SpaRCe: Improved Learning of Reservoir Computing Systems Through Sparse Representations

"Sparse" neural networks, in which relatively few neurons or connections are active, are common in both machine learning and neuroscience. While, in machine learning, "sparsity" is related to a penalty term that leads to some connecting weights becoming small or zero, in biologic...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 2; pp. 824 - 838
Main Authors Manneschi, Luca, Lin, Andrew C., Vasilaki, Eleni
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2021.3102378

Cover

Abstract "Sparse" neural networks, in which relatively few neurons or connections are active, are common in both machine learning and neuroscience. While, in machine learning, "sparsity" is related to a penalty term that leads to some connecting weights becoming small or zero, in biological brains, sparsity is often created when high spiking thresholds prevent neuronal activity. Here, we introduce sparsity into a reservoir computing network via neuron-specific learnable thresholds of activity, allowing neurons with low thresholds to contribute to decision-making but suppressing information from neurons with high thresholds. This approach, which we term "SpaRCe," optimizes the sparsity level of the reservoir without affecting the reservoir dynamics. The read-out weights and the thresholds are learned by an online gradient rule that minimizes an error function on the outputs of the network. Threshold learning occurs by the balance of two opposing forces: reducing interneuronal correlations in the reservoir by deactivating redundant neurons, while increasing the activity of neurons participating in correct decisions. We test SpaRCe on classification problems and find that threshold learning improves performance compared to standard reservoir computing. SpaRCe alleviates the problem of catastrophic forgetting, a problem most evident in standard echo state networks (ESNs) and recurrent neural networks in general, due to increasing the number of task-specialized neurons that are included in the network decisions.
AbstractList "Sparse" neural networks, in which relatively few neurons or connections are active, are common in both machine learning and neuroscience. While, in machine learning, "sparsity" is related to a penalty term that leads to some connecting weights becoming small or zero, in biological brains, sparsity is often created when high spiking thresholds prevent neuronal activity. Here, we introduce sparsity into a reservoir computing network via neuron-specific learnable thresholds of activity, allowing neurons with low thresholds to contribute to decision-making but suppressing information from neurons with high thresholds. This approach, which we term "SpaRCe," optimizes the sparsity level of the reservoir without affecting the reservoir dynamics. The read-out weights and the thresholds are learned by an online gradient rule that minimizes an error function on the outputs of the network. Threshold learning occurs by the balance of two opposing forces: reducing interneuronal correlations in the reservoir by deactivating redundant neurons, while increasing the activity of neurons participating in correct decisions. We test SpaRCe on classification problems and find that threshold learning improves performance compared to standard reservoir computing. SpaRCe alleviates the problem of catastrophic forgetting, a problem most evident in standard echo state networks (ESNs) and recurrent neural networks in general, due to increasing the number of task-specialized neurons that are included in the network decisions."Sparse" neural networks, in which relatively few neurons or connections are active, are common in both machine learning and neuroscience. While, in machine learning, "sparsity" is related to a penalty term that leads to some connecting weights becoming small or zero, in biological brains, sparsity is often created when high spiking thresholds prevent neuronal activity. Here, we introduce sparsity into a reservoir computing network via neuron-specific learnable thresholds of activity, allowing neurons with low thresholds to contribute to decision-making but suppressing information from neurons with high thresholds. This approach, which we term "SpaRCe," optimizes the sparsity level of the reservoir without affecting the reservoir dynamics. The read-out weights and the thresholds are learned by an online gradient rule that minimizes an error function on the outputs of the network. Threshold learning occurs by the balance of two opposing forces: reducing interneuronal correlations in the reservoir by deactivating redundant neurons, while increasing the activity of neurons participating in correct decisions. We test SpaRCe on classification problems and find that threshold learning improves performance compared to standard reservoir computing. SpaRCe alleviates the problem of catastrophic forgetting, a problem most evident in standard echo state networks (ESNs) and recurrent neural networks in general, due to increasing the number of task-specialized neurons that are included in the network decisions.
"Sparse" neural networks, in which relatively few neurons or connections are active, are common in both machine learning and neuroscience. While, in machine learning, "sparsity" is related to a penalty term that leads to some connecting weights becoming small or zero, in biological brains, sparsity is often created when high spiking thresholds prevent neuronal activity. Here, we introduce sparsity into a reservoir computing network via neuron-specific learnable thresholds of activity, allowing neurons with low thresholds to contribute to decision-making but suppressing information from neurons with high thresholds. This approach, which we term "SpaRCe," optimizes the sparsity level of the reservoir without affecting the reservoir dynamics. The read-out weights and the thresholds are learned by an online gradient rule that minimizes an error function on the outputs of the network. Threshold learning occurs by the balance of two opposing forces: reducing interneuronal correlations in the reservoir by deactivating redundant neurons, while increasing the activity of neurons participating in correct decisions. We test SpaRCe on classification problems and find that threshold learning improves performance compared to standard reservoir computing. SpaRCe alleviates the problem of catastrophic forgetting, a problem most evident in standard echo state networks (ESNs) and recurrent neural networks in general, due to increasing the number of task-specialized neurons that are included in the network decisions.
Author Vasilaki, Eleni
Manneschi, Luca
Lin, Andrew C.
Author_xml – sequence: 1
  givenname: Luca
  orcidid: 0000-0002-0125-1325
  surname: Manneschi
  fullname: Manneschi, Luca
  organization: Department of Computer Science, The University of Sheffield, Sheffield, U.K
– sequence: 2
  givenname: Andrew C.
  orcidid: 0000-0001-6310-9765
  surname: Lin
  fullname: Lin, Andrew C.
  organization: Department of Biomedical Science, The University of Sheffield, Sheffield, U.K
– sequence: 3
  givenname: Eleni
  orcidid: 0000-0003-3705-7070
  surname: Vasilaki
  fullname: Vasilaki, Eleni
  email: e.vasilaki@sheffield.ac.uk
  organization: Department of Computer Science, The University of Sheffield, Sheffield, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34398765$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLAzEUhYMovv-Aggy4cdOayXPiToovKBVsQXchk7mjI53JmMwU_PemtnbRhXeTS_jOvYd7jtBu4xpA6CzFwzTF6no2mYynQ4JJOqQpJlRmO-iQpIIMCM2y3U0v3w7QaQifOJbAXDC1jw4ooyqTgh-i12lrXkZwkzzVrXcLKJIxGN9UzXviyuQFAviFq3wycnXbd8vv6XfooA7J7MO7_v0jiQN8gIi2PtJNZ7rKNeEE7ZVmHuB0_R6j2f3dbPQ4GD8_PI1uxwNLFe8GlgtRkNJYKfOiyJXAwAumFGelLIEBNznNqWXEMCUItrwoQcic2SIjKqf0GF2txkbzXz2ETtdVsDCfmwZcHzThghCqsMQRvdxCP13vm2hOEykp40wqEqmLNdXnNRS69VVt_Lf-u1gEyAqw3oXgodwgKdbLZPRvMnqZjF4nE0XZlshWq0N13lTz_6XnK2kFAJtdiqfRkKI_WjGblA
CODEN ITNNAL
CitedBy_id crossref_primary_10_1101_lm_053825_123
crossref_primary_10_1088_1361_6528_ac87b5
crossref_primary_10_1073_pnas_2102158118
crossref_primary_10_1007_s12652_023_04686_7
crossref_primary_10_1109_LRA_2022_3150505
crossref_primary_10_1063_5_0119040
crossref_primary_10_1080_17445760_2025_2472211
crossref_primary_10_3389_felec_2022_869013
crossref_primary_10_1007_s11047_024_09997_y
crossref_primary_10_1002_inc2_12013
crossref_primary_10_1038_s41467_024_50633_1
crossref_primary_10_1038_s42005_023_01352_4
crossref_primary_10_1016_j_neunet_2024_107079
Cites_doi 10.1016/j.neunet.2012.02.028
10.1016/j.neunet.2019.03.005
10.1038/ncomms4541
10.1016/j.patcog.2011.09.011
10.35848/1347-4065/ab8d4f
10.1007/11550822_11
10.1152/jn.1995.73.2.713
10.1016/j.neuron.2013.08.006
10.1038/nn.3547
10.1038/nature09160
10.1016/j.neunet.2007.04.011
10.1523/JNEUROSCI.1099-11.2011
10.1016/j.neuron.2015.10.018
10.1073/pnas.1005635107
10.1109/TNNLS.2020.3001377
10.1038/nature12063
10.1201/b18401
10.1162/NECO_a_00499
10.1073/pnas.130200797
10.1016/j.ins.2015.11.017
10.1126/science.1070502
10.1109/MSP.2012.2211477
10.1109/CSE-EUC-DCABES.2016.229
10.1007/978-3-642-35289-8_36
10.1209/0295-5075/4/2/007
10.1063/1.5079305
10.1152/jn.01283.2007
10.1016/j.neucom.2016.12.089
10.1145/2765491.2765531
10.3389/fams.2020.616658
10.1016/j.neunet.2012.11.011
10.1016/j.neunet.2007.04.016
10.1209/0295-5075/6/2/002
10.1016/j.neuron.2010.04.009
10.1038/nn.3660
10.1073/pnas.1305857110
10.1162/NECO_a_00200
10.1016/j.ins.2016.08.081
10.1038/s41586-018-0632-y
10.1038/s41467-017-02337-y
10.1038/s41467-020-16261-1
10.1016/j.neucom.2007.12.020
10.1063/1.4746765
10.1371/journal.pbio.0030068
10.1109/TNN.2010.2089641
10.1038/srep00287
10.1103/PhysRevLett.55.1530
10.1038/nature23011
10.1016/S0893-6080(05)80003-6
10.1209/0295-5075/7/3/003
10.1609/aaai.v32i1.11651
10.1016/j.cell.2006.01.050
10.1007/s00041-008-9045-x
10.1609/aaai.v33i01.33013280
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3102378
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 838
ExternalDocumentID 34398765
10_1109_TNNLS_2021_3102378
9514399
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Google Deepmind Faculty Research Awards Program
  funderid: 10.13039/100006785
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/S016031/1
  funderid: 10.13039/501100000268
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/P006094/1; EP/S030964/1; EP/S009647/1; EP/V006339/1
  funderid: 10.13039/501100000266
– fundername: European Research Council
  grantid: 639489
  funderid: 10.13039/501100000781
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/S016031/1
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c395t-c566d2fac77bddb960e5d49954f7fe4e5ab3b3c42a49620c5dfe67b4cd829b33
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 11:17:40 EDT 2025
Mon Jun 30 04:39:57 EDT 2025
Thu Apr 03 07:03:15 EDT 2025
Tue Jul 01 00:27:40 EDT 2025
Thu Apr 24 22:49:15 EDT 2025
Wed Aug 27 02:48:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-c566d2fac77bddb960e5d49954f7fe4e5ab3b3c42a49620c5dfe67b4cd829b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0125-1325
0000-0001-6310-9765
0000-0003-3705-7070
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9514399
PMID 34398765
PQID 2773454792
PQPubID 85436
PageCount 15
ParticipantIDs ieee_primary_9514399
proquest_journals_2773454792
crossref_primary_10_1109_TNNLS_2021_3102378
crossref_citationtrail_10_1109_TNNLS_2021_3102378
proquest_miscellaneous_2562239070
pubmed_primary_34398765
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref17
ref16
ref19
ref18
wen (ref7) 2016
lukoševi?ius (ref39) 2012
ref50
srivastava (ref8) 2014; 15
dong (ref60) 2020; 33
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
huang (ref37) 2011; 12
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
kingma (ref54) 2014
ref38
krishnamurthy (ref51) 2017
arora (ref56) 2019
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref62
serra (ref46) 2018; 80
ref61
References_xml – ident: ref58
  doi: 10.1016/j.neunet.2012.02.028
– ident: ref43
  doi: 10.1016/j.neunet.2019.03.005
– ident: ref28
  doi: 10.1038/ncomms4541
– ident: ref9
  doi: 10.1016/j.patcog.2011.09.011
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref8
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref30
  doi: 10.35848/1347-4065/ab8d4f
– ident: ref21
  doi: 10.1007/11550822_11
– ident: ref10
  doi: 10.1152/jn.1995.73.2.713
– ident: ref50
  doi: 10.1016/j.neuron.2013.08.006
– ident: ref14
  doi: 10.1038/nn.3547
– ident: ref19
  doi: 10.1038/nature09160
– ident: ref23
  doi: 10.1016/j.neunet.2007.04.011
– ident: ref11
  doi: 10.1523/JNEUROSCI.1099-11.2011
– ident: ref17
  doi: 10.1016/j.neuron.2015.10.018
– ident: ref49
  doi: 10.1073/pnas.1005635107
– ident: ref36
  doi: 10.1109/TNNLS.2020.3001377
– year: 2017
  ident: ref51
  article-title: Disorder and the neural representation of complex odors: Smelling in the real world
  publication-title: arXiv 1707 01962
– ident: ref52
  doi: 10.1038/nature12063
– ident: ref6
  doi: 10.1201/b18401
– ident: ref5
  doi: 10.1162/NECO_a_00499
– ident: ref18
  doi: 10.1073/pnas.130200797
– ident: ref22
  doi: 10.1016/j.ins.2015.11.017
– ident: ref16
  doi: 10.1126/science.1070502
– year: 2014
  ident: ref54
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– volume: 33
  start-page: 16785
  year: 2020
  ident: ref60
  article-title: Reservoir computing meets recurrent kernels and structured transforms
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref55
  doi: 10.1109/MSP.2012.2211477
– ident: ref41
  doi: 10.1109/CSE-EUC-DCABES.2016.229
– start-page: 659
  year: 2012
  ident: ref39
  article-title: A practical guide to applying echo state networks
  publication-title: Neural Networks Tricks of the Trade
  doi: 10.1007/978-3-642-35289-8_36
– ident: ref3
  doi: 10.1209/0295-5075/4/2/007
– ident: ref61
  doi: 10.1063/1.5079305
– ident: ref13
  doi: 10.1152/jn.01283.2007
– ident: ref34
  doi: 10.1016/j.neucom.2016.12.089
– ident: ref26
  doi: 10.1145/2765491.2765531
– ident: ref35
  doi: 10.3389/fams.2020.616658
– ident: ref57
  doi: 10.1016/j.neunet.2012.11.011
– ident: ref31
  doi: 10.1016/j.neunet.2007.04.016
– ident: ref1
  doi: 10.1209/0295-5075/6/2/002
– ident: ref48
  doi: 10.1016/j.neuron.2010.04.009
– ident: ref12
  doi: 10.1038/nn.3660
– ident: ref15
  doi: 10.1073/pnas.1305857110
– ident: ref59
  doi: 10.1162/NECO_a_00200
– ident: ref40
  doi: 10.1016/j.ins.2016.08.081
– ident: ref62
  doi: 10.1038/s41586-018-0632-y
– volume: 80
  start-page: 4548
  year: 2018
  ident: ref46
  article-title: Overcoming catastrophic forgetting with hard attention to the task
  publication-title: Proc 35th Int Conf Mach Learn
– ident: ref25
  doi: 10.1038/s41467-017-02337-y
– ident: ref27
  doi: 10.1038/s41467-020-16261-1
– ident: ref24
  doi: 10.1016/j.neucom.2007.12.020
– start-page: 77
  year: 2019
  ident: ref56
  article-title: Does an LSTM forget more than a CNN? An empirical study of catastrophic forgetting in NLP
  publication-title: Proc 17th Annu Workshop Australas Lang Technol Assoc
– ident: ref33
  doi: 10.1063/1.4746765
– ident: ref53
  doi: 10.1371/journal.pbio.0030068
– ident: ref32
  doi: 10.1109/TNN.2010.2089641
– ident: ref29
  doi: 10.1038/srep00287
– ident: ref4
  doi: 10.1103/PhysRevLett.55.1530
– ident: ref42
  doi: 10.1038/nature23011
– ident: ref20
  doi: 10.1016/S0893-6080(05)80003-6
– ident: ref2
  doi: 10.1209/0295-5075/7/3/003
– ident: ref45
  doi: 10.1609/aaai.v32i1.11651
– start-page: 2074
  year: 2016
  ident: ref7
  article-title: Learning structured sparsity in deep neural networks
  publication-title: Advances in neural information processing systems
– ident: ref47
  doi: 10.1016/j.cell.2006.01.050
– ident: ref38
  doi: 10.1007/s00041-008-9045-x
– ident: ref44
  doi: 10.1609/aaai.v33i01.33013280
– volume: 12
  start-page: 3371
  year: 2011
  ident: ref37
  article-title: Learning with structured sparsity
  publication-title: J Mach Learn Res
SSID ssj0000605649
Score 2.4980712
Snippet "Sparse" neural networks, in which relatively few neurons or connections are active, are common in both machine learning and neuroscience. While, in machine...
“Sparse” neural networks, in which relatively few neurons or connections are active, are common in both machine learning and neuroscience. While, in machine...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 824
SubjectTerms Brain
Catastrophic forgetting
Computation
Computational modeling
Decision making
echo state networks (ESNs)
Error functions
Firing pattern
Learning algorithms
Machine Learning
Mathematical model
Nervous system
Neural networks
Neural Networks, Computer
Neurons
Neurons - physiology
online learning
Recurrent neural networks
reservoir computing
Reservoirs
Sparsity
Task analysis
Thresholds
Title SpaRCe: Improved Learning of Reservoir Computing Systems Through Sparse Representations
URI https://ieeexplore.ieee.org/document/9514399
https://www.ncbi.nlm.nih.gov/pubmed/34398765
https://www.proquest.com/docview/2773454792
https://www.proquest.com/docview/2562239070
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGhQHkEWmQkbpBtYjtxza2qqCpE90AXsbfIjwmqQMlqHxz49YxjJwgEiFsUj53HjD3f2PMAeCm5LwnpYo4afS5FYXNbY5WXtnTaGK0ND_HO1_P66qN8t6yWe_B6ioVBxMH5DGfhcjjL973bha2yUx20u9b7sE9iFmO1pv2UgnB5PaBdXtY850ItxxiZQp8u5vP3N2QN8pKMVFJTKtTpEzQYLQbVLyppqLHyd7g5qJ3LQ7geXzh6m3yZ7bZ25r7_lsvxf7_oHtxN-JOdR4G5D3vYPYDDsbYDS1P9CD7drMyHC3zD4q4DepYysX5mfcuCv976W3-7ZrFnuJ1yn7NFrPzDaID1Bol09TPCqds8hMXl28XFVZ6KMORO6GqbO8J7nrfGKWW9t2TwYOVlyCLXqhYlVsYKK5zkRuqaF67yLdbKSufPuLZCPIKDru_wCTCJrm6Vw7Oy1dLWiloJHlpXqLaqnTUZlCMbGpcSlIc6GV-bwVApdDNwsQlcbBIXM3g19VnF9Bz_pD4KLJgo09_P4HjkdpNm8KbhSomQ7EzzDF5MzTT3woGK6bDfEQ2BRy40rZoZPI5SMo09CtfTPz_zGdwJheuj__cxHGzXOzwheLO1zwe5_gHiJPUH
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALBQo0UMBI3CDbxHbiNTdUUS2wuwcaxN6i2J4gRJWs9sGBX884cYJAgLhF8dh5zNjzjT0PgOeSu5SQLsao0cVSJCY2OWZxalKrq0rrivt458Uyn32U71bZ6gBejrEwiNg5n-HEX3Zn-a61e79Vdqa9dtf6GlzPyKqY9tFa445KQsg87_AuT3Mec6FWQ5RMos-K5XJ-SfYgT8lMJUWlfKU-QcPRcpD9opS6Kit_B5yd4rk4gsXwyr2_ydfJfmcm9vtv2Rz_95tuw62AQNnrXmTuwAE2d-FoqO7AwmQ_hk-X6-rDOb5i_b4DOhZysX5mbc28x97mW_tlw_qe_nbIfs6KvvYPowE2WyTS9c8Yp2Z7D4qLN8X5LA5lGGIrdLaLLSE-x-vKKmWcM2TyYOakzyNXqxolZpURRljJK6lzntjM1ZgrI62bcm2EuA-HTdvgCTCJNq-VxWlaa2lyRa0EEI1NVJ3l1lQRpAMbShtSlPtKGVdlZ6okuuy4WHouloGLEbwY-6z7BB3_pD72LBgpw9-P4HTgdhnm8LbkSgmf7kzzCJ6NzTT7_JFK1WC7JxqCj1xoWjcjeNBLyTj2IFwP__zMp3BjVizm5fzt8v0juOnL2Pfe4KdwuNvs8TGBnZ150sn4D-zY-Fo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SpaRCe%3A+Improved+Learning+of+Reservoir+Computing+Systems+Through+Sparse+Representations&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Manneschi%2C+Luca&rft.au=Lin%2C+Andrew+C.&rft.au=Vasilaki%2C+Eleni&rft.date=2023-02-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=34&rft.issue=2&rft.spage=824&rft.epage=838&rft_id=info:doi/10.1109%2FTNNLS.2021.3102378&rft_id=info%3Apmid%2F34398765&rft.externalDocID=9514399
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon