High-speed underwater optical wireless communication using a blue GaN-based micro-LED
High-speed underwater optical wireless communication (UOWC) was achieved using an 80 μm blue-emitting GaN-based micro-LED. The micro-LED has a peak emission wavelength of ~440 nm and an underwater power attenuation of 1 dB/m in tap water. The -3 dB electrical-to-optical modulation bandwidth of the p...
Saved in:
Published in | Optics express Vol. 25; no. 2; p. 1193 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
23.01.2017
|
Online Access | Get full text |
ISSN | 1094-4087 1094-4087 |
DOI | 10.1364/OE.25.001193 |
Cover
Abstract | High-speed underwater optical wireless communication (UOWC) was achieved using an 80 μm blue-emitting GaN-based micro-LED. The micro-LED has a peak emission wavelength of ~440 nm and an underwater power attenuation of 1 dB/m in tap water. The -3 dB electrical-to-optical modulation bandwidth of the packaged micro-LED increases with increasing current and saturates at ~160 MHz. At an underwater distance of 0.6 m, 800 Mb/s data rate was achieved with a bit error rate (BER) of 1.3 × 10
, below the forward error correction (FEC) criteria. And we obtained 100 Mb/s data communication speed with a received light output power of -40 dBm and a BER of 1.9 × 10
, suggesting that UOWC with extended distance can be achieved. Through reflecting the light emission beam by mirrors within a water tank, we experimentally demonstrated a 200 Mb/s data rate with a BER of 3.0 × 10
at an underwater distance of 5.4 m. |
---|---|
AbstractList | High-speed underwater optical wireless communication (UOWC) was achieved using an 80 μm blue-emitting GaN-based micro-LED. The micro-LED has a peak emission wavelength of ~440 nm and an underwater power attenuation of 1 dB/m in tap water. The -3 dB electrical-to-optical modulation bandwidth of the packaged micro-LED increases with increasing current and saturates at ~160 MHz. At an underwater distance of 0.6 m, 800 Mb/s data rate was achieved with a bit error rate (BER) of 1.3 × 10
, below the forward error correction (FEC) criteria. And we obtained 100 Mb/s data communication speed with a received light output power of -40 dBm and a BER of 1.9 × 10
, suggesting that UOWC with extended distance can be achieved. Through reflecting the light emission beam by mirrors within a water tank, we experimentally demonstrated a 200 Mb/s data rate with a BER of 3.0 × 10
at an underwater distance of 5.4 m. High-speed underwater optical wireless communication (UOWC) was achieved using an 80 μm blue-emitting GaN-based micro-LED. The micro-LED has a peak emission wavelength of ~440 nm and an underwater power attenuation of 1 dB/m in tap water. The -3 dB electrical-to-optical modulation bandwidth of the packaged micro-LED increases with increasing current and saturates at ~160 MHz. At an underwater distance of 0.6 m, 800 Mb/s data rate was achieved with a bit error rate (BER) of 1.3 × 10-3, below the forward error correction (FEC) criteria. And we obtained 100 Mb/s data communication speed with a received light output power of -40 dBm and a BER of 1.9 × 10-3, suggesting that UOWC with extended distance can be achieved. Through reflecting the light emission beam by mirrors within a water tank, we experimentally demonstrated a 200 Mb/s data rate with a BER of 3.0 × 10-6 at an underwater distance of 5.4 m.High-speed underwater optical wireless communication (UOWC) was achieved using an 80 μm blue-emitting GaN-based micro-LED. The micro-LED has a peak emission wavelength of ~440 nm and an underwater power attenuation of 1 dB/m in tap water. The -3 dB electrical-to-optical modulation bandwidth of the packaged micro-LED increases with increasing current and saturates at ~160 MHz. At an underwater distance of 0.6 m, 800 Mb/s data rate was achieved with a bit error rate (BER) of 1.3 × 10-3, below the forward error correction (FEC) criteria. And we obtained 100 Mb/s data communication speed with a received light output power of -40 dBm and a BER of 1.9 × 10-3, suggesting that UOWC with extended distance can be achieved. Through reflecting the light emission beam by mirrors within a water tank, we experimentally demonstrated a 200 Mb/s data rate with a BER of 3.0 × 10-6 at an underwater distance of 5.4 m. |
Author | Zhou, Xiaolin Tian, Pengfei Zheng, Lirong Yi, Suyu Liu, Ran Hu, Laigui Liu, Xiaoyan Huang, Yuxin Zhang, Shuailong |
Author_xml | – sequence: 1 givenname: Pengfei surname: Tian fullname: Tian, Pengfei – sequence: 2 givenname: Xiaoyan surname: Liu fullname: Liu, Xiaoyan – sequence: 3 givenname: Suyu surname: Yi fullname: Yi, Suyu – sequence: 4 givenname: Yuxin surname: Huang fullname: Huang, Yuxin – sequence: 5 givenname: Shuailong surname: Zhang fullname: Zhang, Shuailong – sequence: 6 givenname: Xiaolin surname: Zhou fullname: Zhou, Xiaolin – sequence: 7 givenname: Laigui surname: Hu fullname: Hu, Laigui – sequence: 8 givenname: Lirong surname: Zheng fullname: Zheng, Lirong – sequence: 9 givenname: Ran surname: Liu fullname: Liu, Ran |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28158004$$D View this record in MEDLINE/PubMed |
BookMark | eNptkEtPwzAQhC1URB9w44x85ECKHdt5HFEJLVJFL_RsOc6mGOWFnaji32NoQQixl12Nvh1pZopGTdsAQpeUzCmL-O0mm4diTgilKTtBE0pSHnCSxKNf9xhNnXv1DI_T-AyNw4SKhBA-QduV2b0ErgMo8NAUYPeqB4vbrjdaVXhvLFTgHNZtXQ-N13rTNnhwptlhhfNqALxUT0GunDeojbZtsM7uz9FpqSoHF8c9Q9uH7HmxCtab5ePibh1oloo-AFGIMMopYzGnOlYl-EBlUpLE60QoIQqAkAudkiJWgkVQ5JoRqsuQJBo0m6Hrg29n27cBXC9r4zRUlWqgHZykSST80Ih79OqIDnkNheysqZV9l99VeODmAPgMzlkofxBK5GfTcpPJUMhD0x4P_-Da9F_t9FaZ6v-nD2Evf9c |
CitedBy_id | crossref_primary_10_1364_OE_520809 crossref_primary_10_1016_j_optcom_2020_126199 crossref_primary_10_1063_5_0125103 crossref_primary_10_1109_JLT_2023_3279700 crossref_primary_10_3390_nano12040627 crossref_primary_10_1109_JPHOT_2021_3076895 crossref_primary_10_1039_D2TC02122F crossref_primary_10_1109_JPHOT_2017_2775648 crossref_primary_10_1021_acsphotonics_3c00512 crossref_primary_10_1515_joc_2020_0297 crossref_primary_10_1109_COMST_2021_3111984 crossref_primary_10_7567_1347_4065_ab124a crossref_primary_10_1109_JPHOT_2021_3092878 crossref_primary_10_1364_AO_399192 crossref_primary_10_1364_OE_26_019259 crossref_primary_10_1364_OL_487747 crossref_primary_10_1109_JPHOT_2019_2910090 crossref_primary_10_1364_OE_25_021509 crossref_primary_10_1002_dac_5298 crossref_primary_10_1021_acs_cgd_1c01508 crossref_primary_10_1364_AO_393653 crossref_primary_10_1364_AO_57_008478 crossref_primary_10_3390_jmse11030547 crossref_primary_10_1049_cje_2021_08_012 crossref_primary_10_1364_OE_434387 crossref_primary_10_1088_1361_6463_abfef9 crossref_primary_10_1016_j_suscom_2022_100815 crossref_primary_10_1002_adom_202002211 crossref_primary_10_3390_app12157431 crossref_primary_10_1007_s11082_023_04742_8 crossref_primary_10_1515_joc_2022_0185 crossref_primary_10_1109_JPHOT_2022_3169818 crossref_primary_10_1109_TED_2021_3073879 crossref_primary_10_3390_app12189266 crossref_primary_10_1039_C9TC04371C crossref_primary_10_3390_photonics10070811 crossref_primary_10_1038_s41598_020_72720_1 crossref_primary_10_1364_OE_25_027937 crossref_primary_10_1364_OL_393664 crossref_primary_10_3390_app10207384 crossref_primary_10_1016_j_pquantelec_2022_100398 crossref_primary_10_1007_s11082_023_05112_0 crossref_primary_10_1007_s11082_020_02529_9 crossref_primary_10_7498_aps_73_20240860 crossref_primary_10_1155_2022_5012875 crossref_primary_10_1109_JLT_2022_3188625 crossref_primary_10_3390_nano11113045 crossref_primary_10_1016_j_optlastec_2019_05_013 crossref_primary_10_1109_JPHOT_2020_2985205 crossref_primary_10_1016_j_optlaseng_2020_106290 crossref_primary_10_1109_JLT_2023_3272002 crossref_primary_10_3390_s18113710 crossref_primary_10_1364_OL_452696 crossref_primary_10_1016_j_mejo_2020_104971 crossref_primary_10_1109_JPHOT_2019_2962184 crossref_primary_10_1021_acsami_2c13746 crossref_primary_10_1016_j_jallcom_2018_09_287 crossref_primary_10_1016_j_optmat_2021_110860 crossref_primary_10_7567_APEX_11_044101 crossref_primary_10_1016_j_ijleo_2021_167638 crossref_primary_10_1109_ACCESS_2022_3188247 crossref_primary_10_1364_OE_462233 crossref_primary_10_1021_acsphotonics_3c00440 crossref_primary_10_1109_JPHOT_2022_3145188 crossref_primary_10_1109_ACCESS_2021_3067878 crossref_primary_10_1364_OL_423311 crossref_primary_10_1364_PRJ_424528 crossref_primary_10_1109_JPHOT_2019_2928827 crossref_primary_10_3390_jmse11040772 crossref_primary_10_1007_s11082_021_03141_1 crossref_primary_10_1016_j_jallcom_2021_159214 crossref_primary_10_3390_jmse11010048 crossref_primary_10_1364_OE_26_034060 crossref_primary_10_1364_OE_475548 crossref_primary_10_1038_s41598_019_45125_y crossref_primary_10_1109_ACCESS_2024_3353623 crossref_primary_10_1515_joc_2022_0207 crossref_primary_10_1016_j_optcom_2018_04_026 crossref_primary_10_1007_s11082_022_03841_2 crossref_primary_10_1109_JLT_2024_3474009 crossref_primary_10_1364_OE_25_017971 crossref_primary_10_1515_joc_2020_0139 crossref_primary_10_1016_j_jlumin_2022_119005 crossref_primary_10_1364_OE_531860 crossref_primary_10_3390_app14062493 crossref_primary_10_1109_ACCESS_2019_2927054 crossref_primary_10_1007_s11082_023_06192_8 crossref_primary_10_1109_JPHOT_2022_3216599 crossref_primary_10_1109_JEDS_2020_2995710 crossref_primary_10_1038_s44172_022_00016_5 crossref_primary_10_1364_OE_416117 crossref_primary_10_1109_ACCESS_2020_3020947 crossref_primary_10_1109_TVT_2023_3280121 crossref_primary_10_1364_OE_27_012171 crossref_primary_10_1364_OE_483397 crossref_primary_10_1109_JPHOT_2021_3075701 crossref_primary_10_1515_joc_2021_0050 crossref_primary_10_1007_s12596_024_02435_3 crossref_primary_10_1364_OE_439990 crossref_primary_10_1016_j_pquantelec_2020_100263 crossref_primary_10_1016_j_energy_2022_125087 crossref_primary_10_3390_nano11123304 crossref_primary_10_1364_PRJ_438275 crossref_primary_10_35848_1882_0786_ac0fb8 crossref_primary_10_3390_photonics6020063 crossref_primary_10_3390_s20082261 crossref_primary_10_1364_OE_469132 crossref_primary_10_1002_adfm_202302872 crossref_primary_10_1364_OE_509955 crossref_primary_10_1109_JLT_2022_3225335 crossref_primary_10_1364_OE_419877 crossref_primary_10_1109_JPHOT_2019_2959656 crossref_primary_10_1109_JPHOT_2017_2727505 crossref_primary_10_1109_JPHOT_2019_2936833 crossref_primary_10_1007_s11128_025_04664_2 crossref_primary_10_1021_acsphotonics_9b00799 crossref_primary_10_1016_j_pquantelec_2020_100274 crossref_primary_10_7567_JJAP_57_08PA06 crossref_primary_10_1364_OE_555238 crossref_primary_10_1364_PRJ_431095 crossref_primary_10_1088_1361_6463_ab97dc crossref_primary_10_1364_AO_452695 crossref_primary_10_1364_AO_388536 crossref_primary_10_1364_OE_494311 crossref_primary_10_1088_2040_8986_aaa36e crossref_primary_10_1002_lpor_202000133 crossref_primary_10_1016_j_optcom_2018_10_037 crossref_primary_10_1016_j_optcom_2019_01_031 crossref_primary_10_1364_OE_475537 crossref_primary_10_1088_1361_6528_aaf8de crossref_primary_10_1016_j_physe_2025_116193 |
Cites_doi | 10.1063/1.4769835 10.1016/j.optcom.2016.02.044 10.1109/JLT.2011.2175090 10.1063/1.4862298 10.1364/OE.24.009794 10.4031/MTSJ.44.4.6 10.1364/OE.23.023302 10.1109/JQE.2004.837005 10.1364/OE.23.001558 10.1364/OE.24.008097 10.1364/OE.24.025502 10.1109/JLT.2013.2246138 10.1109/JPHOT.2012.2210397 10.1109/LPT.2016.2581318 10.1364/OE.23.009329 10.7567/JJAP.53.100208 10.1109/LPT.2013.2297621 10.1088/0268-1242/31/4/045005 10.1063/1.3276156 10.1109/ACCESS.2016.2552538 10.1063/1.4891233 10.1364/OE.23.020743 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1364/OE.25.001193 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1094-4087 |
ExternalDocumentID | 28158004 10_1364_OE_25_001193 |
Genre | Journal Article |
GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB NPM 7X8 |
ID | FETCH-LOGICAL-c395t-e5d526b133741c7afe364f8f08d5205a55dee245c90d7a536edbc301cf208cec3 |
ISSN | 1094-4087 |
IngestDate | Fri Jul 11 11:47:00 EDT 2025 Thu Apr 03 07:03:34 EDT 2025 Thu Apr 24 22:51:17 EDT 2025 Tue Jul 01 03:29:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://opg.optica.org/policies/opg-tdm-policy.json https://doi.org/10.1364/OA_License_v1#VOR-OA |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c395t-e5d526b133741c7afe364f8f08d5205a55dee245c90d7a536edbc301cf208cec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1364/oe.25.001193 |
PMID | 28158004 |
PQID | 1865555164 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_1865555164 pubmed_primary_28158004 crossref_primary_10_1364_OE_25_001193 crossref_citationtrail_10_1364_OE_25_001193 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-23 |
PublicationDateYYYYMMDD | 2017-01-23 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Optics express |
PublicationTitleAlternate | Opt Express |
PublicationYear | 2017 |
References | Oubei (oe-25-2-1193-R4) 2015; 23 Trindade (oe-25-2-1193-R21) 2015; 23 Yang (oe-25-2-1193-R22) 2014; 116 Gong (oe-25-2-1193-R19) 2010; 107 Nakamura (oe-25-2-1193-R5) 2015; 23 Zabelin (oe-25-2-1193-R18) 2004; 40 Doniec (oe-25-2-1193-R2) 2010; 44 Xu (oe-25-2-1193-R13) 2016; 24 Oubei (oe-25-2-1193-R7) 2015; 23 Ferreira (oe-25-2-1193-R11) 2016; 28 Kaushal (oe-25-2-1193-R1) 2016; 4 Baghdady (oe-25-2-1193-R6) 2016; 24 Tsonev (oe-25-2-1193-R12) 2014; 26 Hahn (oe-25-2-1193-R8) 2014; 53 Tian (oe-25-2-1193-R15) 2014; 115 Xu (oe-25-2-1193-R3) 2016; 369 Khalid (oe-25-2-1193-R9) 2012; 4 Zhang (oe-25-2-1193-R16) 2013; 31 Tian (oe-25-2-1193-R20) 2016; 31 Shen (oe-25-2-1193-R14) 2016; 24 Tian (oe-25-2-1193-R17) 2012; 101 McKendry (oe-25-2-1193-R10) 2012; 30 |
References_xml | – volume: 101 start-page: 231110 year: 2012 ident: oe-25-2-1193-R17 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4769835 – volume: 369 start-page: 100 year: 2016 ident: oe-25-2-1193-R3 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2016.02.044 – volume: 30 start-page: 61 year: 2012 ident: oe-25-2-1193-R10 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2011.2175090 – volume: 115 start-page: 033112 year: 2014 ident: oe-25-2-1193-R15 publication-title: J. Appl. Phys. doi: 10.1063/1.4862298 – volume: 24 start-page: 9794 year: 2016 ident: oe-25-2-1193-R6 publication-title: Opt. Express doi: 10.1364/OE.24.009794 – volume: 44 start-page: 55 year: 2010 ident: oe-25-2-1193-R2 publication-title: Mar. Technol. Soc. J. doi: 10.4031/MTSJ.44.4.6 – volume: 23 start-page: 23302 year: 2015 ident: oe-25-2-1193-R4 publication-title: Opt. Express doi: 10.1364/OE.23.023302 – volume: 40 start-page: 1675 year: 2004 ident: oe-25-2-1193-R18 publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.2004.837005 – volume: 23 start-page: 1558 year: 2015 ident: oe-25-2-1193-R5 publication-title: Opt. Express doi: 10.1364/OE.23.001558 – volume: 24 start-page: 8097 year: 2016 ident: oe-25-2-1193-R13 publication-title: Opt. Express doi: 10.1364/OE.24.008097 – volume: 24 start-page: 25502 year: 2016 ident: oe-25-2-1193-R14 publication-title: Opt. Express doi: 10.1364/OE.24.025502 – volume: 31 start-page: 1211 year: 2013 ident: oe-25-2-1193-R16 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2013.2246138 – volume: 4 start-page: 1465 year: 2012 ident: oe-25-2-1193-R9 publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2012.2210397 – volume: 28 start-page: 2023 year: 2016 ident: oe-25-2-1193-R11 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2016.2581318 – volume: 23 start-page: 9329 year: 2015 ident: oe-25-2-1193-R21 publication-title: Opt. Express doi: 10.1364/OE.23.009329 – volume: 53 start-page: 100208 year: 2014 ident: oe-25-2-1193-R8 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.53.100208 – volume: 26 start-page: 637 year: 2014 ident: oe-25-2-1193-R12 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2013.2297621 – volume: 31 start-page: 045005 year: 2016 ident: oe-25-2-1193-R20 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/31/4/045005 – volume: 107 start-page: 013103 year: 2010 ident: oe-25-2-1193-R19 publication-title: J. Appl. Phys. doi: 10.1063/1.3276156 – volume: 4 start-page: 1518 year: 2016 ident: oe-25-2-1193-R1 publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2552538 – volume: 116 start-page: 044512 year: 2014 ident: oe-25-2-1193-R22 publication-title: J. Appl. Phys. doi: 10.1063/1.4891233 – volume: 23 start-page: 20743 year: 2015 ident: oe-25-2-1193-R7 publication-title: Opt. Express doi: 10.1364/OE.23.020743 |
SSID | ssj0014797 |
Score | 2.5922048 |
Snippet | High-speed underwater optical wireless communication (UOWC) was achieved using an 80 μm blue-emitting GaN-based micro-LED. The micro-LED has a peak emission... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1193 |
Title | High-speed underwater optical wireless communication using a blue GaN-based micro-LED |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28158004 https://www.proquest.com/docview/1865555164 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbx2Avo_vO1hUNtqegztaHPx5LyShja_bQQPpkJFkegdQxTczaPexv3-kjdrKl0O3FGCHLtu7H6XT63R1C7xmIVZlEEhmXFWxQ0ojkMrUlAY2A5U8p4XJ3fj1LTif881RMe56uiy5ZqSP9c2dcyf9IFdpArjZK9h8k2w0KDXAP8oUrSBiud5KxJWmQZQMLkCtne_VD2pSHi8b7p20W4rlVZHozCGTYOu-AHKp5CwiRZ8QuZOXw0jLzyJegx4K5Om5cFmdz3XRMDUfZ9V7Tb6b-XplZx-mZtbZ1OpOLmx5zFzNP_rlpewQFH_VFex3yfge3Q2z5qcRHBgdNCftCkG1YLc2OtqBefVxzgBHd0JVx7Gsj_qXEWcJh5sejIyrcQZHvtp0r-481rGMWugO6hBfjUUFF4Z--jx7QFCwrS-z8NerOmHjqS--sPzqERcDTHzffvW2w3LILcdbI-T56HLYR-Nhj4gm6Z-qn6KGj8-rlMzTpkYF7ZOCADLxGBt5CBnbIwBJbZOAOGbhDxnM0-TQ6PzkloYAG0SwXK2JEKWiiYsbAbtSprAz8XJVVUQbtkZBClMZQLnQelakULDGl0qDxdUWjTBvNXqC9elGbVwirJI_yiHMFJiyvyjiXjMkyM0rCUIbGAzRcz1KhQ3Z5W-RkXuySyAB96Ho3PqvKLf3erSe8ALVnz7JkbRbtsohtQLU95OUD9NJLohuJZrGAfRB_fce3vEGPeoQfoL3VVWvegqm5UofORXPocPMb3y98Vw |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-speed+underwater+optical+wireless+communication+using+a+blue+GaN-based+micro-LED&rft.jtitle=Optics+express&rft.au=Tian%2C+Pengfei&rft.au=Liu%2C+Xiaoyan&rft.au=Yi%2C+Suyu&rft.au=Huang%2C+Yuxin&rft.date=2017-01-23&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=25&rft.issue=2&rft.spage=1193&rft_id=info:doi/10.1364%2FOE.25.001193&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_25_001193 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |