High-speed underwater optical wireless communication using a blue GaN-based micro-LED

High-speed underwater optical wireless communication (UOWC) was achieved using an 80 μm blue-emitting GaN-based micro-LED. The micro-LED has a peak emission wavelength of ~440 nm and an underwater power attenuation of 1 dB/m in tap water. The -3 dB electrical-to-optical modulation bandwidth of the p...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 25; no. 2; p. 1193
Main Authors Tian, Pengfei, Liu, Xiaoyan, Yi, Suyu, Huang, Yuxin, Zhang, Shuailong, Zhou, Xiaolin, Hu, Laigui, Zheng, Lirong, Liu, Ran
Format Journal Article
LanguageEnglish
Published United States 23.01.2017
Online AccessGet full text
ISSN1094-4087
1094-4087
DOI10.1364/OE.25.001193

Cover

Abstract High-speed underwater optical wireless communication (UOWC) was achieved using an 80 μm blue-emitting GaN-based micro-LED. The micro-LED has a peak emission wavelength of ~440 nm and an underwater power attenuation of 1 dB/m in tap water. The -3 dB electrical-to-optical modulation bandwidth of the packaged micro-LED increases with increasing current and saturates at ~160 MHz. At an underwater distance of 0.6 m, 800 Mb/s data rate was achieved with a bit error rate (BER) of 1.3 × 10 , below the forward error correction (FEC) criteria. And we obtained 100 Mb/s data communication speed with a received light output power of -40 dBm and a BER of 1.9 × 10 , suggesting that UOWC with extended distance can be achieved. Through reflecting the light emission beam by mirrors within a water tank, we experimentally demonstrated a 200 Mb/s data rate with a BER of 3.0 × 10 at an underwater distance of 5.4 m.
AbstractList High-speed underwater optical wireless communication (UOWC) was achieved using an 80 μm blue-emitting GaN-based micro-LED. The micro-LED has a peak emission wavelength of ~440 nm and an underwater power attenuation of 1 dB/m in tap water. The -3 dB electrical-to-optical modulation bandwidth of the packaged micro-LED increases with increasing current and saturates at ~160 MHz. At an underwater distance of 0.6 m, 800 Mb/s data rate was achieved with a bit error rate (BER) of 1.3 × 10 , below the forward error correction (FEC) criteria. And we obtained 100 Mb/s data communication speed with a received light output power of -40 dBm and a BER of 1.9 × 10 , suggesting that UOWC with extended distance can be achieved. Through reflecting the light emission beam by mirrors within a water tank, we experimentally demonstrated a 200 Mb/s data rate with a BER of 3.0 × 10 at an underwater distance of 5.4 m.
High-speed underwater optical wireless communication (UOWC) was achieved using an 80 μm blue-emitting GaN-based micro-LED. The micro-LED has a peak emission wavelength of ~440 nm and an underwater power attenuation of 1 dB/m in tap water. The -3 dB electrical-to-optical modulation bandwidth of the packaged micro-LED increases with increasing current and saturates at ~160 MHz. At an underwater distance of 0.6 m, 800 Mb/s data rate was achieved with a bit error rate (BER) of 1.3 × 10-3, below the forward error correction (FEC) criteria. And we obtained 100 Mb/s data communication speed with a received light output power of -40 dBm and a BER of 1.9 × 10-3, suggesting that UOWC with extended distance can be achieved. Through reflecting the light emission beam by mirrors within a water tank, we experimentally demonstrated a 200 Mb/s data rate with a BER of 3.0 × 10-6 at an underwater distance of 5.4 m.High-speed underwater optical wireless communication (UOWC) was achieved using an 80 μm blue-emitting GaN-based micro-LED. The micro-LED has a peak emission wavelength of ~440 nm and an underwater power attenuation of 1 dB/m in tap water. The -3 dB electrical-to-optical modulation bandwidth of the packaged micro-LED increases with increasing current and saturates at ~160 MHz. At an underwater distance of 0.6 m, 800 Mb/s data rate was achieved with a bit error rate (BER) of 1.3 × 10-3, below the forward error correction (FEC) criteria. And we obtained 100 Mb/s data communication speed with a received light output power of -40 dBm and a BER of 1.9 × 10-3, suggesting that UOWC with extended distance can be achieved. Through reflecting the light emission beam by mirrors within a water tank, we experimentally demonstrated a 200 Mb/s data rate with a BER of 3.0 × 10-6 at an underwater distance of 5.4 m.
Author Zhou, Xiaolin
Tian, Pengfei
Zheng, Lirong
Yi, Suyu
Liu, Ran
Hu, Laigui
Liu, Xiaoyan
Huang, Yuxin
Zhang, Shuailong
Author_xml – sequence: 1
  givenname: Pengfei
  surname: Tian
  fullname: Tian, Pengfei
– sequence: 2
  givenname: Xiaoyan
  surname: Liu
  fullname: Liu, Xiaoyan
– sequence: 3
  givenname: Suyu
  surname: Yi
  fullname: Yi, Suyu
– sequence: 4
  givenname: Yuxin
  surname: Huang
  fullname: Huang, Yuxin
– sequence: 5
  givenname: Shuailong
  surname: Zhang
  fullname: Zhang, Shuailong
– sequence: 6
  givenname: Xiaolin
  surname: Zhou
  fullname: Zhou, Xiaolin
– sequence: 7
  givenname: Laigui
  surname: Hu
  fullname: Hu, Laigui
– sequence: 8
  givenname: Lirong
  surname: Zheng
  fullname: Zheng, Lirong
– sequence: 9
  givenname: Ran
  surname: Liu
  fullname: Liu, Ran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28158004$$D View this record in MEDLINE/PubMed
BookMark eNptkEtPwzAQhC1URB9w44x85ECKHdt5HFEJLVJFL_RsOc6mGOWFnaji32NoQQixl12Nvh1pZopGTdsAQpeUzCmL-O0mm4diTgilKTtBE0pSHnCSxKNf9xhNnXv1DI_T-AyNw4SKhBA-QduV2b0ErgMo8NAUYPeqB4vbrjdaVXhvLFTgHNZtXQ-N13rTNnhwptlhhfNqALxUT0GunDeojbZtsM7uz9FpqSoHF8c9Q9uH7HmxCtab5ePibh1oloo-AFGIMMopYzGnOlYl-EBlUpLE60QoIQqAkAudkiJWgkVQ5JoRqsuQJBo0m6Hrg29n27cBXC9r4zRUlWqgHZykSST80Ih79OqIDnkNheysqZV9l99VeODmAPgMzlkofxBK5GfTcpPJUMhD0x4P_-Da9F_t9FaZ6v-nD2Evf9c
CitedBy_id crossref_primary_10_1364_OE_520809
crossref_primary_10_1016_j_optcom_2020_126199
crossref_primary_10_1063_5_0125103
crossref_primary_10_1109_JLT_2023_3279700
crossref_primary_10_3390_nano12040627
crossref_primary_10_1109_JPHOT_2021_3076895
crossref_primary_10_1039_D2TC02122F
crossref_primary_10_1109_JPHOT_2017_2775648
crossref_primary_10_1021_acsphotonics_3c00512
crossref_primary_10_1515_joc_2020_0297
crossref_primary_10_1109_COMST_2021_3111984
crossref_primary_10_7567_1347_4065_ab124a
crossref_primary_10_1109_JPHOT_2021_3092878
crossref_primary_10_1364_AO_399192
crossref_primary_10_1364_OE_26_019259
crossref_primary_10_1364_OL_487747
crossref_primary_10_1109_JPHOT_2019_2910090
crossref_primary_10_1364_OE_25_021509
crossref_primary_10_1002_dac_5298
crossref_primary_10_1021_acs_cgd_1c01508
crossref_primary_10_1364_AO_393653
crossref_primary_10_1364_AO_57_008478
crossref_primary_10_3390_jmse11030547
crossref_primary_10_1049_cje_2021_08_012
crossref_primary_10_1364_OE_434387
crossref_primary_10_1088_1361_6463_abfef9
crossref_primary_10_1016_j_suscom_2022_100815
crossref_primary_10_1002_adom_202002211
crossref_primary_10_3390_app12157431
crossref_primary_10_1007_s11082_023_04742_8
crossref_primary_10_1515_joc_2022_0185
crossref_primary_10_1109_JPHOT_2022_3169818
crossref_primary_10_1109_TED_2021_3073879
crossref_primary_10_3390_app12189266
crossref_primary_10_1039_C9TC04371C
crossref_primary_10_3390_photonics10070811
crossref_primary_10_1038_s41598_020_72720_1
crossref_primary_10_1364_OE_25_027937
crossref_primary_10_1364_OL_393664
crossref_primary_10_3390_app10207384
crossref_primary_10_1016_j_pquantelec_2022_100398
crossref_primary_10_1007_s11082_023_05112_0
crossref_primary_10_1007_s11082_020_02529_9
crossref_primary_10_7498_aps_73_20240860
crossref_primary_10_1155_2022_5012875
crossref_primary_10_1109_JLT_2022_3188625
crossref_primary_10_3390_nano11113045
crossref_primary_10_1016_j_optlastec_2019_05_013
crossref_primary_10_1109_JPHOT_2020_2985205
crossref_primary_10_1016_j_optlaseng_2020_106290
crossref_primary_10_1109_JLT_2023_3272002
crossref_primary_10_3390_s18113710
crossref_primary_10_1364_OL_452696
crossref_primary_10_1016_j_mejo_2020_104971
crossref_primary_10_1109_JPHOT_2019_2962184
crossref_primary_10_1021_acsami_2c13746
crossref_primary_10_1016_j_jallcom_2018_09_287
crossref_primary_10_1016_j_optmat_2021_110860
crossref_primary_10_7567_APEX_11_044101
crossref_primary_10_1016_j_ijleo_2021_167638
crossref_primary_10_1109_ACCESS_2022_3188247
crossref_primary_10_1364_OE_462233
crossref_primary_10_1021_acsphotonics_3c00440
crossref_primary_10_1109_JPHOT_2022_3145188
crossref_primary_10_1109_ACCESS_2021_3067878
crossref_primary_10_1364_OL_423311
crossref_primary_10_1364_PRJ_424528
crossref_primary_10_1109_JPHOT_2019_2928827
crossref_primary_10_3390_jmse11040772
crossref_primary_10_1007_s11082_021_03141_1
crossref_primary_10_1016_j_jallcom_2021_159214
crossref_primary_10_3390_jmse11010048
crossref_primary_10_1364_OE_26_034060
crossref_primary_10_1364_OE_475548
crossref_primary_10_1038_s41598_019_45125_y
crossref_primary_10_1109_ACCESS_2024_3353623
crossref_primary_10_1515_joc_2022_0207
crossref_primary_10_1016_j_optcom_2018_04_026
crossref_primary_10_1007_s11082_022_03841_2
crossref_primary_10_1109_JLT_2024_3474009
crossref_primary_10_1364_OE_25_017971
crossref_primary_10_1515_joc_2020_0139
crossref_primary_10_1016_j_jlumin_2022_119005
crossref_primary_10_1364_OE_531860
crossref_primary_10_3390_app14062493
crossref_primary_10_1109_ACCESS_2019_2927054
crossref_primary_10_1007_s11082_023_06192_8
crossref_primary_10_1109_JPHOT_2022_3216599
crossref_primary_10_1109_JEDS_2020_2995710
crossref_primary_10_1038_s44172_022_00016_5
crossref_primary_10_1364_OE_416117
crossref_primary_10_1109_ACCESS_2020_3020947
crossref_primary_10_1109_TVT_2023_3280121
crossref_primary_10_1364_OE_27_012171
crossref_primary_10_1364_OE_483397
crossref_primary_10_1109_JPHOT_2021_3075701
crossref_primary_10_1515_joc_2021_0050
crossref_primary_10_1007_s12596_024_02435_3
crossref_primary_10_1364_OE_439990
crossref_primary_10_1016_j_pquantelec_2020_100263
crossref_primary_10_1016_j_energy_2022_125087
crossref_primary_10_3390_nano11123304
crossref_primary_10_1364_PRJ_438275
crossref_primary_10_35848_1882_0786_ac0fb8
crossref_primary_10_3390_photonics6020063
crossref_primary_10_3390_s20082261
crossref_primary_10_1364_OE_469132
crossref_primary_10_1002_adfm_202302872
crossref_primary_10_1364_OE_509955
crossref_primary_10_1109_JLT_2022_3225335
crossref_primary_10_1364_OE_419877
crossref_primary_10_1109_JPHOT_2019_2959656
crossref_primary_10_1109_JPHOT_2017_2727505
crossref_primary_10_1109_JPHOT_2019_2936833
crossref_primary_10_1007_s11128_025_04664_2
crossref_primary_10_1021_acsphotonics_9b00799
crossref_primary_10_1016_j_pquantelec_2020_100274
crossref_primary_10_7567_JJAP_57_08PA06
crossref_primary_10_1364_OE_555238
crossref_primary_10_1364_PRJ_431095
crossref_primary_10_1088_1361_6463_ab97dc
crossref_primary_10_1364_AO_452695
crossref_primary_10_1364_AO_388536
crossref_primary_10_1364_OE_494311
crossref_primary_10_1088_2040_8986_aaa36e
crossref_primary_10_1002_lpor_202000133
crossref_primary_10_1016_j_optcom_2018_10_037
crossref_primary_10_1016_j_optcom_2019_01_031
crossref_primary_10_1364_OE_475537
crossref_primary_10_1088_1361_6528_aaf8de
crossref_primary_10_1016_j_physe_2025_116193
Cites_doi 10.1063/1.4769835
10.1016/j.optcom.2016.02.044
10.1109/JLT.2011.2175090
10.1063/1.4862298
10.1364/OE.24.009794
10.4031/MTSJ.44.4.6
10.1364/OE.23.023302
10.1109/JQE.2004.837005
10.1364/OE.23.001558
10.1364/OE.24.008097
10.1364/OE.24.025502
10.1109/JLT.2013.2246138
10.1109/JPHOT.2012.2210397
10.1109/LPT.2016.2581318
10.1364/OE.23.009329
10.7567/JJAP.53.100208
10.1109/LPT.2013.2297621
10.1088/0268-1242/31/4/045005
10.1063/1.3276156
10.1109/ACCESS.2016.2552538
10.1063/1.4891233
10.1364/OE.23.020743
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.25.001193
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 28158004
10_1364_OE_25_001193
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
7X8
ID FETCH-LOGICAL-c395t-e5d526b133741c7afe364f8f08d5205a55dee245c90d7a536edbc301cf208cec3
ISSN 1094-4087
IngestDate Fri Jul 11 11:47:00 EDT 2025
Thu Apr 03 07:03:34 EDT 2025
Thu Apr 24 22:51:17 EDT 2025
Tue Jul 01 03:29:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://opg.optica.org/policies/opg-tdm-policy.json
https://doi.org/10.1364/OA_License_v1#VOR-OA
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-e5d526b133741c7afe364f8f08d5205a55dee245c90d7a536edbc301cf208cec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1364/oe.25.001193
PMID 28158004
PQID 1865555164
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1865555164
pubmed_primary_28158004
crossref_primary_10_1364_OE_25_001193
crossref_citationtrail_10_1364_OE_25_001193
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-23
PublicationDateYYYYMMDD 2017-01-23
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2017
References Oubei (oe-25-2-1193-R4) 2015; 23
Trindade (oe-25-2-1193-R21) 2015; 23
Yang (oe-25-2-1193-R22) 2014; 116
Gong (oe-25-2-1193-R19) 2010; 107
Nakamura (oe-25-2-1193-R5) 2015; 23
Zabelin (oe-25-2-1193-R18) 2004; 40
Doniec (oe-25-2-1193-R2) 2010; 44
Xu (oe-25-2-1193-R13) 2016; 24
Oubei (oe-25-2-1193-R7) 2015; 23
Ferreira (oe-25-2-1193-R11) 2016; 28
Kaushal (oe-25-2-1193-R1) 2016; 4
Baghdady (oe-25-2-1193-R6) 2016; 24
Tsonev (oe-25-2-1193-R12) 2014; 26
Hahn (oe-25-2-1193-R8) 2014; 53
Tian (oe-25-2-1193-R15) 2014; 115
Xu (oe-25-2-1193-R3) 2016; 369
Khalid (oe-25-2-1193-R9) 2012; 4
Zhang (oe-25-2-1193-R16) 2013; 31
Tian (oe-25-2-1193-R20) 2016; 31
Shen (oe-25-2-1193-R14) 2016; 24
Tian (oe-25-2-1193-R17) 2012; 101
McKendry (oe-25-2-1193-R10) 2012; 30
References_xml – volume: 101
  start-page: 231110
  year: 2012
  ident: oe-25-2-1193-R17
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4769835
– volume: 369
  start-page: 100
  year: 2016
  ident: oe-25-2-1193-R3
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2016.02.044
– volume: 30
  start-page: 61
  year: 2012
  ident: oe-25-2-1193-R10
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2011.2175090
– volume: 115
  start-page: 033112
  year: 2014
  ident: oe-25-2-1193-R15
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4862298
– volume: 24
  start-page: 9794
  year: 2016
  ident: oe-25-2-1193-R6
  publication-title: Opt. Express
  doi: 10.1364/OE.24.009794
– volume: 44
  start-page: 55
  year: 2010
  ident: oe-25-2-1193-R2
  publication-title: Mar. Technol. Soc. J.
  doi: 10.4031/MTSJ.44.4.6
– volume: 23
  start-page: 23302
  year: 2015
  ident: oe-25-2-1193-R4
  publication-title: Opt. Express
  doi: 10.1364/OE.23.023302
– volume: 40
  start-page: 1675
  year: 2004
  ident: oe-25-2-1193-R18
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.2004.837005
– volume: 23
  start-page: 1558
  year: 2015
  ident: oe-25-2-1193-R5
  publication-title: Opt. Express
  doi: 10.1364/OE.23.001558
– volume: 24
  start-page: 8097
  year: 2016
  ident: oe-25-2-1193-R13
  publication-title: Opt. Express
  doi: 10.1364/OE.24.008097
– volume: 24
  start-page: 25502
  year: 2016
  ident: oe-25-2-1193-R14
  publication-title: Opt. Express
  doi: 10.1364/OE.24.025502
– volume: 31
  start-page: 1211
  year: 2013
  ident: oe-25-2-1193-R16
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2013.2246138
– volume: 4
  start-page: 1465
  year: 2012
  ident: oe-25-2-1193-R9
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2012.2210397
– volume: 28
  start-page: 2023
  year: 2016
  ident: oe-25-2-1193-R11
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2016.2581318
– volume: 23
  start-page: 9329
  year: 2015
  ident: oe-25-2-1193-R21
  publication-title: Opt. Express
  doi: 10.1364/OE.23.009329
– volume: 53
  start-page: 100208
  year: 2014
  ident: oe-25-2-1193-R8
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.53.100208
– volume: 26
  start-page: 637
  year: 2014
  ident: oe-25-2-1193-R12
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2013.2297621
– volume: 31
  start-page: 045005
  year: 2016
  ident: oe-25-2-1193-R20
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/31/4/045005
– volume: 107
  start-page: 013103
  year: 2010
  ident: oe-25-2-1193-R19
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3276156
– volume: 4
  start-page: 1518
  year: 2016
  ident: oe-25-2-1193-R1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2552538
– volume: 116
  start-page: 044512
  year: 2014
  ident: oe-25-2-1193-R22
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4891233
– volume: 23
  start-page: 20743
  year: 2015
  ident: oe-25-2-1193-R7
  publication-title: Opt. Express
  doi: 10.1364/OE.23.020743
SSID ssj0014797
Score 2.5922048
Snippet High-speed underwater optical wireless communication (UOWC) was achieved using an 80 μm blue-emitting GaN-based micro-LED. The micro-LED has a peak emission...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1193
Title High-speed underwater optical wireless communication using a blue GaN-based micro-LED
URI https://www.ncbi.nlm.nih.gov/pubmed/28158004
https://www.proquest.com/docview/1865555164
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbx2Avo_vO1hUNtqegztaHPx5LyShja_bQQPpkJFkegdQxTczaPexv3-kjdrKl0O3FGCHLtu7H6XT63R1C7xmIVZlEEhmXFWxQ0ojkMrUlAY2A5U8p4XJ3fj1LTif881RMe56uiy5ZqSP9c2dcyf9IFdpArjZK9h8k2w0KDXAP8oUrSBiud5KxJWmQZQMLkCtne_VD2pSHi8b7p20W4rlVZHozCGTYOu-AHKp5CwiRZ8QuZOXw0jLzyJegx4K5Om5cFmdz3XRMDUfZ9V7Tb6b-XplZx-mZtbZ1OpOLmx5zFzNP_rlpewQFH_VFex3yfge3Q2z5qcRHBgdNCftCkG1YLc2OtqBefVxzgBHd0JVx7Gsj_qXEWcJh5sejIyrcQZHvtp0r-481rGMWugO6hBfjUUFF4Z--jx7QFCwrS-z8NerOmHjqS--sPzqERcDTHzffvW2w3LILcdbI-T56HLYR-Nhj4gm6Z-qn6KGj8-rlMzTpkYF7ZOCADLxGBt5CBnbIwBJbZOAOGbhDxnM0-TQ6PzkloYAG0SwXK2JEKWiiYsbAbtSprAz8XJVVUQbtkZBClMZQLnQelakULDGl0qDxdUWjTBvNXqC9elGbVwirJI_yiHMFJiyvyjiXjMkyM0rCUIbGAzRcz1KhQ3Z5W-RkXuySyAB96Ho3PqvKLf3erSe8ALVnz7JkbRbtsohtQLU95OUD9NJLohuJZrGAfRB_fce3vEGPeoQfoL3VVWvegqm5UofORXPocPMb3y98Vw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-speed+underwater+optical+wireless+communication+using+a+blue+GaN-based+micro-LED&rft.jtitle=Optics+express&rft.au=Tian%2C+Pengfei&rft.au=Liu%2C+Xiaoyan&rft.au=Yi%2C+Suyu&rft.au=Huang%2C+Yuxin&rft.date=2017-01-23&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=25&rft.issue=2&rft.spage=1193&rft_id=info:doi/10.1364%2FOE.25.001193&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_25_001193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon