An expectation–maximization algorithm for positron emission particle tracking
We develop a new algorithm for the tracking of radioactive particles using Positron Emission Particle Tracking (PEPT). The algorithm relies on the maximization of the likelihood of a simple Gaussian mixture model of the lines of response associated with positron annihilation. The model includes a co...
        Saved in:
      
    
          | Published in | Review of scientific instruments Vol. 92; no. 8; pp. 085102 - 85113 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Melville
          American Institute of Physics
    
        01.08.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0034-6748 1089-7623 1527-2400 1089-7623  | 
| DOI | 10.1063/5.0053545 | 
Cover
| Abstract | We develop a new algorithm for the tracking of radioactive particles using Positron Emission Particle Tracking (PEPT). The algorithm relies on the maximization of the likelihood of a simple Gaussian mixture model of the lines of response associated with positron annihilation. The model includes a component that accounts for spurious lines caused by scattering and random coincidence, and it treats the relative activity of particles as well as their positions as parameters to be inferred. Values of these parameters that approximately maximize the likelihood are computed by the application of an expectation–maximization algorithm. A generalization of the model that includes the particle velocities and accelerations as additional parameters takes advantage of the information contained in the exact timing of positron annihilations to reconstruct pieces of trajectories rather than fixed positions, with clear benefits. We test the algorithm on both simulated and experimental data. The results show the algorithm to be highly effective for the simultaneous tracking of many particles (up to 80 in one test). It provides estimates of particle positions that are easily mapped to entire trajectories and handles a variable number of particles in the field of view. The ability to track a large number of particles robustly offers the possibility of a dramatic expansion of the scope of PEPT. | 
    
|---|---|
| AbstractList | We develop a new algorithm for the tracking of radioactive particles using Positron Emission Particle Tracking (PEPT). The algorithm relies on the maximization of the likelihood of a simple Gaussian mixture model of the lines of response associated with positron annihilation. The model includes a component that accounts for spurious lines caused by scattering and random coincidence, and it treats the relative activity of particles as well as their positions as parameters to be inferred. Values of these parameters that approximately maximize the likelihood are computed by the application of an expectation–maximization algorithm. A generalization of the model that includes the particle velocities and accelerations as additional parameters takes advantage of the information contained in the exact timing of positron annihilations to reconstruct pieces of trajectories rather than fixed positions, with clear benefits. We test the algorithm on both simulated and experimental data. The results show the algorithm to be highly effective for the simultaneous tracking of many particles (up to 80 in one test). It provides estimates of particle positions that are easily mapped to entire trajectories and handles a variable number of particles in the field of view. The ability to track a large number of particles robustly offers the possibility of a dramatic expansion of the scope of PEPT. We develop a new algorithm for the tracking of radioactive particles using Positron Emission Particle Tracking (PEPT). The algorithm relies on the maximization of the likelihood of a simple Gaussian mixture model of the lines of response associated with positron annihilation. The model includes a component that accounts for spurious lines caused by scattering and random coincidence, and it treats the relative activity of particles as well as their positions as parameters to be inferred. Values of these parameters that approximately maximize the likelihood are computed by the application of an expectation-maximization algorithm. A generalization of the model that includes the particle velocities and accelerations as additional parameters takes advantage of the information contained in the exact timing of positron annihilations to reconstruct pieces of trajectories rather than fixed positions, with clear benefits. We test the algorithm on both simulated and experimental data. The results show the algorithm to be highly effective for the simultaneous tracking of many particles (up to 80 in one test). It provides estimates of particle positions that are easily mapped to entire trajectories and handles a variable number of particles in the field of view. The ability to track a large number of particles robustly offers the possibility of a dramatic expansion of the scope of PEPT.We develop a new algorithm for the tracking of radioactive particles using Positron Emission Particle Tracking (PEPT). The algorithm relies on the maximization of the likelihood of a simple Gaussian mixture model of the lines of response associated with positron annihilation. The model includes a component that accounts for spurious lines caused by scattering and random coincidence, and it treats the relative activity of particles as well as their positions as parameters to be inferred. Values of these parameters that approximately maximize the likelihood are computed by the application of an expectation-maximization algorithm. A generalization of the model that includes the particle velocities and accelerations as additional parameters takes advantage of the information contained in the exact timing of positron annihilations to reconstruct pieces of trajectories rather than fixed positions, with clear benefits. We test the algorithm on both simulated and experimental data. The results show the algorithm to be highly effective for the simultaneous tracking of many particles (up to 80 in one test). It provides estimates of particle positions that are easily mapped to entire trajectories and handles a variable number of particles in the field of view. The ability to track a large number of particles robustly offers the possibility of a dramatic expansion of the scope of PEPT.  | 
    
| Author | Manger, Sam Vanneste, Jacques Renaud, Antoine  | 
    
| Author_xml | – sequence: 1 givenname: Sam surname: Manger fullname: Manger, Sam organization: School of Chemical Engineering, University of Birmingham – sequence: 2 givenname: Antoine surname: Renaud fullname: Renaud, Antoine organization: School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh – sequence: 3 givenname: Jacques surname: Vanneste fullname: Vanneste, Jacques organization: School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh  | 
    
| BookMark | eNqdkM1KAzEUhYMo2FYXvsGAGxWmTSbJTLIsxT8odKPrkGYyNXVmMiZTbV35Dr6hT2JqK0IRF95NuMmXc889XbBf21oDcIJgH8EUD2gfQoopoXuggyDjcZYmeB90IMQkTjPCDkHX-zkMRRHqgMmwjvSy0aqVrbH1x9t7JZemMq9fbSTLmXWmfaiiwrqosd60Llzryni_fm-ka40qddQ6qR5NPTsCB4UsvT7enj1wf3V5N7qJx5Pr29FwHCvMaRsXU6I1gzhPcJ5RSChhKlUs42qqlVKaT5HijPK0oBzxTOdZBhlhLE8IRYTnuAcuNrqLupGrF1mWonGmkm4lEBTrKAQV2ygCfLaBG2efFtq3IvhXuixlre3Ci4Sm61kE84Ce7qBzu3B1WCVQlPMkyRIUqMGGUs5673QhlNkEGHIw5a8Wznd-_GV3u5v_Vv0f_GzdDyiavMCfM1WnIg | 
    
| CODEN | RSINAK | 
    
| CitedBy_id | crossref_primary_10_1016_j_powtec_2022_118029 crossref_primary_10_1109_TRPMS_2024_3440344 crossref_primary_10_1088_1361_6420_acc47d crossref_primary_10_1126_sciadv_adk5747 crossref_primary_10_1016_j_partic_2024_06_015 crossref_primary_10_1088_1361_6633_ac3c4c  | 
    
| Cites_doi | 10.1080/03610917608812007 10.1016/0168-9002(93)90864-e 10.1205/cerd.82.9.1258.44160 10.1017/s0022112086002859 10.1088/0031-9155/49/19/007 10.1002/1521-4125(200205)25:5<521::aid-ceat521>3.0.co;2-c 10.1016/j.apradiso.2019.06.011 10.1016/j.nima.2016.10.057 10.1109/TMI.2014.2373351 10.1016/j.nima.2012.04.037 10.1111/j.2517-6161.1977.tb01600.x 10.1016/s0168-9002(01)01919-2 10.1016/j.ces.2019.06.057 10.1109/tmi.1982.4307558 10.1016/j.amc.2003.12.109 10.1016/j.nima.2015.11.136 10.1016/j.nima.2021.165073 10.1063/1.5129251  | 
    
| ContentType | Journal Article | 
    
| Copyright | Author(s) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).  | 
    
| Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).  | 
    
| DBID | AJDQP AAYXX CITATION 8FD H8D L7M 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1063/5.0053545 | 
    
| DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef MEDLINE - Academic Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| EISSN | 1089-7623 | 
    
| ExternalDocumentID | 10.1063/5.0053545 10_1063_5_0053545 rsi  | 
    
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council grantid: EP/R045046/1 funderid: https://doi.org/10.13039/501100000266  | 
    
| GroupedDBID | --- -DZ -~X .DC 123 1UP 2-P 29P 4.4 53G 5RE 5VS 85S A9. AAAAW AABDS AAEUA AAPUP AAYIH ABFTF ABJNI ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADIYS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 DU5 EBS ESX F5P FDOHQ FFFMQ HAM L7B M43 M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TAE TN5 VQA WH7 XSW YNT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M 7X8 .GJ 0ZJ 186 3O- 41~ 6TJ 9M8 AAYJJ ACKIV ADRHT ADTOC ADXHL AETEA AFFNX AHPGS EJD MVM NEJ NEUPN NHB OHT QZG RDFOP ROL UHB UNPAY ZCG ZXP  | 
    
| ID | FETCH-LOGICAL-c395t-fb4ee803d23d7504548c6c879cbeccce9b1c98596f59197ed7708488d245149d3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0034-6748 1089-7623 1527-2400  | 
    
| IngestDate | Wed Oct 29 11:49:28 EDT 2025 Thu Oct 02 10:43:50 EDT 2025 Sun Jun 29 16:40:33 EDT 2025 Wed Oct 01 06:04:26 EDT 2025 Thu Apr 24 22:53:19 EDT 2025 Thu Jun 23 13:44:48 EDT 2022 Fri Jun 21 00:14:27 EDT 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Language | English | 
    
| License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c395t-fb4ee803d23d7504548c6c879cbeccce9b1c98596f59197ed7708488d245149d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-2323-6350 0000-0002-0319-589X 0000-0002-4475-2066  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://aip.scitation.org/doi/pdf/10.1063/5.0053545 | 
    
| PQID | 2559922721 | 
    
| PQPubID | 2050675 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | scitation_primary_10_1063_5_0053545 crossref_citationtrail_10_1063_5_0053545 unpaywall_primary_10_1063_5_0053545 proquest_journals_2559922721 proquest_miscellaneous_2568596439 crossref_primary_10_1063_5_0053545  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20210801 2021-08-01  | 
    
| PublicationDateYYYYMMDD | 2021-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2021 text: 20210801 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Melville | 
    
| PublicationPlace_xml | – name: Melville | 
    
| PublicationTitle | Review of scientific instruments | 
    
| PublicationYear | 2021 | 
    
| Publisher | American Institute of Physics | 
    
| Publisher_xml | – name: American Institute of Physics | 
    
| References | Fangary, Barigou, Seville, Parker (c2) 2002; 25 Dempster, Laird, Rubin (c11) 1977; 39 Herald, Wheldon, Windows-Yule (c17) 2021; 993 Nicuşan, Windows-Yule (c10) 2020; 91 Parker, Broadbent, Fowles, Hawkesworth, McNeil (c3) 1993; 326 Parker, Forster, Fowles, Takhar (c16) 2002; 477 Wiggins, Santos, Ruggles (c8) 2017; 843 Bickell, Buffler, Govender, Parker (c4) 2012; 682 Wiggins, Santos, Ruggles (c7) 2016; 811 Sundberg (c12) 1976; 5 Odo, Govender, Buffler, Franzidis (c9) 2019; 151 Blakemore, Govender, McBride, Mainza (c6) 2019; 207 Shepp, Vardi (c15) 1982; 1 Lee, Kim, Pratx (c5) 2014; 34 De Chant (c20) 2005; 161 Jan, Santin, Strul, Staelens, Assié, Autret, Avner, Barbier, Bardiès, Bloomfield, Brasse, Breton, Bruyndonckx, Buvat, Chatziioannou, Choi, Chung, Comtat, Donnarieix, Ferrer, Glick, Groiselle, Guez, Honore, Kerhoas-Cavata, Kirov, Kohli, Koole, Krieguer, van der Laan, Lamare, Largeron, Lartizien, Lazaro, Maas, Maigne, Mayet, Melot, Merheb, Pennacchio, Perez, Pietrzyk, Rannou, Rey, Schaart, Schmidtlein, Simon, Song, Vieira, Visvikis, Van de Walle, Wieërs, Morel (c19) 2004; 49 Dombre, Frisch, Greene, Hénon, Mehr, Soward (c18) 1986; 167 Barigou (c1) 2004; 82 (2024031516125700900_c3) 1993; 326 (2024031516125700900_c10) 2020; 91 (2024031516125700900_c9) 2019; 151 (2024031516125700900_c12) 1976; 5 (2024031516125700900_c8) 2017; 843 (2024031516125700900_c16) 2002; 477 (2024031516125700900_c11) 1977; 39 (2024031516125700900_c20) 2005; 161 (2024031516125700900_c5) 2014; 34 (2024031516125700900_c2) 2002; 25 (2024031516125700900_c6) 2019; 207 (2024031516125700900_c13) 1997 (2024031516125700900_c7) 2016; 811 (2024031516125700900_c4) 2012; 682 (2024031516125700900_c14) 2007 (2024031516125700900_c1) 2004; 82 (2024031516125700900_c17) 2021; 993 (2024031516125700900_c18) 1986; 167 (2024031516125700900_c19) 2004; 49 (2024031516125700900_c15) 1982; 1  | 
    
| References_xml | – volume: 682 start-page: 36 year: 2012 ident: c4 article-title: A new line density tracking algorithm for PEPT and its application to multiple tracers publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 843 start-page: 22 year: 2017 ident: c8 article-title: A feature point identification method for positron emission particle tracking with multiple tracers publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 39 start-page: 1 year: 1977 ident: c11 article-title: Maximum likelihood from incomplete data via the algorithm publication-title: J. R. Stat. Soc., Ser. B – volume: 1 start-page: 113 year: 1982 ident: c15 article-title: Maximum likelihood reconstruction for emission tomography publication-title: IEEE Trans. Med. Imaging – volume: 993 start-page: 165073 year: 2021 ident: c17 article-title: Monte Carlo model validation of a detector system used for positron emission particle tracking publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 161 start-page: 463 year: 2005 ident: c20 article-title: The venerable 1/7th power law turbulent velocity profile: A classical nonlinear boundary value problem solution and its relationship to stochastic processes publication-title: Appl. Math. Comput. – volume: 477 start-page: 540 year: 2002 ident: c16 article-title: Positron emission particle tracking using the new Birmingham positron camera publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 151 start-page: 299 year: 2019 ident: c9 article-title: A PEPT algorithm for predefined positions of radioisotopes relative to the tracer particle publication-title: Appl. Radiat. Isot. – volume: 25 start-page: 521 year: 2002 ident: c2 article-title: A Lagrangian study of solids suspension in a stirred vessel by positron emission particle tracking (PEPT) publication-title: Chem. Eng. Technol. – volume: 326 start-page: 592 year: 1993 ident: c3 article-title: Positron emission particle tracking—A technique for studying flow within engineering equipment publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 167 start-page: 353 year: 1986 ident: c18 article-title: Chaotic streamlines in the ABC flows publication-title: J. Fluid Mech. – volume: 34 start-page: 994 year: 2014 ident: c5 article-title: Single-cell tracking with PET using a novel trajectory reconstruction algorithm publication-title: IEEE Trans. Med. Imaging – volume: 207 start-page: 780 year: 2019 ident: c6 article-title: Multiple particle tracking in PEPT using Voronoi tessellations publication-title: Chem. Eng. Sci. – volume: 49 start-page: 4543 year: 2004 ident: c19 article-title: GATE: A simulation toolkit for PET and SPECT publication-title: Phys. Med. Biol. – volume: 82 start-page: 1258 year: 2004 ident: c1 article-title: Particle tracking in opaque mixing systems: An overview of the capabilities of PET and PEPT publication-title: Chem. Eng. Res. Des. – volume: 91 start-page: 013329 year: 2020 ident: c10 article-title: Positron emission particle tracking using machine learning publication-title: Rev. Sci. Instrum. – volume: 5 start-page: 55 year: 1976 ident: c12 article-title: An iterative method for solution of the likelihood equations for incomplete data from exponential families publication-title: Commun. Stat.-Simul. Comput. – volume: 811 start-page: 18 year: 2016 ident: c7 article-title: A novel clustering approach to positron emission particle tracking publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 5 start-page: 55 year: 1976 ident: 2024031516125700900_c12 article-title: An iterative method for solution of the likelihood equations for incomplete data from exponential families publication-title: Commun. Stat.-Simul. Comput. doi: 10.1080/03610917608812007 – volume-title: The EM Algorithm and Extensions year: 2007 ident: 2024031516125700900_c14 – volume: 326 start-page: 592 year: 1993 ident: 2024031516125700900_c3 article-title: Positron emission particle tracking—A technique for studying flow within engineering equipment publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A doi: 10.1016/0168-9002(93)90864-e – volume: 82 start-page: 1258 year: 2004 ident: 2024031516125700900_c1 article-title: Particle tracking in opaque mixing systems: An overview of the capabilities of PET and PEPT publication-title: Chem. Eng. Res. Des. doi: 10.1205/cerd.82.9.1258.44160 – volume: 167 start-page: 353 year: 1986 ident: 2024031516125700900_c18 article-title: Chaotic streamlines in the ABC flows publication-title: J. Fluid Mech. doi: 10.1017/s0022112086002859 – volume: 49 start-page: 4543 year: 2004 ident: 2024031516125700900_c19 article-title: GATE: A simulation toolkit for PET and SPECT publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/49/19/007 – volume: 25 start-page: 521 year: 2002 ident: 2024031516125700900_c2 article-title: A Lagrangian study of solids suspension in a stirred vessel by positron emission particle tracking (PEPT) publication-title: Chem. Eng. Technol. doi: 10.1002/1521-4125(200205)25:5<521::aid-ceat521>3.0.co;2-c – volume: 151 start-page: 299 year: 2019 ident: 2024031516125700900_c9 article-title: A PEPT algorithm for predefined positions of radioisotopes relative to the tracer particle publication-title: Appl. Radiat. Isot. doi: 10.1016/j.apradiso.2019.06.011 – volume: 843 start-page: 22 year: 2017 ident: 2024031516125700900_c8 article-title: A feature point identification method for positron emission particle tracking with multiple tracers publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A doi: 10.1016/j.nima.2016.10.057 – volume: 34 start-page: 994 year: 2014 ident: 2024031516125700900_c5 article-title: Single-cell tracking with PET using a novel trajectory reconstruction algorithm publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2373351 – volume: 682 start-page: 36 year: 2012 ident: 2024031516125700900_c4 article-title: A new line density tracking algorithm for PEPT and its application to multiple tracers publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A doi: 10.1016/j.nima.2012.04.037 – year: 1997 ident: 2024031516125700900_c13 article-title: A gentle tutorial on the EM algorithm including Gaussian mixtures and Baum-Welch – volume: 39 start-page: 1 year: 1977 ident: 2024031516125700900_c11 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc., Ser. B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 477 start-page: 540 year: 2002 ident: 2024031516125700900_c16 article-title: Positron emission particle tracking using the new Birmingham positron camera publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A doi: 10.1016/s0168-9002(01)01919-2 – volume: 207 start-page: 780 year: 2019 ident: 2024031516125700900_c6 article-title: Multiple particle tracking in PEPT using Voronoi tessellations publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.06.057 – volume: 1 start-page: 113 year: 1982 ident: 2024031516125700900_c15 article-title: Maximum likelihood reconstruction for emission tomography publication-title: IEEE Trans. Med. Imaging doi: 10.1109/tmi.1982.4307558 – volume: 161 start-page: 463 year: 2005 ident: 2024031516125700900_c20 article-title: The venerable 1/7th power law turbulent velocity profile: A classical nonlinear boundary value problem solution and its relationship to stochastic processes publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2003.12.109 – volume: 811 start-page: 18 year: 2016 ident: 2024031516125700900_c7 article-title: A novel clustering approach to positron emission particle tracking publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A doi: 10.1016/j.nima.2015.11.136 – volume: 993 start-page: 165073 year: 2021 ident: 2024031516125700900_c17 article-title: Monte Carlo model validation of a detector system used for positron emission particle tracking publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A doi: 10.1016/j.nima.2021.165073 – volume: 91 start-page: 013329 year: 2020 ident: 2024031516125700900_c10 article-title: Positron emission particle tracking using machine learning publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5129251  | 
    
| SSID | ssj0000511 | 
    
| Score | 2.4073548 | 
    
| Snippet | We develop a new algorithm for the tracking of radioactive particles using Positron Emission Particle Tracking (PEPT). The algorithm relies on the maximization... | 
    
| SourceID | unpaywall proquest crossref scitation  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 085102 | 
    
| SubjectTerms | Algorithms Field of view Maximization Optimization Parameters Particle tracking Positron annihilation Positron emission Probabilistic models Scientific apparatus & instruments  | 
    
| SummonAdditionalLinks | – databaseName: AIP Open Access Journals dbid: AJDQP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BOcAFsYpCQYZygEMEie0sx4pFFRKbBBK3KF4KSG1adWG58Q_8IV_CTOO2IAHiFiUTW5mxM8-e8RuAXR2oWFvNibdVeSIyoafQr3iRkZRQ6Stf0OHk84uwfivO7uTdFFR_ieCH_ID2PCRHRz8NMwGiWxzGM7Wz4-uryQ9X-kVhPC48qp0xIhD6-vJ3tzPBkrPoaIqYN14P8k72-pw1m19czOkCzDtsyGqFMRdhyuZLsOhmX4_tOYro_WW4rOWMuPl10ejH23sre3lsuTOVLGvet3HR_9BiCEnZMC-ri7eptBttjrGOGy-s38007ZWvwO3pyc1R3XOlETzNE9n3GkpYGx9yE3BDBO247tChjqNEk020TZSvk1gmYUMmfhJZE0VEnB-bQCBCSgxfhVLezu0asKjhW65DGWglhdIi5lYb9NzWchFlvi7D3khz6UhXVL6imQ7j1yFPZeqUXIadsWinIMv4SagyUn_q5ksvHRKfBQEuR8uwPX6MWqHwRZbb9oBkQvoiRFBlqI7N9ldHP0g9tbsTibRjGig1Nvvvba3_q8cNmAso5WWYH1iBUr87sJuIWfpqy43ZT6mU5lg priority: 102 providerName: American Institute of Physics  | 
    
| Title | An expectation–maximization algorithm for positron emission particle tracking | 
    
| URI | http://dx.doi.org/10.1063/5.0053545 https://www.proquest.com/docview/2559922721 https://www.proquest.com/docview/2568596439 https://aip.scitation.org/doi/pdf/10.1063/5.0053545  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 92 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7623 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0000511 issn: 1527-2400 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9RADLZg98CJUh5iUamGx6EcUprMTCY5rihVVdFSRFcqpyjzWFixm43SbHmc-A_8Q34JdjJJCyoITokSazIZ2xp7bH8GeGoinRhnOOG26kAoGwca95VAWUkJlaEOBRUnHx7F-xNxcCpPfR031cLksxLdOg9P3UTySbVLO209zZg_pzMQyXHjvw7DWKIBPoDh5Oh4_K4FYBQBtc9o0-rTAFW9SbGXkaI4wk6HLXR5nF93pAsz80Y_D7xfFWX-5VM-n1_affbW4KSbd5t08nF7Vett8_U3SMf__LFbcNNbo2zcis86XHPFbVj3-n7Gtjwo9bM78HpcMOoGYNqhf3z7vsg_zxa-ipPl8_fLalZ_WDA0glmTCVbhY2omR8dxrPQSyuoqN3Q6fxcmey9PXuwHvhlDYHgq62CqhXPJDrcRtwQJj56OiU2iUkNSYFyqQ5MmyI-pTMNUOasUQfUnNhJok6WW34NBsSzcfWBqGjpuYhkZLYU2IuHOWLQVnONC5aEZwVbHkKxbMWqYMc-aiHnMM5n5pRrB4560bOE5riLa6LiaeQ09yxqotShCB3gEj_rXuCoUMMkLt1wRTUx_hDbbCJ70zPvbh66gOl9WFxQZMhypemn681gP_olqAwZ1tXIP0TCq9SYMx7uHr97S9WD3zfGmV4yf9X0Leg | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BeigXRHmIQIHlcSgHU-x92ccIqEJpC0it1JvlfQQiOY7lODxu_Af-Ib-EGXuTFKkgbpY93ses1_Ptzuw3AM9sYlLrLSfeVhMJ7VRk0K5E2kkKqIxNLOhw8vGJGp-Jw3N5HmJz6CwMNmLxopjWnROflu1BgVGJmHNZbwgHFN-n3RDJEQJchS2t0FAOYGt0-Prjh82vWMZ9yjwuIsqqsaIWuvjynwZpgzK30QT13nC8XlZ18f1rUZYXjM_BDbgeUCMb9a3cgSu-ugk7YV4u2F4gj35-C96PKkas_bYv9NePn7Pi23QWTluyovw0b6bt5xlDsMq6iK0Gb1PSN9o2Y3VQBGubwtIu-m04O3hz-mochaQJkeWZbKOJEd6nL7lLuCPqdlyRWGVTnVkaLeszE9sslZmayCzOtHdaE6V-6hKB2Clz_A4Mqnnl7wLTk9hzq2RijRTGipR769Cme8-FLmI7hL2V5vKVriixRZl3nm3Fc5kHJQ_hyVq07mk0LhPaXak_DzNpkXeUaEmCC9UhPF4_Rq2QY6Oo_HxJMop6hNhqCE_Xw_avii6R-jJvNhJ57SYotR72v5d1779qfATb49Pjo_zo7cm7-3AtocCYLopwFwZts_QPENm05mH4fn8DSoLzaA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbK9sCJ0gJiq1KZwqEcUprYjpPjqmpVIVE4dKVyiuKxF1bdzUZplr8T79A37JN0JnHSgkoFtygZObZnRjP2zHzD2GuITAIOBOG2mkBqGwcG7UqgraKEytCEkoqT35_Ex2P57kyd-TpuqoXJpyUe6zw8dRPJJ9Uu7aQ9acbiLd2BKIGG_wFbjRU64AO2Oj75OPrUAjDKgNpntGn1aYCq3qTYq0hTHGG_wxa6Pc7vFunGzXzYzwOfl0WZ__iWz2a3rM_RGjvt5t0mnZzvLWuzBz__gHT8z4U9Zo-8N8pHrfissxVXbLB1r-8XfNeDUr95wj6MCk7dAKAd-urX5Tz_Pp37Kk6ezz4vqmn9Zc7RCeZNJliFr6mZHF3H8dJLKK-rHOh2_ikbHx2eHhwHvhlDACJVdTAx0rlkX9hIWIKEx5MOxJDoFEgKwKUmhDRBfkxUGqbaWa0Jqj-xkUSfLLXiGRsUi8I9Z1xPQicgVhEYJQ3IRDiw6Cs4J6TOQxiy3Y4hWbdj1DBjljUR81hkKvNbNWQ7PWnZwnPcRbTVcTXzGnqRNVBrUYQH4CF72X_GXaGASV64xZJoYloR-mxD9qpn3n0_uoPq66K6ociQ4UjVS9Pfx9r8J6otNqirpXuBjlFttr0iXANbBwhT | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+expectation-maximization+algorithm+for+positron+emission+particle+tracking&rft.jtitle=Review+of+scientific+instruments&rft.au=Manger%2C+Sam&rft.au=Renaud%2C+Antoine&rft.au=Vanneste%2C+Jacques&rft.date=2021-08-01&rft.issn=1089-7623&rft.eissn=1089-7623&rft.volume=92&rft.issue=8&rft.spage=085102&rft_id=info:doi/10.1063%2F5.0053545&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon |