Microstructural analysis and blowing agent concentration in aged polyurethane and polyisocyanurate foams

•Foams age causing a deterioration of thermal and mechanical properties with time.•Blowing agents used in polyisocyanurate foams tend to leave the material matrix.•SEM allowed to analyse the changes of the cell microstructure after accelerated aging.•SEM showed differences in cell aspect ratio and c...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 164; p. 114440
Main Authors Berardi, Umberto, Madzarevic, Jelena
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 05.01.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN1359-4311
1873-5606
DOI10.1016/j.applthermaleng.2019.114440

Cover

Abstract •Foams age causing a deterioration of thermal and mechanical properties with time.•Blowing agents used in polyisocyanurate foams tend to leave the material matrix.•SEM allowed to analyse the changes of the cell microstructure after accelerated aging.•SEM showed differences in cell aspect ratio and cell wall thickness in polyurethanes.•The blowing gas reduced from 11% to 85% in laboratory-aged polyisocyanurates. Over the last few years, new environmental protection regulations have promoted the adoption of new blowing agents for the production of foam materials. Understanding how these new blowing agents influence the characteristics of the foams is critical in thermal engineering applications. The cell structure of a foam and the concentration of the blowing agents in it are the main factors affecting the thermal conductivity of foams. Recent studies have revealed the risks of condensation of some of the new environmentally friendly blowing agents at temperatures below 10 °C. Meanwhile, many blowing agents tend more easily to escape the foam structure when subject to temperature cycles; this aging increases the thermal conductivity of too, since the blowing gas is replaced by air. In this paper, to understand the loss of thermal performance of aged foams, a microstructure and chemical characterization was performed together with thermal conductivity tests of both pristine and laboratory-aged foams. The aging behaviour was analysed by SEM imaging and by measuring the blowing agent concentration in both open cell and closed cell foams. Changes in the polymer physical attributes were identified. Results prove that aged foams show cellular elongation and increase in the cell wall thickness. The results of gas chromatography helped to quantify the changes in the concentration of pentane in aged polyisocyanurate foams. A decrease of the blowing agent between 11% and 85% for the aged polyisocyanurates was measured. Finally, this study highlights the importance to analyse the in-service characteristics of both polyurethane and polyisocyanurate foams to avoid considering their thermal conductivity as a constant property.
AbstractList Over the last few years, new environmental protection regulations have promoted the adoption of new blowing agents for the production of foam materials. Understanding how these new blowing agents influence the characteristics of the foams is critical in thermal engineering applications. The cell structure of a foam and the concentration of the blowing agents in it are the main factors affecting the thermal conductivity of foams. Recent studies have revealed the risks of condensation of some of the new environmentally friendly blowing agents at temperatures below 10 °C. Meanwhile, many blowing agents tend more easily to escape the foam structure when subject to temperature cycles; this aging increases the thermal conductivity of too, since the blowing gas is replaced by air. In this paper, to understand the loss of thermal performance of aged foams, a microstructure and chemical characterization was performed together with thermal conductivity tests of both pristine and laboratory-aged foams. The aging behaviour was analysed by SEM imaging and by measuring the blowing agent concentration in both open cell and closed cell foams. Changes in the polymer physical attributes were identified. Results prove that aged foams show cellular elongation and increase in the cell wall thickness. The results of gas chromatography helped to quantify the changes in the concentration of pentane in aged polyisocyanurate foams. A decrease of the blowing agent between 11% and 85% for the aged polyisocyanurates was measured. Finally, this study highlights the importance to analyse the in-service characteristics of both polyurethane and polyisocyanurate foams to avoid considering their thermal conductivity as a constant property.
•Foams age causing a deterioration of thermal and mechanical properties with time.•Blowing agents used in polyisocyanurate foams tend to leave the material matrix.•SEM allowed to analyse the changes of the cell microstructure after accelerated aging.•SEM showed differences in cell aspect ratio and cell wall thickness in polyurethanes.•The blowing gas reduced from 11% to 85% in laboratory-aged polyisocyanurates. Over the last few years, new environmental protection regulations have promoted the adoption of new blowing agents for the production of foam materials. Understanding how these new blowing agents influence the characteristics of the foams is critical in thermal engineering applications. The cell structure of a foam and the concentration of the blowing agents in it are the main factors affecting the thermal conductivity of foams. Recent studies have revealed the risks of condensation of some of the new environmentally friendly blowing agents at temperatures below 10 °C. Meanwhile, many blowing agents tend more easily to escape the foam structure when subject to temperature cycles; this aging increases the thermal conductivity of too, since the blowing gas is replaced by air. In this paper, to understand the loss of thermal performance of aged foams, a microstructure and chemical characterization was performed together with thermal conductivity tests of both pristine and laboratory-aged foams. The aging behaviour was analysed by SEM imaging and by measuring the blowing agent concentration in both open cell and closed cell foams. Changes in the polymer physical attributes were identified. Results prove that aged foams show cellular elongation and increase in the cell wall thickness. The results of gas chromatography helped to quantify the changes in the concentration of pentane in aged polyisocyanurate foams. A decrease of the blowing agent between 11% and 85% for the aged polyisocyanurates was measured. Finally, this study highlights the importance to analyse the in-service characteristics of both polyurethane and polyisocyanurate foams to avoid considering their thermal conductivity as a constant property.
ArticleNumber 114440
Author Berardi, Umberto
Madzarevic, Jelena
Author_xml – sequence: 1
  givenname: Umberto
  surname: Berardi
  fullname: Berardi, Umberto
  email: uberardi@ryerson.ca
  organization: Faculty of Engineering and Architectural Science, Ryerson University, 350 Victoria St, Toronto, ON M5B 2K3, Canada
– sequence: 2
  givenname: Jelena
  surname: Madzarevic
  fullname: Madzarevic, Jelena
  organization: Ryerson University, 350 Victoria St, Toronto, ON M5B 2K3, Canada
BookMark eNqNkEtPwzAQhC0EEuXxHyLBNcWPOA-JCyAKSCAucLYcZ926Su1gO6D-e5yWC5w47Wo1M9r5TtChdRYQuiR4TjApr9ZzOQx9XIHfyB7sck4xaeaEFEWBD9CM1BXLeYnLw7Qz3uQFI-QYnYSwxpjQuipmaPVilHch-lHF0cs-k1b222BCWrqs7d2XsctMLsHGTDmr0vQyGmczY6dzlw2u344e4kpa2JmmgwlObaVNiREy7eQmnKEjLfsA5z_zFL0v7t_uHvPn14enu5vnXLGGx7zT6V_NVdVVUhW1rjDuZKt5S6GtKihV0UJTKkpqRikvJKe4qXFba6xVw3HDTtHFPnfw7mOEEMXajT6VCoIyWjPMOC-T6navmsoHD1ooE3e9Uj3TC4LFRFisxW_CYiIs9oRTyPWfkMGbjfTb_9oXezskHJ8GvAjKQELcGQ8qis6Z_wV9AxaxpuU
CitedBy_id crossref_primary_10_1155_2021_9954498
crossref_primary_10_3390_ma13143170
crossref_primary_10_3390_ma13235336
crossref_primary_10_3390_en17143406
crossref_primary_10_52957_2782_1900_2024_5_3_23_36
crossref_primary_10_1016_j_polymer_2023_125674
crossref_primary_10_1016_j_jhazmat_2020_122656
crossref_primary_10_1016_j_conbuildmat_2024_137208
crossref_primary_10_1016_j_rser_2020_110038
crossref_primary_10_1039_D1MA00092F
crossref_primary_10_1061_JMCEE7_MTENG_16138
crossref_primary_10_3390_ma13153373
crossref_primary_10_1155_2022_9015055
crossref_primary_10_1063_5_0128055
crossref_primary_10_3390_ma13061438
crossref_primary_10_3390_pr10112257
crossref_primary_10_1016_j_jobe_2021_102447
crossref_primary_10_1016_j_ijrefrig_2020_10_007
crossref_primary_10_1007_s10098_024_03080_x
crossref_primary_10_1016_j_applthermaleng_2021_117992
crossref_primary_10_1016_j_heliyon_2024_e36074
crossref_primary_10_1007_s10973_023_12789_8
crossref_primary_10_1016_j_mser_2021_100608
crossref_primary_10_1016_j_conbuildmat_2021_125014
crossref_primary_10_3390_buildings11050216
crossref_primary_10_1002_pen_26376
crossref_primary_10_1007_s10924_020_02008_y
crossref_primary_10_1016_j_applthermaleng_2020_115113
crossref_primary_10_3390_en16248080
crossref_primary_10_1016_j_jmrt_2022_12_180
crossref_primary_10_3390_jcs9010015
crossref_primary_10_1177_0021955X221144541
crossref_primary_10_1016_j_jobe_2021_103365
crossref_primary_10_1016_j_jmrt_2020_07_101
crossref_primary_10_1177_10996362211037015
crossref_primary_10_1016_j_enpol_2021_112275
crossref_primary_10_1177_17442591211045415
crossref_primary_10_3390_polym15061500
crossref_primary_10_1016_j_cryogenics_2022_103521
crossref_primary_10_3390_jcs8040135
crossref_primary_10_1007_s10965_021_02836_z
Cites_doi 10.1016/0017-9310(86)90148-1
10.1177/0021955X10373641
10.1177/0021955X9803400103
10.1016/j.applthermaleng.2018.04.011
10.1016/j.jmps.2005.10.007
10.1177/109719639101500204
10.1016/j.conbuildmat.2018.12.177
10.1016/j.applthermaleng.2016.03.065
10.1016/j.ijrefrig.2006.04.003
10.1177/109719638901300207
10.1177/0021955X9503100405
10.1016/j.applthermaleng.2017.11.050
10.1016/j.conbuildmat.2015.05.129
10.1177/0021955X6700300202
10.1177/0021955X13503847
10.1177/0021955X8402000203
10.1016/j.ijsolstr.2014.09.022
10.1016/j.applthermaleng.2018.04.063
10.1016/j.energy.2019.06.022
10.1177/0021955X6700300101
10.1016/j.enbuild.2017.03.052
10.1177/0021955X9503100305
10.1177/0021955X9603200204
10.1021/je015534+
10.1177/0021955X9403000408
10.1016/j.applthermaleng.2016.12.057
10.1016/j.ijrefrig.2006.04.004
10.1177/109719639101400306
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Jan 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2019.114440
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
ExternalDocumentID 10_1016_j_applthermaleng_2019_114440
S1359431119330455
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
HZ~
R2-
RIG
SEW
SSH
7TB
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-c395t-df606f5c7d7ac48f700dabf5b2eb77e6c4be96c21832254a520980b8f0fc95093
IEDL.DBID AIKHN
ISSN 1359-4311
IngestDate Fri Jul 25 05:49:10 EDT 2025
Tue Jul 01 02:05:13 EDT 2025
Thu Apr 24 22:56:10 EDT 2025
Fri Feb 23 02:49:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Blowing agent
Scanning electron microscopy
Gas chromatography
Polyisocyanurates
Foam insulation
Polyurethane foams
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-df606f5c7d7ac48f700dabf5b2eb77e6c4be96c21832254a520980b8f0fc95093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2328303556
PQPubID 2045278
ParticipantIDs proquest_journals_2328303556
crossref_citationtrail_10_1016_j_applthermaleng_2019_114440
crossref_primary_10_1016_j_applthermaleng_2019_114440
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2019_114440
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-05
PublicationDateYYYYMMDD 2020-01-05
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-05
  day: 05
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhang, Fang, Li, Tao (b0010) 2017; 115
Kumaran, Bomberg, Marchand, Creazzo (b0125) 1989; 13
National Institutes of Health, ImageJ - Image Processing and Analysis in Java, 2018.
Cuddihy, Moacanin (b0030) 1967
Christian, Desjarlais, Graves (b0020) 1998; 34
Szycher (b0085) 2013
Bhattacharjee, Booth (b0115) 1995; 31
Zheng, Chen, Cui, Guo, Zhu, Zhou, Wang (b0160) 2018; 130
Desai, Basbagill, Nutt, Alonso (b0145) 2010; 46
Hilado (b0185) 1977; 1
Macchi-Tejeda, Opatovà, Leducq (b0090) 2007; 30
Stovall (b0040) 2012
Ma, Luo, Lai, Niu, Gao (b0120) 2018; 138
Perkins, Cusco, Howley, Laesecke, Matthes, Ramires (b0100) 2001; 46
Pinto, Solo, Rodriguez-perez, De Saja (b0050) 2013; 49
Zhao, Yan, Hu, Li, Fan (b0150) 2015; 93
Van De Walle, Janssen (b0075) 2018
Berardi (b0045) 2019; 182
Khoukhi, Fezzioui, Draoui, Salah (b0005) 2016; 105
Schwartz, Bomberg (b0055) 1991; 15
Ichikawa, Selvadurai (b0135) 2012
Zarr, Nguyen (b0110) 1994; 30
Schuetz, Glicksman (b0060) 1984; 20
Bomberg, Kumaran (b0025) 1991; 14
.
Li, Gao, Subhash (b0140) 2006; 54
Svanstrom, Ramnas (b0095) 1995; 31
Stazi, Urlietti, Di Perna, Chiappini, Rossi, Tittarelli (b0155) 2019; 201
Berardi, Naldi (b0015) 2017; 144
Ostrogorsky, Glicksman, Reitz (b0065) 1986; 29
Marrucho, Oliveira, Dohrn (b0130) 2002; 47
Chen, Das, Battley (b0070) 2015; 52
Svanstrom, Ramnas (b0170) 1996; 32
Murphy (b0105) 2014
Norton (b0035) 1967; 3
Dixit, Ghosh (b0080) 2018; 137
Haynes (b0175) 2009
Macchi-Tejeda, Opatovà, Leducq (b0165) 2007; 30
Berardi (10.1016/j.applthermaleng.2019.114440_b0045) 2019; 182
Khoukhi (10.1016/j.applthermaleng.2019.114440_b0005) 2016; 105
Hilado (10.1016/j.applthermaleng.2019.114440_b0185) 1977; 1
Cuddihy (10.1016/j.applthermaleng.2019.114440_b0030) 1967
Berardi (10.1016/j.applthermaleng.2019.114440_b0015) 2017; 144
Zhang (10.1016/j.applthermaleng.2019.114440_b0010) 2017; 115
Norton (10.1016/j.applthermaleng.2019.114440_b0035) 1967; 3
Murphy (10.1016/j.applthermaleng.2019.114440_b0105) 2014
Marrucho (10.1016/j.applthermaleng.2019.114440_b0130) 2002; 47
Svanstrom (10.1016/j.applthermaleng.2019.114440_b0170) 1996; 32
Pinto (10.1016/j.applthermaleng.2019.114440_b0050) 2013; 49
Haynes (10.1016/j.applthermaleng.2019.114440_b0175) 2009
Van De Walle (10.1016/j.applthermaleng.2019.114440_b0075) 2018
Li (10.1016/j.applthermaleng.2019.114440_b0140) 2006; 54
Stazi (10.1016/j.applthermaleng.2019.114440_b0155) 2019; 201
Dixit (10.1016/j.applthermaleng.2019.114440_b0080) 2018; 137
Svanstrom (10.1016/j.applthermaleng.2019.114440_b0095) 1995; 31
Bhattacharjee (10.1016/j.applthermaleng.2019.114440_b0115) 1995; 31
Macchi-Tejeda (10.1016/j.applthermaleng.2019.114440_b0165) 2007; 30
Schwartz (10.1016/j.applthermaleng.2019.114440_b0055) 1991; 15
Stovall (10.1016/j.applthermaleng.2019.114440_b0040) 2012
Bomberg (10.1016/j.applthermaleng.2019.114440_b0025) 1991; 14
Christian (10.1016/j.applthermaleng.2019.114440_b0020) 1998; 34
Ostrogorsky (10.1016/j.applthermaleng.2019.114440_b0065) 1986; 29
Ichikawa (10.1016/j.applthermaleng.2019.114440_b0135) 2012
Zhao (10.1016/j.applthermaleng.2019.114440_b0150) 2015; 93
Chen (10.1016/j.applthermaleng.2019.114440_b0070) 2015; 52
Macchi-Tejeda (10.1016/j.applthermaleng.2019.114440_b0090) 2007; 30
Szycher (10.1016/j.applthermaleng.2019.114440_b0085) 2013
Schuetz (10.1016/j.applthermaleng.2019.114440_b0060) 1984; 20
Desai (10.1016/j.applthermaleng.2019.114440_b0145) 2010; 46
Zheng (10.1016/j.applthermaleng.2019.114440_b0160) 2018; 130
Kumaran (10.1016/j.applthermaleng.2019.114440_b0125) 1989; 13
10.1016/j.applthermaleng.2019.114440_b0180
Perkins (10.1016/j.applthermaleng.2019.114440_b0100) 2001; 46
Zarr (10.1016/j.applthermaleng.2019.114440_b0110) 1994; 30
Ma (10.1016/j.applthermaleng.2019.114440_b0120) 2018; 138
References_xml – volume: 31
  start-page: 375
  year: 1995
  end-page: 388
  ident: b0095
  article-title: A method for analysing the gas phase in polyurethane foam
  publication-title: J. Cell. Plast.
– year: 2012
  ident: b0040
  article-title: Closed Cell Foam Insulation : A Review of Long Term Thermal Performance
– volume: 49
  start-page: 555
  year: 2013
  end-page: 575
  ident: b0050
  article-title: Characterization of the cellular structure based on user-interactive image analysis procedures
  publication-title: J Cell Plast.
– volume: 31
  start-page: 244
  year: 1995
  end-page: 259
  ident: b0115
  article-title: Effective diffusion coefficients of CO2 and HCFC-22 in polyurethane
  publication-title: J. Cell. Plast.
– volume: 30
  start-page: 338
  year: 2007
  end-page: 344
  ident: b0165
  article-title: Contribution to the gas chromatographic analysis for both refrigerants composition and cell gas in insulating foams - Part II: aging of insulating foams
  publication-title: Int. J. Refrig.
– year: 2014
  ident: b0105
  article-title: A brief history of change in the refrigeration industry
  publication-title: Appl. Des.
– volume: 93
  start-page: 309
  year: 2015
  end-page: 316
  ident: b0150
  article-title: Preparation and characterization of granular silica aerogel/polyisocyanurate rigid foam composites
  publication-title: Constr. Build. Mater.
– year: 2009
  ident: b0175
  article-title: CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data
– volume: 52
  start-page: 150
  year: 2015
  end-page: 164
  ident: b0070
  article-title: Effects of cell size and cell wall thickness variations on the stiffness of closed-cell foams
  publication-title: Int. J. Solids Struct.
– volume: 20
  start-page: 114
  year: 1984
  end-page: 121
  ident: b0060
  article-title: A basic study of heat transfer through foam insulation
  publication-title: J. Cell. Plast.
– reference: National Institutes of Health, ImageJ - Image Processing and Analysis in Java, 2018.
– volume: 47
  start-page: 554
  year: 2002
  end-page: 558
  ident: b0130
  article-title: Vapor-phase thermal conductivity, vapor pressure, and liquid density of R365 mfc
  publication-title: J. Chem. Eng. Data
– volume: 30
  start-page: 329
  year: 2007
  end-page: 337
  ident: b0090
  article-title: Contribution to the gas chromatographic analysis for both refrigerants composition and cell gas in insulating foams - Part I: method
  publication-title: Int. J. Refrig.
– volume: 15
  start-page: 153
  year: 1991
  end-page: 171
  ident: b0055
  article-title: Image analysis and the characterization of cellular plastics
  publication-title: J. Therm. Insul.
– volume: 1
  start-page: 15
  year: 1977
  end-page: 47
  ident: b0185
  article-title: Some laboratory studies in the use of polyurethane rigid foam as a thermal insulation material in low temperature service
  publication-title: J. Therm. Envel. Build. Sci.
– start-page: 73
  year: 1967
  end-page: 80
  ident: b0030
  article-title: Diffusion of gases in polymeric foams
  publication-title: J. Cell. Plast.
– volume: 130
  start-page: 161
  year: 2018
  end-page: 168
  ident: b0160
  article-title: Experimental study on composite insulation system of spray on foam insulation and variable density multilayer insulation
  publication-title: Appl. Therm. Eng.
– volume: 34
  start-page: 39
  year: 1998
  end-page: 64
  ident: b0020
  article-title: Five year field study confirms accelerated thermal aging method for polyisocyanurate insulation
  publication-title: J. Cell. Plast.
– volume: 115
  start-page: 528
  year: 2017
  end-page: 538
  ident: b0010
  article-title: Experimental study of the thermal conductivity of polyurethane foams
  publication-title: Appl. Therm. Eng.
– volume: 29
  start-page: 1169
  year: 1986
  end-page: 1176
  ident: b0065
  article-title: Aging of polyurethane foams
  publication-title: Int. J. Heat Mass Transf.
– volume: 138
  start-page: 280
  year: 2018
  end-page: 291
  ident: b0120
  article-title: Numerical investigation on thermal insulation layer of a tunnel in seasonally frozen regions
  publication-title: Appl. Therm. Eng.
– volume: 32
  start-page: 159
  year: 1996
  end-page: 171
  ident: b0170
  article-title: Determination of BA distribution in rigid PU
  publication-title: J. Cell. Plast.
– start-page: 157
  year: 2012
  end-page: 184
  ident: b0135
  article-title: Classical theory of diffusion and seepage problems in porous media
  publication-title: Transp. Phenom. Porous Media Asp. Micro/Macro Behav.
– volume: 3
  start-page: 23
  year: 1967
  end-page: 37
  ident: b0035
  article-title: Thermal conductivity and life of polymer foams
  publication-title: J. Cell. Plast.
– reference: .
– volume: 144
  start-page: 262
  year: 2017
  end-page: 275
  ident: b0015
  article-title: The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance
  publication-title: Energy Build.
– volume: 14
  start-page: 241
  year: 1991
  end-page: 267
  ident: b0025
  article-title: Effect of time and temperature on R-value of rigid polyurethane foam insulation manufactures with alternative blowing agents
  publication-title: J. Therm. Insul.
– volume: 105
  start-page: 669
  year: 2016
  end-page: 674
  ident: b0005
  article-title: The impact of changes in thermal conductivity of polystyrene insulation material under different operating temperatures on the heat transfer through the building envelope
  publication-title: Appl. Therm. Eng.
– volume: 137
  start-page: 532
  year: 2018
  end-page: 544
  ident: b0080
  article-title: Simulation intricacies of open-cell metal foam fin subjected to convective flow
  publication-title: Appl. Therm. Eng.
– volume: 54
  start-page: 783
  year: 2006
  end-page: 806
  ident: b0140
  article-title: Effects of cell shape and strut cross-sectional area variations on the elastic properties of three-dimensional open-cell foams
  publication-title: J. Mech. Phys. Solids.
– year: 2013
  ident: b0085
  article-title: Szycher’s Handbook of Polyurethanes
– volume: 30
  start-page: 316
  year: 1994
  end-page: 337
  ident: b0110
  article-title: Temperature on the density and thermal conductivity of a rigid polyisocyanurate foam polyisocyanurate
  publication-title: J. Cell. Plast.
– year: 2018
  ident: b0075
  article-title: Predicting the thermal conductivity of porous building materials with nanopores or reduced gas pressures
  publication-title: Proc. 8th Int. Build. Phys. Conf., Syracuse, NY
– volume: 182
  start-page: 777
  year: 2019
  end-page: 794
  ident: b0045
  article-title: The impact of aging and environmental conditions on the effective thermal conductivity of several foam materials
  publication-title: Energy
– volume: 13
  start-page: 123
  year: 1989
  end-page: 137
  ident: b0125
  article-title: A method for evaluating the effect of blowing agent condensation on sprayed polyurethane foams
  publication-title: J. Therm. Insul.
– volume: 201
  start-page: 828
  year: 2019
  end-page: 841
  ident: b0155
  article-title: Thermal and mechanical optimization of nano-foams for sprayed insulation
  publication-title: Constr. Build. Mater.
– volume: 46
  start-page: 428
  year: 2001
  end-page: 432
  ident: b0100
  article-title: Thermal conductivties of alternatives to CFC-11 for foam insulation
  publication-title: J. Chem. An.
– volume: 46
  start-page: 461
  year: 2010
  end-page: 478
  ident: b0145
  article-title: Diffusivity and climatic simulation of hybrid foams
  publication-title: J. Cell. Plast.
– volume: 29
  start-page: 1169
  year: 1986
  ident: 10.1016/j.applthermaleng.2019.114440_b0065
  article-title: Aging of polyurethane foams
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(86)90148-1
– volume: 46
  start-page: 461
  year: 2010
  ident: 10.1016/j.applthermaleng.2019.114440_b0145
  article-title: Diffusivity and climatic simulation of hybrid foams
  publication-title: J. Cell. Plast.
  doi: 10.1177/0021955X10373641
– volume: 34
  start-page: 39
  year: 1998
  ident: 10.1016/j.applthermaleng.2019.114440_b0020
  article-title: Five year field study confirms accelerated thermal aging method for polyisocyanurate insulation
  publication-title: J. Cell. Plast.
  doi: 10.1177/0021955X9803400103
– volume: 137
  start-page: 532
  year: 2018
  ident: 10.1016/j.applthermaleng.2019.114440_b0080
  article-title: Simulation intricacies of open-cell metal foam fin subjected to convective flow
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.04.011
– year: 2009
  ident: 10.1016/j.applthermaleng.2019.114440_b0175
– volume: 1
  start-page: 15
  year: 1977
  ident: 10.1016/j.applthermaleng.2019.114440_b0185
  article-title: Some laboratory studies in the use of polyurethane rigid foam as a thermal insulation material in low temperature service
  publication-title: J. Therm. Envel. Build. Sci.
– volume: 54
  start-page: 783
  year: 2006
  ident: 10.1016/j.applthermaleng.2019.114440_b0140
  article-title: Effects of cell shape and strut cross-sectional area variations on the elastic properties of three-dimensional open-cell foams
  publication-title: J. Mech. Phys. Solids.
  doi: 10.1016/j.jmps.2005.10.007
– volume: 15
  start-page: 153
  year: 1991
  ident: 10.1016/j.applthermaleng.2019.114440_b0055
  article-title: Image analysis and the characterization of cellular plastics
  publication-title: J. Therm. Insul.
  doi: 10.1177/109719639101500204
– volume: 201
  start-page: 828
  year: 2019
  ident: 10.1016/j.applthermaleng.2019.114440_b0155
  article-title: Thermal and mechanical optimization of nano-foams for sprayed insulation
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.12.177
– volume: 105
  start-page: 669
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.114440_b0005
  article-title: The impact of changes in thermal conductivity of polystyrene insulation material under different operating temperatures on the heat transfer through the building envelope
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.03.065
– year: 2012
  ident: 10.1016/j.applthermaleng.2019.114440_b0040
– volume: 30
  start-page: 329
  year: 2007
  ident: 10.1016/j.applthermaleng.2019.114440_b0090
  article-title: Contribution to the gas chromatographic analysis for both refrigerants composition and cell gas in insulating foams - Part I: method
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2006.04.003
– volume: 13
  start-page: 123
  year: 1989
  ident: 10.1016/j.applthermaleng.2019.114440_b0125
  article-title: A method for evaluating the effect of blowing agent condensation on sprayed polyurethane foams
  publication-title: J. Therm. Insul.
  doi: 10.1177/109719638901300207
– volume: 31
  start-page: 375
  year: 1995
  ident: 10.1016/j.applthermaleng.2019.114440_b0095
  article-title: A method for analysing the gas phase in polyurethane foam
  publication-title: J. Cell. Plast.
  doi: 10.1177/0021955X9503100405
– volume: 130
  start-page: 161
  year: 2018
  ident: 10.1016/j.applthermaleng.2019.114440_b0160
  article-title: Experimental study on composite insulation system of spray on foam insulation and variable density multilayer insulation
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.11.050
– volume: 93
  start-page: 309
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.114440_b0150
  article-title: Preparation and characterization of granular silica aerogel/polyisocyanurate rigid foam composites
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.05.129
– start-page: 73
  year: 1967
  ident: 10.1016/j.applthermaleng.2019.114440_b0030
  article-title: Diffusion of gases in polymeric foams
  publication-title: J. Cell. Plast.
  doi: 10.1177/0021955X6700300202
– volume: 49
  start-page: 555
  issue: 7
  year: 2013
  ident: 10.1016/j.applthermaleng.2019.114440_b0050
  article-title: Characterization of the cellular structure based on user-interactive image analysis procedures
  publication-title: J Cell Plast.
  doi: 10.1177/0021955X13503847
– volume: 20
  start-page: 114
  year: 1984
  ident: 10.1016/j.applthermaleng.2019.114440_b0060
  article-title: A basic study of heat transfer through foam insulation
  publication-title: J. Cell. Plast.
  doi: 10.1177/0021955X8402000203
– volume: 52
  start-page: 150
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.114440_b0070
  article-title: Effects of cell size and cell wall thickness variations on the stiffness of closed-cell foams
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2014.09.022
– year: 2018
  ident: 10.1016/j.applthermaleng.2019.114440_b0075
  article-title: Predicting the thermal conductivity of porous building materials with nanopores or reduced gas pressures
– volume: 138
  start-page: 280
  year: 2018
  ident: 10.1016/j.applthermaleng.2019.114440_b0120
  article-title: Numerical investigation on thermal insulation layer of a tunnel in seasonally frozen regions
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.04.063
– volume: 182
  start-page: 777
  year: 2019
  ident: 10.1016/j.applthermaleng.2019.114440_b0045
  article-title: The impact of aging and environmental conditions on the effective thermal conductivity of several foam materials
  publication-title: Energy
  doi: 10.1016/j.energy.2019.06.022
– volume: 3
  start-page: 23
  year: 1967
  ident: 10.1016/j.applthermaleng.2019.114440_b0035
  article-title: Thermal conductivity and life of polymer foams
  publication-title: J. Cell. Plast.
  doi: 10.1177/0021955X6700300101
– volume: 144
  start-page: 262
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.114440_b0015
  article-title: The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.03.052
– volume: 31
  start-page: 244
  year: 1995
  ident: 10.1016/j.applthermaleng.2019.114440_b0115
  article-title: Effective diffusion coefficients of CO2 and HCFC-22 in polyurethane
  publication-title: J. Cell. Plast.
  doi: 10.1177/0021955X9503100305
– volume: 32
  start-page: 159
  year: 1996
  ident: 10.1016/j.applthermaleng.2019.114440_b0170
  article-title: Determination of BA distribution in rigid PU
  publication-title: J. Cell. Plast.
  doi: 10.1177/0021955X9603200204
– volume: 47
  start-page: 554
  year: 2002
  ident: 10.1016/j.applthermaleng.2019.114440_b0130
  article-title: Vapor-phase thermal conductivity, vapor pressure, and liquid density of R365 mfc
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je015534+
– volume: 30
  start-page: 316
  year: 1994
  ident: 10.1016/j.applthermaleng.2019.114440_b0110
  article-title: Temperature on the density and thermal conductivity of a rigid polyisocyanurate foam polyisocyanurate
  publication-title: J. Cell. Plast.
  doi: 10.1177/0021955X9403000408
– volume: 115
  start-page: 528
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.114440_b0010
  article-title: Experimental study of the thermal conductivity of polyurethane foams
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.12.057
– year: 2014
  ident: 10.1016/j.applthermaleng.2019.114440_b0105
  article-title: A brief history of change in the refrigeration industry
  publication-title: Appl. Des.
– volume: 30
  start-page: 338
  year: 2007
  ident: 10.1016/j.applthermaleng.2019.114440_b0165
  article-title: Contribution to the gas chromatographic analysis for both refrigerants composition and cell gas in insulating foams - Part II: aging of insulating foams
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2006.04.004
– volume: 14
  start-page: 241
  year: 1991
  ident: 10.1016/j.applthermaleng.2019.114440_b0025
  article-title: Effect of time and temperature on R-value of rigid polyurethane foam insulation manufactures with alternative blowing agents
  publication-title: J. Therm. Insul.
  doi: 10.1177/109719639101400306
– start-page: 157
  year: 2012
  ident: 10.1016/j.applthermaleng.2019.114440_b0135
  article-title: Classical theory of diffusion and seepage problems in porous media
– year: 2013
  ident: 10.1016/j.applthermaleng.2019.114440_b0085
– volume: 46
  start-page: 428
  year: 2001
  ident: 10.1016/j.applthermaleng.2019.114440_b0100
  article-title: Thermal conductivties of alternatives to CFC-11 for foam insulation
  publication-title: J. Chem. An.
– ident: 10.1016/j.applthermaleng.2019.114440_b0180
SSID ssj0012874
Score 2.4880807
Snippet •Foams age causing a deterioration of thermal and mechanical properties with time.•Blowing agents used in polyisocyanurate foams tend to leave the material...
Over the last few years, new environmental protection regulations have promoted the adoption of new blowing agents for the production of foam materials....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114440
SubjectTerms Blowing agent
Blowing agents
Condensates
Elongation
Environmental protection
Escape structures
Foam insulation
Gas chromatography
Heat conductivity
Heat transfer
Microstructural analysis
Microstructure
Organic chemistry
Plastic foam
Polyisocyanurates
Polyurethane
Polyurethane foam
Polyurethane foams
Scanning electron microscopy
Thermal conductivity
Thermal engineering
Wall thickness
Title Microstructural analysis and blowing agent concentration in aged polyurethane and polyisocyanurate foams
URI https://dx.doi.org/10.1016/j.applthermaleng.2019.114440
https://www.proquest.com/docview/2328303556
Volume 164
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50BdGD-MQ3OXitm7ZJ2-BBRJRV0YsK3kKaB66s3UVdZC_-djNt6gsPgrcSOmmZSeaVmS8AezlnRuSCR3ESGx-gpCxSrkwjqmNn0tTlosYpuLzKerfs_I7fTcFx2wuDZZVB9zc6vdbWYaQbuNkd9fvd6zjlwpu_OK5jcs6nYSbx1r7owMzR2UXv6uMwASHd67iLiwgJZmHvs8wLz4nR1XpUeHMJ1noJxM9lmA353VL90Nm1ITpdhIXgQZKj5ieXYMpWyzD_BVdwBe4vscyugYZFWA2iAvSIfzCkHAxf_WtEYVcV0di3WAXwXNKvcNiQ0XAwGT9ZzKvbmggH-l6SE1WNEV2CuKF6fF6F29OTm-NeFK5UiHQq-EtknA9YHNe5yZVmhcspNap0vExsmec206y0ItNJs9GZwiKZgpaFo04L71uka9CphpVdB-IEdYzrhDpFmcsyZbTGrJQ21HKt7QYctOyTOuCN47UXA9kWlj3I78yXyHzZMH8D-Af1qMHd-CPdYSsp-W0dSW8i_jjDditgGfbzs_R-Z-GNPefZ5r8_sAVzCQbtmMfh29Dxi8HueM_mpdyF6f23eDes33d-a_3n
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH7oCC4HccXdHLyWSdukneBBRJRxmbmo4C2kWXBkpjO4IP5789rUDQ-CtxL60vJe8ra8fA_gIOfMiFzwKE5i4wOUlEXKFWlEdexMmrpcVDgFvX7WvWUXd_xuCk6auzBYVhl0f63TK20dRtqBm-3JYNC-jlMuvPmL4yom53waZhg2tW7BzPH5Zbf_cZiAkO5V3MVFhASzcPBZ5oXnxOhqjRR2LsFaL4H4uQyzIb9bqh86uzJEZ0uwGDxIclz_5DJM2XIFFr7gCq7CfQ_L7GpoWITVICpAj_gHQ4rh-NW_RhTeqiIa7y2WATyXDEocNmQyHr69PFrMq9uKCAcGXpJvqnxBdAnixmr0tAa3Z6c3J90otFSIdCr4c2ScD1gc17nJlWYdl1NqVOF4kdgiz22mWWFFppN6ozOFRTIdWnQcdVp43yJdh1Y5Lu0GECeoY1wn1CnKXJYpozVmpbShlmttN-GwYZ_UAW8c214MZVNY9iC_M18i82XN_E3gH9STGnfjj3RHjaTkt3UkvYn44ww7jYBl2M9P0vudHW_sOc-2_v2BfZjr3vSu5NV5_3Ib5hMM4DGnw3eg5ReG3fVeznOxF1bxO3pz_80
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructural+analysis+and+blowing+agent+concentration+in+aged+polyurethane+and+polyisocyanurate+foams&rft.jtitle=Applied+thermal+engineering&rft.au=Berardi%2C+Umberto&rft.au=Madzarevic%2C+Jelena&rft.date=2020-01-05&rft.pub=Elsevier+BV&rft.issn=1359-4311&rft.eissn=1873-5606&rft.volume=164&rft.spage=1&rft_id=info:doi/10.1016%2Fj.applthermaleng.2019.114440&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon