Distributive lattices, polyhedra, and generalized flows

A D -polyhedron is a polyhedron P such that if x , y are in P then so are their componentwise maximums and minimums. In other words, the point set of a D -polyhedron forms a distributive lattice with the dominance order. We provide a full characterization of the bounding hyperplanes of D -polyhedra....

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of combinatorics Vol. 32; no. 1; pp. 45 - 59
Main Authors Felsner, Stefan, Knauer, Kolja
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2011
Subjects
Online AccessGet full text
ISSN0195-6698
1095-9971
DOI10.1016/j.ejc.2010.07.011

Cover

Abstract A D -polyhedron is a polyhedron P such that if x , y are in P then so are their componentwise maximums and minimums. In other words, the point set of a D -polyhedron forms a distributive lattice with the dominance order. We provide a full characterization of the bounding hyperplanes of D -polyhedra. Aside from being a nice combination of geometric and order theoretic concepts, D -polyhedra are a unifying generalization of several distributive lattices which arise from graphs. In fact with a D -polyhedron we associate a directed graph with arc-parameters, such that points in the polyhedron correspond to vertex potentials on the graph. Alternatively, an edge-based description of the points of a D -polyhedron can be given. In this model the points correspond to the duals of generalized flows, i.e., duals of flows with gains and losses. These models can be specialized to yield distributive lattices that have been previously studied. Particular specializations are: flows of planar digraphs (Khuller, Naor and Klein), α -orientations of planar graphs (Felsner), c -orientations (Propp) and Δ -bonds of digraphs (Felsner and Knauer). As an additional application we identify a distributive lattice structure on generalized flow of breakeven planar digraphs.
AbstractList A D -polyhedron is a polyhedron P such that if x , y are in P then so are their componentwise maximums and minimums. In other words, the point set of a D -polyhedron forms a distributive lattice with the dominance order. We provide a full characterization of the bounding hyperplanes of D -polyhedra. Aside from being a nice combination of geometric and order theoretic concepts, D -polyhedra are a unifying generalization of several distributive lattices which arise from graphs. In fact with a D -polyhedron we associate a directed graph with arc-parameters, such that points in the polyhedron correspond to vertex potentials on the graph. Alternatively, an edge-based description of the points of a D -polyhedron can be given. In this model the points correspond to the duals of generalized flows, i.e., duals of flows with gains and losses. These models can be specialized to yield distributive lattices that have been previously studied. Particular specializations are: flows of planar digraphs (Khuller, Naor and Klein), α -orientations of planar graphs (Felsner), c -orientations (Propp) and Δ -bonds of digraphs (Felsner and Knauer). As an additional application we identify a distributive lattice structure on generalized flow of breakeven planar digraphs.
A D-polyhedron is a polyhedron P such that if x,y are in P then so are their componentwise maximums and minimums. In other words, the point set of a D-polyhedron forms a distributive lattice with the dominance order. We provide a full characterization of the bounding hyperplanes of D-polyhedra. Aside from being a nice combination of geometric and order theoretic concepts, D-polyhedra are a unifying generalization of several distributive lattices which arise from graphs. In fact with a D-polyhedron we associate a directed graph with arc-parameters, such that points in the polyhedron correspond to vertex potentials on the graph. Alternatively, an edge-based description of the points of a D-polyhedron can be given. In this model the points correspond to the duals of generalized flows, i.e., duals of flows with gains and losses. These models can be specialized to yield distributive lattices that have been previously studied. Particular specializations are: flows of planar digraphs (Khuller, Naor and Klein), alpha -orientations of planar graphs (Felsner), c-orientations (Propp) and Delta -bonds of digraphs (Felsner and Knauer). As an additional application we identify a distributive lattice structure on generalized flow of breakeven planar digraphs.
Author Felsner, Stefan
Knauer, Kolja
Author_xml – sequence: 1
  givenname: Stefan
  surname: Felsner
  fullname: Felsner, Stefan
  email: felsner@math.tu-berlin.de
– sequence: 2
  givenname: Kolja
  surname: Knauer
  fullname: Knauer, Kolja
  email: knauer@math.tu-berlin.de
BookMark eNp9kD1PAzEMhiNUJFrgB7DdxtI7krsk14gJlU-pEgvMUZr4IKf0UpK0qPx6UpWJoYNlW34fy34naDT4ARC6IrgimPCbvoJeVzXOPW4rTMgJGhMsWClES0ZojEmuORezMzSJscdZwZpmjNp7G1Owy02yWyicSslqiNNi7d3uE0xQ00INpviAAYJy9gdM0Tn_HS_QaadchMu_fI7eHx_e5s_l4vXpZX63KHUjWCpBd6rWnBJFO6U6SqigNTOciA7MEs-gYTmIIS0Qmq9nfMZp0-AlZ6DrPDpH14e96-C_NhCTXNmowTk1gN9EOWsZFjUWNCvJQamDjzFAJ9fBrlTYSYLl3iPZy-yR3HskcSuzA5lp_zHaJpWsH1JQ1h0lbw8k5Oe3FoKM2sKgwdgAOknj7RH6F3Xogl8
CitedBy_id crossref_primary_10_1007_s00373_023_02666_4
crossref_primary_10_15807_jorsj_58_61
crossref_primary_10_2140_astat_2021_12_125
crossref_primary_10_1007_s00454_018_9965_4
crossref_primary_10_1007_s00453_020_00751_1
crossref_primary_10_1111_sjos_12462
crossref_primary_10_1007_s40687_020_00228_1
Cites_doi 10.1137/0406038
10.1017/S0963548309010001
10.1007/s00026-005-0239-x
10.37236/1768
10.1007/s00454-006-1294-3
10.1017/S0963548305007327
10.1023/A:1024483217354
10.1215/S0012-7094-37-00334-X
10.1016/j.disc.2007.06.048
10.1007/BF01111390
10.1137/0132037
10.1016/j.tcs.2004.03.020
10.1007/BF02187680
10.2307/2324578
10.1515/advgeom.2010.012
10.1007/s101070100238
10.1093/qmath/28.2.213
ContentType Journal Article
Copyright 2010 Elsevier Ltd
Copyright_xml – notice: 2010 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ejc.2010.07.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1095-9971
EndPage 59
ExternalDocumentID 10_1016_j_ejc_2010_07_011
S0195669810001071
GroupedDBID --K
--M
-ET
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
ACLOT
EFKBS
JQ2
L7M
L~C
L~D
UPT
~HD
ID FETCH-LOGICAL-c395t-ecfa2c641a4faaf4149425d619fedb08e358e31d17e1420156864330b65ec28e3
IEDL.DBID IXB
ISSN 0195-6698
IngestDate Sat Sep 27 22:23:37 EDT 2025
Tue Jul 01 01:36:59 EDT 2025
Thu Apr 24 22:54:46 EDT 2025
Fri Feb 23 02:24:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-ecfa2c641a4faaf4149425d619fedb08e358e31d17e1420156864330b65ec28e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0195669810001071
PQID 875092094
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_875092094
crossref_primary_10_1016_j_ejc_2010_07_011
crossref_citationtrail_10_1016_j_ejc_2010_07_011
elsevier_sciencedirect_doi_10_1016_j_ejc_2010_07_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011
2011-01-00
20110101
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011
PublicationDecade 2010
PublicationTitle European journal of combinatorics
PublicationYear 2011
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Schrijver (br000120) 1986
E. Brehm, 3-orientations and Schnyder 3-tree-decompositions, Diplomarbeit, Freie Universität, Berlin, 2000.
Lam, Zhang (br000080) 2003; 20
Ziegler (br000145) 1995; vol. 152
Ahuja, Magnanti, Orlin (br000005) 1993
Matthews (br000095) 1977; 2
[math.CO].
Thurston (br000135) 1990; 97
Stanley (br000130) 1986; 1
Giménez, de Mier, Noy (br000060) 2005; 9
Dantzig (br000025) 1963
dimensional generalization of the rhombus tiling, in: Discrete models: combinatorics, computation, and geometry, Paris, 2001, Discrete Math. Theor. Comput. Sci. Proc. (2001) 023–042 (electronic).
Giménez, Noy (br000065) 2006; 15
J. Linde, C. Moore, M.G. Nordahl, An
Björner, Las Vergnas, Sturmfels, White, Ziegler (br000015) 1993; vol. 46
McNulty, Neudauer (br000100) 2008; 308
Felsner, Knauer (br000045) 2009; 18
P. de Mendez, Orientations bipolaires, Ph.D. Thesis, Paris, 1994.
Felsner (br000040) 2004; 11
Fleischer, Wayne (br000050) 2002; 91
J. Propp, Lattice structure for orientations of graphs, 1993
Simões Pereira (br000125) 1972; 127
Truemper (br000140) 1977; 32
Birkhoff (br000010) 1937; 3
Davey, Priestley (br000030) 1991
Rémila (br000115) 2004; 322
Lam, Postnikov (br000085) 2007; 38
Oxley (br000105) 1992
Gilmer, Litherland (br000055) 1986; 23
Joswig, Kulas (br000070) 2010; 10
Khuller, Naor, Klein (br000075) 1993; 6
Rémila (10.1016/j.ejc.2010.07.011_br000115) 2004; 322
Giménez (10.1016/j.ejc.2010.07.011_br000060) 2005; 9
Felsner (10.1016/j.ejc.2010.07.011_br000045) 2009; 18
Joswig (10.1016/j.ejc.2010.07.011_br000070) 2010; 10
Björner (10.1016/j.ejc.2010.07.011_br000015) 1993; vol. 46
Dantzig (10.1016/j.ejc.2010.07.011_br000025) 1963
Simões Pereira (10.1016/j.ejc.2010.07.011_br000125) 1972; 127
Ziegler (10.1016/j.ejc.2010.07.011_br000145) 1995; vol. 152
Fleischer (10.1016/j.ejc.2010.07.011_br000050) 2002; 91
Truemper (10.1016/j.ejc.2010.07.011_br000140) 1977; 32
10.1016/j.ejc.2010.07.011_br000110
Gilmer (10.1016/j.ejc.2010.07.011_br000055) 1986; 23
Lam (10.1016/j.ejc.2010.07.011_br000080) 2003; 20
Thurston (10.1016/j.ejc.2010.07.011_br000135) 1990; 97
10.1016/j.ejc.2010.07.011_br000035
Matthews (10.1016/j.ejc.2010.07.011_br000095) 1977; 2
Davey (10.1016/j.ejc.2010.07.011_br000030) 1991
Giménez (10.1016/j.ejc.2010.07.011_br000065) 2006; 15
Stanley (10.1016/j.ejc.2010.07.011_br000130) 1986; 1
Oxley (10.1016/j.ejc.2010.07.011_br000105) 1992
10.1016/j.ejc.2010.07.011_br000090
Felsner (10.1016/j.ejc.2010.07.011_br000040) 2004; 11
McNulty (10.1016/j.ejc.2010.07.011_br000100) 2008; 308
Ahuja (10.1016/j.ejc.2010.07.011_br000005) 1993
Schrijver (10.1016/j.ejc.2010.07.011_br000120) 1986
10.1016/j.ejc.2010.07.011_br000020
Lam (10.1016/j.ejc.2010.07.011_br000085) 2007; 38
Birkhoff (10.1016/j.ejc.2010.07.011_br000010) 1937; 3
Khuller (10.1016/j.ejc.2010.07.011_br000075) 1993; 6
References_xml – volume: 38
  start-page: 453
  year: 2007
  end-page: 478
  ident: br000085
  article-title: Alcoved polytopes. I
  publication-title: Discrete Comput. Geom.
– volume: 127
  start-page: 315
  year: 1972
  end-page: 322
  ident: br000125
  article-title: On subgraphs as matroid cells
  publication-title: Math. Z.
– year: 1993
  ident: br000005
  article-title: Network Flows
– year: 1992
  ident: br000105
  article-title: Matroid Theory
– volume: 6
  start-page: 477
  year: 1993
  end-page: 490
  ident: br000075
  article-title: The lattice structure of flow in planar graphs
  publication-title: SIAM J. Discrete Math.
– volume: 11
  year: 2004
  ident: br000040
  article-title: Lattice structures from planar graphs
  publication-title: Electron. J. Combin.
– volume: 10
  start-page: 333
  year: 2010
  end-page: 352
  ident: br000070
  article-title: Tropical and ordinary convexity combined
  publication-title: Adv. Geom.
– volume: 308
  start-page: 4008
  year: 2008
  end-page: 4013
  ident: br000100
  article-title: On cocircuit covers of bicircular matroids
  publication-title: Discrete Math.
– reference: -dimensional generalization of the rhombus tiling, in: Discrete models: combinatorics, computation, and geometry, Paris, 2001, Discrete Math. Theor. Comput. Sci. Proc. (2001) 023–042 (electronic).
– reference:  [math.CO].
– year: 1991
  ident: br000030
  article-title: Introduction to Lattices and Order
– volume: 15
  start-page: 385
  year: 2006
  end-page: 395
  ident: br000065
  article-title: On the complexity of computing the Tutte polynomial of bicircular matroids
  publication-title: Combin. Probab. Comput.
– volume: 97
  start-page: 757
  year: 1990
  end-page: 773
  ident: br000135
  article-title: Conway’s tiling groups
  publication-title: Amer. Math. Monthly
– reference: P. de Mendez, Orientations bipolaires, Ph.D. Thesis, Paris, 1994.
– volume: vol. 152
  year: 1995
  ident: br000145
  publication-title: Lectures on Polytopes
– volume: 1
  start-page: 9
  year: 1986
  end-page: 23
  ident: br000130
  article-title: Two poset polytopes
  publication-title: Discrete Comput. Geom.
– volume: vol. 46
  year: 1993
  ident: br000015
  publication-title: Oriented Matroids
– year: 1963
  ident: br000025
  article-title: Linear Programming and Extensions
– volume: 91
  start-page: 215
  year: 2002
  end-page: 238
  ident: br000050
  article-title: Fast and simple approximation schemes for generalized flow
  publication-title: Math. Program.
– volume: 9
  start-page: 35
  year: 2005
  end-page: 45
  ident: br000060
  article-title: On the number of bases of bicircular matroids
  publication-title: Ann. Comb.
– volume: 18
  start-page: 707
  year: 2009
  end-page: 724
  ident: br000045
  article-title: ULD-Lattices and
  publication-title: Probab. Comput.
– year: 1986
  ident: br000120
  article-title: Theory of linear and integer programming
  publication-title: Wiley-Interscience Series in Discrete Mathematics
– reference: J. Linde, C. Moore, M.G. Nordahl, An
– volume: 2
  start-page: 213
  year: 1977
  end-page: 227
  ident: br000095
  article-title: Bicircular matroids
  publication-title: Quart. J. Math. Oxford Ser.
– volume: 3
  start-page: 443
  year: 1937
  end-page: 454
  ident: br000010
  article-title: Rings of sets
  publication-title: Duke Math. J.
– reference: J. Propp, Lattice structure for orientations of graphs, 1993
– volume: 32
  start-page: 450
  year: 1977
  end-page: 456
  ident: br000140
  article-title: On max flows with gains and pure min-cost flows
  publication-title: SIAM J. Appl. Math.
– volume: 20
  start-page: 13
  year: 2003
  end-page: 29
  ident: br000080
  article-title: A distributive lattice on the set of perfect matchings of a plane bipartite graph
  publication-title: Order
– reference: E. Brehm, 3-orientations and Schnyder 3-tree-decompositions, Diplomarbeit, Freie Universität, Berlin, 2000.
– volume: 23
  start-page: 229
  year: 1986
  end-page: 247
  ident: br000055
  article-title: The duality conjecture in formal knot theory
  publication-title: Osaka J. Math.
– volume: 322
  start-page: 409
  year: 2004
  end-page: 422
  ident: br000115
  article-title: The lattice structure of the set of domino tilings of a polygon
  publication-title: Theoret. Comput. Sci.
– ident: 10.1016/j.ejc.2010.07.011_br000110
– ident: 10.1016/j.ejc.2010.07.011_br000090
– volume: vol. 46
  year: 1993
  ident: 10.1016/j.ejc.2010.07.011_br000015
– year: 1993
  ident: 10.1016/j.ejc.2010.07.011_br000005
– volume: 6
  start-page: 477
  year: 1993
  ident: 10.1016/j.ejc.2010.07.011_br000075
  article-title: The lattice structure of flow in planar graphs
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/0406038
– volume: vol. 152
  year: 1995
  ident: 10.1016/j.ejc.2010.07.011_br000145
– volume: 18
  start-page: 707
  year: 2009
  ident: 10.1016/j.ejc.2010.07.011_br000045
  article-title: ULD-Lattices and Δ-Bonds, Combinatorics
  publication-title: Probab. Comput.
  doi: 10.1017/S0963548309010001
– volume: 9
  start-page: 35
  year: 2005
  ident: 10.1016/j.ejc.2010.07.011_br000060
  article-title: On the number of bases of bicircular matroids
  publication-title: Ann. Comb.
  doi: 10.1007/s00026-005-0239-x
– volume: 11
  year: 2004
  ident: 10.1016/j.ejc.2010.07.011_br000040
  article-title: Lattice structures from planar graphs
  publication-title: Electron. J. Combin.
  doi: 10.37236/1768
– volume: 38
  start-page: 453
  year: 2007
  ident: 10.1016/j.ejc.2010.07.011_br000085
  article-title: Alcoved polytopes. I
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-006-1294-3
– volume: 15
  start-page: 385
  year: 2006
  ident: 10.1016/j.ejc.2010.07.011_br000065
  article-title: On the complexity of computing the Tutte polynomial of bicircular matroids
  publication-title: Combin. Probab. Comput.
  doi: 10.1017/S0963548305007327
– volume: 20
  start-page: 13
  year: 2003
  ident: 10.1016/j.ejc.2010.07.011_br000080
  article-title: A distributive lattice on the set of perfect matchings of a plane bipartite graph
  publication-title: Order
  doi: 10.1023/A:1024483217354
– year: 1992
  ident: 10.1016/j.ejc.2010.07.011_br000105
– volume: 3
  start-page: 443
  year: 1937
  ident: 10.1016/j.ejc.2010.07.011_br000010
  article-title: Rings of sets
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-37-00334-X
– volume: 308
  start-page: 4008
  year: 2008
  ident: 10.1016/j.ejc.2010.07.011_br000100
  article-title: On cocircuit covers of bicircular matroids
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2007.06.048
– volume: 127
  start-page: 315
  year: 1972
  ident: 10.1016/j.ejc.2010.07.011_br000125
  article-title: On subgraphs as matroid cells
  publication-title: Math. Z.
  doi: 10.1007/BF01111390
– year: 1991
  ident: 10.1016/j.ejc.2010.07.011_br000030
– ident: 10.1016/j.ejc.2010.07.011_br000035
– volume: 32
  start-page: 450
  year: 1977
  ident: 10.1016/j.ejc.2010.07.011_br000140
  article-title: On max flows with gains and pure min-cost flows
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0132037
– year: 1963
  ident: 10.1016/j.ejc.2010.07.011_br000025
– volume: 322
  start-page: 409
  year: 2004
  ident: 10.1016/j.ejc.2010.07.011_br000115
  article-title: The lattice structure of the set of domino tilings of a polygon
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2004.03.020
– volume: 1
  start-page: 9
  year: 1986
  ident: 10.1016/j.ejc.2010.07.011_br000130
  article-title: Two poset polytopes
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02187680
– volume: 97
  start-page: 757
  year: 1990
  ident: 10.1016/j.ejc.2010.07.011_br000135
  article-title: Conway’s tiling groups
  publication-title: Amer. Math. Monthly
  doi: 10.2307/2324578
– ident: 10.1016/j.ejc.2010.07.011_br000020
– volume: 10
  start-page: 333
  year: 2010
  ident: 10.1016/j.ejc.2010.07.011_br000070
  article-title: Tropical and ordinary convexity combined
  publication-title: Adv. Geom.
  doi: 10.1515/advgeom.2010.012
– year: 1986
  ident: 10.1016/j.ejc.2010.07.011_br000120
  article-title: Theory of linear and integer programming
– volume: 23
  start-page: 229
  year: 1986
  ident: 10.1016/j.ejc.2010.07.011_br000055
  article-title: The duality conjecture in formal knot theory
  publication-title: Osaka J. Math.
– volume: 91
  start-page: 215
  year: 2002
  ident: 10.1016/j.ejc.2010.07.011_br000050
  article-title: Fast and simple approximation schemes for generalized flow
  publication-title: Math. Program.
  doi: 10.1007/s101070100238
– volume: 2
  start-page: 213
  issue: 28
  year: 1977
  ident: 10.1016/j.ejc.2010.07.011_br000095
  article-title: Bicircular matroids
  publication-title: Quart. J. Math. Oxford Ser.
  doi: 10.1093/qmath/28.2.213
SSID ssj0011533
Score 1.9504441
Snippet A D -polyhedron is a polyhedron P such that if x , y are in P then so are their componentwise maximums and minimums. In other words, the point set of a D...
A D-polyhedron is a polyhedron P such that if x,y are in P then so are their componentwise maximums and minimums. In other words, the point set of a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 45
SubjectTerms Combinatorial analysis
Dominance
Gain
Graph theory
Graphs
Lattices
Mathematical models
Polyhedrons
Title Distributive lattices, polyhedra, and generalized flows
URI https://dx.doi.org/10.1016/j.ejc.2010.07.011
https://www.proquest.com/docview/875092094
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60XvQgPrE-Sg6epGnz2CSbY32UamkParG3ZbOZaEtJi62KHvztzuRRUNCDkBBIZpdlNjs7386LsdMIQg6B45tggWVyEQtTuaBMpPfA4VrogAKce32_M-A3Q2-4wi7KWBhyqyxkfy7TM2ldvGkW3GzORqPmXRbq5oeCTqgRxBAEoqhSCuIbni8tCaTPlDUJibq0bGY-XjDWhXdX0LBs-7e96YeUzrae9hbbLHRGo5UPa5utQLrDNnrLhKvzXRZcUgLcrHbVKxgTtSCftnndmE0n708QP6u6odLYeMyTTI8-IDaSyfRtvscG7av7i45Z1EQwtRt6CxN0ohztc1vxRKmEI8DBVRcjDEogjiwBroe3HdsB2NyhOGmBOodrRb4H2sFP-6ySTlM4YIYb-doLECBGoeChlYgYoZDyuJPYGntzq8wquSF1kTCc6lZMZOkZNpbIQEkMlFYgkYFVdrZsMsuzZfxFzEsWy29TLlGa_9XMKKdD4lIg-4ZKYfoyl4K0Hwfx6uH_ej5i6_mJMV3HrLJ4foETVDkWUY2tNj7tGltrXXc7fXp2bx-6texP-wLhI9b5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdgAGxFOUZwYm1NA8nMQZq0LV0sdCK3WzHOcCraq0alIQ_HrOeVQCCQakZEl8lnOOz_f5XoTcBuBT8CxXBwMMnbKQ6cIGoWN7BywqmfRUgPNw5HYn9GnqTCukXcbCKLfKQvbnMj2T1sWTZsHN5mo2az5noW6uz9QJNYIYhEA1qopaV0mt1et3R1tjglJpyrKEiqA0bmZuXjCXhYOXd2-Y5m_b0w9Bne0-nQOyX6iNWisf2SGpQHxE9obbnKvJMfEeVA7crHzVG2gLkSq3tqShrZaLj1cI16KhiTjUXvI807NPCLVosXxPTsik8zhud_WiLIIubd9JdZCRsKRLTUEjISL8Yh8XXohIKIIwMBjYDt5maHpgUkuFSjNUO2wjcB2QFr46JdV4GcMZ0ezAlY6HGDHwGfWNiIWIhoRDrciU2JtdJ0bJDS6LnOGqdMWCl85hc44M5IqB3PA4MrBO7rYkqzxhxl-Nacli_m3WOQr0v8i0cjo4rgZl4hAxLDcJZ0oBshCynv-v5xuy0x0PB3zQG_UvyG5-gKyuS1JN1xu4Qg0kDa6LP-wLerbW-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributive+lattices%2C+polyhedra%2C+and+generalized+flows&rft.jtitle=European+journal+of+combinatorics&rft.au=Felsner%2C+Stefan&rft.au=Knauer%2C+Kolja&rft.date=2011&rft.pub=Elsevier+Ltd&rft.issn=0195-6698&rft.eissn=1095-9971&rft.volume=32&rft.issue=1&rft.spage=45&rft.epage=59&rft_id=info:doi/10.1016%2Fj.ejc.2010.07.011&rft.externalDocID=S0195669810001071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6698&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6698&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6698&client=summon