Distributive lattices, polyhedra, and generalized flows
A D -polyhedron is a polyhedron P such that if x , y are in P then so are their componentwise maximums and minimums. In other words, the point set of a D -polyhedron forms a distributive lattice with the dominance order. We provide a full characterization of the bounding hyperplanes of D -polyhedra....
Saved in:
Published in | European journal of combinatorics Vol. 32; no. 1; pp. 45 - 59 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0195-6698 1095-9971 |
DOI | 10.1016/j.ejc.2010.07.011 |
Cover
Abstract | A
D
-polyhedron is a polyhedron
P
such that if
x
,
y
are in
P
then so are their componentwise maximums and minimums. In other words, the point set of a
D
-polyhedron forms a distributive lattice with the dominance order. We provide a full characterization of the bounding hyperplanes of
D
-polyhedra.
Aside from being a nice combination of geometric and order theoretic concepts,
D
-polyhedra are a unifying generalization of several distributive lattices which arise from graphs. In fact with a
D
-polyhedron we associate a directed graph with arc-parameters, such that points in the polyhedron correspond to vertex potentials on the graph. Alternatively, an edge-based description of the points of a
D
-polyhedron can be given. In this model the points correspond to the duals of generalized flows, i.e., duals of flows with gains and losses.
These models can be specialized to yield distributive lattices that have been previously studied. Particular specializations are: flows of planar digraphs (Khuller, Naor and Klein),
α
-orientations of planar graphs (Felsner),
c
-orientations (Propp) and
Δ
-bonds of digraphs (Felsner and Knauer). As an additional application we identify a distributive lattice structure on generalized flow of breakeven planar digraphs. |
---|---|
AbstractList | A
D
-polyhedron is a polyhedron
P
such that if
x
,
y
are in
P
then so are their componentwise maximums and minimums. In other words, the point set of a
D
-polyhedron forms a distributive lattice with the dominance order. We provide a full characterization of the bounding hyperplanes of
D
-polyhedra.
Aside from being a nice combination of geometric and order theoretic concepts,
D
-polyhedra are a unifying generalization of several distributive lattices which arise from graphs. In fact with a
D
-polyhedron we associate a directed graph with arc-parameters, such that points in the polyhedron correspond to vertex potentials on the graph. Alternatively, an edge-based description of the points of a
D
-polyhedron can be given. In this model the points correspond to the duals of generalized flows, i.e., duals of flows with gains and losses.
These models can be specialized to yield distributive lattices that have been previously studied. Particular specializations are: flows of planar digraphs (Khuller, Naor and Klein),
α
-orientations of planar graphs (Felsner),
c
-orientations (Propp) and
Δ
-bonds of digraphs (Felsner and Knauer). As an additional application we identify a distributive lattice structure on generalized flow of breakeven planar digraphs. A D-polyhedron is a polyhedron P such that if x,y are in P then so are their componentwise maximums and minimums. In other words, the point set of a D-polyhedron forms a distributive lattice with the dominance order. We provide a full characterization of the bounding hyperplanes of D-polyhedra. Aside from being a nice combination of geometric and order theoretic concepts, D-polyhedra are a unifying generalization of several distributive lattices which arise from graphs. In fact with a D-polyhedron we associate a directed graph with arc-parameters, such that points in the polyhedron correspond to vertex potentials on the graph. Alternatively, an edge-based description of the points of a D-polyhedron can be given. In this model the points correspond to the duals of generalized flows, i.e., duals of flows with gains and losses. These models can be specialized to yield distributive lattices that have been previously studied. Particular specializations are: flows of planar digraphs (Khuller, Naor and Klein), alpha -orientations of planar graphs (Felsner), c-orientations (Propp) and Delta -bonds of digraphs (Felsner and Knauer). As an additional application we identify a distributive lattice structure on generalized flow of breakeven planar digraphs. |
Author | Felsner, Stefan Knauer, Kolja |
Author_xml | – sequence: 1 givenname: Stefan surname: Felsner fullname: Felsner, Stefan email: felsner@math.tu-berlin.de – sequence: 2 givenname: Kolja surname: Knauer fullname: Knauer, Kolja email: knauer@math.tu-berlin.de |
BookMark | eNp9kD1PAzEMhiNUJFrgB7DdxtI7krsk14gJlU-pEgvMUZr4IKf0UpK0qPx6UpWJoYNlW34fy34naDT4ARC6IrgimPCbvoJeVzXOPW4rTMgJGhMsWClES0ZojEmuORezMzSJscdZwZpmjNp7G1Owy02yWyicSslqiNNi7d3uE0xQ00INpviAAYJy9gdM0Tn_HS_QaadchMu_fI7eHx_e5s_l4vXpZX63KHUjWCpBd6rWnBJFO6U6SqigNTOciA7MEs-gYTmIIS0Qmq9nfMZp0-AlZ6DrPDpH14e96-C_NhCTXNmowTk1gN9EOWsZFjUWNCvJQamDjzFAJ9fBrlTYSYLl3iPZy-yR3HskcSuzA5lp_zHaJpWsH1JQ1h0lbw8k5Oe3FoKM2sKgwdgAOknj7RH6F3Xogl8 |
CitedBy_id | crossref_primary_10_1007_s00373_023_02666_4 crossref_primary_10_15807_jorsj_58_61 crossref_primary_10_2140_astat_2021_12_125 crossref_primary_10_1007_s00454_018_9965_4 crossref_primary_10_1007_s00453_020_00751_1 crossref_primary_10_1111_sjos_12462 crossref_primary_10_1007_s40687_020_00228_1 |
Cites_doi | 10.1137/0406038 10.1017/S0963548309010001 10.1007/s00026-005-0239-x 10.37236/1768 10.1007/s00454-006-1294-3 10.1017/S0963548305007327 10.1023/A:1024483217354 10.1215/S0012-7094-37-00334-X 10.1016/j.disc.2007.06.048 10.1007/BF01111390 10.1137/0132037 10.1016/j.tcs.2004.03.020 10.1007/BF02187680 10.2307/2324578 10.1515/advgeom.2010.012 10.1007/s101070100238 10.1093/qmath/28.2.213 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Ltd |
Copyright_xml | – notice: 2010 Elsevier Ltd |
DBID | 6I. AAFTH AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.ejc.2010.07.011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1095-9971 |
EndPage | 59 |
ExternalDocumentID | 10_1016_j_ejc_2010_07_011 S0195669810001071 |
GroupedDBID | --K --M -ET -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD ACLOT EFKBS JQ2 L7M L~C L~D UPT ~HD |
ID | FETCH-LOGICAL-c395t-ecfa2c641a4faaf4149425d619fedb08e358e31d17e1420156864330b65ec28e3 |
IEDL.DBID | IXB |
ISSN | 0195-6698 |
IngestDate | Sat Sep 27 22:23:37 EDT 2025 Tue Jul 01 01:36:59 EDT 2025 Thu Apr 24 22:54:46 EDT 2025 Fri Feb 23 02:24:49 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-ecfa2c641a4faaf4149425d619fedb08e358e31d17e1420156864330b65ec28e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0195669810001071 |
PQID | 875092094 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_875092094 crossref_primary_10_1016_j_ejc_2010_07_011 crossref_citationtrail_10_1016_j_ejc_2010_07_011 elsevier_sciencedirect_doi_10_1016_j_ejc_2010_07_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011 2011-01-00 20110101 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – year: 2011 text: 2011 |
PublicationDecade | 2010 |
PublicationTitle | European journal of combinatorics |
PublicationYear | 2011 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Schrijver (br000120) 1986 E. Brehm, 3-orientations and Schnyder 3-tree-decompositions, Diplomarbeit, Freie Universität, Berlin, 2000. Lam, Zhang (br000080) 2003; 20 Ziegler (br000145) 1995; vol. 152 Ahuja, Magnanti, Orlin (br000005) 1993 Matthews (br000095) 1977; 2 [math.CO]. Thurston (br000135) 1990; 97 Stanley (br000130) 1986; 1 Giménez, de Mier, Noy (br000060) 2005; 9 Dantzig (br000025) 1963 dimensional generalization of the rhombus tiling, in: Discrete models: combinatorics, computation, and geometry, Paris, 2001, Discrete Math. Theor. Comput. Sci. Proc. (2001) 023–042 (electronic). Giménez, Noy (br000065) 2006; 15 J. Linde, C. Moore, M.G. Nordahl, An Björner, Las Vergnas, Sturmfels, White, Ziegler (br000015) 1993; vol. 46 McNulty, Neudauer (br000100) 2008; 308 Felsner, Knauer (br000045) 2009; 18 P. de Mendez, Orientations bipolaires, Ph.D. Thesis, Paris, 1994. Felsner (br000040) 2004; 11 Fleischer, Wayne (br000050) 2002; 91 J. Propp, Lattice structure for orientations of graphs, 1993 Simões Pereira (br000125) 1972; 127 Truemper (br000140) 1977; 32 Birkhoff (br000010) 1937; 3 Davey, Priestley (br000030) 1991 Rémila (br000115) 2004; 322 Lam, Postnikov (br000085) 2007; 38 Oxley (br000105) 1992 Gilmer, Litherland (br000055) 1986; 23 Joswig, Kulas (br000070) 2010; 10 Khuller, Naor, Klein (br000075) 1993; 6 Rémila (10.1016/j.ejc.2010.07.011_br000115) 2004; 322 Giménez (10.1016/j.ejc.2010.07.011_br000060) 2005; 9 Felsner (10.1016/j.ejc.2010.07.011_br000045) 2009; 18 Joswig (10.1016/j.ejc.2010.07.011_br000070) 2010; 10 Björner (10.1016/j.ejc.2010.07.011_br000015) 1993; vol. 46 Dantzig (10.1016/j.ejc.2010.07.011_br000025) 1963 Simões Pereira (10.1016/j.ejc.2010.07.011_br000125) 1972; 127 Ziegler (10.1016/j.ejc.2010.07.011_br000145) 1995; vol. 152 Fleischer (10.1016/j.ejc.2010.07.011_br000050) 2002; 91 Truemper (10.1016/j.ejc.2010.07.011_br000140) 1977; 32 10.1016/j.ejc.2010.07.011_br000110 Gilmer (10.1016/j.ejc.2010.07.011_br000055) 1986; 23 Lam (10.1016/j.ejc.2010.07.011_br000080) 2003; 20 Thurston (10.1016/j.ejc.2010.07.011_br000135) 1990; 97 10.1016/j.ejc.2010.07.011_br000035 Matthews (10.1016/j.ejc.2010.07.011_br000095) 1977; 2 Davey (10.1016/j.ejc.2010.07.011_br000030) 1991 Giménez (10.1016/j.ejc.2010.07.011_br000065) 2006; 15 Stanley (10.1016/j.ejc.2010.07.011_br000130) 1986; 1 Oxley (10.1016/j.ejc.2010.07.011_br000105) 1992 10.1016/j.ejc.2010.07.011_br000090 Felsner (10.1016/j.ejc.2010.07.011_br000040) 2004; 11 McNulty (10.1016/j.ejc.2010.07.011_br000100) 2008; 308 Ahuja (10.1016/j.ejc.2010.07.011_br000005) 1993 Schrijver (10.1016/j.ejc.2010.07.011_br000120) 1986 10.1016/j.ejc.2010.07.011_br000020 Lam (10.1016/j.ejc.2010.07.011_br000085) 2007; 38 Birkhoff (10.1016/j.ejc.2010.07.011_br000010) 1937; 3 Khuller (10.1016/j.ejc.2010.07.011_br000075) 1993; 6 |
References_xml | – volume: 38 start-page: 453 year: 2007 end-page: 478 ident: br000085 article-title: Alcoved polytopes. I publication-title: Discrete Comput. Geom. – volume: 127 start-page: 315 year: 1972 end-page: 322 ident: br000125 article-title: On subgraphs as matroid cells publication-title: Math. Z. – year: 1993 ident: br000005 article-title: Network Flows – year: 1992 ident: br000105 article-title: Matroid Theory – volume: 6 start-page: 477 year: 1993 end-page: 490 ident: br000075 article-title: The lattice structure of flow in planar graphs publication-title: SIAM J. Discrete Math. – volume: 11 year: 2004 ident: br000040 article-title: Lattice structures from planar graphs publication-title: Electron. J. Combin. – volume: 10 start-page: 333 year: 2010 end-page: 352 ident: br000070 article-title: Tropical and ordinary convexity combined publication-title: Adv. Geom. – volume: 308 start-page: 4008 year: 2008 end-page: 4013 ident: br000100 article-title: On cocircuit covers of bicircular matroids publication-title: Discrete Math. – reference: -dimensional generalization of the rhombus tiling, in: Discrete models: combinatorics, computation, and geometry, Paris, 2001, Discrete Math. Theor. Comput. Sci. Proc. (2001) 023–042 (electronic). – reference: [math.CO]. – year: 1991 ident: br000030 article-title: Introduction to Lattices and Order – volume: 15 start-page: 385 year: 2006 end-page: 395 ident: br000065 article-title: On the complexity of computing the Tutte polynomial of bicircular matroids publication-title: Combin. Probab. Comput. – volume: 97 start-page: 757 year: 1990 end-page: 773 ident: br000135 article-title: Conway’s tiling groups publication-title: Amer. Math. Monthly – reference: P. de Mendez, Orientations bipolaires, Ph.D. Thesis, Paris, 1994. – volume: vol. 152 year: 1995 ident: br000145 publication-title: Lectures on Polytopes – volume: 1 start-page: 9 year: 1986 end-page: 23 ident: br000130 article-title: Two poset polytopes publication-title: Discrete Comput. Geom. – volume: vol. 46 year: 1993 ident: br000015 publication-title: Oriented Matroids – year: 1963 ident: br000025 article-title: Linear Programming and Extensions – volume: 91 start-page: 215 year: 2002 end-page: 238 ident: br000050 article-title: Fast and simple approximation schemes for generalized flow publication-title: Math. Program. – volume: 9 start-page: 35 year: 2005 end-page: 45 ident: br000060 article-title: On the number of bases of bicircular matroids publication-title: Ann. Comb. – volume: 18 start-page: 707 year: 2009 end-page: 724 ident: br000045 article-title: ULD-Lattices and publication-title: Probab. Comput. – year: 1986 ident: br000120 article-title: Theory of linear and integer programming publication-title: Wiley-Interscience Series in Discrete Mathematics – reference: J. Linde, C. Moore, M.G. Nordahl, An – volume: 2 start-page: 213 year: 1977 end-page: 227 ident: br000095 article-title: Bicircular matroids publication-title: Quart. J. Math. Oxford Ser. – volume: 3 start-page: 443 year: 1937 end-page: 454 ident: br000010 article-title: Rings of sets publication-title: Duke Math. J. – reference: J. Propp, Lattice structure for orientations of graphs, 1993 – volume: 32 start-page: 450 year: 1977 end-page: 456 ident: br000140 article-title: On max flows with gains and pure min-cost flows publication-title: SIAM J. Appl. Math. – volume: 20 start-page: 13 year: 2003 end-page: 29 ident: br000080 article-title: A distributive lattice on the set of perfect matchings of a plane bipartite graph publication-title: Order – reference: E. Brehm, 3-orientations and Schnyder 3-tree-decompositions, Diplomarbeit, Freie Universität, Berlin, 2000. – volume: 23 start-page: 229 year: 1986 end-page: 247 ident: br000055 article-title: The duality conjecture in formal knot theory publication-title: Osaka J. Math. – volume: 322 start-page: 409 year: 2004 end-page: 422 ident: br000115 article-title: The lattice structure of the set of domino tilings of a polygon publication-title: Theoret. Comput. Sci. – ident: 10.1016/j.ejc.2010.07.011_br000110 – ident: 10.1016/j.ejc.2010.07.011_br000090 – volume: vol. 46 year: 1993 ident: 10.1016/j.ejc.2010.07.011_br000015 – year: 1993 ident: 10.1016/j.ejc.2010.07.011_br000005 – volume: 6 start-page: 477 year: 1993 ident: 10.1016/j.ejc.2010.07.011_br000075 article-title: The lattice structure of flow in planar graphs publication-title: SIAM J. Discrete Math. doi: 10.1137/0406038 – volume: vol. 152 year: 1995 ident: 10.1016/j.ejc.2010.07.011_br000145 – volume: 18 start-page: 707 year: 2009 ident: 10.1016/j.ejc.2010.07.011_br000045 article-title: ULD-Lattices and Δ-Bonds, Combinatorics publication-title: Probab. Comput. doi: 10.1017/S0963548309010001 – volume: 9 start-page: 35 year: 2005 ident: 10.1016/j.ejc.2010.07.011_br000060 article-title: On the number of bases of bicircular matroids publication-title: Ann. Comb. doi: 10.1007/s00026-005-0239-x – volume: 11 year: 2004 ident: 10.1016/j.ejc.2010.07.011_br000040 article-title: Lattice structures from planar graphs publication-title: Electron. J. Combin. doi: 10.37236/1768 – volume: 38 start-page: 453 year: 2007 ident: 10.1016/j.ejc.2010.07.011_br000085 article-title: Alcoved polytopes. I publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-006-1294-3 – volume: 15 start-page: 385 year: 2006 ident: 10.1016/j.ejc.2010.07.011_br000065 article-title: On the complexity of computing the Tutte polynomial of bicircular matroids publication-title: Combin. Probab. Comput. doi: 10.1017/S0963548305007327 – volume: 20 start-page: 13 year: 2003 ident: 10.1016/j.ejc.2010.07.011_br000080 article-title: A distributive lattice on the set of perfect matchings of a plane bipartite graph publication-title: Order doi: 10.1023/A:1024483217354 – year: 1992 ident: 10.1016/j.ejc.2010.07.011_br000105 – volume: 3 start-page: 443 year: 1937 ident: 10.1016/j.ejc.2010.07.011_br000010 article-title: Rings of sets publication-title: Duke Math. J. doi: 10.1215/S0012-7094-37-00334-X – volume: 308 start-page: 4008 year: 2008 ident: 10.1016/j.ejc.2010.07.011_br000100 article-title: On cocircuit covers of bicircular matroids publication-title: Discrete Math. doi: 10.1016/j.disc.2007.06.048 – volume: 127 start-page: 315 year: 1972 ident: 10.1016/j.ejc.2010.07.011_br000125 article-title: On subgraphs as matroid cells publication-title: Math. Z. doi: 10.1007/BF01111390 – year: 1991 ident: 10.1016/j.ejc.2010.07.011_br000030 – ident: 10.1016/j.ejc.2010.07.011_br000035 – volume: 32 start-page: 450 year: 1977 ident: 10.1016/j.ejc.2010.07.011_br000140 article-title: On max flows with gains and pure min-cost flows publication-title: SIAM J. Appl. Math. doi: 10.1137/0132037 – year: 1963 ident: 10.1016/j.ejc.2010.07.011_br000025 – volume: 322 start-page: 409 year: 2004 ident: 10.1016/j.ejc.2010.07.011_br000115 article-title: The lattice structure of the set of domino tilings of a polygon publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2004.03.020 – volume: 1 start-page: 9 year: 1986 ident: 10.1016/j.ejc.2010.07.011_br000130 article-title: Two poset polytopes publication-title: Discrete Comput. Geom. doi: 10.1007/BF02187680 – volume: 97 start-page: 757 year: 1990 ident: 10.1016/j.ejc.2010.07.011_br000135 article-title: Conway’s tiling groups publication-title: Amer. Math. Monthly doi: 10.2307/2324578 – ident: 10.1016/j.ejc.2010.07.011_br000020 – volume: 10 start-page: 333 year: 2010 ident: 10.1016/j.ejc.2010.07.011_br000070 article-title: Tropical and ordinary convexity combined publication-title: Adv. Geom. doi: 10.1515/advgeom.2010.012 – year: 1986 ident: 10.1016/j.ejc.2010.07.011_br000120 article-title: Theory of linear and integer programming – volume: 23 start-page: 229 year: 1986 ident: 10.1016/j.ejc.2010.07.011_br000055 article-title: The duality conjecture in formal knot theory publication-title: Osaka J. Math. – volume: 91 start-page: 215 year: 2002 ident: 10.1016/j.ejc.2010.07.011_br000050 article-title: Fast and simple approximation schemes for generalized flow publication-title: Math. Program. doi: 10.1007/s101070100238 – volume: 2 start-page: 213 issue: 28 year: 1977 ident: 10.1016/j.ejc.2010.07.011_br000095 article-title: Bicircular matroids publication-title: Quart. J. Math. Oxford Ser. doi: 10.1093/qmath/28.2.213 |
SSID | ssj0011533 |
Score | 1.9504441 |
Snippet | A
D
-polyhedron is a polyhedron
P
such that if
x
,
y
are in
P
then so are their componentwise maximums and minimums. In other words, the point set of a
D... A D-polyhedron is a polyhedron P such that if x,y are in P then so are their componentwise maximums and minimums. In other words, the point set of a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 45 |
SubjectTerms | Combinatorial analysis Dominance Gain Graph theory Graphs Lattices Mathematical models Polyhedrons |
Title | Distributive lattices, polyhedra, and generalized flows |
URI | https://dx.doi.org/10.1016/j.ejc.2010.07.011 https://www.proquest.com/docview/875092094 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60XvQgPrE-Sg6epGnz2CSbY32UamkParG3ZbOZaEtJi62KHvztzuRRUNCDkBBIZpdlNjs7386LsdMIQg6B45tggWVyEQtTuaBMpPfA4VrogAKce32_M-A3Q2-4wi7KWBhyqyxkfy7TM2ldvGkW3GzORqPmXRbq5oeCTqgRxBAEoqhSCuIbni8tCaTPlDUJibq0bGY-XjDWhXdX0LBs-7e96YeUzrae9hbbLHRGo5UPa5utQLrDNnrLhKvzXRZcUgLcrHbVKxgTtSCftnndmE0n708QP6u6odLYeMyTTI8-IDaSyfRtvscG7av7i45Z1EQwtRt6CxN0ohztc1vxRKmEI8DBVRcjDEogjiwBroe3HdsB2NyhOGmBOodrRb4H2sFP-6ySTlM4YIYb-doLECBGoeChlYgYoZDyuJPYGntzq8wquSF1kTCc6lZMZOkZNpbIQEkMlFYgkYFVdrZsMsuzZfxFzEsWy29TLlGa_9XMKKdD4lIg-4ZKYfoyl4K0Hwfx6uH_ej5i6_mJMV3HrLJ4foETVDkWUY2tNj7tGltrXXc7fXp2bx-6texP-wLhI9b5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdgAGxFOUZwYm1NA8nMQZq0LV0sdCK3WzHOcCraq0alIQ_HrOeVQCCQakZEl8lnOOz_f5XoTcBuBT8CxXBwMMnbKQ6cIGoWN7BywqmfRUgPNw5HYn9GnqTCukXcbCKLfKQvbnMj2T1sWTZsHN5mo2az5noW6uz9QJNYIYhEA1qopaV0mt1et3R1tjglJpyrKEiqA0bmZuXjCXhYOXd2-Y5m_b0w9Bne0-nQOyX6iNWisf2SGpQHxE9obbnKvJMfEeVA7crHzVG2gLkSq3tqShrZaLj1cI16KhiTjUXvI807NPCLVosXxPTsik8zhud_WiLIIubd9JdZCRsKRLTUEjISL8Yh8XXohIKIIwMBjYDt5maHpgUkuFSjNUO2wjcB2QFr46JdV4GcMZ0ezAlY6HGDHwGfWNiIWIhoRDrciU2JtdJ0bJDS6LnOGqdMWCl85hc44M5IqB3PA4MrBO7rYkqzxhxl-Nacli_m3WOQr0v8i0cjo4rgZl4hAxLDcJZ0oBshCynv-v5xuy0x0PB3zQG_UvyG5-gKyuS1JN1xu4Qg0kDa6LP-wLerbW-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributive+lattices%2C+polyhedra%2C+and+generalized+flows&rft.jtitle=European+journal+of+combinatorics&rft.au=Felsner%2C+Stefan&rft.au=Knauer%2C+Kolja&rft.date=2011&rft.pub=Elsevier+Ltd&rft.issn=0195-6698&rft.eissn=1095-9971&rft.volume=32&rft.issue=1&rft.spage=45&rft.epage=59&rft_id=info:doi/10.1016%2Fj.ejc.2010.07.011&rft.externalDocID=S0195669810001071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6698&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6698&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6698&client=summon |