Training Provably Robust Models by Polyhedral Envelope Regularization

Training certifiable neural networks enables us to obtain models with robustness guarantees against adversarial attacks. In this work, we introduce a framework to obtain a provable adversarial-free region in the neighborhood of the input data by a polyhedral envelope, which yields more fine-grained...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 6; pp. 3146 - 3160
Main Authors Liu, Chen, Salzmann, Mathieu, Susstrunk, Sabine
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2021.3111892

Cover

Abstract Training certifiable neural networks enables us to obtain models with robustness guarantees against adversarial attacks. In this work, we introduce a framework to obtain a provable adversarial-free region in the neighborhood of the input data by a polyhedral envelope, which yields more fine-grained certified robustness than existing methods. We further introduce polyhedral envelope regularization (PER) to encourage larger adversarial-free regions and thus improve the provable robustness of the models. We demonstrate the flexibility and effectiveness of our framework on standard benchmarks; it applies to networks of different architectures and with general activation functions. Compared with state of the art, PER has negligible computational overhead; it achieves better robustness guarantees and accuracy on the clean data in various settings.
AbstractList Training certifiable neural networks enables us to obtain models with robustness guarantees against adversarial attacks. In this work, we introduce a framework to obtain a provable adversarial-free region in the neighborhood of the input data by a polyhedral envelope, which yields more fine-grained certified robustness than existing methods. We further introduce polyhedral envelope regularization (PER) to encourage larger adversarial-free regions and thus improve the provable robustness of the models. We demonstrate the flexibility and effectiveness of our framework on standard benchmarks; it applies to networks of different architectures and with general activation functions. Compared with state of the art, PER has negligible computational overhead; it achieves better robustness guarantees and accuracy on the clean data in various settings.Training certifiable neural networks enables us to obtain models with robustness guarantees against adversarial attacks. In this work, we introduce a framework to obtain a provable adversarial-free region in the neighborhood of the input data by a polyhedral envelope, which yields more fine-grained certified robustness than existing methods. We further introduce polyhedral envelope regularization (PER) to encourage larger adversarial-free regions and thus improve the provable robustness of the models. We demonstrate the flexibility and effectiveness of our framework on standard benchmarks; it applies to networks of different architectures and with general activation functions. Compared with state of the art, PER has negligible computational overhead; it achieves better robustness guarantees and accuracy on the clean data in various settings.
Training certifiable neural networks enables us to obtain models with robustness guarantees against adversarial attacks. In this work, we introduce a framework to obtain a provable adversarial-free region in the neighborhood of the input data by a polyhedral envelope, which yields more fine-grained certified robustness than existing methods. We further introduce polyhedral envelope regularization (PER) to encourage larger adversarial-free regions and thus improve the provable robustness of the models. We demonstrate the flexibility and effectiveness of our framework on standard benchmarks; it applies to networks of different architectures and with general activation functions. Compared with state of the art, PER has negligible computational overhead; it achieves better robustness guarantees and accuracy on the clean data in various settings.
Author Salzmann, Mathieu
Susstrunk, Sabine
Liu, Chen
Author_xml – sequence: 1
  givenname: Chen
  orcidid: 0000-0002-9585-3991
  surname: Liu
  fullname: Liu, Chen
  email: chen.liu@epfl.ch
  organization: School of Computer and Communication Sciences, École polytechnique fèdèrale de Lausanne (EPFL), Lausanne, Switzerland
– sequence: 2
  givenname: Mathieu
  orcidid: 0000-0002-8347-8637
  surname: Salzmann
  fullname: Salzmann, Mathieu
  organization: School of Computer and Communication Sciences, École polytechnique fèdèrale de Lausanne (EPFL), Lausanne, Switzerland
– sequence: 3
  givenname: Sabine
  orcidid: 0000-0002-0441-6068
  surname: Susstrunk
  fullname: Susstrunk, Sabine
  organization: School of Computer and Communication Sciences, École polytechnique fèdèrale de Lausanne (EPFL), Lausanne, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34699369$$D View this record in MEDLINE/PubMed
BookMark eNp9kctKxDAUhoMo3l9AQQpu3MyYnLRps5RhvMB4QUdwF9LmVCuZZkxaYXx6ozO6cGGySCDfdzg5_w5Zb12LhBwwOmSMytPpzc3kYQgU2JAzxgoJa2QbmIAB8KJY_73nT1tkP4RXGpegmUjlJtniqZCSC7lNxlOvm7Zpn5M77951aRfJvSv70CXXzqANSblI7pxdvKDx2ibj9h2tm2Nyj8-91b750F3j2j2yUWsbcH917pLH8_F0dDmY3F5cjc4mg4rLrBugqI02vK7LtOI0r6WupBBVLlIDWIIAwwFywwqj40tdFzmtMg3AtGYcGeW75GRZd-7dW4-hU7MmVGitbtH1QUEWFZoBzSJ6_Ad9db1vY3cKCmB53DKN1NGK6ssZGjX3zUz7hfoZUASKJVB5F4LHWlVN9_3nLg7OKkbVVxzqOw71FYdaxRFV-KP-VP9XOlxKDSL-CjIrBBWMfwLJH5VF
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TNNLS_2024_3350786
crossref_primary_10_1109_TPAMI_2023_3331087
crossref_primary_10_1109_TNNLS_2024_3360463
crossref_primary_10_1109_COMST_2023_3319492
Cites_doi 10.1109/CVPR.2018.00957
10.1145/3290354
10.1109/SP.2017.49
10.1109/CVPR.2017.17
10.1109/SP.2018.00058
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3111892
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 3160
ExternalDocumentID 34699369
10_1109_TNNLS_2021_3111892
9586061
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Hasler Foundation
  grantid: 16076
  funderid: 10.13039/501100003475
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c395t-e6fdad3ffb4c307f9ac966c764d2eb262d3227d18daac9ff870c5a221aa13e103
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 10:23:30 EDT 2025
Mon Jun 30 06:17:14 EDT 2025
Thu Jan 02 22:50:31 EST 2025
Wed Oct 01 00:45:01 EDT 2025
Thu Apr 24 22:54:56 EDT 2025
Wed Aug 27 02:25:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-e6fdad3ffb4c307f9ac966c764d2eb262d3227d18daac9ff870c5a221aa13e103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0441-6068
0000-0002-8347-8637
0000-0002-9585-3991
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/184111
PMID 34699369
PQID 2821717194
PQPubID 85436
PageCount 15
ParticipantIDs proquest_journals_2821717194
ieee_primary_9586061
proquest_miscellaneous_2587005205
pubmed_primary_34699369
crossref_primary_10_1109_TNNLS_2021_3111892
crossref_citationtrail_10_1109_TNNLS_2021_3111892
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref14
carmon (ref7) 2019
xiao (ref52) 2019
pang (ref33) 2020
ma (ref27) 2018
tramèr (ref44) 2020; 33
wang (ref45) 2018
hendrycks (ref21) 2019
dhillon (ref13) 2018
croce (ref10) 2019
raghunathan (ref36) 2018
zhang (ref3) 2018
zhang (ref55) 2018
wong (ref49) 2018
mao (ref29) 2019
wong (ref1) 2018
balunovi? (ref4) 2020
zhang (ref54) 2020
buckman (ref5) 2018
cheng (ref8) 2019
katz (ref22) 2017
ref6
lee (ref24) 2021
singh (ref41) 2019
liu (ref25) 2020; 33
ref40
he (ref20) 2018
gotmare (ref17) 2019
tjeng (ref43) 2019
pang (ref34) 2019
croce (ref12) 2020
singh (ref39) 2018
xiao (ref51) 2020
wu (ref50) 2020; 33
zhang (ref2) 2020
ref30
wong (ref48) 2018
madry (ref28) 2018
goodfellow (ref16) 2015
raghunathan (ref35) 2018
gowal (ref19) 2020
samangouei (ref38) 2018
liu (ref26) 2019
salman (ref37) 2019
neyshabur (ref31) 2017
weng (ref47) 2018
croce (ref11) 2020
cohen (ref9) 2019
kingma (ref23) 2014
zhang (ref53) 2019
gowal (ref18) 2018
szegedy (ref42) 2014
wang (ref46) 2018
neyshabur (ref32) 2014
References_xml – start-page: 5286
  year: 2018
  ident: ref1
  article-title: Provable defenses against adversarial examples via the convex outer adversarial polytope
  publication-title: Proc Int Conf Mach Learn
– year: 2019
  ident: ref41
  article-title: Harnessing the vulnerability of latent layers in adversarially trained models
  publication-title: arXiv 1905 05186
– start-page: 8410
  year: 2018
  ident: ref49
  article-title: Scaling provable adversarial defenses
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 2196
  year: 2020
  ident: ref11
  article-title: Minimally distorted adversarial examples with a fast adaptive boundary attack
  publication-title: Proc Int Conf Mach Learn
– start-page: 1
  year: 2018
  ident: ref38
  article-title: Defense-GAN: Protecting classifiers against adversarial attacks using generative models
  publication-title: Proc Int Conf Learn Represent
– start-page: 5286
  year: 2018
  ident: ref48
  article-title: Provable defenses against adversarial examples via the convex outer adversarial polytope
  publication-title: Proc Int Conf Mach Learn
– start-page: 1
  year: 2018
  ident: ref13
  article-title: Stochastic activation pruning for robust adversarial defense
  publication-title: Proc Int Conf Learn Represent
– start-page: 227
  year: 2019
  ident: ref53
  article-title: You only propagate once: Accelerating adversarial training via maximal principle
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2020
  ident: ref2
  article-title: Towards stable and efficient training of verifiably robust neural networks
  publication-title: Proc Int Conf Learn Represent
– start-page: 4970
  year: 2019
  ident: ref34
  article-title: Improving adversarial robustness via promoting ensemble diversity
  publication-title: Proc Int Conf Mach Learn
– start-page: 1
  year: 2019
  ident: ref43
  article-title: Evaluating robustness of neural networks with mixed integer programming
  publication-title: Proc Int Conf Learn Represent
– ident: ref14
  doi: 10.1109/CVPR.2018.00957
– start-page: 97
  year: 2017
  ident: ref22
  article-title: Reluplex: An efficient SMT solver for verifying deep neural networks
  publication-title: Proc Int Conf Comput Aided Verification
– start-page: 1
  year: 2018
  ident: ref27
  article-title: Characterizing adversarial subspaces using local intrinsic dimensionality
  publication-title: Proc Int Conf Learn Represent
– year: 2014
  ident: ref23
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– start-page: 1
  year: 2018
  ident: ref5
  article-title: Thermometer encoding: One hot way to resist adversarial examples
  publication-title: Proc Int Conf Learn Represent
– start-page: 11190
  year: 2019
  ident: ref7
  article-title: Unlabeled data improves adversarial robustness
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref40
  doi: 10.1145/3290354
– year: 2014
  ident: ref32
  article-title: In search of the real inductive bias: On the role of implicit regularization in deep learning
  publication-title: arXiv 1412 6614
– start-page: 1
  year: 2020
  ident: ref33
  article-title: Rethinking softmax cross-entropy loss for adversarial robustness
  publication-title: Proc Int Conf Learn Represent
– ident: ref6
  doi: 10.1109/SP.2017.49
– start-page: 1
  year: 2019
  ident: ref17
  article-title: A closer look at deep learning heuristics: Learning rate restarts, warmup and distillation
  publication-title: Proc Int Conf Learn Represent
– ident: ref30
  doi: 10.1109/CVPR.2017.17
– start-page: 2206
  year: 2020
  ident: ref12
  article-title: Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
  publication-title: Proc ICML
– year: 2018
  ident: ref18
  article-title: On the effectiveness of interval bound propagation for training verifiably robust models
  publication-title: arXiv 1810 12715
– start-page: 1310
  year: 2019
  ident: ref9
  article-title: Certified adversarial robustness via randomized smoothing
  publication-title: Proc Int Conf Mach Learn
– start-page: 478
  year: 2019
  ident: ref29
  article-title: Metric learning for adversarial robustness
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 6367
  year: 2018
  ident: ref46
  article-title: Efficient formal safety analysis of neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 10825
  year: 2018
  ident: ref39
  article-title: Fast and effective robustness certification
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref15
  doi: 10.1109/SP.2018.00058
– start-page: 1
  year: 2020
  ident: ref54
  article-title: Towards stable and efficient training of verifiably robust neural networks
  publication-title: Proc Int Conf Learn Represent
– start-page: 1
  year: 2020
  ident: ref51
  article-title: Enhancing adversarial defense by k-Winners-take-all
  publication-title: Proc Int Conf Learn Represent
– start-page: 1
  year: 2015
  ident: ref16
  article-title: Explaining and harnessing adversarial examples
  publication-title: Proc Int Conf Learn Represent
– start-page: 10877
  year: 2018
  ident: ref36
  article-title: Semidefinite relaxations for certifying robustness to adversarial examples
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 4072
  year: 2019
  ident: ref26
  article-title: On certifying non-uniform bounds against adversarial attacks
  publication-title: Proc Int Conf Mach Learn
– start-page: 5276
  year: 2018
  ident: ref47
  article-title: Towards fast computation of certified robustness for ReLU networks
  publication-title: Proc Int Conf Mach Learn
– volume: 33
  start-page: 1
  year: 2020
  ident: ref44
  article-title: On adaptive attacks to adversarial example defenses
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1
  year: 2021
  ident: ref24
  article-title: Loss landscape matters: Training certifiably robust models with favorable loss landscape
  publication-title: Proc ICLR
– start-page: 4944
  year: 2018
  ident: ref3
  article-title: Efficient neural network robustness certification with general activation functions
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 4944
  year: 2018
  ident: ref55
  article-title: Efficient neural network robustness certification with general activation functions
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 33
  start-page: 1
  year: 2020
  ident: ref50
  article-title: Adversarial weight perturbation helps robust generalization
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1
  year: 2019
  ident: ref8
  article-title: Query-efficient hard-label black-box attack: An optimization-based approach
  publication-title: Proc Int Conf Learn Represent
– start-page: 11292
  year: 2019
  ident: ref37
  article-title: Provably robust deep learning via adversarially trained smoothed classifiers
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 5947
  year: 2017
  ident: ref31
  article-title: Exploring generalization in deep learning
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 33
  start-page: 1
  year: 2020
  ident: ref25
  article-title: On the loss landscape of adversarial training: Identifying challenges and how to overcome them
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2018
  ident: ref45
  article-title: MixTrain: Scalable training of verifiably robust neural networks
  publication-title: arXiv 1811 02625
– start-page: 1
  year: 2018
  ident: ref35
  article-title: Certified defenses against adversarial examples
  publication-title: Proc Int Conf Learn Represent
– start-page: 1
  year: 2018
  ident: ref28
  article-title: Towards deep learning models resistant to adversarial attacks
  publication-title: Proc Int Conf Learn Represent
– start-page: 1
  year: 2019
  ident: ref52
  article-title: Training for faster adversarial robustness verification via inducing ReLU stability
  publication-title: Proc Int Conf Learn Represent
– start-page: 1
  year: 2014
  ident: ref42
  article-title: Intriguing properties of neural networks
  publication-title: Proc Int Conf Learn Represent
– start-page: 1
  year: 2018
  ident: ref20
  article-title: Decision boundary analysis of adversarial examples
  publication-title: Proc Int Conf Learn Represent
– year: 2020
  ident: ref19
  article-title: Uncovering the limits of adversarial training against norm-bounded adversarial examples
  publication-title: arXiv 2010 03593
– start-page: 1
  year: 2020
  ident: ref4
  article-title: Adversarial training and provable defenses: Bridging the gap
  publication-title: Proc Int Conf Learn Represent
– start-page: 2057
  year: 2019
  ident: ref10
  article-title: Provable robustness of ReLU networks via maximization of linear regions
  publication-title: Proc 22nd Int Conf Artif Intell Statist
– start-page: 2712
  year: 2019
  ident: ref21
  article-title: Using pre-training can improve model robustness and uncertainty
  publication-title: Proc Int Conf Mach Learn
SSID ssj0000605649
Score 2.4508858
Snippet Training certifiable neural networks enables us to obtain models with robustness guarantees against adversarial attacks. In this work, we introduce a framework...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3146
SubjectTerms Adversarial training
Benchmarks
Computational modeling
Neural networks
Predictive models
provable robustness
Recurrent neural networks
Regularization
Robustness
Robustness (mathematics)
Smoothing methods
Training
Title Training Provably Robust Models by Polyhedral Envelope Regularization
URI https://ieeexplore.ieee.org/document/9586061
https://www.ncbi.nlm.nih.gov/pubmed/34699369
https://www.proquest.com/docview/2821717194
https://www.proquest.com/docview/2587005205
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnrhQoAUCBRmJG2QbOw_HR4S2qiq6qspW2lvk-KFKXSXVboK0_HrGjhOpqFS9RYnjxI-xv8-e8QfwRZWIgrmxsZRJGWfUpDgOGhZbw4UuM4o3XLzzxaI4u87OV_lqD75NsTDGGO98Zmbu0u_l61b1bqnsROQl4m3kOs84F0Os1rSekiAuLzzaZbRgMUv5aoyRScTJcrH4-QvZIKNIUhFTC6dikyI1dHp296Ykr7Hyf7jpp53TA7gYf3jwNrmd9V09U3_-OcvxqSV6CS8C_iTfhw7zCvZM8xoORm0HEkz9EObLoB1BLjftb1mvd-SqrfttR5x62npL6h25bNe7G6M3mN-88b5Hhlx5bftNiO48guvT-fLHWRwkF2KViryLTWG11Km1dabQ-q2QCvmQ4kWmGXLwgmkcALimpZb4xFq0dpVLxqiUNDU0Sd_AftM25h0QlUpZaJwjrTsSz_BaS0xeiAwBTKIYj4COtV6pcB65k8VYV56XJKLyjVa5RqtCo0XwdXrnbjiN49HUh67Gp5ShsiM4Hhu3Cga7rZB5UmS2VGQRfJ4eo6m5_RPZmLbHNDkW1_kN5RG8HTrFlPfYl94__M0P8Nzp1A8-Zsew32168xHRTFd_8t34L1iK7cw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6axgO8MMa4BDYwEm-QLnaufkRTpwJtNY1O6lvk-CIkqgS1CVL363fsOJFAA_EWJY4TX479ffY5_gDeywJRcK5NKERUhAnVMY6DmoVG51wVCcUbNt55scxmN8mXdbo-gI9jLIzW2jmf6Ym9dHv5qpGdXSo752mBeBu5zoMUWUXeR2uNKyoRIvPM4V1GMxayOF8PUTIRP18tl_NvyAcZRZqKqJpbHZsYyaFVtPttUnIqK38HnG7iuTyCxfDLvb_Jj0nXVhN5-8dpjv9bpifw2CNQ8qnvMsdwoOuncDSoOxBv7CcwXXn1CHK1bX6JarMn103V7Vpi9dM2O1LtyVWz2X_Xaov5TWvnfaTJtVO33_r4zmdwczldXcxCL7oQypinbagzo4SKjakSifZvuJDIiGSeJYohC8-YwiEgV7RQAp8Yg_YuU8EYFYLGmkbxczism1q_BCJjITKFs6Sxh-LpvFICk2c8QQgTSZYHQIdaL6U_kdwKY2xKx0wiXrpGK22jlb7RAvgwvvOzP4_jn6lPbI2PKX1lB3A6NG7pTXZXIvekyG0pTwJ4Nz5GY7M7KKLWTYdpUiyu9RxKA3jRd4ox76Evvbr_m2_h4Wy1mJfzz8uvr-GRVa3vPc5O4bDddvoMsU1bvXFd-g7-9fEd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+Provably+Robust+Models+by+Polyhedral+Envelope+Regularization&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Liu%2C+Chen&rft.au=Salzmann%2C+Mathieu&rft.au=Susstrunk%2C+Sabine&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=34&rft.issue=6&rft.spage=3146&rft.epage=3160&rft_id=info:doi/10.1109%2FTNNLS.2021.3111892&rft_id=info%3Apmid%2F34699369&rft.externalDocID=9586061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon