scikit-matter : A Suite of Generalisable Machine Learning Methods Born out of Chemistry and Materials Science

Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many of the algorithms implemented in these libraries originated in specific scientific fields, they have gained in popularity in part because of...

Full description

Saved in:
Bibliographic Details
Published inOpen research Europe Vol. 3; p. 81
Main Authors Goscinski, Alexander, Principe, Victor Paul, Fraux, Guillaume, Kliavinek, Sergei, Helfrecht, Benjamin Aaron, Loche, Philip, Ceriotti, Michele, Cersonsky, Rose Kathleen
Format Journal Article
LanguageEnglish
Published Belgium F1000 Research Limited 2023
F1000 Research Ltd
Subjects
Online AccessGet full text
ISSN2732-5121
2732-5121
DOI10.12688/openreseurope.15789.2

Cover

Abstract Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many of the algorithms implemented in these libraries originated in specific scientific fields, they have gained in popularity in part because of their generalisability across multiple domains. Over the past two decades, researchers in the chemical and materials science community have put forward general-purpose machine learning methods. The deployment of these methods into workflows of other domains, however, is often burdensome due to the entanglement with domain-specific functionalities. We present the python library scikit-matter that targets domain-agnostic implementations of methods developed in the computational chemical and materials science community, following the scikit-learn API and coding guidelines to promote usability and interoperability with existing workflows.
AbstractList Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many of the algorithms implemented in these libraries originated in specific scientific fields, they have gained in popularity in part because of their generalisability across multiple domains. Over the past two decades, researchers in the chemical and materials science community have put forward general-purpose machine learning methods. The deployment of these methods into workflows of other domains, however, is often burdensome due to the entanglement with domainspecific functionalities. We present the python library scikit-matter that targets domain-agnostic implementations of methods developed in the computational chemical and materials science community, following the scikit-learn API and coding guidelines to promote usability and interoperability with existing workflows.
Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many of the algorithms implemented in these libraries originated in specific scientific fields, they have gained in popularity in part because of their generalisability across multiple domains. Over the past two decades, researchers in the chemical and materials science community have put forward general-purpose machine learning methods. The deployment of these methods into workflows of other domains, however, is often burdensome due to the entanglement with domain-specific functionalities. We present the python library scikit-matter that targets domain-agnostic implementations of methods developed in the computational chemical and materials science community, following the scikit-learn API and coding guidelines to promote usability and interoperability with existing workflows.
Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many of the algorithms implemented in these libraries originated in specific scientific fields, they have gained in popularity in part because of their generalisability across multiple domains. Over the past two decades, researchers in the chemical and materials science community have put forward general-purpose machine learning methods. The deployment of these methods into workflows of other domains, however, is often burdensome due to the entanglement with domainspecific functionalities. We present the python library scikit-matter that targets domain-agnostic implementations of methods developed in the computational chemical and materials science community, following the scikit-learn API and coding guidelines to promote usability and interoperability with existing workflows.Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many of the algorithms implemented in these libraries originated in specific scientific fields, they have gained in popularity in part because of their generalisability across multiple domains. Over the past two decades, researchers in the chemical and materials science community have put forward general-purpose machine learning methods. The deployment of these methods into workflows of other domains, however, is often burdensome due to the entanglement with domainspecific functionalities. We present the python library scikit-matter that targets domain-agnostic implementations of methods developed in the computational chemical and materials science community, following the scikit-learn API and coding guidelines to promote usability and interoperability with existing workflows.
Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many of the algorithms implemented in these libraries originated in specific scientific fields, they have gained in popularity in part because of their generalisability across multiple domains. Over the past two decades, researchers in the chemical and materials science community have put forward general-purpose machine learning methods. The deployment of these methods into workflows of other domains, however, is often burdensome due to the entanglement with domainspecific functionalities. We present the python library scikit-matter that targets domain-agnostic implementations of methods developed in the computational chemical and materials science community, following the scikit-learn API and coding guidelines to promote usability and interoperability with existing workflows.
Author Ceriotti, Michele
Cersonsky, Rose Kathleen
Goscinski, Alexander
Kliavinek, Sergei
Fraux, Guillaume
Helfrecht, Benjamin Aaron
Loche, Philip
Principe, Victor Paul
Author_xml – sequence: 1
  givenname: Alexander
  orcidid: 0000-0001-8076-215X
  surname: Goscinski
  fullname: Goscinski, Alexander
– sequence: 2
  givenname: Victor Paul
  surname: Principe
  fullname: Principe, Victor Paul
– sequence: 3
  givenname: Guillaume
  orcidid: 0000-0003-4824-6512
  surname: Fraux
  fullname: Fraux, Guillaume
– sequence: 4
  givenname: Sergei
  surname: Kliavinek
  fullname: Kliavinek, Sergei
– sequence: 5
  givenname: Benjamin Aaron
  orcidid: 0000-0002-2260-7183
  surname: Helfrecht
  fullname: Helfrecht, Benjamin Aaron
– sequence: 6
  givenname: Philip
  orcidid: 0000-0002-9112-0010
  surname: Loche
  fullname: Loche, Philip
– sequence: 7
  givenname: Michele
  orcidid: 0000-0003-2571-2832
  surname: Ceriotti
  fullname: Ceriotti, Michele
– sequence: 8
  givenname: Rose Kathleen
  orcidid: 0000-0003-4515-3441
  surname: Cersonsky
  fullname: Cersonsky, Rose Kathleen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38234865$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vEzEQhleoiJbSv1D5yCXB37tGSKhEUCql4tDeLa93NnHZtYPtBeXf4ySlarjAyePxvM-M531dnfjgoaouCZ4TKpvmXdiAj5BgiiWaE1E3ak5fVGe0ZnQmCCUnz-LT6iKlB4wxFYRJol5Vp6yhjDdSnFVjsu67y7PR5AwRvUdX6G5yGVDo0TV4iGZwybQDoFtj184DWoKJ3vkVuoW8Dl1Cn0L0KEx5J1msYXQpxy0yviuSwnRmSOjOOvAW3lQv-3KFi8fzvLr_8vl-8XW2_HZ9s7hazixTks5a2_RWYslJB1iAkRyI5VgaXndEilp1qlZ9DVYxbHveNS3vOFFCMSJY27Lz6uaA7YJ50JvoRhO3Ohin94kQV9rE7OwAGvetEazuKWWCS4ZbACMUFZy0CveSFFZ9YE1-Y7a_zDA8AQnWezv0kR16b4emRfnxoNxM7QidBZ_LNo_GOX7xbq1X4Wfh1orSekd4-0iI4ccEKeuyXAvDYDyEKWmqiOS4IXg35uXzZk9d_jhdCuShwMaQUoT-_7_x4S-hddlkF3ZDu-Ff8t9-GNl-
CitedBy_id crossref_primary_10_1039_D3DD00187C
crossref_primary_10_1021_acs_jctc_3c01163
crossref_primary_10_1088_1361_648X_ad9791
crossref_primary_10_1021_acs_jproteome_4c00556
crossref_primary_10_1103_PhysRevMaterials_8_113804
Cites_doi 10.1162/089976698300017467
10.1088/2632-2153/abb212
10.1088/2632-2153/abdaf7
10.1016/j.cpc.2019.106949
10.1038/s41467-018-04618-6
10.1063/1.5143190
10.1039/c6cp00415f
10.1103/PhysRevB.99.014104
10.21105/joss.02117
10.1088/2632-2153/abfe7c
10.3390/math10213974
10.1073/pnas.0505436102
10.24435/materialscloud:2019.0023/v2
10.1145/235815.235821
10.1063/1.5024611
10.1073/pnas.0803205106
10.1063/5.0057229
10.1021/acs.chemrev.1c00022
10.1137/S0036144599352836
10.1016/j.econlet.2011.12.031
10.1038/s41592-019-0686-2
10.1088/1361-648X/ab82d2
10.1016/j.placenta.2023.04.005
10.1103/PhysRevB.100.024112
10.1103/PhysRevB.87.184115
10.1016/0169-7439(92)80100-I
10.1021/acs.chemrev.1c00021
10.1038/s41597-020-00637-5
10.1126/sciadv.1701816
10.5281/zenodo.7046742
10.1186/s13321-020-00445-4
10.1088/2632-2153/aba9ef
10.1088/2632-2153/abc9fe
10.1103/PhysRevMaterials.2.103804
10.1016/S0140-6736(00)04824-8
10.1016/S0167-7152(98)00006-6
10.1137/15M1054183
10.1039/c8cp05921g
10.1073/pnas.1108486108
10.1057/9780230582354_10
ContentType Journal Article
Copyright Copyright: © 2023 Goscinski A et al.
Copyright: © 2023 Goscinski A et al. 2023
Copyright_xml – notice: Copyright: © 2023 Goscinski A et al.
– notice: Copyright: © 2023 Goscinski A et al. 2023
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.12688/openreseurope.15789.2
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2732-5121
ExternalDocumentID oai_doaj_org_article_0fba537f22354630beea592541b90f61
10.12688/openreseurope.15789.2
PMC10792272
38234865
10_12688_openreseurope_15789_2
Genre Journal Article
GrantInformation_xml – fundername: Wisconsin Alumni Research Foundation
– fundername: Horizon 2020 Framework Programme
  grantid: 101001890; 677013
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: 200021-182057
– fundername: Swiss Platform for Advanced Scientific Computing
GroupedDBID AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
PGMZT
RPM
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c3962-bc8fc60641de05ea64e1c406a47d16579d979f7ec930cf4d8b4d419593153bb3
IEDL.DBID DOA
ISSN 2732-5121
IngestDate Fri Oct 03 12:50:21 EDT 2025
Sun Oct 26 04:17:14 EDT 2025
Tue Sep 30 17:10:35 EDT 2025
Fri Jul 11 08:14:02 EDT 2025
Thu Apr 03 07:02:37 EDT 2025
Tue Jul 01 03:50:29 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords directional convex hull
sample selection
feature reconstruction
feature selection
KPCovR
PCovR
Python
Language English
License Copyright: © 2023 Goscinski A et al.
This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3962-bc8fc60641de05ea64e1c406a47d16579d979f7ec930cf4d8b4d419593153bb3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
No competing interests were disclosed.
ORCID 0000-0003-2571-2832
0000-0003-4515-3441
0000-0002-9112-0010
0000-0002-2260-7183
0000-0003-4824-6512
0000-0001-8076-215X
OpenAccessLink https://doaj.org/article/0fba537f22354630beea592541b90f61
PMID 38234865
PQID 2916408101
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0fba537f22354630beea592541b90f61
unpaywall_primary_10_12688_openreseurope_15789_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10792272
proquest_miscellaneous_2916408101
pubmed_primary_38234865
crossref_primary_10_12688_openreseurope_15789_2
crossref_citationtrail_10_12688_openreseurope_15789_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Belgium
PublicationPlace_xml – name: Belgium
– name: London, UK
PublicationTitle Open research Europe
PublicationTitleAlternate Open Res Eur
PublicationYear 2023
Publisher F1000 Research Limited
F1000 Research Ltd
Publisher_xml – name: F1000 Research Limited
– name: F1000 Research Ltd
References L Talirz (ref-17) 2020; 7
A Goscinski (ref-39) 2021; 155
V Deringer (ref-5) 2021; 121
A Shapeev (ref-3) 2016; 14
(ref-26) 2023
E Engel (ref-18) 2018
A Goscinski (ref-11) 2021; 2
W Liu (ref-56) 2022; 10
I Novikov (ref-15) 2021; 2
(ref-29) 2023
L Buitinck (ref-2) 2013
G Imbalzano (ref-45) 2018; 148
A Anelli (ref-52) 2018; 2
R Drautz (ref-4) 2019; 99
A Capecchi (ref-31) 2020; 12
(ref-22) 2023
F Musil (ref-6) 2021; 121
G Fraux (ref-43) 2020; 5
E Prodan (ref-32) 2005; 102
G Csányi (ref-35) 2007
G Anderson (ref-57) 2008
(ref-25) 2023
G Shieh (ref-51) 1998; 39
L Ashford (ref-49) 2006; 1
C da Costa-Luis (ref-47) 2022
E Engel (ref-16) 2018; 9
(ref-28) 2023
M Ceriotti (ref-53) 2011; 108
A Bartók (ref-30) 2013; 87
S De (ref-58) 2016; 18
(ref-21) 2023
A Bartók-Pártay (ref-14) 2020
Q Du (ref-46) 1999; 41
C Mathers (ref-48) 2001; 357
P Virtanen (ref-54) 2020; 17
M Willatt (ref-8) 2018; 20
J Behler (ref-13)
R Cersonsky (ref-9) 2021; 2
M Ceriotti (ref-38) 2019
(ref-59) 2003
(ref-24) 2023
B Parsaeifard (ref-10) 2021; 2
B Schölkopf (ref-41) 1998; 10
M Mahoney (ref-44) 2009; 106
F Pedregosa (ref-1) 2011; 12
A Bartók (ref-7) 2017; 3
(ref-27) 2023
B Hourahine (ref-19) 2020; 152
J Kermode (ref-36) 2020; 32
S de Jong (ref-40) 1992; 14
B Helfrecht (ref-12) 2020; 1
(ref-20) 2023
J Kermode (ref-34) 2008
C Hansen (ref-50) 2012; 115
C Barber (ref-55) 1996; 22
T Cersonsky (ref-42) 2023; 137
(ref-23) 2023
(ref-60) 2020
M Caro (ref-33) 2019; 100
L Himanen (ref-37) 2020; 247
References_xml – year: 2023
  ident: ref-25
  article-title: Prevalence of hiv, total (% of population 15-49).
– volume: 10
  start-page: 1299-1319
  year: 1998
  ident: ref-41
  article-title: Nonlinear component analysis as a kernel eigenvalue problem.
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017467
– volume: 2
  year: 2021
  ident: ref-10
  article-title: An assessment of the structural resolution of various fingerprints commonly used in machine learning.
  publication-title: Mach Learn: Sci Technol.
  doi: 10.1088/2632-2153/abb212
– volume: 2
  year: 2021
  ident: ref-11
  article-title: The role of feature space in atomistic learning.
  publication-title: Mach Learn: Sci Technol.
  doi: 10.1088/2632-2153/abdaf7
– volume: 247
  year: 2020
  ident: ref-37
  article-title: DScribe: Library of descriptors for machine learning in materials science.
  publication-title: Comput Phys Commun.
  doi: 10.1016/j.cpc.2019.106949
– year: 2018
  ident: ref-18
  article-title: Mapping uncharted territory in ice from zeolite networks to ice structures.
  doi: 10.1038/s41467-018-04618-6
– volume: 152
  year: 2020
  ident: ref-19
  article-title: DFTB+, a software package for efficient approximate density functional theory based atomistic simulations.
  publication-title: J Chem Phys.
  doi: 10.1063/1.5143190
– volume: 18
  start-page: 13754-13769
  year: 2016
  ident: ref-58
  article-title: Comparing molecules and solids across structural and alchemical space.
  publication-title: Phys Chem Chem Phys.
  doi: 10.1039/c6cp00415f
– volume: 99
  year: 2019
  ident: ref-4
  article-title: Atomic cluster expansion for accurate and transferable interatomic potentials.
  publication-title: Phys Rev B.
  doi: 10.1103/PhysRevB.99.014104
– volume: 5
  year: 2020
  ident: ref-43
  article-title: Chemiscope: interactive structure-property explorer for materials and molecules.
  publication-title: J Open Source Softw.
  doi: 10.21105/joss.02117
– year: 2023
  ident: ref-28
  article-title: Immunization, dpt (% of children ages 12-23 months).
– volume: 12
  start-page: 2825-2830
  year: 2011
  ident: ref-1
  article-title: Scikit-learn: Machine learning in Python.
  publication-title: J Mach Learn Res.
– volume: 2
  year: 2021
  ident: ref-9
  article-title: Improving sample and feature selection with principal covariates regression.
  publication-title: Mach Learn: Sci Technol.
  doi: 10.1088/2632-2153/abfe7c
– ident: ref-13
  article-title: RuNNer
– volume: 10
  year: 2022
  ident: ref-56
  article-title: A general-purpose multi-dimensional convex landscape generator.
  publication-title: Mathematics.
  doi: 10.3390/math10213974
– volume: 102
  start-page: 11635-8
  year: 2005
  ident: ref-32
  article-title: Nearsightedness of electronic matter.
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.0505436102
– year: 2007
  ident: ref-35
  article-title: Expressive programming for computational physics in fortran 95+.
  publication-title: IoP Comp Phys Newsletter.
– year: 2019
  ident: ref-38
  article-title: Chemical shifts in molecular solids by machine learning datasets.
  publication-title: Materials Cloud Archive.
  doi: 10.24435/materialscloud:2019.0023/v2
– year: 2023
  ident: ref-27
  article-title: Immunization, measles (% of children ages 12-23 months).
– volume: 22
  start-page: 469-483
  year: 1996
  ident: ref-55
  article-title: The quickhull algorithm for convex hulls.
  publication-title: ACM Trans Math Softw (TOMS).
  doi: 10.1145/235815.235821
– volume: 148
  year: 2018
  ident: ref-45
  article-title: automatic selection of atomic fingerprints and reference configurations for machine-learning potentials.
  publication-title: J Chem Phys.
  doi: 10.1063/1.5024611
– year: 2020
  ident: ref-14
  article-title: libAtoms+QUIP.
– year: 2023
  ident: ref-21
  article-title: Population, total.
– year: 2023
  ident: ref-20
  article-title: Life expectancy at birth, total (years).
– volume: 106
  start-page: 697-702
  year: 2009
  ident: ref-44
  article-title: CUR matrix decompositions for improved data analysis.
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.0803205106
– year: 2003
  ident: ref-59
  article-title: Python package index - pypi.
– volume: 155
  year: 2021
  ident: ref-39
  article-title: Optimal radial basis for density-based atomic representations.
  publication-title: J Chem Phys.
  doi: 10.1063/5.0057229
– volume: 121
  start-page: 10073-10141
  year: 2021
  ident: ref-5
  article-title: Gaussian process regression for materials and molecules.
  publication-title: Chem Rev.
  doi: 10.1021/acs.chemrev.1c00022
– year: 2023
  ident: ref-23
  article-title: Current health expenditure (% of gdp).
– volume: 41
  start-page: 637-676
  year: 1999
  ident: ref-46
  article-title: Centroidal voronoi tessellations: Applications and algorithms.
  publication-title: SIAM review.
  doi: 10.1137/S0036144599352836
– volume: 115
  start-page: 175-176
  year: 2012
  ident: ref-50
  article-title: The relation between wealth and health: Evidence from a world panel of countries.
  publication-title: Econ Lett.
  doi: 10.1016/j.econlet.2011.12.031
– year: 2023
  ident: ref-29
  article-title: Prevalence of undernourishment (% of population).
– volume: 17
  start-page: 261-272
  year: 2020
  ident: ref-54
  article-title: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
  publication-title: Nat Methods.
  doi: 10.1038/s41592-019-0686-2
– volume: 32
  year: 2020
  ident: ref-36
  article-title: f90wrap: an automated tool for constructing deep python interfaces to modern fortran codes.
  publication-title: J Phys Condens Matter.
  doi: 10.1088/1361-648X/ab82d2
– volume: 1
  start-page: 38-600
  year: 2006
  ident: ref-49
  article-title: How HIV and AIDS affect populations.
  publication-title: World.
– volume: 137
  start-page: 59-64
  year: 2023
  ident: ref-42
  article-title: Placental lesions associated with stillbirth by gestational age, according to feature importance: results from the Stillbirth Collaborative Research Network.
  publication-title: Placenta.
  doi: 10.1016/j.placenta.2023.04.005
– year: 2023
  ident: ref-22
  article-title: Gdp per capita (current us$).
– volume: 100
  year: 2019
  ident: ref-33
  article-title: Optimizing many-body atomic descriptors for enhanced computational performance of machine learning based interatomic potentials.
  publication-title: Phys Rev B.
  doi: 10.1103/PhysRevB.100.024112
– volume: 87
  year: 2013
  ident: ref-30
  article-title: On representing chemical environments.
  publication-title: Phys Rev B.
  doi: 10.1103/PhysRevB.87.184115
– volume: 14
  start-page: 155-164
  year: 1992
  ident: ref-40
  article-title: Principal covariates regression: Part I. Theory.
  publication-title: Chemometr Intell Lab Syst.
  doi: 10.1016/0169-7439(92)80100-I
– volume: 121
  start-page: 9759-9815
  year: 2021
  ident: ref-6
  article-title: Physics-Inspired Structural Representations for Molecules and Materials.
  publication-title: Chem Rev.
  doi: 10.1021/acs.chemrev.1c00021
– volume: 7
  year: 2020
  ident: ref-17
  article-title: Materials cloud, a platform for open computational science.
  publication-title: Sci Data.
  doi: 10.1038/s41597-020-00637-5
– volume: 3
  year: 2017
  ident: ref-7
  article-title: Machine learning unifies the modeling of materials and molecules.
  publication-title: Sci Adv.
  doi: 10.1126/sciadv.1701816
– year: 2022
  ident: ref-47
  article-title: tqdm: A fast, Extensible Progress Bar for Python and CLI.
  publication-title: Zenodo.
  doi: 10.5281/zenodo.7046742
– volume: 12
  year: 2020
  ident: ref-31
  article-title: One molecular fingerprint to rule them all: drugs, biomolecules, and the metabolome.
  publication-title: J Cheminform.
  doi: 10.1186/s13321-020-00445-4
– year: 2020
  ident: ref-60
  article-title: Anaconda software distribution
– start-page: 108-122
  year: 2013
  ident: ref-2
  article-title: API design for machine learning software: experiences from the scikit-learn project.
  publication-title: ECML PKDD Workshop: Languages for Data Mining and Machine Learning.
– volume: 1
  year: 2020
  ident: ref-12
  article-title: Structure-property maps with kernel principal covariates regression.
  publication-title: Mach Learn: Sci Technol.
  doi: 10.1088/2632-2153/aba9ef
– volume: 2
  year: 2021
  ident: ref-15
  article-title: The MLIP package: moment tensor potentials with MPI and active learning.
  publication-title: Mach Learn: Sci Technol.
  doi: 10.1088/2632-2153/abc9fe
– volume: 2
  year: 2018
  ident: ref-52
  article-title: Generalized convex hull construction for materials discovery.
  publication-title: Phys Rev Materials.
  doi: 10.1103/PhysRevMaterials.2.103804
– year: 2008
  ident: ref-34
  article-title: QUIP.
– volume: 357
  start-page: 1685-1691
  year: 2001
  ident: ref-48
  article-title: Healthy life expectancy in 191 countries, 1999.
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(00)04824-8
– volume: 39
  start-page: 17-24
  year: 1998
  ident: ref-51
  article-title: A weighted Kendall’s tau statistic.
  publication-title: Stat Probab Lett.
  doi: 10.1016/S0167-7152(98)00006-6
– volume: 14
  start-page: 1153-1173
  year: 2016
  ident: ref-3
  article-title: Moment tensor potentials: A class of systematically improvable interatomic potentials.
  publication-title: Multiscale Model Simul.
  doi: 10.1137/15M1054183
– volume: 20
  start-page: 29661-29668
  year: 2018
  ident: ref-8
  article-title: Feature optimization for atomistic machine learning yields a data-driven construction of the periodic table of the elements.
  publication-title: Phys Chem Chem Phys.
  doi: 10.1039/c8cp05921g
– volume: 9
  year: 2018
  ident: ref-16
  article-title: Mapping uncharted territory in ice from zeolite networks to ice structures.
  publication-title: Nat Commun.
  doi: 10.1038/s41467-018-04618-6
– volume: 108
  start-page: 13023-13028
  year: 2011
  ident: ref-53
  article-title: Simplifying the representation of complex free-energy landscapes using sketch-map.
  publication-title: Proceedings of the National Academy of Sciences.
  doi: 10.1073/pnas.1108486108
– year: 2023
  ident: ref-24
  article-title: Government expenditure on education, total (% of gdp).
– year: 2023
  ident: ref-26
  article-title: Incidence of tuberculosis (per 100,000 people).
– start-page: 176-191
  year: 2008
  ident: ref-57
  article-title: Efficiency analysis and the lower convex hull approach.
  doi: 10.1057/9780230582354_10
SSID ssj0002513619
Score 2.345604
Snippet Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many...
Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 81
SubjectTerms eng
feature reconstruction
feature selection
KPCovR
PCovR
Python
sample selection
Software Tool
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9gAXWsQrlCIjcc0SO37E3LYVVYXUgkQrlZNlJzZUXZKqTVSVX8_Y8a4aHqJck4xijz_b3_jxDUJvLC2Vo1WTA7f2ORPM5QrmhZyXtbdKWABVPOV7JA5O2IdTfpoCxXAX5vb-PRUQnYUkUuEiTlybnhMAmJrDkLshOHDvGdo4Ofq0-BIyyMkSoipCSboG_HfjyQwUhfr_xC5_PyR5f2gvzM21WS5vzUD7m-jjquzjwZPz-dDbef3jF1nHu1duCz1MZBQvRvQ8Qvdc-xh9h0nx_AzC4ai8id_hBf48ADHFncdJpDro8i4dPowHMR1OGq1f8WFMR32Fd7vLFndDH0z2VhnlsGkbMOlHyOM0qDxBx_vvj_cO8pSUIa9LJWhu68rXEPUw0riCOwOtS2pgBYbJhgguVaOk8tLVqixqz5rKsoYFBZsSxlZry6do1nate44wVcQQJ0LyIvjCVZYrUwphnRNSOqsyxFftpOskWB7yZix1CFyC__TEfzr6T9MMvV3bXYySHf-02A0wWH8dJLfjA2gsnXqwLrw1vJQe-FRIIVBAOQ1XEF8TqwovSIZer0Ckwa9h38W0rhuuNFRUsCIoqWXo2Qiq9a_CNiyrBM9QNYHbpCzTN-3ZtygDDoG7olRC6Ys1Mu9Y4Rf_b7KNHlDgd-Pq00s06y8HtwN8rLevUif8CeawOQw
  priority: 102
  providerName: Unpaywall
Title scikit-matter : A Suite of Generalisable Machine Learning Methods Born out of Chemistry and Materials Science
URI https://www.ncbi.nlm.nih.gov/pubmed/38234865
https://www.proquest.com/docview/2916408101
https://pubmed.ncbi.nlm.nih.gov/PMC10792272
https://doi.org/10.12688/openreseurope.15789.2
https://doaj.org/article/0fba537f22354630beea592541b90f61
UnpaywallVersion publishedVersion
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2732-5121
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513619
  issn: 2732-5121
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2732-5121
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513619
  issn: 2732-5121
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2732-5121
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513619
  issn: 2732-5121
  databaseCode: RPM
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFA4yH_RFFH_VH5cj-Gi3Nk3SZj7dDccQNgQ3mIiUpE11eGkvu7cT_yv_RM9JesstCvPBt9I2NOn5mnO-0-Q7jL22PNOOF3WMsXUTCyVcrNEvxDKrGquVRVD5Vb6n6vhcvL-QF1ulvmhNWJAHDi9uL2mskVneoBsj5fbEOmekRlqTWp00gfgkhd4iUzQHo9fOkBoMW4K5QppH1ahoR49Pcu-miFS9yyfeyIv2_y3S_HPB5J2-XZqfP8xiseWNju6ze0MYCfPQ_Qfslmsfsl_ozr5fIpH1mpmwD3P42GNICV0Dg7w0KeouHJz4JZQOBnXVr3DiC0mv4KC7aqHr19TkcFMLDkxbY5N1ACsM0wF8vg65NuBvYenwgWEbzD5w8Erl165-A-l4DJTyBXo3Qxp49eUROzt6d3Z4HA8VGeIq04rHtiqaCimPSGuXSGfQtGmFIYEReZ0qmeta57rJXaWzpGpEXVhRC5KvyXBitTZ7zHbarnVPGXCdmtQpqlyEd7jCSm0ypdC6Ks-d1RGTG8OU1aBWTkUzFiWxFjJoOTFo6Q1a8ojtje2WQa_jxhYHZPfxbtLb9icQheWAwvImFEbs1QY1JZqGfrqY1nX9qsSBKpGQjFrEngQUjY-if7CiUDJixQRfk75Mr7SX37wGOLJ2zXmOvU9GKP7jgJ_9jwE_Z3c5hnshGfWC7ayvevcSw7O1nfkvcebzZjN2-_z0w_zTb6wWQKI
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9gAXWsQrlCIjcc0SO37E3LYVVYXUgkQrlZNlJzZUXZKqTVSVX8_Y8a4aHqJck4xijz_b3_jxDUJvLC2Vo1WTA7f2ORPM5QrmhZyXtbdKWABVPOV7JA5O2IdTfpoCxXAX5vb-PRUQnYUkUuEiTlybnhMAmJrDkLshOHDvGdo4Ofq0-BIyyMkSoipCSboG_HfjyQwUhfr_xC5_PyR5f2gvzM21WS5vzUD7m-jjquzjwZPz-dDbef3jF1nHu1duCz1MZBQvRvQ8Qvdc-xh9h0nx_AzC4ai8id_hBf48ADHFncdJpDro8i4dPowHMR1OGq1f8WFMR32Fd7vLFndDH0z2VhnlsGkbMOlHyOM0qDxBx_vvj_cO8pSUIa9LJWhu68rXEPUw0riCOwOtS2pgBYbJhgguVaOk8tLVqixqz5rKsoYFBZsSxlZry6do1nate44wVcQQJ0LyIvjCVZYrUwphnRNSOqsyxFftpOskWB7yZix1CFyC__TEfzr6T9MMvV3bXYySHf-02A0wWH8dJLfjA2gsnXqwLrw1vJQe-FRIIVBAOQ1XEF8TqwovSIZer0Ckwa9h38W0rhuuNFRUsCIoqWXo2Qiq9a_CNiyrBM9QNYHbpCzTN-3ZtygDDoG7olRC6Ys1Mu9Y4Rf_b7KNHlDgd-Pq00s06y8HtwN8rLevUif8CeawOQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=scikit-matter+%3A+A+Suite+of+Generalisable+Machine+Learning+Methods+Born+out+of+Chemistry+and+Materials+Science&rft.jtitle=Open+research+Europe&rft.au=Goscinski%2C+Alexander&rft.au=Principe%2C+Victor+Paul&rft.au=Fraux%2C+Guillaume&rft.au=Kliavinek%2C+Sergei&rft.date=2023&rft.eissn=2732-5121&rft.volume=3&rft.spage=81&rft_id=info:doi/10.12688%2Fopenreseurope.15789.2&rft_id=info%3Apmid%2F38234865&rft.externalDocID=38234865
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2732-5121&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2732-5121&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2732-5121&client=summon