2014-10-15
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Park, Han (b0345) 2002; 23
Nanda, Pendharkar (b0315) 2001; 10
Coats, Fant (b0145) 1993; 22
Jo, Han, Lee (b0230) 1997; 13
O’Leary (b0335) 1998; 7
Zhang, Hu, Patuwo, Indro (b0460) 1999; 116
Huang, Tzeng, Ong (b0225) 2006; 174
Behr, Güttler (b0075) 2007; 45
Bauer (b0060) 1994
Deakin (b0165) 1976; 10
Van Gestel, T., Baesens, B., Suykens, J., Espinoza, M., Baestaens, D. E., Vanthienen, J., et al. (2003). Bankruptcy prediction with least squares support vector machine classifiers. In
Fletcher, Goss (b0205) 1993; 24
Carter, Van Auken (b0115) 2006; 44
Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley.
Bozsik, J. (2010). Genetic algorithm in default forecast. In
Kingdom, J., & Feldman, K. (1995). Genetic algorithms for bankruptcy prediction. London, UK: Search Space Research Report No. 01–95, Search Space Ltd.
Odom, M., & Sharda, R. (1990). A neural Network for bankruptcy prediction. In
Ciampi, Gordini (b0135) 2009; 8
Jones (b0240) 1987; 6
Morrison, Breen, Ali (b0310) 2003; 41
Joachimsthaler, Stam (b0235) 1998; 19
Abatecola, G., Farina, V., & Gordini, N. (2013). Boards of directors in troubled waters! Enhancing the survival chances of distressed firms. In A. Caretta & G. Mattiacci (Eds.)
Altman (b0025) 1993
Holland (b0220) 1975
Dopuch, Holthausen, Leftwich (b0180) 1987; 62
14(5), forthcoming.
Altman, Brady, Resti, Sironi (b0035) 2005; 786
Barnes (b0055) 1982; 9
Dos Santos, Sabourin, Maupin (b0185) 2009; 10
Caramanis, Spathis (b0110) 2006; 21
Berger (b0080) 2006; 29
Vallini, C., Ciampi, F., & Gordini, N. (2009a). Using artificial neural networks analysis for small enterprise default prediction modeling: Statistical evidence from Italian firms. In
Ciampi, Gordini (b0140) 2013; 51
Ahn, Kim (b0015) 2009; 9
Zopounidis, Dimitras (b0465) 1998
Dietterich (b0175) 1998; 10
Davis (b0160) 1991
Kim, Sohn (b0270) 2010; 201
Studenmund (b0400) 2006
Vapnik (b0435) 1995
Altman, E.I. (2004).
Daily, Dalton (b0150) 1994; 37
Blum (b0090) 1974; 12
Edmister (b0190) 1972; 7
Altman, Sabato (b0045) 2007; 43
Demsar (b0170) 2006; 7
Pompe, Bilderbeek (b0355) 2005; 20
(pp. 9–18). London, UK: Routledge.
Leow, Mues (b0285) 2012; 28
Vallini, C., Ciampi, F., Gordini, N., & Benvenuti, M. (2008). Can credit scoring models effectively predict small enterprise default? Statistical evidence from Italian firms. In
Bryant (b0100) 1997; 6
Abatecola, G., Farina, V., & Gordini, N. (2014). Board effectiveness in corporate crises. Lessons from the evolving empirical research. Corporate governance.
Karr (b0255) 1995
Back, Laitinen, Sere (b0050) 1996; 11
Neter, Kutner, Nachtsheim, Wasserman (b0320) 1996
Shin, Ham (b0385) 1999; 16
Watts, Zimmerman (b0450) 1986
Beaver (b0070) 1968; 43
Tam, Kiang (b0410) 1992; 4
Judge, Hill, Griffiths, Lutkepohl, Lee (b0245) 1987
Kim, Han (b0265) 2003; 25
Etheridge, Sriram, Hsu (b0200) 2000; 31
Min, Lee, Han (b0300) 2006; 31
(pp. 1–21). Oxford, UK.
Salcedo-Sanz, Fernandez-Villacanas, Segovia-Vargas, Bousono-Calzon (b0365) 2005
(pp. 1–26). Oxford, UK.
New York, NY: New York University Working Paper.
Saurina, Trucharte (b0375) 2004; 26
Martin (b0290) 1977; 1
(pp. 1–8).
Min, Lee (b0295) 2005; 28
Ciampi, F., & Gordini, N. (2013b). The potential of corporate governance variables for small enterprise default prediction modeling. Statistical evidence from Italian manufacturing firms. In
Berger, Frame (b0085) 2007; 45
Buta (b0105) 1994; 9
Montgomery, Peck (b0305) 1992
(pp. 147–154), Bologna, IT: Il Mulino.
(pp. 1–23), Florence, ITA.
Beaver (b0065) 1967; 4
Koh (b0280) 1992; 17
(pp. 1–19). Cambridge, UK.
Ravi Kumar, Ravi (b0360) 2007; 180
Tam (b0405) 1991; 19
Vallini, Ciampi, Gordini, Benvenuti (b0415) 2009; 8
Walker, Haasdijk, Gerrets (b0445) 1995
Karels, Prakash (b0250) 1987; 14
Altman, Sabato (b0040) 2005; 28
Sharda, Wilson (b0380) 1996; 1
Darwin (b0155) 1859
Etemadi, Rostamy, Dehkordi (b0195) 2009; 36
San Diego, CA.
Salchenberger, Cinar, Lash (b0370) 1992; 23
Siegel (b0395) 1956
Ciampi, F., & Gordini, N. (2013c). L’impiego di variabili relative al management per la predizione del default della piccola impresa. Primi risultati di un’analisi statistica sulle imprese italiane. In P. Adinolfi, R. Cafferata & A. Tommasetti (Eds.)
Shin, Lee (b0390) 2002; 23
Pampel (b0340) 2000
(pp. 41–51). Eger, Hungary.
Hamer (b0215) 1983; 2
Altman (b0020) 1968; 23
Kida (b0260) 1980; 22
Wilson, Sharda (b0455) 1994; 11
Ciampi, F., & Gordini, N. (2008). Using economic–financial ratios for small enterprise default prediction modeling: An empirical analysis. In
Ohlson (b0330) 1980; 18
Pendharkar, Rodger (b0350) 2004; 31
Varetto (b0440) 1998; 22
Koh (10.1016/j.eswa.2014.04.026_b0280) 1992; 17
Demsar (10.1016/j.eswa.2014.04.026_b0170) 2006; 7
Jo (10.1016/j.eswa.2014.04.026_b0230) 1997; 13
Morrison (10.1016/j.eswa.2014.04.026_b0310) 2003; 41
Ciampi (10.1016/j.eswa.2014.04.026_b0140) 2013; 51
Kim (10.1016/j.eswa.2014.04.026_b0265) 2003; 25
Min (10.1016/j.eswa.2014.04.026_b0300) 2006; 31
Buta (10.1016/j.eswa.2014.04.026_b0105) 1994; 9
Judge (10.1016/j.eswa.2014.04.026_b0245) 1987
Altman (10.1016/j.eswa.2014.04.026_b0025) 1993
Caramanis (10.1016/j.eswa.2014.04.026_b0110) 2006; 21
Dos Santos (10.1016/j.eswa.2014.04.026_b0185) 2009; 10
Montgomery (10.1016/j.eswa.2014.04.026_b0305) 1992
10.1016/j.eswa.2014.04.026_b0130
10.1016/j.eswa.2014.04.026_b0010
10.1016/j.eswa.2014.04.026_b0095
Deakin (10.1016/j.eswa.2014.04.026_b0165) 1976; 10
Ciampi (10.1016/j.eswa.2014.04.026_b0135) 2009; 8
Huang (10.1016/j.eswa.2014.04.026_b0225) 2006; 174
Dopuch (10.1016/j.eswa.2014.04.026_b0180) 1987; 62
10.1016/j.eswa.2014.04.026_b0210
Altman (10.1016/j.eswa.2014.04.026_b0020) 1968; 23
Holland (10.1016/j.eswa.2014.04.026_b0220) 1975
Min (10.1016/j.eswa.2014.04.026_b0295) 2005; 28
Pampel (10.1016/j.eswa.2014.04.026_b0340) 2000
Blum (10.1016/j.eswa.2014.04.026_b0090) 1974; 12
Edmister (10.1016/j.eswa.2014.04.026_b0190) 1972; 7
Sharda (10.1016/j.eswa.2014.04.026_b0380) 1996; 1
Martin (10.1016/j.eswa.2014.04.026_b0290) 1977; 1
Neter (10.1016/j.eswa.2014.04.026_b0320) 1996
Wilson (10.1016/j.eswa.2014.04.026_b0455) 1994; 11
Nanda (10.1016/j.eswa.2014.04.026_b0315) 2001; 10
Etheridge (10.1016/j.eswa.2014.04.026_b0200) 2000; 31
Varetto (10.1016/j.eswa.2014.04.026_b0440) 1998; 22
Etemadi (10.1016/j.eswa.2014.04.026_b0195) 2009; 36
10.1016/j.eswa.2014.04.026_b0120
Fletcher (10.1016/j.eswa.2014.04.026_b0205) 1993; 24
O’Leary (10.1016/j.eswa.2014.04.026_b0335) 1998; 7
Barnes (10.1016/j.eswa.2014.04.026_b0055) 1982; 9
Bauer (10.1016/j.eswa.2014.04.026_b0060) 1994
Saurina (10.1016/j.eswa.2014.04.026_b0375) 2004; 26
10.1016/j.eswa.2014.04.026_b0325
Joachimsthaler (10.1016/j.eswa.2014.04.026_b0235) 1998; 19
Salchenberger (10.1016/j.eswa.2014.04.026_b0370) 1992; 23
10.1016/j.eswa.2014.04.026_b0125
10.1016/j.eswa.2014.04.026_b0005
Altman (10.1016/j.eswa.2014.04.026_b0040) 2005; 28
Beaver (10.1016/j.eswa.2014.04.026_b0065) 1967; 4
Ravi Kumar (10.1016/j.eswa.2014.04.026_b0360) 2007; 180
Coats (10.1016/j.eswa.2014.04.026_b0145) 1993; 22
Leow (10.1016/j.eswa.2014.04.026_b0285) 2012; 28
Pendharkar (10.1016/j.eswa.2014.04.026_b0350) 2004; 31
Salcedo-Sanz (10.1016/j.eswa.2014.04.026_b0365) 2005
Siegel (10.1016/j.eswa.2014.04.026_b0395) 1956
Shin (10.1016/j.eswa.2014.04.026_b0390) 2002; 23
Dietterich (10.1016/j.eswa.2014.04.026_b0175) 1998; 10
Darwin (10.1016/j.eswa.2014.04.026_b0155) 1859
Bryant (10.1016/j.eswa.2014.04.026_b0100) 1997; 6
Watts (10.1016/j.eswa.2014.04.026_b0450) 1986
10.1016/j.eswa.2014.04.026_b0030
Jones (10.1016/j.eswa.2014.04.026_b0240) 1987; 6
10.1016/j.eswa.2014.04.026_b0275
Karels (10.1016/j.eswa.2014.04.026_b0250) 1987; 14
10.1016/j.eswa.2014.04.026_b0430
Studenmund (10.1016/j.eswa.2014.04.026_b0400) 2006
Park (10.1016/j.eswa.2014.04.026_b0345) 2002; 23
Carter (10.1016/j.eswa.2014.04.026_b0115) 2006; 44
Vallini (10.1016/j.eswa.2014.04.026_b0415) 2009; 8
Kida (10.1016/j.eswa.2014.04.026_b0260) 1980; 22
Karr (10.1016/j.eswa.2014.04.026_b0255) 1995
Shin (10.1016/j.eswa.2014.04.026_b0385) 1999; 16
Tam (10.1016/j.eswa.2014.04.026_b0410) 1992; 4
Ahn (10.1016/j.eswa.2014.04.026_b0015) 2009; 9
Kim (10.1016/j.eswa.2014.04.026_b0270) 2010; 201
Zopounidis (10.1016/j.eswa.2014.04.026_b0465) 1998
Altman (10.1016/j.eswa.2014.04.026_b0045) 2007; 43
Ohlson (10.1016/j.eswa.2014.04.026_b0330) 1980; 18
Tam (10.1016/j.eswa.2014.04.026_b0405) 1991; 19
Davis (10.1016/j.eswa.2014.04.026_b0160) 1991
Behr (10.1016/j.eswa.2014.04.026_b0075) 2007; 45
Beaver (10.1016/j.eswa.2014.04.026_b0070) 1968; 43
10.1016/j.eswa.2014.04.026_b0420
Walker (10.1016/j.eswa.2014.04.026_b0445) 1995
Pompe (10.1016/j.eswa.2014.04.026_b0355) 2005; 20
Altman (10.1016/j.eswa.2014.04.026_b0035) 2005; 786
Berger (10.1016/j.eswa.2014.04.026_b0080) 2006; 29
10.1016/j.eswa.2014.04.026_b0425
Daily (10.1016/j.eswa.2014.04.026_b0150) 1994; 37
Back (10.1016/j.eswa.2014.04.026_b0050) 1996; 11
Hamer (10.1016/j.eswa.2014.04.026_b0215) 1983; 2
Vapnik (10.1016/j.eswa.2014.04.026_b0435) 1995
Berger (10.1016/j.eswa.2014.04.026_b0085) 2007; 45
Zhang (10.1016/j.eswa.2014.04.026_b0460) 1999; 116
References_xml – volume: 45
  start-page: 5
  year: 2007
  end-page: 22
  ident: b0085
  article-title: Small business credit scoring and credit availability
  publication-title: Journal of Small Business Management
– volume: 4
  start-page: 71
  year: 1967
  end-page: 111
  ident: b0065
  article-title: Financial ratios predictors of failure
  publication-title: Journal of Accounting Research
– volume: 9
  start-page: 599
  year: 2009
  end-page: 607
  ident: b0015
  article-title: Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach
  publication-title: Applied Soft Computing
– reference: Ciampi, F., & Gordini, N. (2013c). L’impiego di variabili relative al management per la predizione del default della piccola impresa. Primi risultati di un’analisi statistica sulle imprese italiane. In P. Adinolfi, R. Cafferata & A. Tommasetti (Eds.),
– reference: Odom, M., & Sharda, R. (1990). A neural Network for bankruptcy prediction. In
– volume: 43
  start-page: 113
  year: 1968
  end-page: 122
  ident: b0070
  article-title: Alternative accounting measures as predictors of failure
  publication-title: The Accounting Review
– volume: 31
  start-page: 531
  year: 2000
  end-page: 550
  ident: b0200
  article-title: A comparison of selected artificial neural networks that help auditors evaluate client financial viability
  publication-title: Decision Sciences
– volume: 19
  start-page: 322
  year: 1998
  end-page: 333
  ident: b0235
  article-title: Four approaches to the classification problem in discriminat analysis: An experimental study
  publication-title: Decision Sciences
– reference: (pp. 1–19). Cambridge, UK.
– volume: 10
  start-page: 150
  year: 2009
  end-page: 162
  ident: b0185
  article-title: Overfitting cautious selection of classifier ensembles with genetic algorithms
  publication-title: Information Fusion
– reference: Kingdom, J., & Feldman, K. (1995). Genetic algorithms for bankruptcy prediction. London, UK: Search Space Research Report No. 01–95, Search Space Ltd.
– year: 1994
  ident: b0060
  article-title: Genetic algorithms and investment strategies
– volume: 14
  start-page: 573
  year: 1987
  end-page: 593
  ident: b0250
  article-title: Multivariate normality and forecasting of business bankruptcy
  publication-title: Journal of Business Finance and Accounting
– year: 1859
  ident: b0155
  article-title: On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life
– volume: 22
  start-page: 142
  year: 1993
  end-page: 156
  ident: b0145
  article-title: Recognizing financial distress patterns using a neural network tool
  publication-title: Financial Management
– year: 1995
  ident: b0445
  article-title: Credit evaluation using a genetic algorithm
  publication-title: Intelligent systems for finance and business
– volume: 9
  start-page: 34
  year: 1994
  end-page: 41
  ident: b0105
  article-title: Mining for financial knowledge with CBR
  publication-title: AI Expert
– year: 1992
  ident: b0305
  article-title: Introduction to linear regression analysis
– year: 1998
  ident: b0465
  article-title: Multicriteria decision aid methods for the prediction of business failure
– volume: 36
  start-page: 3199
  year: 2009
  end-page: 3207
  ident: b0195
  article-title: A genetic programming model for bankruptcy prediction: Empirical evidence from Iran
  publication-title: Expert System with Applications
– volume: 24
  start-page: 159
  year: 1993
  end-page: 167
  ident: b0205
  article-title: Forecasting with neural networks: An application using bankruptcy data
  publication-title: Information and Management
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b0170
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– reference: Van Gestel, T., Baesens, B., Suykens, J., Espinoza, M., Baestaens, D. E., Vanthienen, J., et al. (2003). Bankruptcy prediction with least squares support vector machine classifiers. In
– volume: 8
  start-page: 13
  year: 2009
  end-page: 29
  ident: b0135
  article-title: Default prediction modeling for small enterprises: Evidence from small manufacturing firms in northern and central Italy
  publication-title: Oxford Journal
– volume: 7
  start-page: 1477
  year: 1972
  end-page: 1493
  ident: b0190
  article-title: An empirical test of financial ratio analysis for small business failure prediction
  publication-title: Journal of Financial and Quantitative Analysis
– volume: 8
  start-page: 3
  year: 2009
  end-page: 18
  ident: b0415
  article-title: Are credit scoring models able to predict small enterprise default? Statistical evidence from Italian firms
  publication-title: International Journal of Business and Economics
– volume: 6
  start-page: 131
  year: 1987
  end-page: 164
  ident: b0240
  article-title: Current techniques in bankruptcy prediction
  publication-title: Journal of Accounting Literature
– volume: 19
  start-page: 429
  year: 1991
  end-page: 445
  ident: b0405
  article-title: Neural network models and the prediction of bank bankruptcy
  publication-title: OMEGA: The International Journal of Management Science
– year: 1956
  ident: b0395
  article-title: Nonparametric statistics for the behavioral sciences
– volume: 28
  start-page: 603
  year: 2005
  end-page: 614
  ident: b0295
  article-title: Bankruptcy prediction using support vector machine (SVM) with optimal choice of kernel function parameters
  publication-title: Expert System with Applications
– reference: Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley.
– reference: Altman, E.I. (2004).
– year: 1987
  ident: b0245
  article-title: Theory and practice of econometrics
– volume: 20
  start-page: 847
  year: 2005
  end-page: 868
  ident: b0355
  article-title: The prediction of bankruptcy of small-and medium-sized industrial firms
  publication-title: Journal of Business Venturing
– volume: 16
  start-page: 85
  year: 1999
  end-page: 95
  ident: b0385
  article-title: Case-based reasoning supported by genetic algorithms for corporate bond rating
  publication-title: Expert System with Applications
– reference: Abatecola, G., Farina, V., & Gordini, N. (2014). Board effectiveness in corporate crises. Lessons from the evolving empirical research. Corporate governance.
– volume: 37
  start-page: 1603
  year: 1994
  end-page: 1617
  ident: b0150
  article-title: Bankruptcy and corporate governance: The impact of board composition and structure
  publication-title: Academy of Management Journal
– year: 2006
  ident: b0400
  article-title: Using econometrics, a practical guide
– volume: 31
  start-page: 481
  year: 2004
  end-page: 498
  ident: b0350
  article-title: An empirical study of impact of crossover operators on the performance of non-binary genetic algorithm based neural approaches for classification
  publication-title: Computer and Operations Research
– year: 1995
  ident: b0255
  article-title: Adaptive control of an exothermic chemical reaction system using fuzzy logic and genetic algorithms
  publication-title: Hybrid intelligent systems
– volume: 41
  start-page: 417
  year: 2003
  end-page: 425
  ident: b0310
  article-title: Small business growth: Intention, ability, and opportunity
  publication-title: Journal of Small Business Management
– volume: 10
  start-page: 167
  year: 1976
  end-page: 180
  ident: b0165
  article-title: A discriminant analysis of predictors of business failure
  publication-title: Journal of Accounting Research
– reference: Abatecola, G., Farina, V., & Gordini, N. (2013). Boards of directors in troubled waters! Enhancing the survival chances of distressed firms. In A. Caretta & G. Mattiacci (Eds.),
– volume: 116
  start-page: 16
  year: 1999
  end-page: 32
  ident: b0460
  article-title: Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis
  publication-title: European Journal of Operational Research
– volume: 22
  start-page: 1421
  year: 1998
  end-page: 1439
  ident: b0440
  article-title: Genetic algorithms applications in the analysis of insolvency risk
  publication-title: Journal of Banking and Finance
– volume: 174
  start-page: 1039
  year: 2006
  end-page: 1053
  ident: b0225
  article-title: Two-stage genetic programming (2SGP) for the credit scoring model
  publication-title: Applied Mathematics and Computation
– volume: 44
  start-page: 493
  year: 2006
  end-page: 512
  ident: b0115
  article-title: Small firm bankruptcy
  publication-title: Journal of Small Business Management
– volume: 25
  start-page: 637
  year: 2003
  end-page: 646
  ident: b0265
  article-title: The discovery of experts’ decision rules from qualitative bankruptcy data using genetic algorithms
  publication-title: Expert Systems with Applications
– volume: 31
  start-page: 652
  year: 2006
  end-page: 660
  ident: b0300
  article-title: Hybrid genetic algorithms and support vector machines for bankruptcy prediction
  publication-title: Expert System with Applications
– year: 1993
  ident: b0025
  article-title: Corporate financial distress and bankruptcy
– reference: (pp. 1–21). Oxford, UK.
– reference: (pp. 9–18). London, UK: Routledge.
– volume: 7
  start-page: 187
  year: 1998
  end-page: 197
  ident: b0335
  article-title: Using neural networks to predict corporate failure
  publication-title: International Journal of Intelligent Systems in Accounting Finance and Management
– volume: 10
  start-page: 1895
  year: 1998
  end-page: 1923
  ident: b0175
  article-title: Approximate statistical test for comparing supervised classification learning algorithms
  publication-title: Neural Computation
– volume: 23
  start-page: 321
  year: 2002
  end-page: 328
  ident: b0390
  article-title: Genetic algorithm application in bankruptcy prediction modeling
  publication-title: Expert System with Applications
– reference: Vallini, C., Ciampi, F., & Gordini, N. (2009a). Using artificial neural networks analysis for small enterprise default prediction modeling: Statistical evidence from Italian firms. In
– volume: 1
  start-page: 107
  year: 1996
  end-page: 117
  ident: b0380
  article-title: Neural network experiments in business-failure forecasting: Predictive performance measurement issues
  publication-title: International Journal of Computational Intelligence and Organizations
– volume: 180
  start-page: 1
  year: 2007
  end-page: 28
  ident: b0360
  article-title: Bankruptcy prediction in banks and firms via statistical and intelligent techniques – a review
  publication-title: European Journal of Operational Research
– reference: Ciampi, F., & Gordini, N. (2008). Using economic–financial ratios for small enterprise default prediction modeling: An empirical analysis. In
– volume: 29
  start-page: 5
  year: 2006
  end-page: 36
  ident: b0080
  article-title: Potential competitive effects of Basel II on banks in SME credit markets in the United States
  publication-title: Journal of Financial Services Research
– year: 1986
  ident: b0450
  article-title: Positive accounting theory
– volume: 786
  start-page: 2203
  year: 2005
  end-page: 2227
  ident: b0035
  article-title: The link between default and recovery rates: Theory, empirical evidence, and implications
  publication-title: The Journal of Business
– reference: (pp. 147–154), Bologna, IT: Il Mulino.
– reference: (pp. 1–8).
– volume: 2
  start-page: 289
  year: 1983
  end-page: 307
  ident: b0215
  article-title: Failure prediction: Sensitivity of classification accuracy to alternative statistical methods and variable sets
  publication-title: Journal of Accounting and Public Policy
– reference: 14(5), forthcoming.
– year: 1975
  ident: b0220
  article-title: Adaptation in natural and artificial system
– reference: (pp. 41–51). Eger, Hungary.
– volume: 11
  start-page: 545
  year: 1994
  end-page: 557
  ident: b0455
  article-title: Bankruptcy prediction using neural networks
  publication-title: Decision Support System
– year: 1995
  ident: b0435
  article-title: The nature of statistical learning theory
– reference: Vallini, C., Ciampi, F., Gordini, N., & Benvenuti, M. (2008). Can credit scoring models effectively predict small enterprise default? Statistical evidence from Italian firms. In
– reference: . New York, NY: New York University Working Paper.
– volume: 6
  start-page: 195
  year: 1997
  end-page: 214
  ident: b0100
  article-title: A case-based reasoning approach to bankruptcy prediction modeling
  publication-title: International Journal of Intelligent System in Accounting, Finance and Management
– volume: 26
  start-page: 121
  year: 2004
  end-page: 144
  ident: b0375
  article-title: The impact of Basel II on lending to small-and-medium-sized firms: A regulatory policy assessment based on Spanish credit register data
  publication-title: Journal of Finance Services
– volume: 23
  start-page: 589
  year: 1968
  end-page: 609
  ident: b0020
  article-title: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
  publication-title: The Journal of Finance
– reference: Bozsik, J. (2010). Genetic algorithm in default forecast. In
– volume: 201
  start-page: 838
  year: 2010
  end-page: 846
  ident: b0270
  article-title: Support vector machines for default prediction of SMEs based on technology credit
  publication-title: European Journal of Operational Research
– volume: 10
  start-page: 155
  year: 2001
  end-page: 168
  ident: b0315
  article-title: Linear models for minimizing misclassification costs in bankruptcy prediction
  publication-title: International Journal of Intelligent Systems in Accounting, Finance and Management
– volume: 1
  start-page: 249
  year: 1977
  end-page: 276
  ident: b0290
  article-title: Early warning of bank failure: A logit regression approach
  publication-title: Journal of Banking and Finance
– volume: 28
  start-page: 15
  year: 2005
  end-page: 42
  ident: b0040
  article-title: Effects of the new Basel capital accord on bank capital requirements for SMEs
  publication-title: Journal of Financial Services Research
– start-page: 32749
  year: 2005
  end-page: 32765
  ident: b0365
  article-title: Genetic programming for the prediction of insolvency in non-life insurance companies
  publication-title: Computers and Operations Research
– volume: 4
  start-page: 265
  year: 1992
  end-page: 282
  ident: b0410
  article-title: Predicting bank failure: A neural network approach
  publication-title: Applied Artificial Intelligence: An International Journal
– volume: 9
  start-page: 51
  year: 1982
  end-page: 62
  ident: b0055
  article-title: Methodological implications of non-normality distributed financial ratios
  publication-title: Journal of Business Finance and Accounting
– volume: 23
  start-page: 899
  year: 1992
  end-page: 916
  ident: b0370
  article-title: Neural networks: A new tool for predicting thrift failures
  publication-title: Decision Sciences
– volume: 18
  start-page: 109
  year: 1980
  end-page: 131
  ident: b0330
  article-title: Financial ratios and the probabilistic prediction of bankruptcy
  publication-title: Journal of Accounting Research
– reference: (pp. 1–26). Oxford, UK.
– year: 1996
  ident: b0320
  article-title: Applied linear statistical models
– volume: 62
  start-page: 431
  year: 1987
  end-page: 454
  ident: b0180
  article-title: Predicting audit qualifications with financial and market variables
  publication-title: The Accounting Review
– volume: 51
  start-page: 23
  year: 2013
  end-page: 45
  ident: b0140
  article-title: Small enterprise default prediction modeling through artificial neural networks: An empirical analysis of Italian small enterprises
  publication-title: Journal of Small Business Management
– volume: 23
  start-page: 255
  year: 2002
  end-page: 264
  ident: b0345
  article-title: A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction
  publication-title: Expert System with Applications
– volume: 43
  start-page: 332
  year: 2007
  end-page: 357
  ident: b0045
  article-title: Modeling credit risk for SMEs: Evidence from the US market
  publication-title: Abacus
– volume: 17
  start-page: 187
  year: 1992
  end-page: 197
  ident: b0280
  article-title: The sensitivity of optimal cutoff points to misclassification costs of type I and type II errors in the going-concern prediction context
  publication-title: Journal of Business Finance and Accounting
– reference: , San Diego, CA.
– volume: 21
  start-page: 905
  year: 2006
  end-page: 920
  ident: b0110
  article-title: Auditee and audit firm characteristics as determinants of audit qualifications: Evidence from the Athens stock exchange
  publication-title: Managerial Auditing Journal
– volume: 22
  start-page: 506
  year: 1980
  end-page: 523
  ident: b0260
  article-title: An investigation into auditor’s continuity and related qualification judgments
  publication-title: Journal of Accounting Research
– volume: 11
  start-page: 407
  year: 1996
  end-page: 413
  ident: b0050
  article-title: Neural networks and genetic algorithms for bankruptcy predictions
  publication-title: Expert System with Applications
– volume: 13
  start-page: 97
  year: 1997
  end-page: 108
  ident: b0230
  article-title: Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis
  publication-title: Expert System with Applications
– reference: (pp. 1–23), Florence, ITA.
– volume: 12
  start-page: 1
  year: 1974
  end-page: 25
  ident: b0090
  article-title: Failing company discriminant analysis
  publication-title: Journal of Accounting Research
– year: 1991
  ident: b0160
  article-title: Handbook of genetic algorithms
– volume: 28
  start-page: 183
  year: 2012
  end-page: 195
  ident: b0285
  article-title: Predicting loss given default (LGD) for residential mortgage loans: A two-stage model and empirical evidence for UK bank data
  publication-title: International Journal of Forecasting
– year: 2000
  ident: b0340
  article-title: Logistic regression – A premier
– reference: Ciampi, F., & Gordini, N. (2013b). The potential of corporate governance variables for small enterprise default prediction modeling. Statistical evidence from Italian manufacturing firms. In
– volume: 45
  start-page: 194
  year: 2007
  end-page: 213
  ident: b0075
  article-title: Credit risk assessment and relationship lending: An empirical analysis of German small and medium-sized enterprises
  publication-title: Journal of Small Business Management
– volume: 25
  start-page: 637
  issue: 4
  year: 2003
  ident: 10.1016/j.eswa.2014.04.026_b0265
  article-title: The discovery of experts’ decision rules from qualitative bankruptcy data using genetic algorithms
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(03)00102-7
– volume: 45
  start-page: 5
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2014.04.026_b0085
  article-title: Small business credit scoring and credit availability
  publication-title: Journal of Small Business Management
  doi: 10.1111/j.1540-627X.2007.00195.x
– volume: 24
  start-page: 159
  issue: 3
  year: 1993
  ident: 10.1016/j.eswa.2014.04.026_b0205
  article-title: Forecasting with neural networks: An application using bankruptcy data
  publication-title: Information and Management
  doi: 10.1016/0378-7206(93)90064-Z
– volume: 14
  start-page: 573
  issue: 4
  year: 1987
  ident: 10.1016/j.eswa.2014.04.026_b0250
  article-title: Multivariate normality and forecasting of business bankruptcy
  publication-title: Journal of Business Finance and Accounting
  doi: 10.1111/j.1468-5957.1987.tb00113.x
– year: 1991
  ident: 10.1016/j.eswa.2014.04.026_b0160
– volume: 8
  start-page: 3
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2014.04.026_b0415
  article-title: Are credit scoring models able to predict small enterprise default? Statistical evidence from Italian firms
  publication-title: International Journal of Business and Economics
– year: 2006
  ident: 10.1016/j.eswa.2014.04.026_b0400
– volume: 9
  start-page: 51
  issue: 1
  year: 1982
  ident: 10.1016/j.eswa.2014.04.026_b0055
  article-title: Methodological implications of non-normality distributed financial ratios
  publication-title: Journal of Business Finance and Accounting
  doi: 10.1111/j.1468-5957.1982.tb00972.x
– volume: 37
  start-page: 1603
  issue: 6
  year: 1994
  ident: 10.1016/j.eswa.2014.04.026_b0150
  article-title: Bankruptcy and corporate governance: The impact of board composition and structure
  publication-title: Academy of Management Journal
  doi: 10.2307/256801
– volume: 28
  start-page: 15
  issue: 1–3
  year: 2005
  ident: 10.1016/j.eswa.2014.04.026_b0040
  article-title: Effects of the new Basel capital accord on bank capital requirements for SMEs
  publication-title: Journal of Financial Services Research
  doi: 10.1007/s10693-005-4355-5
– volume: 7
  start-page: 1477
  issue: 2
  year: 1972
  ident: 10.1016/j.eswa.2014.04.026_b0190
  article-title: An empirical test of financial ratio analysis for small business failure prediction
  publication-title: Journal of Financial and Quantitative Analysis
  doi: 10.2307/2329929
– volume: 16
  start-page: 85
  issue: 2
  year: 1999
  ident: 10.1016/j.eswa.2014.04.026_b0385
  article-title: Case-based reasoning supported by genetic algorithms for corporate bond rating
  publication-title: Expert System with Applications
  doi: 10.1016/S0957-4174(98)00063-3
– volume: 22
  start-page: 506
  issue: 1
  year: 1980
  ident: 10.1016/j.eswa.2014.04.026_b0260
  article-title: An investigation into auditor’s continuity and related qualification judgments
  publication-title: Journal of Accounting Research
  doi: 10.2307/2490590
– ident: 10.1016/j.eswa.2014.04.026_b0420
– volume: 17
  start-page: 187
  year: 1992
  ident: 10.1016/j.eswa.2014.04.026_b0280
  article-title: The sensitivity of optimal cutoff points to misclassification costs of type I and type II errors in the going-concern prediction context
  publication-title: Journal of Business Finance and Accounting
  doi: 10.1111/j.1468-5957.1992.tb00618.x
– year: 1996
  ident: 10.1016/j.eswa.2014.04.026_b0320
– volume: 786
  start-page: 2203
  issue: 6
  year: 2005
  ident: 10.1016/j.eswa.2014.04.026_b0035
  article-title: The link between default and recovery rates: Theory, empirical evidence, and implications
  publication-title: The Journal of Business
  doi: 10.1086/497044
– volume: 10
  start-page: 1895
  issue: 7
  year: 1998
  ident: 10.1016/j.eswa.2014.04.026_b0175
  article-title: Approximate statistical test for comparing supervised classification learning algorithms
  publication-title: Neural Computation
  doi: 10.1162/089976698300017197
– volume: 62
  start-page: 431
  year: 1987
  ident: 10.1016/j.eswa.2014.04.026_b0180
  article-title: Predicting audit qualifications with financial and market variables
  publication-title: The Accounting Review
– volume: 18
  start-page: 109
  issue: 1
  year: 1980
  ident: 10.1016/j.eswa.2014.04.026_b0330
  article-title: Financial ratios and the probabilistic prediction of bankruptcy
  publication-title: Journal of Accounting Research
  doi: 10.2307/2490395
– volume: 31
  start-page: 481
  year: 2004
  ident: 10.1016/j.eswa.2014.04.026_b0350
  article-title: An empirical study of impact of crossover operators on the performance of non-binary genetic algorithm based neural approaches for classification
  publication-title: Computer and Operations Research
  doi: 10.1016/S0305-0548(02)00229-0
– volume: 9
  start-page: 599
  year: 2009
  ident: 10.1016/j.eswa.2014.04.026_b0015
  article-title: Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2008.08.002
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.eswa.2014.04.026_b0170
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– year: 1986
  ident: 10.1016/j.eswa.2014.04.026_b0450
– volume: 8
  start-page: 13
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2014.04.026_b0135
  article-title: Default prediction modeling for small enterprises: Evidence from small manufacturing firms in northern and central Italy
  publication-title: Oxford Journal
– year: 1993
  ident: 10.1016/j.eswa.2014.04.026_b0025
– year: 1995
  ident: 10.1016/j.eswa.2014.04.026_b0255
  article-title: Adaptive control of an exothermic chemical reaction system using fuzzy logic and genetic algorithms
– volume: 1
  start-page: 249
  issue: 3
  year: 1977
  ident: 10.1016/j.eswa.2014.04.026_b0290
  article-title: Early warning of bank failure: A logit regression approach
  publication-title: Journal of Banking and Finance
  doi: 10.1016/0378-4266(77)90022-X
– ident: 10.1016/j.eswa.2014.04.026_b0325
  doi: 10.1109/IJCNN.1990.137710
– year: 1956
  ident: 10.1016/j.eswa.2014.04.026_b0395
– year: 1995
  ident: 10.1016/j.eswa.2014.04.026_b0445
  article-title: Credit evaluation using a genetic algorithm
– ident: 10.1016/j.eswa.2014.04.026_b0430
  doi: 10.1109/CIFER.2003.1196234
– volume: 4
  start-page: 71
  year: 1967
  ident: 10.1016/j.eswa.2014.04.026_b0065
  article-title: Financial ratios predictors of failure
  publication-title: Journal of Accounting Research
  doi: 10.2307/2490171
– ident: 10.1016/j.eswa.2014.04.026_b0425
– volume: 2
  start-page: 289
  year: 1983
  ident: 10.1016/j.eswa.2014.04.026_b0215
  article-title: Failure prediction: Sensitivity of classification accuracy to alternative statistical methods and variable sets
  publication-title: Journal of Accounting and Public Policy
  doi: 10.1016/0278-4254(83)90032-7
– volume: 10
  start-page: 167
  issue: 1
  year: 1976
  ident: 10.1016/j.eswa.2014.04.026_b0165
  article-title: A discriminant analysis of predictors of business failure
  publication-title: Journal of Accounting Research
  doi: 10.2307/2490225
– year: 1992
  ident: 10.1016/j.eswa.2014.04.026_b0305
– volume: 10
  start-page: 155
  year: 2001
  ident: 10.1016/j.eswa.2014.04.026_b0315
  article-title: Linear models for minimizing misclassification costs in bankruptcy prediction
  publication-title: International Journal of Intelligent Systems in Accounting, Finance and Management
  doi: 10.1002/isaf.203
– ident: 10.1016/j.eswa.2014.04.026_b0125
– year: 1994
  ident: 10.1016/j.eswa.2014.04.026_b0060
– year: 1859
  ident: 10.1016/j.eswa.2014.04.026_b0155
– ident: 10.1016/j.eswa.2014.04.026_b0005
– ident: 10.1016/j.eswa.2014.04.026_b0030
– year: 1987
  ident: 10.1016/j.eswa.2014.04.026_b0245
– volume: 9
  start-page: 34
  issue: 10
  year: 1994
  ident: 10.1016/j.eswa.2014.04.026_b0105
  article-title: Mining for financial knowledge with CBR
  publication-title: AI Expert
– volume: 51
  start-page: 23
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2014.04.026_b0140
  article-title: Small enterprise default prediction modeling through artificial neural networks: An empirical analysis of Italian small enterprises
  publication-title: Journal of Small Business Management
  doi: 10.1111/j.1540-627X.2012.00376.x
– volume: 41
  start-page: 417
  issue: 4
  year: 2003
  ident: 10.1016/j.eswa.2014.04.026_b0310
  article-title: Small business growth: Intention, ability, and opportunity
  publication-title: Journal of Small Business Management
  doi: 10.1111/1540-627X.00092
– year: 1975
  ident: 10.1016/j.eswa.2014.04.026_b0220
– volume: 19
  start-page: 429
  issue: 5
  year: 1991
  ident: 10.1016/j.eswa.2014.04.026_b0405
  article-title: Neural network models and the prediction of bank bankruptcy
  publication-title: OMEGA: The International Journal of Management Science
  doi: 10.1016/0305-0483(91)90060-7
– year: 1998
  ident: 10.1016/j.eswa.2014.04.026_b0465
– volume: 43
  start-page: 332
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2014.04.026_b0045
  article-title: Modeling credit risk for SMEs: Evidence from the US market
  publication-title: Abacus
  doi: 10.1111/j.1467-6281.2007.00234.x
– ident: 10.1016/j.eswa.2014.04.026_b0095
– ident: 10.1016/j.eswa.2014.04.026_b0010
  doi: 10.1108/CG-03-2013-0030
– volume: 36
  start-page: 3199
  year: 2009
  ident: 10.1016/j.eswa.2014.04.026_b0195
  article-title: A genetic programming model for bankruptcy prediction: Empirical evidence from Iran
  publication-title: Expert System with Applications
  doi: 10.1016/j.eswa.2008.01.012
– volume: 180
  start-page: 1
  year: 2007
  ident: 10.1016/j.eswa.2014.04.026_b0360
  article-title: Bankruptcy prediction in banks and firms via statistical and intelligent techniques – a review
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.08.043
– volume: 116
  start-page: 16
  issue: 1
  year: 1999
  ident: 10.1016/j.eswa.2014.04.026_b0460
  article-title: Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(98)00051-4
– volume: 23
  start-page: 589
  issue: 4
  year: 1968
  ident: 10.1016/j.eswa.2014.04.026_b0020
  article-title: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.1968.tb00843.x
– volume: 31
  start-page: 652
  year: 2006
  ident: 10.1016/j.eswa.2014.04.026_b0300
  article-title: Hybrid genetic algorithms and support vector machines for bankruptcy prediction
  publication-title: Expert System with Applications
  doi: 10.1016/j.eswa.2005.09.070
– volume: 4
  start-page: 265
  issue: 4
  year: 1992
  ident: 10.1016/j.eswa.2014.04.026_b0410
  article-title: Predicting bank failure: A neural network approach
  publication-title: Applied Artificial Intelligence: An International Journal
  doi: 10.1080/08839519008927951
– volume: 11
  start-page: 545
  issue: 5
  year: 1994
  ident: 10.1016/j.eswa.2014.04.026_b0455
  article-title: Bankruptcy prediction using neural networks
  publication-title: Decision Support System
  doi: 10.1016/0167-9236(94)90024-8
– volume: 11
  start-page: 407
  issue: 4
  year: 1996
  ident: 10.1016/j.eswa.2014.04.026_b0050
  article-title: Neural networks and genetic algorithms for bankruptcy predictions
  publication-title: Expert System with Applications
  doi: 10.1016/S0957-4174(96)00055-3
– ident: 10.1016/j.eswa.2014.04.026_b0210
– volume: 174
  start-page: 1039
  year: 2006
  ident: 10.1016/j.eswa.2014.04.026_b0225
  article-title: Two-stage genetic programming (2SGP) for the credit scoring model
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2005.05.027
– volume: 26
  start-page: 121
  year: 2004
  ident: 10.1016/j.eswa.2014.04.026_b0375
  article-title: The impact of Basel II on lending to small-and-medium-sized firms: A regulatory policy assessment based on Spanish credit register data
  publication-title: Journal of Finance Services
  doi: 10.1023/B:FINA.0000037542.16864.11
– volume: 19
  start-page: 322
  year: 1998
  ident: 10.1016/j.eswa.2014.04.026_b0235
  article-title: Four approaches to the classification problem in discriminat analysis: An experimental study
  publication-title: Decision Sciences
  doi: 10.1111/j.1540-5915.1988.tb00270.x
– volume: 31
  start-page: 531
  issue: 2
  year: 2000
  ident: 10.1016/j.eswa.2014.04.026_b0200
  article-title: A comparison of selected artificial neural networks that help auditors evaluate client financial viability
  publication-title: Decision Sciences
  doi: 10.1111/j.1540-5915.2000.tb01633.x
– volume: 201
  start-page: 838
  year: 2010
  ident: 10.1016/j.eswa.2014.04.026_b0270
  article-title: Support vector machines for default prediction of SMEs based on technology credit
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2009.03.036
– volume: 6
  start-page: 195
  issue: 3
  year: 1997
  ident: 10.1016/j.eswa.2014.04.026_b0100
  article-title: A case-based reasoning approach to bankruptcy prediction modeling
  publication-title: International Journal of Intelligent System in Accounting, Finance and Management
  doi: 10.1002/(SICI)1099-1174(199709)6:3<195::AID-ISAF132>3.0.CO;2-F
– ident: 10.1016/j.eswa.2014.04.026_b0120
– ident: 10.1016/j.eswa.2014.04.026_b0275
– volume: 43
  start-page: 113
  issue: 1
  year: 1968
  ident: 10.1016/j.eswa.2014.04.026_b0070
  article-title: Alternative accounting measures as predictors of failure
  publication-title: The Accounting Review
– volume: 28
  start-page: 183
  year: 2012
  ident: 10.1016/j.eswa.2014.04.026_b0285
  article-title: Predicting loss given default (LGD) for residential mortgage loans: A two-stage model and empirical evidence for UK bank data
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2011.01.010
– volume: 10
  start-page: 150
  year: 2009
  ident: 10.1016/j.eswa.2014.04.026_b0185
  article-title: Overfitting cautious selection of classifier ensembles with genetic algorithms
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2008.11.003
– volume: 1
  start-page: 107
  issue: 2
  year: 1996
  ident: 10.1016/j.eswa.2014.04.026_b0380
  article-title: Neural network experiments in business-failure forecasting: Predictive performance measurement issues
  publication-title: International Journal of Computational Intelligence and Organizations
– volume: 22
  start-page: 1421
  year: 1998
  ident: 10.1016/j.eswa.2014.04.026_b0440
  article-title: Genetic algorithms applications in the analysis of insolvency risk
  publication-title: Journal of Banking and Finance
  doi: 10.1016/S0378-4266(98)00059-4
– volume: 23
  start-page: 899
  issue: 4
  year: 1992
  ident: 10.1016/j.eswa.2014.04.026_b0370
  article-title: Neural networks: A new tool for predicting thrift failures
  publication-title: Decision Sciences
  doi: 10.1111/j.1540-5915.1992.tb00425.x
– volume: 13
  start-page: 97
  issue: 2
  year: 1997
  ident: 10.1016/j.eswa.2014.04.026_b0230
  article-title: Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis
  publication-title: Expert System with Applications
  doi: 10.1016/S0957-4174(97)00011-0
– volume: 45
  start-page: 194
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2014.04.026_b0075
  article-title: Credit risk assessment and relationship lending: An empirical analysis of German small and medium-sized enterprises
  publication-title: Journal of Small Business Management
  doi: 10.1111/j.1540-627X.2007.00209.x
– volume: 12
  start-page: 1
  issue: 1
  year: 1974
  ident: 10.1016/j.eswa.2014.04.026_b0090
  article-title: Failing company discriminant analysis
  publication-title: Journal of Accounting Research
  doi: 10.2307/2490525
– volume: 6
  start-page: 131
  year: 1987
  ident: 10.1016/j.eswa.2014.04.026_b0240
  article-title: Current techniques in bankruptcy prediction
  publication-title: Journal of Accounting Literature
– volume: 7
  start-page: 187
  issue: 3
  year: 1998
  ident: 10.1016/j.eswa.2014.04.026_b0335
  article-title: Using neural networks to predict corporate failure
  publication-title: International Journal of Intelligent Systems in Accounting Finance and Management
  doi: 10.1002/(SICI)1099-1174(199809)7:3<187::AID-ISAF144>3.0.CO;2-7
– year: 2000
  ident: 10.1016/j.eswa.2014.04.026_b0340
– volume: 29
  start-page: 5
  issue: 1
  year: 2006
  ident: 10.1016/j.eswa.2014.04.026_b0080
  article-title: Potential competitive effects of Basel II on banks in SME credit markets in the United States
  publication-title: Journal of Financial Services Research
  doi: 10.1007/s10693-005-5106-3
– ident: 10.1016/j.eswa.2014.04.026_b0130
– volume: 22
  start-page: 142
  issue: 3
  year: 1993
  ident: 10.1016/j.eswa.2014.04.026_b0145
  article-title: Recognizing financial distress patterns using a neural network tool
  publication-title: Financial Management
  doi: 10.2307/3665934
– volume: 44
  start-page: 493
  issue: 4
  year: 2006
  ident: 10.1016/j.eswa.2014.04.026_b0115
  article-title: Small firm bankruptcy
  publication-title: Journal of Small Business Management
  doi: 10.1111/j.1540-627X.2006.00187.x
– start-page: 32749
  year: 2005
  ident: 10.1016/j.eswa.2014.04.026_b0365
  article-title: Genetic programming for the prediction of insolvency in non-life insurance companies
  publication-title: Computers and Operations Research
– volume: 20
  start-page: 847
  year: 2005
  ident: 10.1016/j.eswa.2014.04.026_b0355
  article-title: The prediction of bankruptcy of small-and medium-sized industrial firms
  publication-title: Journal of Business Venturing
  doi: 10.1016/j.jbusvent.2004.07.003
– year: 1995
  ident: 10.1016/j.eswa.2014.04.026_b0435
– volume: 23
  start-page: 255
  issue: 3
  year: 2002
  ident: 10.1016/j.eswa.2014.04.026_b0345
  article-title: A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction
  publication-title: Expert System with Applications
  doi: 10.1016/S0957-4174(02)00045-3
– volume: 23
  start-page: 321
  year: 2002
  ident: 10.1016/j.eswa.2014.04.026_b0390
  article-title: Genetic algorithm application in bankruptcy prediction modeling
  publication-title: Expert System with Applications
  doi: 10.1016/S0957-4174(02)00051-9
– volume: 21
  start-page: 905
  issue: 9
  year: 2006
  ident: 10.1016/j.eswa.2014.04.026_b0110
  article-title: Auditee and audit firm characteristics as determinants of audit qualifications: Evidence from the Athens stock exchange
  publication-title: Managerial Auditing Journal
  doi: 10.1108/02686900610705000
– volume: 28
  start-page: 603
  year: 2005
  ident: 10.1016/j.eswa.2014.04.026_b0295
  article-title: Bankruptcy prediction using support vector machine (SVM) with optimal choice of kernel function parameters
  publication-title: Expert System with Applications
  doi: 10.1016/j.eswa.2004.12.008
SSID ssj0017007
Score 2.4897897
SecondaryResourceType review_article
Snippet •GAs are a very promising method in SMEs default prediction analysis.•GAs are capable of extracting rules that are easy to understand for users.•GAs give a...
Bankruptcy prediction is a topic, which affect the economic well being of all countries. Having an accurate company default prediction model, which can pick up...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6433
SubjectTerms Applied sciences
Bankruptcies
Computer science; control theory; systems
Data processing. List processing. Character string processing
Default prediction modeling
Economics
Exact sciences and technology
Expert systems
Firm modelling
General aspects
Genetic algorithms
Logistic regression
Mathematical models
Memory organisation. Data processing
Operational research and scientific management
Operational research. Management science
Regression
Small and medium sized enterprises
Small business
Software
Support vector machine
Support vector machines
Title A genetic algorithm approach for SMEs bankruptcy prediction: Empirical evidence from Italy
URI https://dx.doi.org/10.1016/j.eswa.2014.04.026
https://www.proquest.com/docview/1567113424
https://www.proquest.com/docview/1677925904
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalfRmM_R7LtgYN9ja8yLJkWX0LJSXdaF-6QtmLkGVpS9c6JnEYfdnf3jtbDpSNPAz0YlvC4k7SfYfuviPkoxSVCtaGBMF8IlzuE11oBHIyL62sLO_Kt52d5_NL8eVKXu2R4yEXBsMq49nfn-ndaR3fTKI0J81iMbkAcADmEJroiLmQdlsIhVUMPv_Zhnkg_Zzq-fZUgr1j4kwf4-XXv5F7KBUd3SkSLPzbOD1u7BpEFvpaF38d250tOnlGnkQQSaf9PJ-TPV-_IE-HAg007teX5PuUwvrANEVqb34sV4v25y0dWMQpwFV6cTZb09LWv1abpnV3tFnhxQ0q64jObptFRyBCfSw9SjEZhZ4CXr97RS5PZt-O50ksppC4TOdtwnWqfVnIggVmwStUIVeaBeuCFA4wkys5fPY-VJnKMldxbTkPnqU-E1mVptlrsl8va_-GUFYVEv2qQiIeybhmvrTcSe1YBSZRjkg6SNG4yDSOBS9uzBBSdm1Q8gYlbxg0no_Ip-2YpufZ2NlbDsoxD1aLAUOwc9z4gSa3v-KAWkTOxIh8GFRrYJ_h5Ymt_XKzNuDnKpCC4Lv65Epp8CeZePufE3xHHuETGsdUvif77WrjDwH1tOW4W9ZjcjA9_To_vwecAgDJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpemih9F26faQq9FbclWXJsnoLYcOmzeaSBEIvQpaldNvEa3a9lFz62ztjywuhZQ8FnSwJixlJ8w2a-YaQD1JUKlgbEgTziXC5T3ShEcjJvLSysrwr3zY7yafn4suFvNghB0MuDIZVxru_v9O72zp-GUdpjpv5fHwK4ADMITTREXPld8hdIblCD-zT702cB_LPqZ5wTyU4PGbO9EFefvULyYdS0fGdIsPCv63Tg8auQGahL3bx173dGaPDx-RhRJF0v1_oE7Lj66fk0VChgcYD-4x826ewQTBPkdqry8Vy3n6_pgONOAW8Sk9nkxUtbf1zuW5ad0ObJb7coLY-08l1M-8YRKiPtUcpZqPQIwDsN8_J-eHk7GCaxGoKict03iZcp9qXhSxYYBbcQhVypVmwLkjhADS5kkO396HKVJa5imvLefAs9ZnIqjTNXpDdelH7l4SyqpDoWBUSAUnGNfOl5U5qxyqwiXJE0kGKxkWqcax4cWWGmLIfBiVvUPKGQeP5iHzczGl6oo2to-WgHHNruxiwBFvn7d3S5OZXHGCLyJkYkfeDag0cNHw9sbVfrFcGHF0FUhB825hcKQ0OJROv_nOB78i96dns2BwfnXx9Te5jD1rKVL4hu-1y7d8CBGrLvW6L_wF-sQJe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+genetic+algorithm+approach+for+SMEs+bankruptcy+prediction%3A+Empirical+evidence+from+Italy&rft.jtitle=Expert+systems+with+applications&rft.au=Gordini%2C+Niccolo&rft.date=2014-10-15&rft.issn=0957-4174&rft.volume=41&rft.issue=14&rft.spage=6433&rft.epage=6445&rft_id=info:doi/10.1016%2Fj.eswa.2014.04.026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon