scikit-matter : A Suite of Generalisable Machine Learning Methods Born out of Chemistry and Materials Science
Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many of the algorithms implemented in these libraries originated in specific scientific fields, they have gained in popularity in part because of...
Saved in:
| Published in | Open research Europe Vol. 3; p. 81 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Belgium
F1000 Research Limited
2023
F1000 Research Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2732-5121 2732-5121 |
| DOI | 10.12688/openreseurope.15789.2 |
Cover
| Abstract | Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many of the algorithms implemented in these libraries originated in specific scientific fields, they have gained in popularity in part because of their generalisability across multiple domains. Over the past two decades, researchers in the chemical and materials science community have put forward general-purpose machine learning methods. The deployment of these methods into workflows of other domains, however, is often burdensome due to the entanglement with domain-specific functionalities. We present the python library scikit-matter that targets domain-agnostic implementations of methods developed in the computational chemical and materials science community, following the scikit-learn API and coding guidelines to promote usability and interoperability with existing workflows. |
|---|---|
| AbstractList | Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many of the algorithms implemented in these libraries originated in specific scientific fields, they have gained in popularity in part because of their generalisability across multiple domains. Over the past two decades, researchers in the chemical and materials science community have put forward general-purpose machine learning methods. The deployment of these methods into workflows of other domains, however, is often burdensome due to the entanglement with domainspecific functionalities. We present the python library scikit-matter that targets domain-agnostic implementations of methods developed in the computational chemical and materials science community, following the scikit-learn API and coding guidelines to promote usability and interoperability with existing workflows. Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many of the algorithms implemented in these libraries originated in specific scientific fields, they have gained in popularity in part because of their generalisability across multiple domains. Over the past two decades, researchers in the chemical and materials science community have put forward general-purpose machine learning methods. The deployment of these methods into workflows of other domains, however, is often burdensome due to the entanglement with domain-specific functionalities. We present the python library scikit-matter that targets domain-agnostic implementations of methods developed in the computational chemical and materials science community, following the scikit-learn API and coding guidelines to promote usability and interoperability with existing workflows. Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many of the algorithms implemented in these libraries originated in specific scientific fields, they have gained in popularity in part because of their generalisability across multiple domains. Over the past two decades, researchers in the chemical and materials science community have put forward general-purpose machine learning methods. The deployment of these methods into workflows of other domains, however, is often burdensome due to the entanglement with domainspecific functionalities. We present the python library scikit-matter that targets domain-agnostic implementations of methods developed in the computational chemical and materials science community, following the scikit-learn API and coding guidelines to promote usability and interoperability with existing workflows.Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many of the algorithms implemented in these libraries originated in specific scientific fields, they have gained in popularity in part because of their generalisability across multiple domains. Over the past two decades, researchers in the chemical and materials science community have put forward general-purpose machine learning methods. The deployment of these methods into workflows of other domains, however, is often burdensome due to the entanglement with domainspecific functionalities. We present the python library scikit-matter that targets domain-agnostic implementations of methods developed in the computational chemical and materials science community, following the scikit-learn API and coding guidelines to promote usability and interoperability with existing workflows. Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many of the algorithms implemented in these libraries originated in specific scientific fields, they have gained in popularity in part because of their generalisability across multiple domains. Over the past two decades, researchers in the chemical and materials science community have put forward general-purpose machine learning methods. The deployment of these methods into workflows of other domains, however, is often burdensome due to the entanglement with domainspecific functionalities. We present the python library scikit-matter that targets domain-agnostic implementations of methods developed in the computational chemical and materials science community, following the scikit-learn API and coding guidelines to promote usability and interoperability with existing workflows. |
| Author | Ceriotti, Michele Cersonsky, Rose Kathleen Goscinski, Alexander Kliavinek, Sergei Fraux, Guillaume Helfrecht, Benjamin Aaron Loche, Philip Principe, Victor Paul |
| Author_xml | – sequence: 1 givenname: Alexander orcidid: 0000-0001-8076-215X surname: Goscinski fullname: Goscinski, Alexander – sequence: 2 givenname: Victor Paul surname: Principe fullname: Principe, Victor Paul – sequence: 3 givenname: Guillaume orcidid: 0000-0003-4824-6512 surname: Fraux fullname: Fraux, Guillaume – sequence: 4 givenname: Sergei surname: Kliavinek fullname: Kliavinek, Sergei – sequence: 5 givenname: Benjamin Aaron orcidid: 0000-0002-2260-7183 surname: Helfrecht fullname: Helfrecht, Benjamin Aaron – sequence: 6 givenname: Philip orcidid: 0000-0002-9112-0010 surname: Loche fullname: Loche, Philip – sequence: 7 givenname: Michele orcidid: 0000-0003-2571-2832 surname: Ceriotti fullname: Ceriotti, Michele – sequence: 8 givenname: Rose Kathleen orcidid: 0000-0003-4515-3441 surname: Cersonsky fullname: Cersonsky, Rose Kathleen |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38234865$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1vEzEQhleoiJbSv1D5yCXB37tGSKhEUCql4tDeLa93NnHZtYPtBeXf4ySlarjAyePxvM-M531dnfjgoaouCZ4TKpvmXdiAj5BgiiWaE1E3ak5fVGe0ZnQmCCUnz-LT6iKlB4wxFYRJol5Vp6yhjDdSnFVjsu67y7PR5AwRvUdX6G5yGVDo0TV4iGZwybQDoFtj184DWoKJ3vkVuoW8Dl1Cn0L0KEx5J1msYXQpxy0yviuSwnRmSOjOOvAW3lQv-3KFi8fzvLr_8vl-8XW2_HZ9s7hazixTks5a2_RWYslJB1iAkRyI5VgaXndEilp1qlZ9DVYxbHveNS3vOFFCMSJY27Lz6uaA7YJ50JvoRhO3Ohin94kQV9rE7OwAGvetEazuKWWCS4ZbACMUFZy0CveSFFZ9YE1-Y7a_zDA8AQnWezv0kR16b4emRfnxoNxM7QidBZ_LNo_GOX7xbq1X4Wfh1orSekd4-0iI4ccEKeuyXAvDYDyEKWmqiOS4IXg35uXzZk9d_jhdCuShwMaQUoT-_7_x4S-hddlkF3ZDu-Ff8t9-GNl- |
| CitedBy_id | crossref_primary_10_1039_D3DD00187C crossref_primary_10_1021_acs_jctc_3c01163 crossref_primary_10_1088_1361_648X_ad9791 crossref_primary_10_1021_acs_jproteome_4c00556 crossref_primary_10_1103_PhysRevMaterials_8_113804 |
| Cites_doi | 10.1162/089976698300017467 10.1088/2632-2153/abb212 10.1088/2632-2153/abdaf7 10.1016/j.cpc.2019.106949 10.1038/s41467-018-04618-6 10.1063/1.5143190 10.1039/c6cp00415f 10.1103/PhysRevB.99.014104 10.21105/joss.02117 10.1088/2632-2153/abfe7c 10.3390/math10213974 10.1073/pnas.0505436102 10.24435/materialscloud:2019.0023/v2 10.1145/235815.235821 10.1063/1.5024611 10.1073/pnas.0803205106 10.1063/5.0057229 10.1021/acs.chemrev.1c00022 10.1137/S0036144599352836 10.1016/j.econlet.2011.12.031 10.1038/s41592-019-0686-2 10.1088/1361-648X/ab82d2 10.1016/j.placenta.2023.04.005 10.1103/PhysRevB.100.024112 10.1103/PhysRevB.87.184115 10.1016/0169-7439(92)80100-I 10.1021/acs.chemrev.1c00021 10.1038/s41597-020-00637-5 10.1126/sciadv.1701816 10.5281/zenodo.7046742 10.1186/s13321-020-00445-4 10.1088/2632-2153/aba9ef 10.1088/2632-2153/abc9fe 10.1103/PhysRevMaterials.2.103804 10.1016/S0140-6736(00)04824-8 10.1016/S0167-7152(98)00006-6 10.1137/15M1054183 10.1039/c8cp05921g 10.1073/pnas.1108486108 10.1057/9780230582354_10 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2023 Goscinski A et al. Copyright: © 2023 Goscinski A et al. 2023 |
| Copyright_xml | – notice: Copyright: © 2023 Goscinski A et al. – notice: Copyright: © 2023 Goscinski A et al. 2023 |
| DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.12688/openreseurope.15789.2 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2732-5121 |
| ExternalDocumentID | oai_doaj_org_article_0fba537f22354630beea592541b90f61 10.12688/openreseurope.15789.2 PMC10792272 38234865 10_12688_openreseurope_15789_2 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Wisconsin Alumni Research Foundation – fundername: Horizon 2020 Framework Programme grantid: 101001890; 677013 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grantid: 200021-182057 – fundername: Swiss Platform for Advanced Scientific Computing |
| GroupedDBID | AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E OK1 PGMZT RPM NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3962-bc8fc60641de05ea64e1c406a47d16579d979f7ec930cf4d8b4d419593153bb3 |
| IEDL.DBID | DOA |
| ISSN | 2732-5121 |
| IngestDate | Fri Oct 03 12:50:21 EDT 2025 Sun Oct 26 04:17:14 EDT 2025 Tue Sep 30 17:10:35 EDT 2025 Fri Jul 11 08:14:02 EDT 2025 Thu Apr 03 07:02:37 EDT 2025 Tue Jul 01 03:50:29 EDT 2025 Thu Apr 24 23:08:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | directional convex hull sample selection feature reconstruction feature selection KPCovR PCovR Python |
| Language | English |
| License | Copyright: © 2023 Goscinski A et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3962-bc8fc60641de05ea64e1c406a47d16579d979f7ec930cf4d8b4d419593153bb3 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 No competing interests were disclosed. |
| ORCID | 0000-0003-2571-2832 0000-0003-4515-3441 0000-0002-9112-0010 0000-0002-2260-7183 0000-0003-4824-6512 0000-0001-8076-215X |
| OpenAccessLink | https://doaj.org/article/0fba537f22354630beea592541b90f61 |
| PMID | 38234865 |
| PQID | 2916408101 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0fba537f22354630beea592541b90f61 unpaywall_primary_10_12688_openreseurope_15789_2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10792272 proquest_miscellaneous_2916408101 pubmed_primary_38234865 crossref_primary_10_12688_openreseurope_15789_2 crossref_citationtrail_10_12688_openreseurope_15789_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-00-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Belgium |
| PublicationPlace_xml | – name: Belgium – name: London, UK |
| PublicationTitle | Open research Europe |
| PublicationTitleAlternate | Open Res Eur |
| PublicationYear | 2023 |
| Publisher | F1000 Research Limited F1000 Research Ltd |
| Publisher_xml | – name: F1000 Research Limited – name: F1000 Research Ltd |
| References | L Talirz (ref-17) 2020; 7 A Goscinski (ref-39) 2021; 155 V Deringer (ref-5) 2021; 121 A Shapeev (ref-3) 2016; 14 (ref-26) 2023 E Engel (ref-18) 2018 A Goscinski (ref-11) 2021; 2 W Liu (ref-56) 2022; 10 I Novikov (ref-15) 2021; 2 (ref-29) 2023 L Buitinck (ref-2) 2013 G Imbalzano (ref-45) 2018; 148 A Anelli (ref-52) 2018; 2 R Drautz (ref-4) 2019; 99 A Capecchi (ref-31) 2020; 12 (ref-22) 2023 F Musil (ref-6) 2021; 121 G Fraux (ref-43) 2020; 5 E Prodan (ref-32) 2005; 102 G Csányi (ref-35) 2007 G Anderson (ref-57) 2008 (ref-25) 2023 G Shieh (ref-51) 1998; 39 L Ashford (ref-49) 2006; 1 C da Costa-Luis (ref-47) 2022 E Engel (ref-16) 2018; 9 (ref-28) 2023 M Ceriotti (ref-53) 2011; 108 A Bartók (ref-30) 2013; 87 S De (ref-58) 2016; 18 (ref-21) 2023 A Bartók-Pártay (ref-14) 2020 Q Du (ref-46) 1999; 41 C Mathers (ref-48) 2001; 357 P Virtanen (ref-54) 2020; 17 M Willatt (ref-8) 2018; 20 J Behler (ref-13) R Cersonsky (ref-9) 2021; 2 M Ceriotti (ref-38) 2019 (ref-59) 2003 (ref-24) 2023 B Parsaeifard (ref-10) 2021; 2 B Schölkopf (ref-41) 1998; 10 M Mahoney (ref-44) 2009; 106 F Pedregosa (ref-1) 2011; 12 A Bartók (ref-7) 2017; 3 (ref-27) 2023 B Hourahine (ref-19) 2020; 152 J Kermode (ref-36) 2020; 32 S de Jong (ref-40) 1992; 14 B Helfrecht (ref-12) 2020; 1 (ref-20) 2023 J Kermode (ref-34) 2008 C Hansen (ref-50) 2012; 115 C Barber (ref-55) 1996; 22 T Cersonsky (ref-42) 2023; 137 (ref-23) 2023 (ref-60) 2020 M Caro (ref-33) 2019; 100 L Himanen (ref-37) 2020; 247 |
| References_xml | – year: 2023 ident: ref-25 article-title: Prevalence of hiv, total (% of population 15-49). – volume: 10 start-page: 1299-1319 year: 1998 ident: ref-41 article-title: Nonlinear component analysis as a kernel eigenvalue problem. publication-title: Neural Comput. doi: 10.1162/089976698300017467 – volume: 2 year: 2021 ident: ref-10 article-title: An assessment of the structural resolution of various fingerprints commonly used in machine learning. publication-title: Mach Learn: Sci Technol. doi: 10.1088/2632-2153/abb212 – volume: 2 year: 2021 ident: ref-11 article-title: The role of feature space in atomistic learning. publication-title: Mach Learn: Sci Technol. doi: 10.1088/2632-2153/abdaf7 – volume: 247 year: 2020 ident: ref-37 article-title: DScribe: Library of descriptors for machine learning in materials science. publication-title: Comput Phys Commun. doi: 10.1016/j.cpc.2019.106949 – year: 2018 ident: ref-18 article-title: Mapping uncharted territory in ice from zeolite networks to ice structures. doi: 10.1038/s41467-018-04618-6 – volume: 152 year: 2020 ident: ref-19 article-title: DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. publication-title: J Chem Phys. doi: 10.1063/1.5143190 – volume: 18 start-page: 13754-13769 year: 2016 ident: ref-58 article-title: Comparing molecules and solids across structural and alchemical space. publication-title: Phys Chem Chem Phys. doi: 10.1039/c6cp00415f – volume: 99 year: 2019 ident: ref-4 article-title: Atomic cluster expansion for accurate and transferable interatomic potentials. publication-title: Phys Rev B. doi: 10.1103/PhysRevB.99.014104 – volume: 5 year: 2020 ident: ref-43 article-title: Chemiscope: interactive structure-property explorer for materials and molecules. publication-title: J Open Source Softw. doi: 10.21105/joss.02117 – year: 2023 ident: ref-28 article-title: Immunization, dpt (% of children ages 12-23 months). – volume: 12 start-page: 2825-2830 year: 2011 ident: ref-1 article-title: Scikit-learn: Machine learning in Python. publication-title: J Mach Learn Res. – volume: 2 year: 2021 ident: ref-9 article-title: Improving sample and feature selection with principal covariates regression. publication-title: Mach Learn: Sci Technol. doi: 10.1088/2632-2153/abfe7c – ident: ref-13 article-title: RuNNer – volume: 10 year: 2022 ident: ref-56 article-title: A general-purpose multi-dimensional convex landscape generator. publication-title: Mathematics. doi: 10.3390/math10213974 – volume: 102 start-page: 11635-8 year: 2005 ident: ref-32 article-title: Nearsightedness of electronic matter. publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0505436102 – year: 2007 ident: ref-35 article-title: Expressive programming for computational physics in fortran 95+. publication-title: IoP Comp Phys Newsletter. – year: 2019 ident: ref-38 article-title: Chemical shifts in molecular solids by machine learning datasets. publication-title: Materials Cloud Archive. doi: 10.24435/materialscloud:2019.0023/v2 – year: 2023 ident: ref-27 article-title: Immunization, measles (% of children ages 12-23 months). – volume: 22 start-page: 469-483 year: 1996 ident: ref-55 article-title: The quickhull algorithm for convex hulls. publication-title: ACM Trans Math Softw (TOMS). doi: 10.1145/235815.235821 – volume: 148 year: 2018 ident: ref-45 article-title: automatic selection of atomic fingerprints and reference configurations for machine-learning potentials. publication-title: J Chem Phys. doi: 10.1063/1.5024611 – year: 2020 ident: ref-14 article-title: libAtoms+QUIP. – year: 2023 ident: ref-21 article-title: Population, total. – year: 2023 ident: ref-20 article-title: Life expectancy at birth, total (years). – volume: 106 start-page: 697-702 year: 2009 ident: ref-44 article-title: CUR matrix decompositions for improved data analysis. publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0803205106 – year: 2003 ident: ref-59 article-title: Python package index - pypi. – volume: 155 year: 2021 ident: ref-39 article-title: Optimal radial basis for density-based atomic representations. publication-title: J Chem Phys. doi: 10.1063/5.0057229 – volume: 121 start-page: 10073-10141 year: 2021 ident: ref-5 article-title: Gaussian process regression for materials and molecules. publication-title: Chem Rev. doi: 10.1021/acs.chemrev.1c00022 – year: 2023 ident: ref-23 article-title: Current health expenditure (% of gdp). – volume: 41 start-page: 637-676 year: 1999 ident: ref-46 article-title: Centroidal voronoi tessellations: Applications and algorithms. publication-title: SIAM review. doi: 10.1137/S0036144599352836 – volume: 115 start-page: 175-176 year: 2012 ident: ref-50 article-title: The relation between wealth and health: Evidence from a world panel of countries. publication-title: Econ Lett. doi: 10.1016/j.econlet.2011.12.031 – year: 2023 ident: ref-29 article-title: Prevalence of undernourishment (% of population). – volume: 17 start-page: 261-272 year: 2020 ident: ref-54 article-title: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. publication-title: Nat Methods. doi: 10.1038/s41592-019-0686-2 – volume: 32 year: 2020 ident: ref-36 article-title: f90wrap: an automated tool for constructing deep python interfaces to modern fortran codes. publication-title: J Phys Condens Matter. doi: 10.1088/1361-648X/ab82d2 – volume: 1 start-page: 38-600 year: 2006 ident: ref-49 article-title: How HIV and AIDS affect populations. publication-title: World. – volume: 137 start-page: 59-64 year: 2023 ident: ref-42 article-title: Placental lesions associated with stillbirth by gestational age, according to feature importance: results from the Stillbirth Collaborative Research Network. publication-title: Placenta. doi: 10.1016/j.placenta.2023.04.005 – year: 2023 ident: ref-22 article-title: Gdp per capita (current us$). – volume: 100 year: 2019 ident: ref-33 article-title: Optimizing many-body atomic descriptors for enhanced computational performance of machine learning based interatomic potentials. publication-title: Phys Rev B. doi: 10.1103/PhysRevB.100.024112 – volume: 87 year: 2013 ident: ref-30 article-title: On representing chemical environments. publication-title: Phys Rev B. doi: 10.1103/PhysRevB.87.184115 – volume: 14 start-page: 155-164 year: 1992 ident: ref-40 article-title: Principal covariates regression: Part I. Theory. publication-title: Chemometr Intell Lab Syst. doi: 10.1016/0169-7439(92)80100-I – volume: 121 start-page: 9759-9815 year: 2021 ident: ref-6 article-title: Physics-Inspired Structural Representations for Molecules and Materials. publication-title: Chem Rev. doi: 10.1021/acs.chemrev.1c00021 – volume: 7 year: 2020 ident: ref-17 article-title: Materials cloud, a platform for open computational science. publication-title: Sci Data. doi: 10.1038/s41597-020-00637-5 – volume: 3 year: 2017 ident: ref-7 article-title: Machine learning unifies the modeling of materials and molecules. publication-title: Sci Adv. doi: 10.1126/sciadv.1701816 – year: 2022 ident: ref-47 article-title: tqdm: A fast, Extensible Progress Bar for Python and CLI. publication-title: Zenodo. doi: 10.5281/zenodo.7046742 – volume: 12 year: 2020 ident: ref-31 article-title: One molecular fingerprint to rule them all: drugs, biomolecules, and the metabolome. publication-title: J Cheminform. doi: 10.1186/s13321-020-00445-4 – year: 2020 ident: ref-60 article-title: Anaconda software distribution – start-page: 108-122 year: 2013 ident: ref-2 article-title: API design for machine learning software: experiences from the scikit-learn project. publication-title: ECML PKDD Workshop: Languages for Data Mining and Machine Learning. – volume: 1 year: 2020 ident: ref-12 article-title: Structure-property maps with kernel principal covariates regression. publication-title: Mach Learn: Sci Technol. doi: 10.1088/2632-2153/aba9ef – volume: 2 year: 2021 ident: ref-15 article-title: The MLIP package: moment tensor potentials with MPI and active learning. publication-title: Mach Learn: Sci Technol. doi: 10.1088/2632-2153/abc9fe – volume: 2 year: 2018 ident: ref-52 article-title: Generalized convex hull construction for materials discovery. publication-title: Phys Rev Materials. doi: 10.1103/PhysRevMaterials.2.103804 – year: 2008 ident: ref-34 article-title: QUIP. – volume: 357 start-page: 1685-1691 year: 2001 ident: ref-48 article-title: Healthy life expectancy in 191 countries, 1999. publication-title: Lancet. doi: 10.1016/S0140-6736(00)04824-8 – volume: 39 start-page: 17-24 year: 1998 ident: ref-51 article-title: A weighted Kendall’s tau statistic. publication-title: Stat Probab Lett. doi: 10.1016/S0167-7152(98)00006-6 – volume: 14 start-page: 1153-1173 year: 2016 ident: ref-3 article-title: Moment tensor potentials: A class of systematically improvable interatomic potentials. publication-title: Multiscale Model Simul. doi: 10.1137/15M1054183 – volume: 20 start-page: 29661-29668 year: 2018 ident: ref-8 article-title: Feature optimization for atomistic machine learning yields a data-driven construction of the periodic table of the elements. publication-title: Phys Chem Chem Phys. doi: 10.1039/c8cp05921g – volume: 9 year: 2018 ident: ref-16 article-title: Mapping uncharted territory in ice from zeolite networks to ice structures. publication-title: Nat Commun. doi: 10.1038/s41467-018-04618-6 – volume: 108 start-page: 13023-13028 year: 2011 ident: ref-53 article-title: Simplifying the representation of complex free-energy landscapes using sketch-map. publication-title: Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1108486108 – year: 2023 ident: ref-24 article-title: Government expenditure on education, total (% of gdp). – year: 2023 ident: ref-26 article-title: Incidence of tuberculosis (per 100,000 people). – start-page: 176-191 year: 2008 ident: ref-57 article-title: Efficiency analysis and the lower convex hull approach. doi: 10.1057/9780230582354_10 |
| SSID | ssj0002513619 |
| Score | 2.345604 |
| Snippet | Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many... Easy-to-use libraries such as scikit-learn have accelerated the adoption and application of machine learning (ML) workflows and data-driven methods. While many... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 81 |
| SubjectTerms | eng feature reconstruction feature selection KPCovR PCovR Python sample selection Software Tool |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9gAXWsQrlCIjcc0SO37E3LYVVYXUgkQrlZNlJzZUXZKqTVSVX8_Y8a4aHqJck4xijz_b3_jxDUJvLC2Vo1WTA7f2ORPM5QrmhZyXtbdKWABVPOV7JA5O2IdTfpoCxXAX5vb-PRUQnYUkUuEiTlybnhMAmJrDkLshOHDvGdo4Ofq0-BIyyMkSoipCSboG_HfjyQwUhfr_xC5_PyR5f2gvzM21WS5vzUD7m-jjquzjwZPz-dDbef3jF1nHu1duCz1MZBQvRvQ8Qvdc-xh9h0nx_AzC4ai8id_hBf48ADHFncdJpDro8i4dPowHMR1OGq1f8WFMR32Fd7vLFndDH0z2VhnlsGkbMOlHyOM0qDxBx_vvj_cO8pSUIa9LJWhu68rXEPUw0riCOwOtS2pgBYbJhgguVaOk8tLVqixqz5rKsoYFBZsSxlZry6do1nate44wVcQQJ0LyIvjCVZYrUwphnRNSOqsyxFftpOskWB7yZix1CFyC__TEfzr6T9MMvV3bXYySHf-02A0wWH8dJLfjA2gsnXqwLrw1vJQe-FRIIVBAOQ1XEF8TqwovSIZer0Ckwa9h38W0rhuuNFRUsCIoqWXo2Qiq9a_CNiyrBM9QNYHbpCzTN-3ZtygDDoG7olRC6Ys1Mu9Y4Rf_b7KNHlDgd-Pq00s06y8HtwN8rLevUif8CeawOQw priority: 102 providerName: Unpaywall |
| Title | scikit-matter : A Suite of Generalisable Machine Learning Methods Born out of Chemistry and Materials Science |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38234865 https://www.proquest.com/docview/2916408101 https://pubmed.ncbi.nlm.nih.gov/PMC10792272 https://doi.org/10.12688/openreseurope.15789.2 https://doaj.org/article/0fba537f22354630beea592541b90f61 |
| UnpaywallVersion | publishedVersion |
| Volume | 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2732-5121 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513619 issn: 2732-5121 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2732-5121 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513619 issn: 2732-5121 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2732-5121 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513619 issn: 2732-5121 databaseCode: RPM dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFA4yH_RFFH_VH5cj-Gi3Nk3SZj7dDccQNgQ3mIiUpE11eGkvu7cT_yv_RM9JesstCvPBt9I2NOn5mnO-0-Q7jL22PNOOF3WMsXUTCyVcrNEvxDKrGquVRVD5Vb6n6vhcvL-QF1ulvmhNWJAHDi9uL2mskVneoBsj5fbEOmekRlqTWp00gfgkhd4iUzQHo9fOkBoMW4K5QppH1ahoR49Pcu-miFS9yyfeyIv2_y3S_HPB5J2-XZqfP8xiseWNju6ze0MYCfPQ_Qfslmsfsl_ozr5fIpH1mpmwD3P42GNICV0Dg7w0KeouHJz4JZQOBnXVr3DiC0mv4KC7aqHr19TkcFMLDkxbY5N1ACsM0wF8vg65NuBvYenwgWEbzD5w8Erl165-A-l4DJTyBXo3Qxp49eUROzt6d3Z4HA8VGeIq04rHtiqaCimPSGuXSGfQtGmFIYEReZ0qmeta57rJXaWzpGpEXVhRC5KvyXBitTZ7zHbarnVPGXCdmtQpqlyEd7jCSm0ypdC6Ks-d1RGTG8OU1aBWTkUzFiWxFjJoOTFo6Q1a8ojtje2WQa_jxhYHZPfxbtLb9icQheWAwvImFEbs1QY1JZqGfrqY1nX9qsSBKpGQjFrEngQUjY-if7CiUDJixQRfk75Mr7SX37wGOLJ2zXmOvU9GKP7jgJ_9jwE_Z3c5hnshGfWC7ayvevcSw7O1nfkvcebzZjN2-_z0w_zTb6wWQKI |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9gAXWsQrlCIjcc0SO37E3LYVVYXUgkQrlZNlJzZUXZKqTVSVX8_Y8a4aHqJck4xijz_b3_jxDUJvLC2Vo1WTA7f2ORPM5QrmhZyXtbdKWABVPOV7JA5O2IdTfpoCxXAX5vb-PRUQnYUkUuEiTlybnhMAmJrDkLshOHDvGdo4Ofq0-BIyyMkSoipCSboG_HfjyQwUhfr_xC5_PyR5f2gvzM21WS5vzUD7m-jjquzjwZPz-dDbef3jF1nHu1duCz1MZBQvRvQ8Qvdc-xh9h0nx_AzC4ai8id_hBf48ADHFncdJpDro8i4dPowHMR1OGq1f8WFMR32Fd7vLFndDH0z2VhnlsGkbMOlHyOM0qDxBx_vvj_cO8pSUIa9LJWhu68rXEPUw0riCOwOtS2pgBYbJhgguVaOk8tLVqixqz5rKsoYFBZsSxlZry6do1nate44wVcQQJ0LyIvjCVZYrUwphnRNSOqsyxFftpOskWB7yZix1CFyC__TEfzr6T9MMvV3bXYySHf-02A0wWH8dJLfjA2gsnXqwLrw1vJQe-FRIIVBAOQ1XEF8TqwovSIZer0Ckwa9h38W0rhuuNFRUsCIoqWXo2Qiq9a_CNiyrBM9QNYHbpCzTN-3ZtygDDoG7olRC6Ys1Mu9Y4Rf_b7KNHlDgd-Pq00s06y8HtwN8rLevUif8CeawOQw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=scikit-matter+%3A+A+Suite+of+Generalisable+Machine+Learning+Methods+Born+out+of+Chemistry+and+Materials+Science&rft.jtitle=Open+research+Europe&rft.au=Goscinski%2C+Alexander&rft.au=Principe%2C+Victor+Paul&rft.au=Fraux%2C+Guillaume&rft.au=Kliavinek%2C+Sergei&rft.date=2023&rft.eissn=2732-5121&rft.volume=3&rft.spage=81&rft_id=info:doi/10.12688%2Fopenreseurope.15789.2&rft_id=info%3Apmid%2F38234865&rft.externalDocID=38234865 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2732-5121&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2732-5121&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2732-5121&client=summon |