Training Provably Robust Models by Polyhedral Envelope Regularization
Training certifiable neural networks enables us to obtain models with robustness guarantees against adversarial attacks. In this work, we introduce a framework to obtain a provable adversarial-free region in the neighborhood of the input data by a polyhedral envelope, which yields more fine-grained...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 34; no. 6; pp. 3146 - 3160 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2021.3111892 |
Cover
Summary: | Training certifiable neural networks enables us to obtain models with robustness guarantees against adversarial attacks. In this work, we introduce a framework to obtain a provable adversarial-free region in the neighborhood of the input data by a polyhedral envelope, which yields more fine-grained certified robustness than existing methods. We further introduce polyhedral envelope regularization (PER) to encourage larger adversarial-free regions and thus improve the provable robustness of the models. We demonstrate the flexibility and effectiveness of our framework on standard benchmarks; it applies to networks of different architectures and with general activation functions. Compared with state of the art, PER has negligible computational overhead; it achieves better robustness guarantees and accuracy on the clean data in various settings. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2021.3111892 |