Air pollution epidemiology: A simplified Generalized Linear Model approach optimized by bio-inspired metaheuristics
Studies in air pollution epidemiology are of paramount importance in diagnosing and improve life quality. To explore new methods or modify existing ones is critical to obtain better results. Most air pollution epidemiology studies use the Generalized Linear Model, especially the default version of R...
        Saved in:
      
    
          | Published in | Environmental research Vol. 191; p. 110106 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Netherlands
          Elsevier Inc
    
        01.12.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0013-9351 1096-0953 1096-0953  | 
| DOI | 10.1016/j.envres.2020.110106 | 
Cover
| Abstract | Studies in air pollution epidemiology are of paramount importance in diagnosing and improve life quality. To explore new methods or modify existing ones is critical to obtain better results. Most air pollution epidemiology studies use the Generalized Linear Model, especially the default version of R, Splus, SAS, and Stata softwares, which use maximum likelihood estimators in parameter optimization. Also, a smooth time function (usually spline) is generally used as a pre-processing step to consider seasonal and long-term tendencies. This investigation introduces a new approach to GLM, proposing the estimation of the free coefficients through bio-inspired metaheuristics - Particle Swarm Optimization (PSO), Genetic Algorithms, and Differential Evolution, as well as the replacement of the spline function by a simple normalization procedure. The considered case studies comprise three important cities of São Paulo state, Brazil with distinct characteristics: São Paulo, Campinas, and Cubatão. We considered the impact of particles with an aerodynamic diameter less than 10 μm (PM10), ambient temperature, and relative humidity in the number of hospital admissions for respiratory diseases (ICD-10, J00 to J99). The results showed that the new approach (especially PSO) brings performance gains compared to the default version of statistical software like R.
•A new approach of Generalized Linear model to epidemiology studies is proposed.•The use of Artificial Intelligence Approaches to coefficients' estimation and smoothing splines were replaced.•Using PSO brings performance gains to air pollution risk studies.•The best result was achieved for one day after exposure to PM 10. | 
    
|---|---|
| AbstractList | Studies in air pollution epidemiology are of paramount importance in diagnosing and improve life quality. To explore new methods or modify existing ones is critical to obtain better results. Most air pollution epidemiology studies use the Generalized Linear Model, especially the default version of R, Splus, SAS, and Stata softwares, which use maximum likelihood estimators in parameter optimization. Also, a smooth time function (usually spline) is generally used as a pre-processing step to consider seasonal and long-term tendencies. This investigation introduces a new approach to GLM, proposing the estimation of the free coefficients through bio-inspired metaheuristics - Particle Swarm Optimization (PSO), Genetic Algorithms, and Differential Evolution, as well as the replacement of the spline function by a simple normalization procedure. The considered case studies comprise three important cities of São Paulo state, Brazil with distinct characteristics: São Paulo, Campinas, and Cubatão. We considered the impact of particles with an aerodynamic diameter less than 10 μm (PM₁₀), ambient temperature, and relative humidity in the number of hospital admissions for respiratory diseases (ICD-10, J00 to J99). The results showed that the new approach (especially PSO) brings performance gains compared to the default version of statistical software like R. Studies in air pollution epidemiology are of paramount importance in diagnosing and improve life quality. To explore new methods or modify existing ones is critical to obtain better results. Most air pollution epidemiology studies use the Generalized Linear Model, especially the default version of R, Splus, SAS, and Stata softwares, which use maximum likelihood estimators in parameter optimization. Also, a smooth time function (usually spline) is generally used as a pre-processing step to consider seasonal and long-term tendencies. This investigation introduces a new approach to GLM, proposing the estimation of the free coefficients through bio-inspired metaheuristics - Particle Swarm Optimization (PSO), Genetic Algorithms, and Differential Evolution, as well as the replacement of the spline function by a simple normalization procedure. The considered case studies comprise three important cities of São Paulo state, Brazil with distinct characteristics: São Paulo, Campinas, and Cubatão. We considered the impact of particles with an aerodynamic diameter less than 10 μm (PM10), ambient temperature, and relative humidity in the number of hospital admissions for respiratory diseases (ICD-10, J00 to J99). The results showed that the new approach (especially PSO) brings performance gains compared to the default version of statistical software like R.Studies in air pollution epidemiology are of paramount importance in diagnosing and improve life quality. To explore new methods or modify existing ones is critical to obtain better results. Most air pollution epidemiology studies use the Generalized Linear Model, especially the default version of R, Splus, SAS, and Stata softwares, which use maximum likelihood estimators in parameter optimization. Also, a smooth time function (usually spline) is generally used as a pre-processing step to consider seasonal and long-term tendencies. This investigation introduces a new approach to GLM, proposing the estimation of the free coefficients through bio-inspired metaheuristics - Particle Swarm Optimization (PSO), Genetic Algorithms, and Differential Evolution, as well as the replacement of the spline function by a simple normalization procedure. The considered case studies comprise three important cities of São Paulo state, Brazil with distinct characteristics: São Paulo, Campinas, and Cubatão. We considered the impact of particles with an aerodynamic diameter less than 10 μm (PM10), ambient temperature, and relative humidity in the number of hospital admissions for respiratory diseases (ICD-10, J00 to J99). The results showed that the new approach (especially PSO) brings performance gains compared to the default version of statistical software like R. Studies in air pollution epidemiology are of paramount importance in diagnosing and improve life quality. To explore new methods or modify existing ones is critical to obtain better results. Most air pollution epidemiology studies use the Generalized Linear Model, especially the default version of R, Splus, SAS, and Stata softwares, which use maximum likelihood estimators in parameter optimization. Also, a smooth time function (usually spline) is generally used as a pre-processing step to consider seasonal and long-term tendencies. This investigation introduces a new approach to GLM, proposing the estimation of the free coefficients through bio-inspired metaheuristics - Particle Swarm Optimization (PSO), Genetic Algorithms, and Differential Evolution, as well as the replacement of the spline function by a simple normalization procedure. The considered case studies comprise three important cities of São Paulo state, Brazil with distinct characteristics: São Paulo, Campinas, and Cubatão. We considered the impact of particles with an aerodynamic diameter less than 10 μm (PM10), ambient temperature, and relative humidity in the number of hospital admissions for respiratory diseases (ICD-10, J00 to J99). The results showed that the new approach (especially PSO) brings performance gains compared to the default version of statistical software like R. •A new approach of Generalized Linear model to epidemiology studies is proposed.•The use of Artificial Intelligence Approaches to coefficients' estimation and smoothing splines were replaced.•Using PSO brings performance gains to air pollution risk studies.•The best result was achieved for one day after exposure to PM 10. Studies in air pollution epidemiology are of paramount importance in diagnosing and improve life quality. To explore new methods or modify existing ones is critical to obtain better results. Most air pollution epidemiology studies use the Generalized Linear Model, especially the default version of R, Splus, SAS, and Stata softwares, which use maximum likelihood estimators in parameter optimization. Also, a smooth time function (usually spline) is generally used as a pre-processing step to consider seasonal and long-term tendencies. This investigation introduces a new approach to GLM, proposing the estimation of the free coefficients through bio-inspired metaheuristics - Particle Swarm Optimization (PSO), Genetic Algorithms, and Differential Evolution, as well as the replacement of the spline function by a simple normalization procedure. The considered case studies comprise three important cities of São Paulo state, Brazil with distinct characteristics: São Paulo, Campinas, and Cubatão. We considered the impact of particles with an aerodynamic diameter less than 10 μm (PM ), ambient temperature, and relative humidity in the number of hospital admissions for respiratory diseases (ICD-10, J00 to J99). The results showed that the new approach (especially PSO) brings performance gains compared to the default version of statistical software like R.  | 
    
| ArticleNumber | 110106 | 
    
| Author | da Silva, Lucas V. Alves, Thiago Antonini Belotti, Jônatas T. Siqueira, Hugo V. Araujo, Lilian N. Castanho, Diego S. Tadano, Yara S. Stevan, Sergio L. Corrêa, Fernanda C.  | 
    
| Author_xml | – sequence: 1 givenname: Jônatas T. surname: Belotti fullname: Belotti, Jônatas T. organization: Federal University of Technology — Parana (UTFPR), Brazil – sequence: 2 givenname: Diego S. surname: Castanho fullname: Castanho, Diego S. organization: Federal University of Technology — Parana (UTFPR), Brazil – sequence: 3 givenname: Lilian N. surname: Araujo fullname: Araujo, Lilian N. organization: Federal Institute of Parana (IFPR), Brazil – sequence: 4 givenname: Lucas V. surname: da Silva fullname: da Silva, Lucas V. organization: Federal University of Technology — Parana (UTFPR), Brazil – sequence: 5 givenname: Thiago Antonini surname: Alves fullname: Alves, Thiago Antonini organization: Federal University of Technology — Parana (UTFPR), Brazil – sequence: 6 givenname: Yara S. surname: Tadano fullname: Tadano, Yara S. organization: Federal University of Technology — Parana (UTFPR), Brazil – sequence: 7 givenname: Sergio L. surname: Stevan fullname: Stevan, Sergio L. organization: Federal University of Technology — Parana (UTFPR), Brazil – sequence: 8 givenname: Fernanda C. surname: Corrêa fullname: Corrêa, Fernanda C. email: fernandacorrea@utfpr.edu.br organization: Federal University of Technology — Parana (UTFPR), Brazil – sequence: 9 givenname: Hugo V. orcidid: 0000-0002-1278-4602 surname: Siqueira fullname: Siqueira, Hugo V. organization: Federal University of Technology — Parana (UTFPR), Brazil  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32882238$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkc1u1DAUhS1URKeFN0AoSzYZ_BNP7C6QRhW0lQaxgbXl2Df0jpw42JlK06fHQ9oNC7qy7_V3jqxzLsjZGEcg5D2ja0bZ5tN-DeNDgrzmlJdV2dHNK7JiVG9qqqU4IytKmai1kOycXOS8LyOTgr4h54IrxblQK5K3mKophnCYMY4VTOhhwBjir-NVta0yDlPAHsFXNzBCsgEfy32HI9hUfYseQmWnKUXr7qs4zTj8fe-OVYexxjFPmMo8wGzv4ZAwz-jyW_K6tyHDu6fzkvz8-uXH9W29-35zd73d1U5oOde9txZEz1wPjAFoq6R2vtd9t7FWK6G4b5W2QjEvlOxablvXc9UxLgU46cQl-bj4lv_9PkCezYDZQQh2hHjIhkvJdEO10C-jTUObVqi2LeiHJ_TQDeDNlHCw6WieMy3A1QK4FHNO0BuHsz3FOyeLwTBqTgWavVkKNKcCzVJgETf_iJ_9X5B9XmRQ8nxASCY7hNGBL_m72fiI_zf4A8d3uP0 | 
    
| CitedBy_id | crossref_primary_10_1007_s11367_022_02068_3 crossref_primary_10_3390_en17215387 crossref_primary_10_1016_j_chemosphere_2024_143688 crossref_primary_10_1016_j_jclepro_2024_142505 crossref_primary_10_3390_en14123385 crossref_primary_10_3390_app11219868 crossref_primary_10_3390_s22166094 crossref_primary_10_1016_j_envres_2021_112610 crossref_primary_10_1038_s41598_022_22100_8 crossref_primary_10_3390_en15186788 crossref_primary_10_1016_j_catena_2021_106007 crossref_primary_10_3233_ICA_200618 crossref_primary_10_2139_ssrn_4022144 crossref_primary_10_3390_en15196881 crossref_primary_10_1007_s11356_023_30180_w crossref_primary_10_1016_j_ijhydene_2024_09_161 crossref_primary_10_1080_09593330_2024_2334292 crossref_primary_10_1371_journal_pone_0255767 crossref_primary_10_3390_atmos12101345 crossref_primary_10_1016_j_envint_2021_106643 crossref_primary_10_1016_j_prime_2023_100234 crossref_primary_10_1109_ACCESS_2021_3050437 crossref_primary_10_1177_00202940211003938 crossref_primary_10_3390_su14020798 crossref_primary_10_1093_toxres_tfaf028 crossref_primary_10_1111_itor_12908 crossref_primary_10_1007_s12210_025_01312_w crossref_primary_10_1016_j_envres_2023_116606 crossref_primary_10_2478_johh_2021_0001 crossref_primary_10_3390_atmos14010109  | 
    
| Cites_doi | 10.1016/j.envres.2011.01.014 10.1016/j.apr.2015.08.006 10.22161/ijaers.4.4.27 10.1016/j.envpol.2017.12.111 10.1136/jech.50.Suppl_1.S3 10.1590/S0102-311X2013001300025 10.3390/su12072621 10.1289/ehp.00108125 10.1093/aje/kwf062 10.1016/j.envres.2013.08.003 10.1007/s00484-015-0984-z 10.1016/j.scitotenv.2019.07.026 10.1016/j.envsoft.2019.104567 10.1038/nature15371 10.1016/j.envpol.2013.11.007 10.1023/A:1008202821328 10.1186/1471-2458-13-891 10.1016/j.envres.2010.09.010 10.1111/j.1467-985X.2006.00410.x 10.1016/j.apr.2017.10.010 10.2307/2344614 10.1007/978-3-642-32639-4_28 10.1016/j.envres.2018.08.002 10.1007/978-3-642-34481-7_60 10.1016/j.envres.2017.03.021 10.1289/ehp.1003169 10.1007/s00484-003-0176-0 10.1016/j.future.2019.03.032 10.1016/j.asoc.2018.04.007 10.1016/j.envres.2019.108650 10.1016/j.envres.2019.01.031 10.1016/j.engappai.2019.04.007 10.1016/j.ijforecast.2010.09.006  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved.  | 
    
| Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6  | 
    
| DOI | 10.1016/j.envres.2020.110106 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Public Health Environmental Sciences  | 
    
| EISSN | 1096-0953 | 
    
| ExternalDocumentID | 32882238 10_1016_j_envres_2020_110106 S0013935120310033  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GeographicLocations | Brazil | 
    
| GeographicLocations_xml | – name: Brazil | 
    
| GroupedDBID | --- --K --M -~X .DC .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29G 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYJJ ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AFDAS AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC C45 CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W KCYFY KOM L7B LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OHT OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K TAE TEORI TN5 TWZ UPT VOH WH7 WUQ XOL XPP ZCA ZGI ZKB ZMT ZU3 ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c395t-fdaae3f1cfe11ee9a859cdf9fb6aa98382d789a381d385b72a7cf28b1253ec5c3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0013-9351 1096-0953  | 
    
| IngestDate | Thu Oct 02 04:20:23 EDT 2025 Sat Sep 27 23:10:08 EDT 2025 Wed Feb 19 02:29:46 EST 2025 Wed Oct 01 05:22:59 EDT 2025 Thu Apr 24 22:54:14 EDT 2025 Fri Feb 23 02:39:37 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | PM10 Splines Hospital admissions for respiratory diseases Particle swarm optimization PM  | 
    
| Language | English | 
    
| License | Copyright © 2020 Elsevier Inc. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c395t-fdaae3f1cfe11ee9a859cdf9fb6aa98382d789a381d385b72a7cf28b1253ec5c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-1278-4602 | 
    
| PMID | 32882238 | 
    
| PQID | 2440473877 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | proquest_miscellaneous_2551940939 proquest_miscellaneous_2440473877 pubmed_primary_32882238 crossref_citationtrail_10_1016_j_envres_2020_110106 crossref_primary_10_1016_j_envres_2020_110106 elsevier_sciencedirect_doi_10_1016_j_envres_2020_110106  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | December 2020 2020-12-00 20201201  | 
    
| PublicationDateYYYYMMDD | 2020-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2020 text: December 2020  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Netherlands | 
    
| PublicationPlace_xml | – name: Netherlands | 
    
| PublicationTitle | Environmental research | 
    
| PublicationTitleAlternate | Environ Res | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier Inc | 
    
| Publisher_xml | – name: Elsevier Inc | 
    
| References | Kim, Kim, Hong (bib20) 2003; 48 Peng, Dominici (bib33) 2008 Siqueira, Boccato, Attux, Lyra Filho (bib55) 2012; 7664 Ardiles, Tadano, Costa, Urbina, Capucim, da Silva, Braga, Martins, Martins (bib2) 2018; 9 Pan, Gao, Wang, Bai, Wei, Yi, Xu, Duan, Cheng, Zhang (bib31) 2019; 691 Samoli, Atkinson, Analitis, Fuller, Green, Mudway, Anderson, Kelly (bib39) 2016; 111 Siqueira, Santana, Macedo, Figueiredo, Gokhale, Bastos-Filho (bib44) 2020 Gwynn, Burnett, Thurston (bib14) 2000; 108 Tadano, Siqueira, Antonini Alves, de Nóbrega Marinho (bib48) 2017; 4 Hastie, Tibshirani (bib15) 1990 Sun, An, Tao, Hou (bib46) 2013; 13 WHO - World Health Organization and others (bib53) 2006 Datasus - Department of Informatics of the Unique Health System (bib7) 2020 Polezer, Tadano, Siqueira, Godoi, Yamamoto, de André, Pauliquevis, de Fatima Andrade, Oliveira, Saldiva (bib36) 2018; 235 De Castro (bib8) 2006 Fischer, Marra, Ameling, Janssen, Cassee (bib13) 2011; 111 Kennedy (bib19) 1995 Dominici, McDermott, Zeger, Samet (bib10) 2002; 156 Schwartz, Spix, Touloumi, Bacharova, Barumamdzadeh, Le Tertre, Piekarksi, De Leon, Pönkä, Rossi (bib42) 1996; 50 Siqueira, Boccato, Attux, Lyra Filho (bib56) 2012; 7435 Figueiredo, Macedo, Siqueira, Santana, Gokhale, Bastos-Filho (bib12) 2019; 82 Lelieveld, Evans, Fnais, Giannadaki, Pozzer (bib22) 2015; 525 Samoli, Nastos, Paliatsos, Katsouyanni, Priftis (bib40) 2011; 111 O’Lenick, Winquist, Chang, Kramer, Mulholland, Grundstein, Sarnat (bib30) 2017; 156 Santana, Macedo, Siqueira, Gokhale, Bastos-Filho (bib54) 2019; 98 Siqueira, Boccato, Luna, Attux, Lyra (bib43) 2018; 68 Kachba, Chiroli, Belotti, Antonini Alves, de Souza Tadano, Siqueira (bib18) 2020; 12 Loizeau, Buteau, Chaix, McElroy, Counil, Benmarhnia (bib24) 2018; 167 Nelder, Wedderburn (bib29) 1972; 135 Kim, Lee (bib21) 2019; 178 McCullagh, Nelder (bib26) 1989; vol. 37 Eberhart, Shi, Kennedy (bib11) 2001 WHO - World Health Organization (bib52) 2017 Storn, Price (bib45) 1997; 11 Paula (bib32) 2004 Puchta, Lucas, Ferreira, Siqueira, Kaster (bib57) 2016 Sarnat, Raysoni, Li, Holguin, Johnson, Luevano, Garcia, Sarnat (bib41) 2011; 120 Nardocci, Freitas, de Leon, Monteiro, Junger, Gouveia (bib28) 2013; 29 Luna, Ballini (bib25) 2011; 27 Çapraz, Efe, Deniz (bib4) 2016; 7 Peng, Dominici, Louis (bib34) 2006; 169 (bib38) 2018 Tadano, Ugaya, Franco (bib49) 2012 Li, Ma, Zheng, Shang (bib23) 2015; 59 Araujo, Belotti, Antonini Alves, de Souza Tadano, Siqueira (bib1) 2020; 123 Chapra, Canale (bib6) 2010 Holland (bib16) 1992 Percy, DeFranco, Xu, Hall, Haynes, Jones, Muglia, Chen (bib35) 2019; 171 IBGE (bib58) 2020 Price, Storn, Lampinen (bib37) 2006 CETESB - Environmental Sanitation Technology Company (bib5) 2007 Vanos, Hebbern, Cakmak (bib51) 2014; 185 Dobson, Barnett (bib9) 2008 Tadano, Siqueira, Antonini Alves (bib47) 2016 Michalewicz (bib27) 1996 Vanos, Cakmak, Bristow, Brion, Tremblay, Martin, Sheridan (bib50) 2013; 126 Bäck, Fogel, Michalewicz (bib3) 2018 Pan (10.1016/j.envres.2020.110106_bib31) 2019; 691 Tadano (10.1016/j.envres.2020.110106_bib49) 2012 (10.1016/j.envres.2020.110106_bib38) 2018 Datasus - Department of Informatics of the Unique Health System (10.1016/j.envres.2020.110106_bib7) 2020 O’Lenick (10.1016/j.envres.2020.110106_bib30) 2017; 156 Storn (10.1016/j.envres.2020.110106_bib45) 1997; 11 Price (10.1016/j.envres.2020.110106_bib37) 2006 Sarnat (10.1016/j.envres.2020.110106_bib41) 2011; 120 Vanos (10.1016/j.envres.2020.110106_bib50) 2013; 126 Siqueira (10.1016/j.envres.2020.110106_bib43) 2018; 68 McCullagh (10.1016/j.envres.2020.110106_bib26) 1989; vol. 37 Samoli (10.1016/j.envres.2020.110106_bib39) 2016; 111 WHO - World Health Organization (10.1016/j.envres.2020.110106_bib52) Dominici (10.1016/j.envres.2020.110106_bib10) 2002; 156 Dobson (10.1016/j.envres.2020.110106_bib9) 2008 Kim (10.1016/j.envres.2020.110106_bib21) 2019; 178 Fischer (10.1016/j.envres.2020.110106_bib13) 2011; 111 IBGE (10.1016/j.envres.2020.110106_bib58) 2020 CETESB - Environmental Sanitation Technology Company (10.1016/j.envres.2020.110106_bib5) 2007 Kim (10.1016/j.envres.2020.110106_bib20) 2003; 48 Figueiredo (10.1016/j.envres.2020.110106_bib12) 2019; 82 Sun (10.1016/j.envres.2020.110106_bib46) 2013; 13 Nelder (10.1016/j.envres.2020.110106_bib29) 1972; 135 Samoli (10.1016/j.envres.2020.110106_bib40) 2011; 111 Tadano (10.1016/j.envres.2020.110106_bib48) 2017; 4 Peng (10.1016/j.envres.2020.110106_bib33) 2008 Lelieveld (10.1016/j.envres.2020.110106_bib22) 2015; 525 Puchta (10.1016/j.envres.2020.110106_bib57) 2016 Kachba (10.1016/j.envres.2020.110106_bib18) 2020; 12 Hastie (10.1016/j.envres.2020.110106_bib15) 1990 Li (10.1016/j.envres.2020.110106_bib23) 2015; 59 Tadano (10.1016/j.envres.2020.110106_bib47) 2016 Ardiles (10.1016/j.envres.2020.110106_bib2) 2018; 9 Siqueira (10.1016/j.envres.2020.110106_bib55) 2012; 7664 Michalewicz (10.1016/j.envres.2020.110106_bib27) 1996 WHO - World Health Organization and others (10.1016/j.envres.2020.110106_bib53) 2006 Vanos (10.1016/j.envres.2020.110106_bib51) 2014; 185 Luna (10.1016/j.envres.2020.110106_bib25) 2011; 27 Nardocci (10.1016/j.envres.2020.110106_bib28) 2013; 29 Santana (10.1016/j.envres.2020.110106_bib54) 2019; 98 Çapraz (10.1016/j.envres.2020.110106_bib4) 2016; 7 Eberhart (10.1016/j.envres.2020.110106_bib11) 2001 Siqueira (10.1016/j.envres.2020.110106_bib44) 2020 Kennedy (10.1016/j.envres.2020.110106_bib19) 1995 Araujo (10.1016/j.envres.2020.110106_bib1) 2020; 123 Percy (10.1016/j.envres.2020.110106_bib35) 2019; 171 Chapra (10.1016/j.envres.2020.110106_bib6) 2010 Gwynn (10.1016/j.envres.2020.110106_bib14) 2000; 108 Bäck (10.1016/j.envres.2020.110106_bib3) 2018 De Castro (10.1016/j.envres.2020.110106_bib8) 2006 Peng (10.1016/j.envres.2020.110106_bib34) 2006; 169 Loizeau (10.1016/j.envres.2020.110106_bib24) 2018; 167 Paula (10.1016/j.envres.2020.110106_bib32) 2004 Holland (10.1016/j.envres.2020.110106_bib16) 1992 Schwartz (10.1016/j.envres.2020.110106_bib42) 1996; 50 Siqueira (10.1016/j.envres.2020.110106_bib56) 2012; 7435 Polezer (10.1016/j.envres.2020.110106_bib36) 2018; 235  | 
    
| References_xml | – year: 2018 ident: bib3 article-title: Evolutionary Computation 1: Basic Algorithms and Operators – volume: 12 start-page: 2621 year: 2020 ident: bib18 article-title: Artificial neural networks to estimate the influence of vehicular emission variables on morbidity and mortality in the largest metropolis in south America publication-title: Sustainability – volume: 4 year: 2017 ident: bib48 article-title: Forecasting particulate matter concentrations: use of unorganized machines publication-title: International Journal of Advanced Engineering Research and Science – year: 2007 ident: bib5 article-title: Qualidade do ar no estado de sÃčo paulo – year: 2004 ident: bib32 article-title: Modelos de regressão: com apoio computacional – volume: 68 start-page: 494 year: 2018 end-page: 506 ident: bib43 article-title: Performance analysis of unorganized machines in streamflow forecasting of brazilian plants publication-title: Appl. Soft Comput. – volume: 156 start-page: 132 year: 2017 end-page: 144 ident: bib30 article-title: Evaluation of individual and area-level factors as modifiers of the association between warm-season temperature and pediatric asthma morbidity in atlanta, ga publication-title: Environ. Res. – year: 1992 ident: bib16 article-title: Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence – volume: 82 start-page: 313 year: 2019 end-page: 329 ident: bib12 article-title: Swarm intelligence for clustering—a systematic review with new perspectives on data mining publication-title: Eng. Appl. Artif. Intell. – volume: 156 start-page: 193 year: 2002 end-page: 203 ident: bib10 article-title: On the use of generalized additive models in time-series studies of air pollution and health publication-title: Am. J. Epidemiol. – year: 2006 ident: bib8 article-title: Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications – volume: 123 start-page: 104567 year: 2020 ident: bib1 article-title: Ensemble method based on artificial neural networks to estimate air pollution health risks publication-title: Environ. Model. Software – year: 1996 ident: bib27 article-title: Genetic Algorithms + Data Structures = Evolutionary Programming – year: 2006 ident: bib53 article-title: Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide-Global Update 2005-summary of risk Assessment, 2006 – volume: 126 start-page: 66 year: 2013 end-page: 75 ident: bib50 article-title: Synoptic weather typing applied to air pollution mortality among the elderly in 10 canadian cities publication-title: Environ. Res. – volume: 59 start-page: 1761 year: 2015 end-page: 1770 ident: bib23 article-title: Ambient temperature enhanced acute cardiovascular-respiratory mortality effects of pm 2.5 in beijing, China publication-title: Int. J. Biometeorol. – year: 2006 ident: bib37 article-title: Differential Evolution: a Practical Approach to Global Optimization – volume: 50 start-page: S3 year: 1996 end-page: S11 ident: bib42 article-title: Methodological issues in studies of air pollution and daily counts of deaths or hospital admissions publication-title: J. Epidemiol. Community – volume: 108 start-page: 125 year: 2000 ident: bib14 article-title: A time-series analysis of acidic particulate matter and daily mortality and morbidity in the buffalo, New York, region publication-title: Environ. Health Perspect. – volume: 120 start-page: 437 year: 2011 end-page: 444 ident: bib41 article-title: Air pollution and acute respiratory response in a panel of asthmatic children along the us–Mexico border publication-title: Environ. Health Perspect. – volume: 98 start-page: 180 year: 2019 end-page: 196 ident: bib54 article-title: A novel binary artificial bee colony algorithm publication-title: Future Gener. Comp. Sci. – volume: 171 start-page: 111 year: 2019 end-page: 118 ident: bib35 article-title: Trimester specific pm2. 5 exposure and fetal growth in Ohio publication-title: Environ. Res. – start-page: 1 year: 2016 end-page: 6 ident: bib57 article-title: Gaussian adaptive PID control optimized via genetic algorithm applied to a step-down DC-DC converter publication-title: 2016 12th IEEE International Conference on Industry Applications (INDUSCON), Curitiba, Brazil. 20–23 November – volume: 185 start-page: 322 year: 2014 end-page: 332 ident: bib51 article-title: Risk assessment for cardiovascular and respiratory mortality due to air pollution and synoptic meteorology in 10 canadian cities publication-title: Environ. Pollut. – volume: 48 start-page: 25 year: 2003 end-page: 30 ident: bib20 article-title: The lag-effect pattern in the relationship of particulate air pollution to daily mortality in seoul, korea publication-title: Int. J. Biometeorol. – volume: 111 year: 2016 ident: bib39 article-title: Associations of short-term exposure to traffic-related air pollution with cardiovascular and respiratory hospital admissions in london, UK publication-title: Occup Environ Med , oemed–2015 – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib45 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. – volume: 525 start-page: 367 year: 2015 ident: bib22 article-title: The contribution of outdoor air pollution sources to premature mortality on a global scale publication-title: Nature – year: 2017 ident: bib52 article-title: Evolution of who air quality guidelines: past, present and future. who regional office for europe, copenhagen (2017) – volume: 7 start-page: 147 year: 2016 end-page: 154 ident: bib4 article-title: Study on the association between air pollution and mortality in i̇stanbul, 2007–2012 publication-title: Atmospheric Pollution Research – volume: 178 start-page: 108650 year: 2019 ident: bib21 article-title: Synoptic approach to evaluate the effect of temperature on pediatric respiratory disease-related hospitalization in Seoul, Korea publication-title: Environ. Res. – volume: 235 start-page: 394 year: 2018 end-page: 403 ident: bib36 article-title: Assessing the impact of pm 2.5 on respiratory disease using artificial neural networks publication-title: Environ. Pollut. – volume: 7435 start-page: 226 year: 2012 end-page: 236 ident: bib56 article-title: Echo state networks for seasonal streamflow series forecasting publication-title: Lect. Notes Comput. Sci. – year: 2010 ident: bib6 article-title: Numerical Methods for Engineers – volume: 9 start-page: 333 year: 2018 end-page: 341 ident: bib2 article-title: Negative binomial regression model for analysis of the relationship between hospitalization and air pollution publication-title: Atmospheric Pollution Research – year: 2001 ident: bib11 article-title: Swarm Intelligence – volume: 167 start-page: 650 year: 2018 end-page: 661 ident: bib24 article-title: Does the air pollution model influence the evidence of socio-economic disparities in exposure and susceptibility? publication-title: Environ. Res. – volume: 135 start-page: 370 year: 1972 end-page: 384 ident: bib29 article-title: Generalized linear models publication-title: J. Roy. Stat. Soc. – volume: 169 start-page: 179 year: 2006 end-page: 203 ident: bib34 article-title: Model choice in time series studies of air pollution and mortality publication-title: J. Roy. Stat. Soc. – volume: 111 start-page: 94 year: 2011 end-page: 100 ident: bib13 article-title: Trends in relative risk estimates for the association between air pollution and mortality in The Netherlands, 1992–2006 publication-title: Environ. Res. – year: 2008 ident: bib9 article-title: An Introduction to Generalized Linear Models – year: 1995 ident: bib19 article-title: J. and eberhart, particle swarm optimization publication-title: Proceedings of IEEE International Conference on Neural Networks IV – year: 2012 ident: bib49 article-title: Methodology to assess air pollution impact on human health using the generalized linear model with Poisson regression publication-title: Air Pollution-Monitoring, Modelling and Health – volume: 111 start-page: 418 year: 2011 end-page: 424 ident: bib40 article-title: Acute effects of air pollution on pediatric asthma exacerbation: evidence of association and effect modification publication-title: Environ. Res. – volume: 7664 start-page: 491 year: 2012 end-page: 500 ident: bib55 article-title: Echo state networks and extreme learning machines: a comparative study on seasonal streamflow series prediction publication-title: Lect. Notes Comput. Sci. – year: 2008 ident: bib33 article-title: Statistical Methods for Environmental Epidemiology with r. R: a Case Study in Air Pollution and Health – year: 2018 ident: bib38 article-title: R: A Language and Environment for Statistical Computing – start-page: 1 year: 2020 end-page: 15 ident: bib44 article-title: Simplified binary cat swarm optimization publication-title: Integrated Comput. Aided Eng. – year: 2020 ident: bib7 article-title: Sihsus reduzida - ministry of health, brazil – year: 2020 ident: bib58 article-title: IBGE - Brazilian Institute of Geography and Statistics – volume: 27 start-page: 708 year: 2011 end-page: 724 ident: bib25 article-title: Top-down strategies based on adaptive fuzzy rule-based systems for daily time series forecasting publication-title: Int. J. Forecast. – volume: vol. 37 year: 1989 ident: bib26 publication-title: Generalized Linear Models – volume: 691 start-page: 296 year: 2019 end-page: 305 ident: bib31 article-title: Impacts of exposure to humidex on the risk of childhood asthma hospitalizations in Hefei, China: effect modification by gender and age publication-title: Sci. Total Environ. – year: 1990 ident: bib15 article-title: Generalized Additive Models, Volume 43 of Monographs on Statistics and Applied Probability – volume: 13 start-page: 891 year: 2013 ident: bib46 article-title: Assessment of population exposure to pm10 for respiratory disease in lanzhou (China) and its health-related economic costs based on gis publication-title: BMC Public Health – start-page: 1 year: 2016 end-page: 6 ident: bib47 article-title: Unorganized machines to predict hospital admissions for respiratory diseases publication-title: Computational Intelligence (LA-CCI), 2016 IEEE Latin American Conference on – volume: 29 start-page: 1867 year: 2013 end-page: 1876 ident: bib28 article-title: Air pollution and respiratory and cardiovascular diseases: a time series study in cubatão, são paulo state, brazil publication-title: Cad. Saúde Pública – volume: 111 start-page: 418 year: 2011 ident: 10.1016/j.envres.2020.110106_bib40 article-title: Acute effects of air pollution on pediatric asthma exacerbation: evidence of association and effect modification publication-title: Environ. Res. doi: 10.1016/j.envres.2011.01.014 – year: 2007 ident: 10.1016/j.envres.2020.110106_bib5 – volume: 7 start-page: 147 year: 2016 ident: 10.1016/j.envres.2020.110106_bib4 article-title: Study on the association between air pollution and mortality in i̇stanbul, 2007–2012 publication-title: Atmospheric Pollution Research doi: 10.1016/j.apr.2015.08.006 – volume: 4 year: 2017 ident: 10.1016/j.envres.2020.110106_bib48 article-title: Forecasting particulate matter concentrations: use of unorganized machines publication-title: International Journal of Advanced Engineering Research and Science doi: 10.22161/ijaers.4.4.27 – volume: 235 start-page: 394 year: 2018 ident: 10.1016/j.envres.2020.110106_bib36 article-title: Assessing the impact of pm 2.5 on respiratory disease using artificial neural networks publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.12.111 – year: 1996 ident: 10.1016/j.envres.2020.110106_bib27 – start-page: 1 year: 2016 ident: 10.1016/j.envres.2020.110106_bib47 article-title: Unorganized machines to predict hospital admissions for respiratory diseases – volume: 50 start-page: S3 year: 1996 ident: 10.1016/j.envres.2020.110106_bib42 article-title: Methodological issues in studies of air pollution and daily counts of deaths or hospital admissions publication-title: J. Epidemiol. Community doi: 10.1136/jech.50.Suppl_1.S3 – volume: 29 start-page: 1867 year: 2013 ident: 10.1016/j.envres.2020.110106_bib28 article-title: Air pollution and respiratory and cardiovascular diseases: a time series study in cubatão, são paulo state, brazil publication-title: Cad. Saúde Pública doi: 10.1590/S0102-311X2013001300025 – volume: 12 start-page: 2621 year: 2020 ident: 10.1016/j.envres.2020.110106_bib18 article-title: Artificial neural networks to estimate the influence of vehicular emission variables on morbidity and mortality in the largest metropolis in south America publication-title: Sustainability doi: 10.3390/su12072621 – year: 2006 ident: 10.1016/j.envres.2020.110106_bib8 – volume: 108 start-page: 125 year: 2000 ident: 10.1016/j.envres.2020.110106_bib14 article-title: A time-series analysis of acidic particulate matter and daily mortality and morbidity in the buffalo, New York, region publication-title: Environ. Health Perspect. doi: 10.1289/ehp.00108125 – start-page: 1 year: 2020 ident: 10.1016/j.envres.2020.110106_bib44 article-title: Simplified binary cat swarm optimization publication-title: Integrated Comput. Aided Eng. – year: 1990 ident: 10.1016/j.envres.2020.110106_bib15 – volume: 156 start-page: 193 year: 2002 ident: 10.1016/j.envres.2020.110106_bib10 article-title: On the use of generalized additive models in time-series studies of air pollution and health publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwf062 – volume: 126 start-page: 66 year: 2013 ident: 10.1016/j.envres.2020.110106_bib50 article-title: Synoptic weather typing applied to air pollution mortality among the elderly in 10 canadian cities publication-title: Environ. Res. doi: 10.1016/j.envres.2013.08.003 – volume: 59 start-page: 1761 year: 2015 ident: 10.1016/j.envres.2020.110106_bib23 article-title: Ambient temperature enhanced acute cardiovascular-respiratory mortality effects of pm 2.5 in beijing, China publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-015-0984-z – volume: 691 start-page: 296 year: 2019 ident: 10.1016/j.envres.2020.110106_bib31 article-title: Impacts of exposure to humidex on the risk of childhood asthma hospitalizations in Hefei, China: effect modification by gender and age publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.07.026 – year: 2006 ident: 10.1016/j.envres.2020.110106_bib37 – year: 1995 ident: 10.1016/j.envres.2020.110106_bib19 article-title: J. and eberhart, particle swarm optimization – year: 2006 ident: 10.1016/j.envres.2020.110106_bib53 – volume: 123 start-page: 104567 year: 2020 ident: 10.1016/j.envres.2020.110106_bib1 article-title: Ensemble method based on artificial neural networks to estimate air pollution health risks publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2019.104567 – volume: 525 start-page: 367 year: 2015 ident: 10.1016/j.envres.2020.110106_bib22 article-title: The contribution of outdoor air pollution sources to premature mortality on a global scale publication-title: Nature doi: 10.1038/nature15371 – volume: 185 start-page: 322 year: 2014 ident: 10.1016/j.envres.2020.110106_bib51 article-title: Risk assessment for cardiovascular and respiratory mortality due to air pollution and synoptic meteorology in 10 canadian cities publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.11.007 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.envres.2020.110106_bib45 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – volume: 13 start-page: 891 year: 2013 ident: 10.1016/j.envres.2020.110106_bib46 article-title: Assessment of population exposure to pm10 for respiratory disease in lanzhou (China) and its health-related economic costs based on gis publication-title: BMC Public Health doi: 10.1186/1471-2458-13-891 – volume: 111 start-page: 94 year: 2011 ident: 10.1016/j.envres.2020.110106_bib13 article-title: Trends in relative risk estimates for the association between air pollution and mortality in The Netherlands, 1992–2006 publication-title: Environ. Res. doi: 10.1016/j.envres.2010.09.010 – volume: 169 start-page: 179 year: 2006 ident: 10.1016/j.envres.2020.110106_bib34 article-title: Model choice in time series studies of air pollution and mortality publication-title: J. Roy. Stat. Soc. doi: 10.1111/j.1467-985X.2006.00410.x – volume: 111 issue: 3 year: 2016 ident: 10.1016/j.envres.2020.110106_bib39 article-title: Associations of short-term exposure to traffic-related air pollution with cardiovascular and respiratory hospital admissions in london, UK publication-title: Occup Environ Med , oemed–2015 – year: 2010 ident: 10.1016/j.envres.2020.110106_bib6 – ident: 10.1016/j.envres.2020.110106_bib52 – volume: 9 start-page: 333 year: 2018 ident: 10.1016/j.envres.2020.110106_bib2 article-title: Negative binomial regression model for analysis of the relationship between hospitalization and air pollution publication-title: Atmospheric Pollution Research doi: 10.1016/j.apr.2017.10.010 – year: 2018 ident: 10.1016/j.envres.2020.110106_bib3 – volume: 135 start-page: 370 year: 1972 ident: 10.1016/j.envres.2020.110106_bib29 article-title: Generalized linear models publication-title: J. Roy. Stat. Soc. doi: 10.2307/2344614 – year: 2018 ident: 10.1016/j.envres.2020.110106_bib38 – volume: 7435 start-page: 226 year: 2012 ident: 10.1016/j.envres.2020.110106_bib56 article-title: Echo state networks for seasonal streamflow series forecasting publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-642-32639-4_28 – volume: 167 start-page: 650 year: 2018 ident: 10.1016/j.envres.2020.110106_bib24 article-title: Does the air pollution model influence the evidence of socio-economic disparities in exposure and susceptibility? publication-title: Environ. Res. doi: 10.1016/j.envres.2018.08.002 – volume: 7664 start-page: 491 year: 2012 ident: 10.1016/j.envres.2020.110106_bib55 article-title: Echo state networks and extreme learning machines: a comparative study on seasonal streamflow series prediction publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-642-34481-7_60 – volume: 156 start-page: 132 year: 2017 ident: 10.1016/j.envres.2020.110106_bib30 article-title: Evaluation of individual and area-level factors as modifiers of the association between warm-season temperature and pediatric asthma morbidity in atlanta, ga publication-title: Environ. Res. doi: 10.1016/j.envres.2017.03.021 – volume: vol. 37 year: 1989 ident: 10.1016/j.envres.2020.110106_bib26 – year: 1992 ident: 10.1016/j.envres.2020.110106_bib16 – volume: 120 start-page: 437 year: 2011 ident: 10.1016/j.envres.2020.110106_bib41 article-title: Air pollution and acute respiratory response in a panel of asthmatic children along the us–Mexico border publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1003169 – start-page: 1 year: 2016 ident: 10.1016/j.envres.2020.110106_bib57 article-title: Gaussian adaptive PID control optimized via genetic algorithm applied to a step-down DC-DC converter – volume: 48 start-page: 25 year: 2003 ident: 10.1016/j.envres.2020.110106_bib20 article-title: The lag-effect pattern in the relationship of particulate air pollution to daily mortality in seoul, korea publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-003-0176-0 – year: 2020 ident: 10.1016/j.envres.2020.110106_bib58 – volume: 98 start-page: 180 year: 2019 ident: 10.1016/j.envres.2020.110106_bib54 article-title: A novel binary artificial bee colony algorithm publication-title: Future Gener. Comp. Sci. doi: 10.1016/j.future.2019.03.032 – volume: 68 start-page: 494 year: 2018 ident: 10.1016/j.envres.2020.110106_bib43 article-title: Performance analysis of unorganized machines in streamflow forecasting of brazilian plants publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.04.007 – year: 2001 ident: 10.1016/j.envres.2020.110106_bib11 – year: 2008 ident: 10.1016/j.envres.2020.110106_bib9 – volume: 178 start-page: 108650 year: 2019 ident: 10.1016/j.envres.2020.110106_bib21 article-title: Synoptic approach to evaluate the effect of temperature on pediatric respiratory disease-related hospitalization in Seoul, Korea publication-title: Environ. Res. doi: 10.1016/j.envres.2019.108650 – volume: 171 start-page: 111 year: 2019 ident: 10.1016/j.envres.2020.110106_bib35 article-title: Trimester specific pm2. 5 exposure and fetal growth in Ohio publication-title: Environ. Res. doi: 10.1016/j.envres.2019.01.031 – year: 2008 ident: 10.1016/j.envres.2020.110106_bib33 – year: 2004 ident: 10.1016/j.envres.2020.110106_bib32 – year: 2020 ident: 10.1016/j.envres.2020.110106_bib7 – volume: 82 start-page: 313 year: 2019 ident: 10.1016/j.envres.2020.110106_bib12 article-title: Swarm intelligence for clustering—a systematic review with new perspectives on data mining publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.04.007 – year: 2012 ident: 10.1016/j.envres.2020.110106_bib49 article-title: Methodology to assess air pollution impact on human health using the generalized linear model with Poisson regression – volume: 27 start-page: 708 year: 2011 ident: 10.1016/j.envres.2020.110106_bib25 article-title: Top-down strategies based on adaptive fuzzy rule-based systems for daily time series forecasting publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2010.09.006  | 
    
| SSID | ssj0011530 | 
    
| Score | 2.457981 | 
    
| Snippet | Studies in air pollution epidemiology are of paramount importance in diagnosing and improve life quality. To explore new methods or modify existing ones is... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 110106 | 
    
| SubjectTerms | aerodynamics Air Pollutants - analysis air pollution Air Pollution - analysis algorithms ambient temperature Brazil Brazil - epidemiology computer software epidemiology Hospital admissions for respiratory diseases hospitals Humans Linear Models Particle swarm optimization PM10 quality of life relative humidity Respiration Disorders Splines statistical analysis  | 
    
| Title | Air pollution epidemiology: A simplified Generalized Linear Model approach optimized by bio-inspired metaheuristics | 
    
| URI | https://dx.doi.org/10.1016/j.envres.2020.110106 https://www.ncbi.nlm.nih.gov/pubmed/32882238 https://www.proquest.com/docview/2440473877 https://www.proquest.com/docview/2551940939  | 
    
| Volume | 191 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1096-0953 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011530 issn: 0013-9351 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL] customDbUrl: eissn: 1096-0953 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011530 issn: 0013-9351 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Journal customDbUrl: eissn: 1096-0953 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011530 issn: 0013-9351 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1096-0953 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011530 issn: 0013-9351 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1096-0953 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011530 issn: 0013-9351 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RSxwxEA5iX4RSrNb2tJUIfU29TXY3m74dolxb8EnBtyXJTugW3Tu8O8E-9Lc7s8meFLRC3za7WQiZzMw3uzPzMfY5zwtl0eoJHVQpqLRSVAgzRANhHNABQe76BNnzcnqZf78qrjbYyVALQ2mVyfZHm95b63TnOO3m8bxtqcY3o7rSTFJ3y7Gijp95ronF4MufdZoHAh41HlgMaPZQPtfneEF3h0EtRomyz4fPiPfoaff0HPzs3dDZNnuT8COfxCW-ZRvQ7bC908dyNXyY9HWxw17Hr3I8FhvtssWkveVzYjcmeXB4pIe9_8onfNFSfnlAVMpTO-r2N15jvIr6wIk27ZoPTcj5DI3NTf_c3XPXzkTb0V97HN_A0v6EVeoB_Y5dnp1enExFol0QXpliKUJjLaiQ-QBZBmBsVRjfBBNcaa2pVCUbXRmLrr5RVeG0tNoHWTmESgp84dUe2-xmHXxgHNW9cB5KBybLZZMZsNJIXyrriPanGDE17HbtU09yosa4rofks191lFFNMqqjjEZMrN-ax54cL8zXgyDrv85WjW7jhTePBrnXqHb0L8V2MFvhJOqrqFWl9T_mIBo1GD8rM2Lv46FZr1dJDG0QLu3_99oO2BaNYmrNR7a5vF3BJwRIS3fYa8AhezX59mN6_gAOORFn | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1PihI0Wr11GoEX2Nvk81m07ejtJxa-9RC30KSTXBLu3f07oT64N_uzCZ7RdAWfNvdTCBkMjO_2cwHIR_LUgoLWo-pKCqGqZWsBpjBmhDHEQxQKF0fIHtSTc_KL-fyfIMcDLkwGFaZdX_S6b22zl_28m7uzdsWc3wLzCstOFa3HAvxgDwsJVfogX36tY7zAMQjxkMbAyQf8uf6IK_Q_QCvFtxE3gfEF9j46O_26V_4s7dDR0_JVgaQdJLW-IxshG6b7Bze5qvBYBbYxTZ5kn7L0ZRt9JwsJu01nWN7Y2QIDbf9YW_26YQuWgwwjwBLaa5H3f6EZ3BYQSAo9k27pEMVcjoDbXPVj7sb6toZazu8tof3q7C038MqF4F-Qc6ODk8Ppiz3XWBeaLlksbE2iFj4GIoiBG1rqX0TdXSVtboWNW9UrS3Y-kbU0ilulY-8doCVRPDSix2y2c268IpQkHfpfKhc0EXJm0IHyzX3lbAO-_7IERHDbhufi5Jjb4xLM0SfXZjEI4M8MolHI8LWs-apKMc99GpgpPnjcBmwG_fM_DDw3YDc4WWK7cJsBURYWFGJWqk7aACOanCghR6Rl-nQrNcrOPg2gJde__fa3pNH09Nvx-b488nXN-QxjqQ4m7dkc3m9CruAlpbuXS8NvwE8jhL8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Air+pollution+epidemiology%3A+A+simplified+Generalized+Linear+Model+approach+optimized+by+bio-inspired+metaheuristics&rft.jtitle=Environmental+research&rft.au=Belotti%2C+J%C3%B4natas+T.&rft.au=Castanho%2C+Diego+S.&rft.au=Araujo%2C+Lilian+N.&rft.au=da+Silva%2C+Lucas+V.&rft.date=2020-12-01&rft.issn=0013-9351&rft.volume=191&rft.spage=110106&rft_id=info:doi/10.1016%2Fj.envres.2020.110106&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envres_2020_110106 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9351&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9351&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9351&client=summon |