Microstructural analysis and blowing agent concentration in aged polyurethane and polyisocyanurate foams
•Foams age causing a deterioration of thermal and mechanical properties with time.•Blowing agents used in polyisocyanurate foams tend to leave the material matrix.•SEM allowed to analyse the changes of the cell microstructure after accelerated aging.•SEM showed differences in cell aspect ratio and c...
Saved in:
Published in | Applied thermal engineering Vol. 164; p. 114440 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
05.01.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 1359-4311 1873-5606 |
DOI | 10.1016/j.applthermaleng.2019.114440 |
Cover
Abstract | •Foams age causing a deterioration of thermal and mechanical properties with time.•Blowing agents used in polyisocyanurate foams tend to leave the material matrix.•SEM allowed to analyse the changes of the cell microstructure after accelerated aging.•SEM showed differences in cell aspect ratio and cell wall thickness in polyurethanes.•The blowing gas reduced from 11% to 85% in laboratory-aged polyisocyanurates.
Over the last few years, new environmental protection regulations have promoted the adoption of new blowing agents for the production of foam materials. Understanding how these new blowing agents influence the characteristics of the foams is critical in thermal engineering applications. The cell structure of a foam and the concentration of the blowing agents in it are the main factors affecting the thermal conductivity of foams. Recent studies have revealed the risks of condensation of some of the new environmentally friendly blowing agents at temperatures below 10 °C. Meanwhile, many blowing agents tend more easily to escape the foam structure when subject to temperature cycles; this aging increases the thermal conductivity of too, since the blowing gas is replaced by air. In this paper, to understand the loss of thermal performance of aged foams, a microstructure and chemical characterization was performed together with thermal conductivity tests of both pristine and laboratory-aged foams. The aging behaviour was analysed by SEM imaging and by measuring the blowing agent concentration in both open cell and closed cell foams. Changes in the polymer physical attributes were identified. Results prove that aged foams show cellular elongation and increase in the cell wall thickness. The results of gas chromatography helped to quantify the changes in the concentration of pentane in aged polyisocyanurate foams. A decrease of the blowing agent between 11% and 85% for the aged polyisocyanurates was measured. Finally, this study highlights the importance to analyse the in-service characteristics of both polyurethane and polyisocyanurate foams to avoid considering their thermal conductivity as a constant property. |
---|---|
AbstractList | Over the last few years, new environmental protection regulations have promoted the adoption of new blowing agents for the production of foam materials. Understanding how these new blowing agents influence the characteristics of the foams is critical in thermal engineering applications. The cell structure of a foam and the concentration of the blowing agents in it are the main factors affecting the thermal conductivity of foams. Recent studies have revealed the risks of condensation of some of the new environmentally friendly blowing agents at temperatures below 10 °C. Meanwhile, many blowing agents tend more easily to escape the foam structure when subject to temperature cycles; this aging increases the thermal conductivity of too, since the blowing gas is replaced by air. In this paper, to understand the loss of thermal performance of aged foams, a microstructure and chemical characterization was performed together with thermal conductivity tests of both pristine and laboratory-aged foams. The aging behaviour was analysed by SEM imaging and by measuring the blowing agent concentration in both open cell and closed cell foams. Changes in the polymer physical attributes were identified. Results prove that aged foams show cellular elongation and increase in the cell wall thickness. The results of gas chromatography helped to quantify the changes in the concentration of pentane in aged polyisocyanurate foams. A decrease of the blowing agent between 11% and 85% for the aged polyisocyanurates was measured. Finally, this study highlights the importance to analyse the in-service characteristics of both polyurethane and polyisocyanurate foams to avoid considering their thermal conductivity as a constant property. •Foams age causing a deterioration of thermal and mechanical properties with time.•Blowing agents used in polyisocyanurate foams tend to leave the material matrix.•SEM allowed to analyse the changes of the cell microstructure after accelerated aging.•SEM showed differences in cell aspect ratio and cell wall thickness in polyurethanes.•The blowing gas reduced from 11% to 85% in laboratory-aged polyisocyanurates. Over the last few years, new environmental protection regulations have promoted the adoption of new blowing agents for the production of foam materials. Understanding how these new blowing agents influence the characteristics of the foams is critical in thermal engineering applications. The cell structure of a foam and the concentration of the blowing agents in it are the main factors affecting the thermal conductivity of foams. Recent studies have revealed the risks of condensation of some of the new environmentally friendly blowing agents at temperatures below 10 °C. Meanwhile, many blowing agents tend more easily to escape the foam structure when subject to temperature cycles; this aging increases the thermal conductivity of too, since the blowing gas is replaced by air. In this paper, to understand the loss of thermal performance of aged foams, a microstructure and chemical characterization was performed together with thermal conductivity tests of both pristine and laboratory-aged foams. The aging behaviour was analysed by SEM imaging and by measuring the blowing agent concentration in both open cell and closed cell foams. Changes in the polymer physical attributes were identified. Results prove that aged foams show cellular elongation and increase in the cell wall thickness. The results of gas chromatography helped to quantify the changes in the concentration of pentane in aged polyisocyanurate foams. A decrease of the blowing agent between 11% and 85% for the aged polyisocyanurates was measured. Finally, this study highlights the importance to analyse the in-service characteristics of both polyurethane and polyisocyanurate foams to avoid considering their thermal conductivity as a constant property. |
ArticleNumber | 114440 |
Author | Berardi, Umberto Madzarevic, Jelena |
Author_xml | – sequence: 1 givenname: Umberto surname: Berardi fullname: Berardi, Umberto email: uberardi@ryerson.ca organization: Faculty of Engineering and Architectural Science, Ryerson University, 350 Victoria St, Toronto, ON M5B 2K3, Canada – sequence: 2 givenname: Jelena surname: Madzarevic fullname: Madzarevic, Jelena organization: Ryerson University, 350 Victoria St, Toronto, ON M5B 2K3, Canada |
BookMark | eNqNkEtPwzAQhC0EEuXxHyLBNcWPOA-JCyAKSCAucLYcZ926Su1gO6D-e5yWC5w47Wo1M9r5TtChdRYQuiR4TjApr9ZzOQx9XIHfyB7sck4xaeaEFEWBD9CM1BXLeYnLw7Qz3uQFI-QYnYSwxpjQuipmaPVilHch-lHF0cs-k1b222BCWrqs7d2XsctMLsHGTDmr0vQyGmczY6dzlw2u344e4kpa2JmmgwlObaVNiREy7eQmnKEjLfsA5z_zFL0v7t_uHvPn14enu5vnXLGGx7zT6V_NVdVVUhW1rjDuZKt5S6GtKihV0UJTKkpqRikvJKe4qXFba6xVw3HDTtHFPnfw7mOEEMXajT6VCoIyWjPMOC-T6navmsoHD1ooE3e9Uj3TC4LFRFisxW_CYiIs9oRTyPWfkMGbjfTb_9oXezskHJ8GvAjKQELcGQ8qis6Z_wV9AxaxpuU |
CitedBy_id | crossref_primary_10_1155_2021_9954498 crossref_primary_10_3390_ma13143170 crossref_primary_10_3390_ma13235336 crossref_primary_10_3390_en17143406 crossref_primary_10_52957_2782_1900_2024_5_3_23_36 crossref_primary_10_1016_j_polymer_2023_125674 crossref_primary_10_1016_j_jhazmat_2020_122656 crossref_primary_10_1016_j_conbuildmat_2024_137208 crossref_primary_10_1016_j_rser_2020_110038 crossref_primary_10_1039_D1MA00092F crossref_primary_10_1061_JMCEE7_MTENG_16138 crossref_primary_10_3390_ma13153373 crossref_primary_10_1155_2022_9015055 crossref_primary_10_1063_5_0128055 crossref_primary_10_3390_ma13061438 crossref_primary_10_3390_pr10112257 crossref_primary_10_1016_j_jobe_2021_102447 crossref_primary_10_1016_j_ijrefrig_2020_10_007 crossref_primary_10_1007_s10098_024_03080_x crossref_primary_10_1016_j_applthermaleng_2021_117992 crossref_primary_10_1016_j_heliyon_2024_e36074 crossref_primary_10_1007_s10973_023_12789_8 crossref_primary_10_1016_j_mser_2021_100608 crossref_primary_10_1016_j_conbuildmat_2021_125014 crossref_primary_10_3390_buildings11050216 crossref_primary_10_1002_pen_26376 crossref_primary_10_1007_s10924_020_02008_y crossref_primary_10_1016_j_applthermaleng_2020_115113 crossref_primary_10_3390_en16248080 crossref_primary_10_1016_j_jmrt_2022_12_180 crossref_primary_10_3390_jcs9010015 crossref_primary_10_1177_0021955X221144541 crossref_primary_10_1016_j_jobe_2021_103365 crossref_primary_10_1016_j_jmrt_2020_07_101 crossref_primary_10_1177_10996362211037015 crossref_primary_10_1016_j_enpol_2021_112275 crossref_primary_10_1177_17442591211045415 crossref_primary_10_3390_polym15061500 crossref_primary_10_1016_j_cryogenics_2022_103521 crossref_primary_10_3390_jcs8040135 crossref_primary_10_1007_s10965_021_02836_z |
Cites_doi | 10.1016/0017-9310(86)90148-1 10.1177/0021955X10373641 10.1177/0021955X9803400103 10.1016/j.applthermaleng.2018.04.011 10.1016/j.jmps.2005.10.007 10.1177/109719639101500204 10.1016/j.conbuildmat.2018.12.177 10.1016/j.applthermaleng.2016.03.065 10.1016/j.ijrefrig.2006.04.003 10.1177/109719638901300207 10.1177/0021955X9503100405 10.1016/j.applthermaleng.2017.11.050 10.1016/j.conbuildmat.2015.05.129 10.1177/0021955X6700300202 10.1177/0021955X13503847 10.1177/0021955X8402000203 10.1016/j.ijsolstr.2014.09.022 10.1016/j.applthermaleng.2018.04.063 10.1016/j.energy.2019.06.022 10.1177/0021955X6700300101 10.1016/j.enbuild.2017.03.052 10.1177/0021955X9503100305 10.1177/0021955X9603200204 10.1021/je015534+ 10.1177/0021955X9403000408 10.1016/j.applthermaleng.2016.12.057 10.1016/j.ijrefrig.2006.04.004 10.1177/109719639101400306 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Jan 2020 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2020 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.applthermaleng.2019.114440 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5606 |
ExternalDocumentID | 10_1016_j_applthermaleng_2019_114440 S1359431119330455 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB HZ~ R2- RIG SEW SSH 7TB 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-c395t-df606f5c7d7ac48f700dabf5b2eb77e6c4be96c21832254a520980b8f0fc95093 |
IEDL.DBID | AIKHN |
ISSN | 1359-4311 |
IngestDate | Fri Jul 25 05:49:10 EDT 2025 Tue Jul 01 02:05:13 EDT 2025 Thu Apr 24 22:56:10 EDT 2025 Fri Feb 23 02:49:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Blowing agent Scanning electron microscopy Gas chromatography Polyisocyanurates Foam insulation Polyurethane foams |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-df606f5c7d7ac48f700dabf5b2eb77e6c4be96c21832254a520980b8f0fc95093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2328303556 |
PQPubID | 2045278 |
ParticipantIDs | proquest_journals_2328303556 crossref_citationtrail_10_1016_j_applthermaleng_2019_114440 crossref_primary_10_1016_j_applthermaleng_2019_114440 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2019_114440 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-05 |
PublicationDateYYYYMMDD | 2020-01-05 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Zhang, Fang, Li, Tao (b0010) 2017; 115 Kumaran, Bomberg, Marchand, Creazzo (b0125) 1989; 13 National Institutes of Health, ImageJ - Image Processing and Analysis in Java, 2018. Cuddihy, Moacanin (b0030) 1967 Christian, Desjarlais, Graves (b0020) 1998; 34 Szycher (b0085) 2013 Bhattacharjee, Booth (b0115) 1995; 31 Zheng, Chen, Cui, Guo, Zhu, Zhou, Wang (b0160) 2018; 130 Desai, Basbagill, Nutt, Alonso (b0145) 2010; 46 Hilado (b0185) 1977; 1 Macchi-Tejeda, Opatovà, Leducq (b0090) 2007; 30 Stovall (b0040) 2012 Ma, Luo, Lai, Niu, Gao (b0120) 2018; 138 Perkins, Cusco, Howley, Laesecke, Matthes, Ramires (b0100) 2001; 46 Pinto, Solo, Rodriguez-perez, De Saja (b0050) 2013; 49 Zhao, Yan, Hu, Li, Fan (b0150) 2015; 93 Van De Walle, Janssen (b0075) 2018 Berardi (b0045) 2019; 182 Khoukhi, Fezzioui, Draoui, Salah (b0005) 2016; 105 Schwartz, Bomberg (b0055) 1991; 15 Ichikawa, Selvadurai (b0135) 2012 Zarr, Nguyen (b0110) 1994; 30 Schuetz, Glicksman (b0060) 1984; 20 Bomberg, Kumaran (b0025) 1991; 14 . Li, Gao, Subhash (b0140) 2006; 54 Svanstrom, Ramnas (b0095) 1995; 31 Stazi, Urlietti, Di Perna, Chiappini, Rossi, Tittarelli (b0155) 2019; 201 Berardi, Naldi (b0015) 2017; 144 Ostrogorsky, Glicksman, Reitz (b0065) 1986; 29 Marrucho, Oliveira, Dohrn (b0130) 2002; 47 Chen, Das, Battley (b0070) 2015; 52 Svanstrom, Ramnas (b0170) 1996; 32 Murphy (b0105) 2014 Norton (b0035) 1967; 3 Dixit, Ghosh (b0080) 2018; 137 Haynes (b0175) 2009 Macchi-Tejeda, Opatovà, Leducq (b0165) 2007; 30 Berardi (10.1016/j.applthermaleng.2019.114440_b0045) 2019; 182 Khoukhi (10.1016/j.applthermaleng.2019.114440_b0005) 2016; 105 Hilado (10.1016/j.applthermaleng.2019.114440_b0185) 1977; 1 Cuddihy (10.1016/j.applthermaleng.2019.114440_b0030) 1967 Berardi (10.1016/j.applthermaleng.2019.114440_b0015) 2017; 144 Zhang (10.1016/j.applthermaleng.2019.114440_b0010) 2017; 115 Norton (10.1016/j.applthermaleng.2019.114440_b0035) 1967; 3 Murphy (10.1016/j.applthermaleng.2019.114440_b0105) 2014 Marrucho (10.1016/j.applthermaleng.2019.114440_b0130) 2002; 47 Svanstrom (10.1016/j.applthermaleng.2019.114440_b0170) 1996; 32 Pinto (10.1016/j.applthermaleng.2019.114440_b0050) 2013; 49 Haynes (10.1016/j.applthermaleng.2019.114440_b0175) 2009 Van De Walle (10.1016/j.applthermaleng.2019.114440_b0075) 2018 Li (10.1016/j.applthermaleng.2019.114440_b0140) 2006; 54 Stazi (10.1016/j.applthermaleng.2019.114440_b0155) 2019; 201 Dixit (10.1016/j.applthermaleng.2019.114440_b0080) 2018; 137 Svanstrom (10.1016/j.applthermaleng.2019.114440_b0095) 1995; 31 Bhattacharjee (10.1016/j.applthermaleng.2019.114440_b0115) 1995; 31 Macchi-Tejeda (10.1016/j.applthermaleng.2019.114440_b0165) 2007; 30 Schwartz (10.1016/j.applthermaleng.2019.114440_b0055) 1991; 15 Stovall (10.1016/j.applthermaleng.2019.114440_b0040) 2012 Bomberg (10.1016/j.applthermaleng.2019.114440_b0025) 1991; 14 Christian (10.1016/j.applthermaleng.2019.114440_b0020) 1998; 34 Ostrogorsky (10.1016/j.applthermaleng.2019.114440_b0065) 1986; 29 Ichikawa (10.1016/j.applthermaleng.2019.114440_b0135) 2012 Zhao (10.1016/j.applthermaleng.2019.114440_b0150) 2015; 93 Chen (10.1016/j.applthermaleng.2019.114440_b0070) 2015; 52 Macchi-Tejeda (10.1016/j.applthermaleng.2019.114440_b0090) 2007; 30 Szycher (10.1016/j.applthermaleng.2019.114440_b0085) 2013 Schuetz (10.1016/j.applthermaleng.2019.114440_b0060) 1984; 20 Desai (10.1016/j.applthermaleng.2019.114440_b0145) 2010; 46 Zheng (10.1016/j.applthermaleng.2019.114440_b0160) 2018; 130 Kumaran (10.1016/j.applthermaleng.2019.114440_b0125) 1989; 13 10.1016/j.applthermaleng.2019.114440_b0180 Perkins (10.1016/j.applthermaleng.2019.114440_b0100) 2001; 46 Zarr (10.1016/j.applthermaleng.2019.114440_b0110) 1994; 30 Ma (10.1016/j.applthermaleng.2019.114440_b0120) 2018; 138 |
References_xml | – volume: 31 start-page: 375 year: 1995 end-page: 388 ident: b0095 article-title: A method for analysing the gas phase in polyurethane foam publication-title: J. Cell. Plast. – year: 2012 ident: b0040 article-title: Closed Cell Foam Insulation : A Review of Long Term Thermal Performance – volume: 49 start-page: 555 year: 2013 end-page: 575 ident: b0050 article-title: Characterization of the cellular structure based on user-interactive image analysis procedures publication-title: J Cell Plast. – volume: 31 start-page: 244 year: 1995 end-page: 259 ident: b0115 article-title: Effective diffusion coefficients of CO2 and HCFC-22 in polyurethane publication-title: J. Cell. Plast. – volume: 30 start-page: 338 year: 2007 end-page: 344 ident: b0165 article-title: Contribution to the gas chromatographic analysis for both refrigerants composition and cell gas in insulating foams - Part II: aging of insulating foams publication-title: Int. J. Refrig. – year: 2014 ident: b0105 article-title: A brief history of change in the refrigeration industry publication-title: Appl. Des. – volume: 93 start-page: 309 year: 2015 end-page: 316 ident: b0150 article-title: Preparation and characterization of granular silica aerogel/polyisocyanurate rigid foam composites publication-title: Constr. Build. Mater. – year: 2009 ident: b0175 article-title: CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data – volume: 52 start-page: 150 year: 2015 end-page: 164 ident: b0070 article-title: Effects of cell size and cell wall thickness variations on the stiffness of closed-cell foams publication-title: Int. J. Solids Struct. – volume: 20 start-page: 114 year: 1984 end-page: 121 ident: b0060 article-title: A basic study of heat transfer through foam insulation publication-title: J. Cell. Plast. – reference: National Institutes of Health, ImageJ - Image Processing and Analysis in Java, 2018. – volume: 47 start-page: 554 year: 2002 end-page: 558 ident: b0130 article-title: Vapor-phase thermal conductivity, vapor pressure, and liquid density of R365 mfc publication-title: J. Chem. Eng. Data – volume: 30 start-page: 329 year: 2007 end-page: 337 ident: b0090 article-title: Contribution to the gas chromatographic analysis for both refrigerants composition and cell gas in insulating foams - Part I: method publication-title: Int. J. Refrig. – volume: 15 start-page: 153 year: 1991 end-page: 171 ident: b0055 article-title: Image analysis and the characterization of cellular plastics publication-title: J. Therm. Insul. – volume: 1 start-page: 15 year: 1977 end-page: 47 ident: b0185 article-title: Some laboratory studies in the use of polyurethane rigid foam as a thermal insulation material in low temperature service publication-title: J. Therm. Envel. Build. Sci. – start-page: 73 year: 1967 end-page: 80 ident: b0030 article-title: Diffusion of gases in polymeric foams publication-title: J. Cell. Plast. – volume: 130 start-page: 161 year: 2018 end-page: 168 ident: b0160 article-title: Experimental study on composite insulation system of spray on foam insulation and variable density multilayer insulation publication-title: Appl. Therm. Eng. – volume: 34 start-page: 39 year: 1998 end-page: 64 ident: b0020 article-title: Five year field study confirms accelerated thermal aging method for polyisocyanurate insulation publication-title: J. Cell. Plast. – volume: 115 start-page: 528 year: 2017 end-page: 538 ident: b0010 article-title: Experimental study of the thermal conductivity of polyurethane foams publication-title: Appl. Therm. Eng. – volume: 29 start-page: 1169 year: 1986 end-page: 1176 ident: b0065 article-title: Aging of polyurethane foams publication-title: Int. J. Heat Mass Transf. – volume: 138 start-page: 280 year: 2018 end-page: 291 ident: b0120 article-title: Numerical investigation on thermal insulation layer of a tunnel in seasonally frozen regions publication-title: Appl. Therm. Eng. – volume: 32 start-page: 159 year: 1996 end-page: 171 ident: b0170 article-title: Determination of BA distribution in rigid PU publication-title: J. Cell. Plast. – start-page: 157 year: 2012 end-page: 184 ident: b0135 article-title: Classical theory of diffusion and seepage problems in porous media publication-title: Transp. Phenom. Porous Media Asp. Micro/Macro Behav. – volume: 3 start-page: 23 year: 1967 end-page: 37 ident: b0035 article-title: Thermal conductivity and life of polymer foams publication-title: J. Cell. Plast. – reference: . – volume: 144 start-page: 262 year: 2017 end-page: 275 ident: b0015 article-title: The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance publication-title: Energy Build. – volume: 14 start-page: 241 year: 1991 end-page: 267 ident: b0025 article-title: Effect of time and temperature on R-value of rigid polyurethane foam insulation manufactures with alternative blowing agents publication-title: J. Therm. Insul. – volume: 105 start-page: 669 year: 2016 end-page: 674 ident: b0005 article-title: The impact of changes in thermal conductivity of polystyrene insulation material under different operating temperatures on the heat transfer through the building envelope publication-title: Appl. Therm. Eng. – volume: 137 start-page: 532 year: 2018 end-page: 544 ident: b0080 article-title: Simulation intricacies of open-cell metal foam fin subjected to convective flow publication-title: Appl. Therm. Eng. – volume: 54 start-page: 783 year: 2006 end-page: 806 ident: b0140 article-title: Effects of cell shape and strut cross-sectional area variations on the elastic properties of three-dimensional open-cell foams publication-title: J. Mech. Phys. Solids. – year: 2013 ident: b0085 article-title: Szycher’s Handbook of Polyurethanes – volume: 30 start-page: 316 year: 1994 end-page: 337 ident: b0110 article-title: Temperature on the density and thermal conductivity of a rigid polyisocyanurate foam polyisocyanurate publication-title: J. Cell. Plast. – year: 2018 ident: b0075 article-title: Predicting the thermal conductivity of porous building materials with nanopores or reduced gas pressures publication-title: Proc. 8th Int. Build. Phys. Conf., Syracuse, NY – volume: 182 start-page: 777 year: 2019 end-page: 794 ident: b0045 article-title: The impact of aging and environmental conditions on the effective thermal conductivity of several foam materials publication-title: Energy – volume: 13 start-page: 123 year: 1989 end-page: 137 ident: b0125 article-title: A method for evaluating the effect of blowing agent condensation on sprayed polyurethane foams publication-title: J. Therm. Insul. – volume: 201 start-page: 828 year: 2019 end-page: 841 ident: b0155 article-title: Thermal and mechanical optimization of nano-foams for sprayed insulation publication-title: Constr. Build. Mater. – volume: 46 start-page: 428 year: 2001 end-page: 432 ident: b0100 article-title: Thermal conductivties of alternatives to CFC-11 for foam insulation publication-title: J. Chem. An. – volume: 46 start-page: 461 year: 2010 end-page: 478 ident: b0145 article-title: Diffusivity and climatic simulation of hybrid foams publication-title: J. Cell. Plast. – volume: 29 start-page: 1169 year: 1986 ident: 10.1016/j.applthermaleng.2019.114440_b0065 article-title: Aging of polyurethane foams publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(86)90148-1 – volume: 46 start-page: 461 year: 2010 ident: 10.1016/j.applthermaleng.2019.114440_b0145 article-title: Diffusivity and climatic simulation of hybrid foams publication-title: J. Cell. Plast. doi: 10.1177/0021955X10373641 – volume: 34 start-page: 39 year: 1998 ident: 10.1016/j.applthermaleng.2019.114440_b0020 article-title: Five year field study confirms accelerated thermal aging method for polyisocyanurate insulation publication-title: J. Cell. Plast. doi: 10.1177/0021955X9803400103 – volume: 137 start-page: 532 year: 2018 ident: 10.1016/j.applthermaleng.2019.114440_b0080 article-title: Simulation intricacies of open-cell metal foam fin subjected to convective flow publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.04.011 – year: 2009 ident: 10.1016/j.applthermaleng.2019.114440_b0175 – volume: 1 start-page: 15 year: 1977 ident: 10.1016/j.applthermaleng.2019.114440_b0185 article-title: Some laboratory studies in the use of polyurethane rigid foam as a thermal insulation material in low temperature service publication-title: J. Therm. Envel. Build. Sci. – volume: 54 start-page: 783 year: 2006 ident: 10.1016/j.applthermaleng.2019.114440_b0140 article-title: Effects of cell shape and strut cross-sectional area variations on the elastic properties of three-dimensional open-cell foams publication-title: J. Mech. Phys. Solids. doi: 10.1016/j.jmps.2005.10.007 – volume: 15 start-page: 153 year: 1991 ident: 10.1016/j.applthermaleng.2019.114440_b0055 article-title: Image analysis and the characterization of cellular plastics publication-title: J. Therm. Insul. doi: 10.1177/109719639101500204 – volume: 201 start-page: 828 year: 2019 ident: 10.1016/j.applthermaleng.2019.114440_b0155 article-title: Thermal and mechanical optimization of nano-foams for sprayed insulation publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.12.177 – volume: 105 start-page: 669 year: 2016 ident: 10.1016/j.applthermaleng.2019.114440_b0005 article-title: The impact of changes in thermal conductivity of polystyrene insulation material under different operating temperatures on the heat transfer through the building envelope publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.03.065 – year: 2012 ident: 10.1016/j.applthermaleng.2019.114440_b0040 – volume: 30 start-page: 329 year: 2007 ident: 10.1016/j.applthermaleng.2019.114440_b0090 article-title: Contribution to the gas chromatographic analysis for both refrigerants composition and cell gas in insulating foams - Part I: method publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2006.04.003 – volume: 13 start-page: 123 year: 1989 ident: 10.1016/j.applthermaleng.2019.114440_b0125 article-title: A method for evaluating the effect of blowing agent condensation on sprayed polyurethane foams publication-title: J. Therm. Insul. doi: 10.1177/109719638901300207 – volume: 31 start-page: 375 year: 1995 ident: 10.1016/j.applthermaleng.2019.114440_b0095 article-title: A method for analysing the gas phase in polyurethane foam publication-title: J. Cell. Plast. doi: 10.1177/0021955X9503100405 – volume: 130 start-page: 161 year: 2018 ident: 10.1016/j.applthermaleng.2019.114440_b0160 article-title: Experimental study on composite insulation system of spray on foam insulation and variable density multilayer insulation publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.11.050 – volume: 93 start-page: 309 year: 2015 ident: 10.1016/j.applthermaleng.2019.114440_b0150 article-title: Preparation and characterization of granular silica aerogel/polyisocyanurate rigid foam composites publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.05.129 – start-page: 73 year: 1967 ident: 10.1016/j.applthermaleng.2019.114440_b0030 article-title: Diffusion of gases in polymeric foams publication-title: J. Cell. Plast. doi: 10.1177/0021955X6700300202 – volume: 49 start-page: 555 issue: 7 year: 2013 ident: 10.1016/j.applthermaleng.2019.114440_b0050 article-title: Characterization of the cellular structure based on user-interactive image analysis procedures publication-title: J Cell Plast. doi: 10.1177/0021955X13503847 – volume: 20 start-page: 114 year: 1984 ident: 10.1016/j.applthermaleng.2019.114440_b0060 article-title: A basic study of heat transfer through foam insulation publication-title: J. Cell. Plast. doi: 10.1177/0021955X8402000203 – volume: 52 start-page: 150 year: 2015 ident: 10.1016/j.applthermaleng.2019.114440_b0070 article-title: Effects of cell size and cell wall thickness variations on the stiffness of closed-cell foams publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2014.09.022 – year: 2018 ident: 10.1016/j.applthermaleng.2019.114440_b0075 article-title: Predicting the thermal conductivity of porous building materials with nanopores or reduced gas pressures – volume: 138 start-page: 280 year: 2018 ident: 10.1016/j.applthermaleng.2019.114440_b0120 article-title: Numerical investigation on thermal insulation layer of a tunnel in seasonally frozen regions publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.04.063 – volume: 182 start-page: 777 year: 2019 ident: 10.1016/j.applthermaleng.2019.114440_b0045 article-title: The impact of aging and environmental conditions on the effective thermal conductivity of several foam materials publication-title: Energy doi: 10.1016/j.energy.2019.06.022 – volume: 3 start-page: 23 year: 1967 ident: 10.1016/j.applthermaleng.2019.114440_b0035 article-title: Thermal conductivity and life of polymer foams publication-title: J. Cell. Plast. doi: 10.1177/0021955X6700300101 – volume: 144 start-page: 262 year: 2017 ident: 10.1016/j.applthermaleng.2019.114440_b0015 article-title: The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.03.052 – volume: 31 start-page: 244 year: 1995 ident: 10.1016/j.applthermaleng.2019.114440_b0115 article-title: Effective diffusion coefficients of CO2 and HCFC-22 in polyurethane publication-title: J. Cell. Plast. doi: 10.1177/0021955X9503100305 – volume: 32 start-page: 159 year: 1996 ident: 10.1016/j.applthermaleng.2019.114440_b0170 article-title: Determination of BA distribution in rigid PU publication-title: J. Cell. Plast. doi: 10.1177/0021955X9603200204 – volume: 47 start-page: 554 year: 2002 ident: 10.1016/j.applthermaleng.2019.114440_b0130 article-title: Vapor-phase thermal conductivity, vapor pressure, and liquid density of R365 mfc publication-title: J. Chem. Eng. Data doi: 10.1021/je015534+ – volume: 30 start-page: 316 year: 1994 ident: 10.1016/j.applthermaleng.2019.114440_b0110 article-title: Temperature on the density and thermal conductivity of a rigid polyisocyanurate foam polyisocyanurate publication-title: J. Cell. Plast. doi: 10.1177/0021955X9403000408 – volume: 115 start-page: 528 year: 2017 ident: 10.1016/j.applthermaleng.2019.114440_b0010 article-title: Experimental study of the thermal conductivity of polyurethane foams publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.12.057 – year: 2014 ident: 10.1016/j.applthermaleng.2019.114440_b0105 article-title: A brief history of change in the refrigeration industry publication-title: Appl. Des. – volume: 30 start-page: 338 year: 2007 ident: 10.1016/j.applthermaleng.2019.114440_b0165 article-title: Contribution to the gas chromatographic analysis for both refrigerants composition and cell gas in insulating foams - Part II: aging of insulating foams publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2006.04.004 – volume: 14 start-page: 241 year: 1991 ident: 10.1016/j.applthermaleng.2019.114440_b0025 article-title: Effect of time and temperature on R-value of rigid polyurethane foam insulation manufactures with alternative blowing agents publication-title: J. Therm. Insul. doi: 10.1177/109719639101400306 – start-page: 157 year: 2012 ident: 10.1016/j.applthermaleng.2019.114440_b0135 article-title: Classical theory of diffusion and seepage problems in porous media – year: 2013 ident: 10.1016/j.applthermaleng.2019.114440_b0085 – volume: 46 start-page: 428 year: 2001 ident: 10.1016/j.applthermaleng.2019.114440_b0100 article-title: Thermal conductivties of alternatives to CFC-11 for foam insulation publication-title: J. Chem. An. – ident: 10.1016/j.applthermaleng.2019.114440_b0180 |
SSID | ssj0012874 |
Score | 2.4880807 |
Snippet | •Foams age causing a deterioration of thermal and mechanical properties with time.•Blowing agents used in polyisocyanurate foams tend to leave the material... Over the last few years, new environmental protection regulations have promoted the adoption of new blowing agents for the production of foam materials.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114440 |
SubjectTerms | Blowing agent Blowing agents Condensates Elongation Environmental protection Escape structures Foam insulation Gas chromatography Heat conductivity Heat transfer Microstructural analysis Microstructure Organic chemistry Plastic foam Polyisocyanurates Polyurethane Polyurethane foam Polyurethane foams Scanning electron microscopy Thermal conductivity Thermal engineering Wall thickness |
Title | Microstructural analysis and blowing agent concentration in aged polyurethane and polyisocyanurate foams |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2019.114440 https://www.proquest.com/docview/2328303556 |
Volume | 164 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50BdGD-MQ3OXitm7ZJ2-BBRJRV0YsK3kKaB66s3UVdZC_-djNt6gsPgrcSOmmZSeaVmS8AezlnRuSCR3ESGx-gpCxSrkwjqmNn0tTlosYpuLzKerfs_I7fTcFx2wuDZZVB9zc6vdbWYaQbuNkd9fvd6zjlwpu_OK5jcs6nYSbx1r7owMzR2UXv6uMwASHd67iLiwgJZmHvs8wLz4nR1XpUeHMJ1noJxM9lmA353VL90Nm1ITpdhIXgQZKj5ieXYMpWyzD_BVdwBe4vscyugYZFWA2iAvSIfzCkHAxf_WtEYVcV0di3WAXwXNKvcNiQ0XAwGT9ZzKvbmggH-l6SE1WNEV2CuKF6fF6F29OTm-NeFK5UiHQq-EtknA9YHNe5yZVmhcspNap0vExsmec206y0ItNJs9GZwiKZgpaFo04L71uka9CphpVdB-IEdYzrhDpFmcsyZbTGrJQ21HKt7QYctOyTOuCN47UXA9kWlj3I78yXyHzZMH8D-Af1qMHd-CPdYSsp-W0dSW8i_jjDditgGfbzs_R-Z-GNPefZ5r8_sAVzCQbtmMfh29Dxi8HueM_mpdyF6f23eDes33d-a_3n |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH7oCC4HccXdHLyWSdukneBBRJRxmbmo4C2kWXBkpjO4IP5789rUDQ-CtxL60vJe8ra8fA_gIOfMiFzwKE5i4wOUlEXKFWlEdexMmrpcVDgFvX7WvWUXd_xuCk6auzBYVhl0f63TK20dRtqBm-3JYNC-jlMuvPmL4yom53waZhg2tW7BzPH5Zbf_cZiAkO5V3MVFhASzcPBZ5oXnxOhqjRR2LsFaL4H4uQyzIb9bqh86uzJEZ0uwGDxIclz_5DJM2XIFFr7gCq7CfQ_L7GpoWITVICpAj_gHQ4rh-NW_RhTeqiIa7y2WATyXDEocNmQyHr69PFrMq9uKCAcGXpJvqnxBdAnixmr0tAa3Z6c3J90otFSIdCr4c2ScD1gc17nJlWYdl1NqVOF4kdgiz22mWWFFppN6ozOFRTIdWnQcdVp43yJdh1Y5Lu0GECeoY1wn1CnKXJYpozVmpbShlmttN-GwYZ_UAW8c214MZVNY9iC_M18i82XN_E3gH9STGnfjj3RHjaTkt3UkvYn44ww7jYBl2M9P0vudHW_sOc-2_v2BfZjr3vSu5NV5_3Ib5hMM4DGnw3eg5ReG3fVeznOxF1bxO3pz_80 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructural+analysis+and+blowing+agent+concentration+in+aged+polyurethane+and+polyisocyanurate+foams&rft.jtitle=Applied+thermal+engineering&rft.au=Berardi%2C+Umberto&rft.au=Madzarevic%2C+Jelena&rft.date=2020-01-05&rft.pub=Elsevier+BV&rft.issn=1359-4311&rft.eissn=1873-5606&rft.volume=164&rft.spage=1&rft_id=info:doi/10.1016%2Fj.applthermaleng.2019.114440&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |