An expectation–maximization algorithm for positron emission particle tracking

We develop a new algorithm for the tracking of radioactive particles using Positron Emission Particle Tracking (PEPT). The algorithm relies on the maximization of the likelihood of a simple Gaussian mixture model of the lines of response associated with positron annihilation. The model includes a co...

Full description

Saved in:
Bibliographic Details
Published inReview of scientific instruments Vol. 92; no. 8; pp. 085102 - 85113
Main Authors Manger, Sam, Renaud, Antoine, Vanneste, Jacques
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.08.2021
Subjects
Online AccessGet full text
ISSN0034-6748
1089-7623
1527-2400
1089-7623
DOI10.1063/5.0053545

Cover

Abstract We develop a new algorithm for the tracking of radioactive particles using Positron Emission Particle Tracking (PEPT). The algorithm relies on the maximization of the likelihood of a simple Gaussian mixture model of the lines of response associated with positron annihilation. The model includes a component that accounts for spurious lines caused by scattering and random coincidence, and it treats the relative activity of particles as well as their positions as parameters to be inferred. Values of these parameters that approximately maximize the likelihood are computed by the application of an expectation–maximization algorithm. A generalization of the model that includes the particle velocities and accelerations as additional parameters takes advantage of the information contained in the exact timing of positron annihilations to reconstruct pieces of trajectories rather than fixed positions, with clear benefits. We test the algorithm on both simulated and experimental data. The results show the algorithm to be highly effective for the simultaneous tracking of many particles (up to 80 in one test). It provides estimates of particle positions that are easily mapped to entire trajectories and handles a variable number of particles in the field of view. The ability to track a large number of particles robustly offers the possibility of a dramatic expansion of the scope of PEPT.
AbstractList We develop a new algorithm for the tracking of radioactive particles using Positron Emission Particle Tracking (PEPT). The algorithm relies on the maximization of the likelihood of a simple Gaussian mixture model of the lines of response associated with positron annihilation. The model includes a component that accounts for spurious lines caused by scattering and random coincidence, and it treats the relative activity of particles as well as their positions as parameters to be inferred. Values of these parameters that approximately maximize the likelihood are computed by the application of an expectation–maximization algorithm. A generalization of the model that includes the particle velocities and accelerations as additional parameters takes advantage of the information contained in the exact timing of positron annihilations to reconstruct pieces of trajectories rather than fixed positions, with clear benefits. We test the algorithm on both simulated and experimental data. The results show the algorithm to be highly effective for the simultaneous tracking of many particles (up to 80 in one test). It provides estimates of particle positions that are easily mapped to entire trajectories and handles a variable number of particles in the field of view. The ability to track a large number of particles robustly offers the possibility of a dramatic expansion of the scope of PEPT.
We develop a new algorithm for the tracking of radioactive particles using Positron Emission Particle Tracking (PEPT). The algorithm relies on the maximization of the likelihood of a simple Gaussian mixture model of the lines of response associated with positron annihilation. The model includes a component that accounts for spurious lines caused by scattering and random coincidence, and it treats the relative activity of particles as well as their positions as parameters to be inferred. Values of these parameters that approximately maximize the likelihood are computed by the application of an expectation-maximization algorithm. A generalization of the model that includes the particle velocities and accelerations as additional parameters takes advantage of the information contained in the exact timing of positron annihilations to reconstruct pieces of trajectories rather than fixed positions, with clear benefits. We test the algorithm on both simulated and experimental data. The results show the algorithm to be highly effective for the simultaneous tracking of many particles (up to 80 in one test). It provides estimates of particle positions that are easily mapped to entire trajectories and handles a variable number of particles in the field of view. The ability to track a large number of particles robustly offers the possibility of a dramatic expansion of the scope of PEPT.We develop a new algorithm for the tracking of radioactive particles using Positron Emission Particle Tracking (PEPT). The algorithm relies on the maximization of the likelihood of a simple Gaussian mixture model of the lines of response associated with positron annihilation. The model includes a component that accounts for spurious lines caused by scattering and random coincidence, and it treats the relative activity of particles as well as their positions as parameters to be inferred. Values of these parameters that approximately maximize the likelihood are computed by the application of an expectation-maximization algorithm. A generalization of the model that includes the particle velocities and accelerations as additional parameters takes advantage of the information contained in the exact timing of positron annihilations to reconstruct pieces of trajectories rather than fixed positions, with clear benefits. We test the algorithm on both simulated and experimental data. The results show the algorithm to be highly effective for the simultaneous tracking of many particles (up to 80 in one test). It provides estimates of particle positions that are easily mapped to entire trajectories and handles a variable number of particles in the field of view. The ability to track a large number of particles robustly offers the possibility of a dramatic expansion of the scope of PEPT.
Author Manger, Sam
Vanneste, Jacques
Renaud, Antoine
Author_xml – sequence: 1
  givenname: Sam
  surname: Manger
  fullname: Manger, Sam
  organization: School of Chemical Engineering, University of Birmingham
– sequence: 2
  givenname: Antoine
  surname: Renaud
  fullname: Renaud, Antoine
  organization: School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh
– sequence: 3
  givenname: Jacques
  surname: Vanneste
  fullname: Vanneste, Jacques
  organization: School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh
BookMark eNqdkM1KAzEUhYMo2FYXvsGAGxWmTSbJTLIsxT8odKPrkGYyNXVmMiZTbV35Dr6hT2JqK0IRF95NuMmXc889XbBf21oDcIJgH8EUD2gfQoopoXuggyDjcZYmeB90IMQkTjPCDkHX-zkMRRHqgMmwjvSy0aqVrbH1x9t7JZemMq9fbSTLmXWmfaiiwrqosd60Llzryni_fm-ka40qddQ6qR5NPTsCB4UsvT7enj1wf3V5N7qJx5Pr29FwHCvMaRsXU6I1gzhPcJ5RSChhKlUs42qqlVKaT5HijPK0oBzxTOdZBhlhLE8IRYTnuAcuNrqLupGrF1mWonGmkm4lEBTrKAQV2ygCfLaBG2efFtq3IvhXuixlre3Ci4Sm61kE84Ce7qBzu3B1WCVQlPMkyRIUqMGGUs5673QhlNkEGHIw5a8Wznd-_GV3u5v_Vv0f_GzdDyiavMCfM1WnIg
CODEN RSINAK
CitedBy_id crossref_primary_10_1016_j_powtec_2022_118029
crossref_primary_10_1109_TRPMS_2024_3440344
crossref_primary_10_1088_1361_6420_acc47d
crossref_primary_10_1126_sciadv_adk5747
crossref_primary_10_1016_j_partic_2024_06_015
crossref_primary_10_1088_1361_6633_ac3c4c
Cites_doi 10.1080/03610917608812007
10.1016/0168-9002(93)90864-e
10.1205/cerd.82.9.1258.44160
10.1017/s0022112086002859
10.1088/0031-9155/49/19/007
10.1002/1521-4125(200205)25:5<521::aid-ceat521>3.0.co;2-c
10.1016/j.apradiso.2019.06.011
10.1016/j.nima.2016.10.057
10.1109/TMI.2014.2373351
10.1016/j.nima.2012.04.037
10.1111/j.2517-6161.1977.tb01600.x
10.1016/s0168-9002(01)01919-2
10.1016/j.ces.2019.06.057
10.1109/tmi.1982.4307558
10.1016/j.amc.2003.12.109
10.1016/j.nima.2015.11.136
10.1016/j.nima.2021.165073
10.1063/1.5129251
ContentType Journal Article
Copyright Author(s)
2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
7X8
ADTOC
UNPAY
DOI 10.1063/5.0053545
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1089-7623
ExternalDocumentID 10.1063/5.0053545
10_1063_5_0053545
rsi
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/R045046/1
  funderid: https://doi.org/10.13039/501100000266
GroupedDBID ---
-DZ
-~X
.DC
123
1UP
2-P
29P
4.4
53G
5RE
5VS
85S
A9.
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABFTF
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADIYS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJDQP
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
L7B
M43
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TAE
TN5
VQA
WH7
XSW
YNT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
7X8
.GJ
0ZJ
186
3O-
41~
6TJ
9M8
AAYJJ
ACKIV
ADRHT
ADTOC
ADXHL
AETEA
AFFNX
AHPGS
EJD
MVM
NEJ
NEUPN
NHB
OHT
QZG
RDFOP
ROL
UHB
UNPAY
ZCG
ZXP
ID FETCH-LOGICAL-c395t-fb4ee803d23d7504548c6c879cbeccce9b1c98596f59197ed7708488d245149d3
IEDL.DBID UNPAY
ISSN 0034-6748
1089-7623
1527-2400
IngestDate Wed Oct 29 11:49:28 EDT 2025
Thu Oct 02 10:43:50 EDT 2025
Sun Jun 29 16:40:33 EDT 2025
Wed Oct 01 06:04:26 EDT 2025
Thu Apr 24 22:53:19 EDT 2025
Thu Jun 23 13:44:48 EDT 2022
Fri Jun 21 00:14:27 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-fb4ee803d23d7504548c6c879cbeccce9b1c98596f59197ed7708488d245149d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2323-6350
0000-0002-0319-589X
0000-0002-4475-2066
OpenAccessLink https://proxy.k.utb.cz/login?url=https://aip.scitation.org/doi/pdf/10.1063/5.0053545
PQID 2559922721
PQPubID 2050675
PageCount 12
ParticipantIDs scitation_primary_10_1063_5_0053545
crossref_citationtrail_10_1063_5_0053545
unpaywall_primary_10_1063_5_0053545
proquest_journals_2559922721
proquest_miscellaneous_2568596439
crossref_primary_10_1063_5_0053545
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210801
2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 20210801
  day: 01
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Review of scientific instruments
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Fangary, Barigou, Seville, Parker (c2) 2002; 25
Dempster, Laird, Rubin (c11) 1977; 39
Herald, Wheldon, Windows-Yule (c17) 2021; 993
Nicuşan, Windows-Yule (c10) 2020; 91
Parker, Broadbent, Fowles, Hawkesworth, McNeil (c3) 1993; 326
Parker, Forster, Fowles, Takhar (c16) 2002; 477
Wiggins, Santos, Ruggles (c8) 2017; 843
Bickell, Buffler, Govender, Parker (c4) 2012; 682
Wiggins, Santos, Ruggles (c7) 2016; 811
Sundberg (c12) 1976; 5
Odo, Govender, Buffler, Franzidis (c9) 2019; 151
Blakemore, Govender, McBride, Mainza (c6) 2019; 207
Shepp, Vardi (c15) 1982; 1
Lee, Kim, Pratx (c5) 2014; 34
De Chant (c20) 2005; 161
Jan, Santin, Strul, Staelens, Assié, Autret, Avner, Barbier, Bardiès, Bloomfield, Brasse, Breton, Bruyndonckx, Buvat, Chatziioannou, Choi, Chung, Comtat, Donnarieix, Ferrer, Glick, Groiselle, Guez, Honore, Kerhoas-Cavata, Kirov, Kohli, Koole, Krieguer, van der Laan, Lamare, Largeron, Lartizien, Lazaro, Maas, Maigne, Mayet, Melot, Merheb, Pennacchio, Perez, Pietrzyk, Rannou, Rey, Schaart, Schmidtlein, Simon, Song, Vieira, Visvikis, Van de Walle, Wieërs, Morel (c19) 2004; 49
Dombre, Frisch, Greene, Hénon, Mehr, Soward (c18) 1986; 167
Barigou (c1) 2004; 82
(2024031516125700900_c3) 1993; 326
(2024031516125700900_c10) 2020; 91
(2024031516125700900_c9) 2019; 151
(2024031516125700900_c12) 1976; 5
(2024031516125700900_c8) 2017; 843
(2024031516125700900_c16) 2002; 477
(2024031516125700900_c11) 1977; 39
(2024031516125700900_c20) 2005; 161
(2024031516125700900_c5) 2014; 34
(2024031516125700900_c2) 2002; 25
(2024031516125700900_c6) 2019; 207
(2024031516125700900_c13) 1997
(2024031516125700900_c7) 2016; 811
(2024031516125700900_c4) 2012; 682
(2024031516125700900_c14) 2007
(2024031516125700900_c1) 2004; 82
(2024031516125700900_c17) 2021; 993
(2024031516125700900_c18) 1986; 167
(2024031516125700900_c19) 2004; 49
(2024031516125700900_c15) 1982; 1
References_xml – volume: 682
  start-page: 36
  year: 2012
  ident: c4
  article-title: A new line density tracking algorithm for PEPT and its application to multiple tracers
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 843
  start-page: 22
  year: 2017
  ident: c8
  article-title: A feature point identification method for positron emission particle tracking with multiple tracers
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 39
  start-page: 1
  year: 1977
  ident: c11
  article-title: Maximum likelihood from incomplete data via the algorithm
  publication-title: J. R. Stat. Soc., Ser. B
– volume: 1
  start-page: 113
  year: 1982
  ident: c15
  article-title: Maximum likelihood reconstruction for emission tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 993
  start-page: 165073
  year: 2021
  ident: c17
  article-title: Monte Carlo model validation of a detector system used for positron emission particle tracking
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 161
  start-page: 463
  year: 2005
  ident: c20
  article-title: The venerable 1/7th power law turbulent velocity profile: A classical nonlinear boundary value problem solution and its relationship to stochastic processes
  publication-title: Appl. Math. Comput.
– volume: 477
  start-page: 540
  year: 2002
  ident: c16
  article-title: Positron emission particle tracking using the new Birmingham positron camera
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 151
  start-page: 299
  year: 2019
  ident: c9
  article-title: A PEPT algorithm for predefined positions of radioisotopes relative to the tracer particle
  publication-title: Appl. Radiat. Isot.
– volume: 25
  start-page: 521
  year: 2002
  ident: c2
  article-title: A Lagrangian study of solids suspension in a stirred vessel by positron emission particle tracking (PEPT)
  publication-title: Chem. Eng. Technol.
– volume: 326
  start-page: 592
  year: 1993
  ident: c3
  article-title: Positron emission particle tracking—A technique for studying flow within engineering equipment
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 167
  start-page: 353
  year: 1986
  ident: c18
  article-title: Chaotic streamlines in the ABC flows
  publication-title: J. Fluid Mech.
– volume: 34
  start-page: 994
  year: 2014
  ident: c5
  article-title: Single-cell tracking with PET using a novel trajectory reconstruction algorithm
  publication-title: IEEE Trans. Med. Imaging
– volume: 207
  start-page: 780
  year: 2019
  ident: c6
  article-title: Multiple particle tracking in PEPT using Voronoi tessellations
  publication-title: Chem. Eng. Sci.
– volume: 49
  start-page: 4543
  year: 2004
  ident: c19
  article-title: GATE: A simulation toolkit for PET and SPECT
  publication-title: Phys. Med. Biol.
– volume: 82
  start-page: 1258
  year: 2004
  ident: c1
  article-title: Particle tracking in opaque mixing systems: An overview of the capabilities of PET and PEPT
  publication-title: Chem. Eng. Res. Des.
– volume: 91
  start-page: 013329
  year: 2020
  ident: c10
  article-title: Positron emission particle tracking using machine learning
  publication-title: Rev. Sci. Instrum.
– volume: 5
  start-page: 55
  year: 1976
  ident: c12
  article-title: An iterative method for solution of the likelihood equations for incomplete data from exponential families
  publication-title: Commun. Stat.-Simul. Comput.
– volume: 811
  start-page: 18
  year: 2016
  ident: c7
  article-title: A novel clustering approach to positron emission particle tracking
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 5
  start-page: 55
  year: 1976
  ident: 2024031516125700900_c12
  article-title: An iterative method for solution of the likelihood equations for incomplete data from exponential families
  publication-title: Commun. Stat.-Simul. Comput.
  doi: 10.1080/03610917608812007
– volume-title: The EM Algorithm and Extensions
  year: 2007
  ident: 2024031516125700900_c14
– volume: 326
  start-page: 592
  year: 1993
  ident: 2024031516125700900_c3
  article-title: Positron emission particle tracking—A technique for studying flow within engineering equipment
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
  doi: 10.1016/0168-9002(93)90864-e
– volume: 82
  start-page: 1258
  year: 2004
  ident: 2024031516125700900_c1
  article-title: Particle tracking in opaque mixing systems: An overview of the capabilities of PET and PEPT
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/cerd.82.9.1258.44160
– volume: 167
  start-page: 353
  year: 1986
  ident: 2024031516125700900_c18
  article-title: Chaotic streamlines in the ABC flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112086002859
– volume: 49
  start-page: 4543
  year: 2004
  ident: 2024031516125700900_c19
  article-title: GATE: A simulation toolkit for PET and SPECT
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/49/19/007
– volume: 25
  start-page: 521
  year: 2002
  ident: 2024031516125700900_c2
  article-title: A Lagrangian study of solids suspension in a stirred vessel by positron emission particle tracking (PEPT)
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/1521-4125(200205)25:5<521::aid-ceat521>3.0.co;2-c
– volume: 151
  start-page: 299
  year: 2019
  ident: 2024031516125700900_c9
  article-title: A PEPT algorithm for predefined positions of radioisotopes relative to the tracer particle
  publication-title: Appl. Radiat. Isot.
  doi: 10.1016/j.apradiso.2019.06.011
– volume: 843
  start-page: 22
  year: 2017
  ident: 2024031516125700900_c8
  article-title: A feature point identification method for positron emission particle tracking with multiple tracers
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
  doi: 10.1016/j.nima.2016.10.057
– volume: 34
  start-page: 994
  year: 2014
  ident: 2024031516125700900_c5
  article-title: Single-cell tracking with PET using a novel trajectory reconstruction algorithm
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2373351
– volume: 682
  start-page: 36
  year: 2012
  ident: 2024031516125700900_c4
  article-title: A new line density tracking algorithm for PEPT and its application to multiple tracers
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
  doi: 10.1016/j.nima.2012.04.037
– year: 1997
  ident: 2024031516125700900_c13
  article-title: A gentle tutorial on the EM algorithm including Gaussian mixtures and Baum-Welch
– volume: 39
  start-page: 1
  year: 1977
  ident: 2024031516125700900_c11
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc., Ser. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 477
  start-page: 540
  year: 2002
  ident: 2024031516125700900_c16
  article-title: Positron emission particle tracking using the new Birmingham positron camera
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
  doi: 10.1016/s0168-9002(01)01919-2
– volume: 207
  start-page: 780
  year: 2019
  ident: 2024031516125700900_c6
  article-title: Multiple particle tracking in PEPT using Voronoi tessellations
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2019.06.057
– volume: 1
  start-page: 113
  year: 1982
  ident: 2024031516125700900_c15
  article-title: Maximum likelihood reconstruction for emission tomography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/tmi.1982.4307558
– volume: 161
  start-page: 463
  year: 2005
  ident: 2024031516125700900_c20
  article-title: The venerable 1/7th power law turbulent velocity profile: A classical nonlinear boundary value problem solution and its relationship to stochastic processes
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2003.12.109
– volume: 811
  start-page: 18
  year: 2016
  ident: 2024031516125700900_c7
  article-title: A novel clustering approach to positron emission particle tracking
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
  doi: 10.1016/j.nima.2015.11.136
– volume: 993
  start-page: 165073
  year: 2021
  ident: 2024031516125700900_c17
  article-title: Monte Carlo model validation of a detector system used for positron emission particle tracking
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
  doi: 10.1016/j.nima.2021.165073
– volume: 91
  start-page: 013329
  year: 2020
  ident: 2024031516125700900_c10
  article-title: Positron emission particle tracking using machine learning
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5129251
SSID ssj0000511
Score 2.4073548
Snippet We develop a new algorithm for the tracking of radioactive particles using Positron Emission Particle Tracking (PEPT). The algorithm relies on the maximization...
SourceID unpaywall
proquest
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 085102
SubjectTerms Algorithms
Field of view
Maximization
Optimization
Parameters
Particle tracking
Positron annihilation
Positron emission
Probabilistic models
Scientific apparatus & instruments
SummonAdditionalLinks – databaseName: AIP Open Access Journals
  dbid: AJDQP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BOcAFsYpCQYZygEMEie0sx4pFFRKbBBK3KF4KSG1adWG58Q_8IV_CTOO2IAHiFiUTW5mxM8-e8RuAXR2oWFvNibdVeSIyoafQr3iRkZRQ6Stf0OHk84uwfivO7uTdFFR_ieCH_ID2PCRHRz8NMwGiWxzGM7Wz4-uryQ9X-kVhPC48qp0xIhD6-vJ3tzPBkrPoaIqYN14P8k72-pw1m19czOkCzDtsyGqFMRdhyuZLsOhmX4_tOYro_WW4rOWMuPl10ejH23sre3lsuTOVLGvet3HR_9BiCEnZMC-ri7eptBttjrGOGy-s38007ZWvwO3pyc1R3XOlETzNE9n3GkpYGx9yE3BDBO247tChjqNEk020TZSvk1gmYUMmfhJZE0VEnB-bQCBCSgxfhVLezu0asKjhW65DGWglhdIi5lYb9NzWchFlvi7D3khz6UhXVL6imQ7j1yFPZeqUXIadsWinIMv4SagyUn_q5ksvHRKfBQEuR8uwPX6MWqHwRZbb9oBkQvoiRFBlqI7N9ldHP0g9tbsTibRjGig1Nvvvba3_q8cNmAso5WWYH1iBUr87sJuIWfpqy43ZT6mU5lg
  priority: 102
  providerName: American Institute of Physics
Title An expectation–maximization algorithm for positron emission particle tracking
URI http://dx.doi.org/10.1063/5.0053545
https://www.proquest.com/docview/2559922721
https://www.proquest.com/docview/2568596439
https://aip.scitation.org/doi/pdf/10.1063/5.0053545
UnpaywallVersion publishedVersion
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7623
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0000511
  issn: 1527-2400
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9RADLZg98CJUh5iUamGx6EcUprMTCY5rihVVdFSRFcqpyjzWFixm43SbHmc-A_8Q34JdjJJCyoITokSazIZ2xp7bH8GeGoinRhnOOG26kAoGwca95VAWUkJlaEOBRUnHx7F-xNxcCpPfR031cLksxLdOg9P3UTySbVLO209zZg_pzMQyXHjvw7DWKIBPoDh5Oh4_K4FYBQBtc9o0-rTAFW9SbGXkaI4wk6HLXR5nF93pAsz80Y_D7xfFWX-5VM-n1_affbW4KSbd5t08nF7Vett8_U3SMf__LFbcNNbo2zcis86XHPFbVj3-n7Gtjwo9bM78HpcMOoGYNqhf3z7vsg_zxa-ipPl8_fLalZ_WDA0glmTCVbhY2omR8dxrPQSyuoqN3Q6fxcmey9PXuwHvhlDYHgq62CqhXPJDrcRtwQJj56OiU2iUkNSYFyqQ5MmyI-pTMNUOasUQfUnNhJok6WW34NBsSzcfWBqGjpuYhkZLYU2IuHOWLQVnONC5aEZwVbHkKxbMWqYMc-aiHnMM5n5pRrB4560bOE5riLa6LiaeQ09yxqotShCB3gEj_rXuCoUMMkLt1wRTUx_hDbbCJ70zPvbh66gOl9WFxQZMhypemn681gP_olqAwZ1tXIP0TCq9SYMx7uHr97S9WD3zfGmV4yf9X0Leg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BeigXRHmIQIHlcSgHU-x92ccIqEJpC0it1JvlfQQiOY7lODxu_Af-Ib-EGXuTFKkgbpY93ses1_Ptzuw3AM9sYlLrLSfeVhMJ7VRk0K5E2kkKqIxNLOhw8vGJGp-Jw3N5HmJz6CwMNmLxopjWnROflu1BgVGJmHNZbwgHFN-n3RDJEQJchS2t0FAOYGt0-Prjh82vWMZ9yjwuIsqqsaIWuvjynwZpgzK30QT13nC8XlZ18f1rUZYXjM_BDbgeUCMb9a3cgSu-ugk7YV4u2F4gj35-C96PKkas_bYv9NePn7Pi23QWTluyovw0b6bt5xlDsMq6iK0Gb1PSN9o2Y3VQBGubwtIu-m04O3hz-mochaQJkeWZbKOJEd6nL7lLuCPqdlyRWGVTnVkaLeszE9sslZmayCzOtHdaE6V-6hKB2Clz_A4Mqnnl7wLTk9hzq2RijRTGipR769Cme8-FLmI7hL2V5vKVriixRZl3nm3Fc5kHJQ_hyVq07mk0LhPaXak_DzNpkXeUaEmCC9UhPF4_Rq2QY6Oo_HxJMop6hNhqCE_Xw_avii6R-jJvNhJ57SYotR72v5d1779qfATb49Pjo_zo7cm7-3AtocCYLopwFwZts_QPENm05mH4fn8DSoLzaA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbK9sCJ0gJiq1KZwqEcUprYjpPjqmpVIVE4dKVyiuKxF1bdzUZplr8T79A37JN0JnHSgkoFtygZObZnRjP2zHzD2GuITAIOBOG2mkBqGwcG7UqgraKEytCEkoqT35_Ex2P57kyd-TpuqoXJpyUe6zw8dRPJJ9Uu7aQ9acbiLd2BKIGG_wFbjRU64AO2Oj75OPrUAjDKgNpntGn1aYCq3qTYq0hTHGG_wxa6Pc7vFunGzXzYzwOfl0WZ__iWz2a3rM_RGjvt5t0mnZzvLWuzBz__gHT8z4U9Zo-8N8pHrfissxVXbLB1r-8XfNeDUr95wj6MCk7dAKAd-urX5Tz_Pp37Kk6ezz4vqmn9Zc7RCeZNJliFr6mZHF3H8dJLKK-rHOh2_ikbHx2eHhwHvhlDACJVdTAx0rlkX9hIWIKEx5MOxJDoFEgKwKUmhDRBfkxUGqbaWa0Jqj-xkUSfLLXiGRsUi8I9Z1xPQicgVhEYJQ3IRDiw6Cs4J6TOQxiy3Y4hWbdj1DBjljUR81hkKvNbNWQ7PWnZwnPcRbTVcTXzGnqRNVBrUYQH4CF72X_GXaGASV64xZJoYloR-mxD9qpn3n0_uoPq66K6ociQ4UjVS9Pfx9r8J6otNqirpXuBjlFttr0iXANbBwhT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+expectation-maximization+algorithm+for+positron+emission+particle+tracking&rft.jtitle=Review+of+scientific+instruments&rft.au=Manger%2C+Sam&rft.au=Renaud%2C+Antoine&rft.au=Vanneste%2C+Jacques&rft.date=2021-08-01&rft.issn=1089-7623&rft.eissn=1089-7623&rft.volume=92&rft.issue=8&rft.spage=085102&rft_id=info:doi/10.1063%2F5.0053545&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-6748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-6748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-6748&client=summon