Correcting instructive electric potential patterns in multicellular systems: External actions and endogenous processes

Transmembrane electrical potential differences in cells modulate the spatio-temporal distribution of signaling ions and molecules that are instructive for downstream signaling pathways in multicellular systems. The local coupling between bioelectricity and protein transcription patterns allows dynam...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1867; no. 10; p. 130440
Main Authors Cervera, Javier, Levin, Michael, Mafe, Salvador
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2023
Subjects
Online AccessGet full text
ISSN0304-4165
1872-8006
1872-8006
DOI10.1016/j.bbagen.2023.130440

Cover

Abstract Transmembrane electrical potential differences in cells modulate the spatio-temporal distribution of signaling ions and molecules that are instructive for downstream signaling pathways in multicellular systems. The local coupling between bioelectricity and protein transcription patterns allows dynamic subsystems (modules) of cells that share the same bioelectrical state to show similar biochemical downstream processes. We simulate theoretically how the integration-segregation pattern formed by the different multicellular modules that define a biosystem can be controlled by multicellular potentials. To this end, we couple together the model equations of the bioelectrical network to those of the genetic network. The coupling provided by the intercellular junctions and the external microenvironment allows the restoration of the target bioelectrical pattern by changing the transcription rate of specific ion channels, the post-translational blocking of these channels, and changes in the environmental ionic concentrations. The simulations show that the single-cell feedback between bioelectrical and transcriptional processes, together with the coupling provided by the intercellular junctions and the environment, can correct large-scale patterns by means of suitable external actions. This study provides a theoretical advancement in the understanding of how the multicellular bioelectric coupling may guide repolarizing interventions for regenerating a tissue, with potential implications in biomedicine. Bioelectrical correction of morphologically instructive multicellular aggregates. [Display omitted] •Cell potentials influence transcription through signaling ions and molecules.•Multicellular electric potential patterns are morphologically instructive.•Simulations show how corrupted patterns can be restored by external actions.•Multicellular potentials correct local deviations from a body plan in regeneration.
AbstractList Transmembrane electrical potential differences in cells modulate the spatio-temporal distribution of signaling ions and molecules that are instructive for downstream signaling pathways in multicellular systems. The local coupling between bioelectricity and protein transcription patterns allows dynamic subsystems (modules) of cells that share the same bioelectrical state to show similar biochemical downstream processes.BACKGROUNDTransmembrane electrical potential differences in cells modulate the spatio-temporal distribution of signaling ions and molecules that are instructive for downstream signaling pathways in multicellular systems. The local coupling between bioelectricity and protein transcription patterns allows dynamic subsystems (modules) of cells that share the same bioelectrical state to show similar biochemical downstream processes.We simulate theoretically how the integration-segregation pattern formed by the different multicellular modules that define a biosystem can be controlled by multicellular potentials. To this end, we couple together the model equations of the bioelectrical network to those of the genetic network.METHODSWe simulate theoretically how the integration-segregation pattern formed by the different multicellular modules that define a biosystem can be controlled by multicellular potentials. To this end, we couple together the model equations of the bioelectrical network to those of the genetic network.The coupling provided by the intercellular junctions and the external microenvironment allows the restoration of the target bioelectrical pattern by changing the transcription rate of specific ion channels, the post-translational blocking of these channels, and changes in the environmental ionic concentrations.RESULTSThe coupling provided by the intercellular junctions and the external microenvironment allows the restoration of the target bioelectrical pattern by changing the transcription rate of specific ion channels, the post-translational blocking of these channels, and changes in the environmental ionic concentrations.The simulations show that the single-cell feedback between bioelectrical and transcriptional processes, together with the coupling provided by the intercellular junctions and the environment, can correct large-scale patterns by means of suitable external actions.CONCLUSIONSThe simulations show that the single-cell feedback between bioelectrical and transcriptional processes, together with the coupling provided by the intercellular junctions and the environment, can correct large-scale patterns by means of suitable external actions.This study provides a theoretical advancement in the understanding of how the multicellular bioelectric coupling may guide repolarizing interventions for regenerating a tissue, with potential implications in biomedicine.GENERAL SIGNIFICANCEThis study provides a theoretical advancement in the understanding of how the multicellular bioelectric coupling may guide repolarizing interventions for regenerating a tissue, with potential implications in biomedicine.
Transmembrane electrical potential differences in cells modulate the spatio-temporal distribution of signaling ions and molecules that are instructive for downstream signaling pathways in multicellular systems. The local coupling between bioelectricity and protein transcription patterns allows dynamic subsystems (modules) of cells that share the same bioelectrical state to show similar biochemical downstream processes. We simulate theoretically how the integration-segregation pattern formed by the different multicellular modules that define a biosystem can be controlled by multicellular potentials. To this end, we couple together the model equations of the bioelectrical network to those of the genetic network. The coupling provided by the intercellular junctions and the external microenvironment allows the restoration of the target bioelectrical pattern by changing the transcription rate of specific ion channels, the post-translational blocking of these channels, and changes in the environmental ionic concentrations. The simulations show that the single-cell feedback between bioelectrical and transcriptional processes, together with the coupling provided by the intercellular junctions and the environment, can correct large-scale patterns by means of suitable external actions. This study provides a theoretical advancement in the understanding of how the multicellular bioelectric coupling may guide repolarizing interventions for regenerating a tissue, with potential implications in biomedicine.
Transmembrane electrical potential differences in cells modulate the spatio-temporal distribution of signaling ions and molecules that are instructive for downstream signaling pathways in multicellular systems. The local coupling between bioelectricity and protein transcription patterns allows dynamic subsystems (modules) of cells that share the same bioelectrical state to show similar biochemical downstream processes. We simulate theoretically how the integration-segregation pattern formed by the different multicellular modules that define a biosystem can be controlled by multicellular potentials. To this end, we couple together the model equations of the bioelectrical network to those of the genetic network. The coupling provided by the intercellular junctions and the external microenvironment allows the restoration of the target bioelectrical pattern by changing the transcription rate of specific ion channels, the post-translational blocking of these channels, and changes in the environmental ionic concentrations. The simulations show that the single-cell feedback between bioelectrical and transcriptional processes, together with the coupling provided by the intercellular junctions and the environment, can correct large-scale patterns by means of suitable external actions. This study provides a theoretical advancement in the understanding of how the multicellular bioelectric coupling may guide repolarizing interventions for regenerating a tissue, with potential implications in biomedicine. Bioelectrical correction of morphologically instructive multicellular aggregates. [Display omitted] •Cell potentials influence transcription through signaling ions and molecules.•Multicellular electric potential patterns are morphologically instructive.•Simulations show how corrupted patterns can be restored by external actions.•Multicellular potentials correct local deviations from a body plan in regeneration.
Transmembrane electrical potential differences in cells modulate the spatio-temporal distribution of signaling ions and molecules that are instructive for downstream signaling pathways in multicellular systems. The local coupling between bioelectricity and protein transcription patterns allows dynamic subsystems (modules) of cells that share the same bioelectrical state to show similar biochemical downstream processes. We simulate theoretically how the integration-segregation pattern formed by the different multicellular modules that define a biosystem can be controlled by multicellular potentials. To this end, we couple together the model equations of the bioelectrical network to those of the genetic network. The coupling provided by the intercellular junctions and the external microenvironment allows the restoration of the target bioelectrical pattern by changing the transcription rate of specific ion channels, the post-translational blocking of these channels, and changes in the environmental ionic concentrations. The simulations show that the single-cell feedback between bioelectrical and transcriptional processes, together with the coupling provided by the intercellular junctions and the environment, can correct large-scale patterns by means of suitable external actions. This study provides a theoretical advancement in the understanding of how the multicellular bioelectric coupling may guide repolarizing interventions for regenerating a tissue, with potential implications in biomedicine.
ArticleNumber 130440
Author Cervera, Javier
Levin, Michael
Mafe, Salvador
Author_xml – sequence: 1
  givenname: Javier
  surname: Cervera
  fullname: Cervera, Javier
  email: jcervera@uv.es
  organization: Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
– sequence: 2
  givenname: Michael
  surname: Levin
  fullname: Levin, Michael
  organization: Dept. of Biology and Allen Discovery Center at Tufts University, Medford, USA
– sequence: 3
  givenname: Salvador
  surname: Mafe
  fullname: Mafe, Salvador
  organization: Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37527731$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtr3DAUhUVISSaPf1CKlt14qqdlZ1EoQ_qAQDftWlzLd4IGW55K8tD8-8g42XTRVhuJw3eOLvdckfMwBSTkLWdbznj94bDtOnjEsBVMyC2XTCl2Rja8MaJqGKvPyYYVsVK81pfkKqUDK0e3-oJcSqOFMZJvyGk3xYgu-_BIfUg5zuV9QopDEaN39DhlDNnDQI-QM8aQCkfHecje4TDMA0SanlLGMd3R-98LUVgoKVNBIfQUQz-VOac50WOcHKaE6Ya82cOQ8PblviY_P9__2H2tHr5_-bb79FA52epcOVVr0KbtesGN6OtmDy04qSST6FBK3QCookAHrRRYtK5xnHdqb-qGKZDX5P2aW37-NWPKdvRpmRsCloGsaBpTC6WV-g9Uac604ayg717QuRuxt8foR4hP9nWtBbhbARenlCLurfMZlpXkCH6wnNmlQ3uwa4d26dCuHRaz-sP8mv8P28fVhmWfJ4_RJucxOOz9UrDtJ__3gGdyDLox
CitedBy_id crossref_primary_10_1038_s41598_024_79087_7
Cites_doi 10.1016/j.bpj.2019.01.029
10.1038/s41467-022-34363-w
10.1038/s41567-019-0765-4
10.3389/fbioe.2016.00055
10.1387/ijdb.140207ml
10.1126/science.aau7187
10.1016/j.physrep.2022.12.003
10.1126/sciadv.abb3076
10.3390/cancers7020813
10.1146/annurev-biophys-062920-063555
10.1016/j.cub.2019.05.029
10.1016/j.ydbio.2017.08.032
10.1038/srep20403
10.1016/j.cbpa.2022.102151
10.1016/j.tcb.2019.07.001
10.1242/dev.073759
10.1021/jp508304h
10.3389/fnsys.2022.768201
10.1016/j.pbiomolbio.2019.06.004
10.1038/nrn3962
10.1016/j.ydbio.2019.10.034
10.3389/fbioe.2020.00603
10.1038/srep35201
10.1016/j.cels.2020.04.002
10.1242/dev.180794
10.1016/j.biosystems.2017.08.009
10.1002/glia.22924
10.3389/fcell.2022.772230
10.1016/j.cell.2021.02.034
10.1016/S0006-3495(01)76096-1
10.1016/j.pbiomolbio.2018.03.008
10.3389/fncel.2020.00136
10.1021/jp512900x
10.1007/s10071-023-01780-3
10.1021/acs.jpcb.9b01717
10.4161/19336950.2014.949188
10.1098/rsif.2007.1108
10.1038/s41467-018-03334-5
10.1016/j.jmb.2019.10.029
10.1016/j.neuron.2014.04.002
10.1021/acs.jpclett.0c00641
10.3390/cancers13215300
10.3390/ijms20153609
10.1016/j.biosystems.2016.01.002
10.3390/ijms161126065
10.1021/acs.jpcb.7b04774
10.1098/rsif.2017.0425
10.1039/C5IB00221D
10.1111/wrr.13032
10.1186/s12861-020-00210-8
10.1038/nature15709
10.1186/s12976-015-0019-9
10.1016/j.jtbi.2022.111338
10.1038/s41467-018-06693-1
10.1152/physrev.00027.2019
10.1098/rstb.2019.0763
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023. Published by Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023. Published by Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2023.130440
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
Medicine
EISSN 1872-8006
ExternalDocumentID 37527731
10_1016_j_bbagen_2023_130440
S0304416523001381
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-c465a579bd2172d68fa9ac34303ece3358aa49acaba932eeceb8c11b4f76804a3
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Sun Sep 28 03:58:05 EDT 2025
Sun Sep 28 10:43:39 EDT 2025
Thu Apr 03 07:00:49 EDT 2025
Thu Oct 09 00:28:52 EDT 2025
Thu Apr 24 23:11:15 EDT 2025
Tue Dec 03 03:44:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Developmental and regeneration bioelectricity
Instructive multicellular patterns
Membrane proteins
Transcription regulation
Language English
License Copyright © 2023. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-c465a579bd2172d68fa9ac34303ece3358aa49acaba932eeceb8c11b4f76804a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37527731
PQID 2845105710
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2887624544
proquest_miscellaneous_2845105710
pubmed_primary_37527731
crossref_citationtrail_10_1016_j_bbagen_2023_130440
crossref_primary_10_1016_j_bbagen_2023_130440
elsevier_sciencedirect_doi_10_1016_j_bbagen_2023_130440
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Carvalho (bb0180) 2023; 557
Cervera, Alcaraz, Mafe (bb0090) 2014; 118
Yuste, Levin (bb0315) 11 December 2021
Golowasch (bb0030) 2019; 29
Law, Levin (bb0095) 2015; 12
Chernet, Levin (bb0240) 2013; 6
O’Leary, Williams, Franci, Marder (bb0025) 2014; 82
Yuste (bb0320) 2015; 16
Cervera, Meseguer, Mafe (bb0115) 2016; 6
Pai, Cervera, Mafe, Willocq, Lederer, Levin (bb0140) 2020; 14
Glen, McDevitt, Kemp (bb0190) 2018; 9
Emmons-Bell, Durant, Hammelman, Bessonov, Volpert, Morokuma, Pinet, Adams, Pietak, Lobo, Levin (bb0225) 2015; 16
Levin (bb0260) 2023
Cervera, Pai, Levin, Mafe (bb0300) 2019; 149
Schotthöfer, Bohrmann (bb0080) 2020; 20
Smart, Zilman (bb0295) 2023; 4
Harris (bb0085) 2021; 148
Solé, Valverde (bb0150) 2008; 5
Lazzari-Dean, Gest, Miller (bb0235) 2021; 50
Levin (bb0310) 2022; 16
Müller, El-Sherif (bb0160) 2020; 460
Cervera, Alcaraz, Mafe (bb0105) 2016; 4
Hanson (bb0270) 2021; 376
Cervera, Manzanares, Mafe (bb0100) 2015; 119
Adams, Lemire, Kramer, Levin (bb0230) 2014; 58
Cervera, Levin, Mafe (bb0015) 2023; 1004
Shui, Liu, Zhan, Chen, Wang (bb0220) 2020; 6
Pai, Pietak, Willocq, Ye, Shi, Levin (bb0275) 2018; 9
Cervera, Manzanares, Mafe, Levin (bb0125) 2019; 123
Riol, Cervera, Levin, Mafe (bb0215) 2021; 13
Aslanidi, Mornev, Skyggebjerg, Arkhammar, Thastrup, Sørensen, Christiansen, Conradsen, Scott (bb0170) 2001; 80
Pezzulo, Levin (bb0265) 2015; 7
Mansouri, Fussenegger (bb0045) 2022; 68
McNamara, Salegame, Tanoury, Xu, Begum, Ortiz, Pourquie, Cohen (bb0245) 2020; 16
Harvey, Plante, Meredith (bb0060) 2020; 100
Cervera, Meseguer, Mafe (bb0250) 2017; 121
Sempou, Kostiuk, Zhu, Guerra, Tyan, Hwang, Camacho-Aguilar, Caplan, Zenisek, Warmflash, Owens, Khokha (bb0050) 2022; 13
Fields, Bischof, Levin (bb0200) 2020; 35
McLaughlin, Levin (bb0155) 2018; 433
Levin, Martyniuk (bb0165) 2018; 164
Pai, Levin (bb0280) 2022; 30
Pietak, Levin (bb0110) 2016; 4
Prindle, Liu, Asally, Ly, Garcia-Ojalvo, Süel (bb0065) 2015; 527
Durant, Bischof, Fields, Morokuma, LaPalme, Hoi, Levin (bb0135) 2019; 116
Levin (bb0010) 2021; 184
Pietak, Levin (bb0130) 2018; 137
Mammoto, Mammoto, Ingber (bb0005) 2012; 125
Cervera, Levin, Mafe (bb0020) 2020; 11
Yang, Bialecka-Fornal, Weatherwax, Larkin, Prindle, Liu, Garcia-Ojalvo, Süel (bb0070) 2017; 10
Pietak, Levin (bb0120) 2017; 14
Manicka, Pai, Levin (bb0145) 2023
Solé, Amor, Duran-Nebreda, Conde-Pueyo, Carbonell-Ballestero, Montañez (bb0305) 2016; 148
Hille (bb0185) 1992
George, Bates (bb0035) 2022; 10
Mesnil, Aasen, Boucher, Chepied, Cronier, Defamie, Kameritsch, Laird, Lampe, Lathia, Leithe, Mehta, Monvoisin, Pogoda, Sin, Tabernero, Yamasaki, Yeh, Dagli, Naus (bb0290) 1860; 2018
Pai, Aw, Shomrat, Lemire, Levin (bb0255) 2012; 139
Martins-Marques, Ribeiro-Rodrigues, Batista-Almeida, Aasen, Kwak, Girao (bb0205) 2019; 29
Gatenby (bb0075) 2019; 20
Rao, Perez-Neut, Kaja, Gentile (bb0055) 2015; 7
Krawczyk, Xue, Buchmann, Charpin-El-Hamri, Saxena, Hussherr, Shao, Ye, Xie, Fussenegger (bb0040) 2020; 368
Ma, Buckalew, Du, Kiyoshi, Alford, Wang, McTigue, Enyeart, Terman, Zhou (bb0285) 2016; 64
Bhavsar, Leppik, Costa-Oliveira, Barker (bb0175) 2020; 8
McMillen, Novak, Levin (bb0195) 2020; 432
Lin, Xu, Veenstra (bb0210) 2014; 8
Rao (10.1016/j.bbagen.2023.130440_bb0055) 2015; 7
Golowasch (10.1016/j.bbagen.2023.130440_bb0030) 2019; 29
Pezzulo (10.1016/j.bbagen.2023.130440_bb0265) 2015; 7
Schotthöfer (10.1016/j.bbagen.2023.130440_bb0080) 2020; 20
Law (10.1016/j.bbagen.2023.130440_bb0095) 2015; 12
Mammoto (10.1016/j.bbagen.2023.130440_bb0005) 2012; 125
Cervera (10.1016/j.bbagen.2023.130440_bb0125) 2019; 123
Bhavsar (10.1016/j.bbagen.2023.130440_bb0175) 2020; 8
Levin (10.1016/j.bbagen.2023.130440_bb0260) 2023
Lin (10.1016/j.bbagen.2023.130440_bb0210) 2014; 8
Pai (10.1016/j.bbagen.2023.130440_bb0280) 2022; 30
Krawczyk (10.1016/j.bbagen.2023.130440_bb0040) 2020; 368
Shui (10.1016/j.bbagen.2023.130440_bb0220) 2020; 6
Prindle (10.1016/j.bbagen.2023.130440_bb0065) 2015; 527
Cervera (10.1016/j.bbagen.2023.130440_bb0105) 2016; 4
Aslanidi (10.1016/j.bbagen.2023.130440_bb0170) 2001; 80
Ma (10.1016/j.bbagen.2023.130440_bb0285) 2016; 64
Pai (10.1016/j.bbagen.2023.130440_bb0255) 2012; 139
McLaughlin (10.1016/j.bbagen.2023.130440_bb0155) 2018; 433
Hanson (10.1016/j.bbagen.2023.130440_bb0270) 2021; 376
Cervera (10.1016/j.bbagen.2023.130440_bb0300) 2019; 149
Smart (10.1016/j.bbagen.2023.130440_bb0295) 2023; 4
Yang (10.1016/j.bbagen.2023.130440_bb0070) 2017; 10
Cervera (10.1016/j.bbagen.2023.130440_bb0100) 2015; 119
Lazzari-Dean (10.1016/j.bbagen.2023.130440_bb0235) 2021; 50
Yuste (10.1016/j.bbagen.2023.130440_bb0315) 2021
Pietak (10.1016/j.bbagen.2023.130440_bb0110) 2016; 4
Levin (10.1016/j.bbagen.2023.130440_bb0010) 2021; 184
Riol (10.1016/j.bbagen.2023.130440_bb0215) 2021; 13
Adams (10.1016/j.bbagen.2023.130440_bb0230) 2014; 58
Pai (10.1016/j.bbagen.2023.130440_bb0275) 2018; 9
Solé (10.1016/j.bbagen.2023.130440_bb0305) 2016; 148
Cervera (10.1016/j.bbagen.2023.130440_bb0115) 2016; 6
Manicka (10.1016/j.bbagen.2023.130440_bb0145) 2023
McNamara (10.1016/j.bbagen.2023.130440_bb0245) 2020; 16
Sempou (10.1016/j.bbagen.2023.130440_bb0050) 2022; 13
Martins-Marques (10.1016/j.bbagen.2023.130440_bb0205) 2019; 29
McMillen (10.1016/j.bbagen.2023.130440_bb0195) 2020; 432
Glen (10.1016/j.bbagen.2023.130440_bb0190) 2018; 9
Müller (10.1016/j.bbagen.2023.130440_bb0160) 2020; 460
Pai (10.1016/j.bbagen.2023.130440_bb0140) 2020; 14
George (10.1016/j.bbagen.2023.130440_bb0035) 2022; 10
O’Leary (10.1016/j.bbagen.2023.130440_bb0025) 2014; 82
Pietak (10.1016/j.bbagen.2023.130440_bb0130) 2018; 137
Harris (10.1016/j.bbagen.2023.130440_bb0085) 2021; 148
Cervera (10.1016/j.bbagen.2023.130440_bb0015) 2023; 1004
Mesnil (10.1016/j.bbagen.2023.130440_bb0290) 1860; 2018
Yuste (10.1016/j.bbagen.2023.130440_bb0320) 2015; 16
Pietak (10.1016/j.bbagen.2023.130440_bb0120) 2017; 14
Chernet (10.1016/j.bbagen.2023.130440_bb0240) 2013; 6
Harvey (10.1016/j.bbagen.2023.130440_bb0060) 2020; 100
Cervera (10.1016/j.bbagen.2023.130440_bb0020) 2020; 11
Durant (10.1016/j.bbagen.2023.130440_bb0135) 2019; 116
Solé (10.1016/j.bbagen.2023.130440_bb0150) 2008; 5
Carvalho (10.1016/j.bbagen.2023.130440_bb0180) 2023; 557
Fields (10.1016/j.bbagen.2023.130440_bb0200) 2020; 35
Emmons-Bell (10.1016/j.bbagen.2023.130440_bb0225) 2015; 16
Hille (10.1016/j.bbagen.2023.130440_bb0185) 1992
Mansouri (10.1016/j.bbagen.2023.130440_bb0045) 2022; 68
Gatenby (10.1016/j.bbagen.2023.130440_bb0075) 2019; 20
Cervera (10.1016/j.bbagen.2023.130440_bb0090) 2014; 118
Levin (10.1016/j.bbagen.2023.130440_bb0310) 2022; 16
Levin (10.1016/j.bbagen.2023.130440_bb0165) 2018; 164
Cervera (10.1016/j.bbagen.2023.130440_bb0250) 2017; 121
References_xml – volume: 13
  start-page: 6681
  year: 2022
  ident: bb0050
  article-title: Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR
  publication-title: Nat. Commun.
– volume: 20
  start-page: 5
  year: 2020
  ident: bb0080
  article-title: Bioelectrical and cytoskeletal patterns correlate with altered axial polarity in the follicular epithelium of the Drosophila mutant gurken
  publication-title: BMC Dev. Biol.
– volume: 527
  start-page: 59
  year: 2015
  end-page: 63
  ident: bb0065
  article-title: Ion channels enable electrical communication in bacterial communities
  publication-title: Nature
– volume: 6
  start-page: 595
  year: 2013
  end-page: 607
  ident: bb0240
  article-title: Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model
  publication-title: Dis. Model. Mech.
– volume: 10
  start-page: 417
  year: 2017
  end-page: 423
  ident: bb0070
  article-title: Encoding membrane-potential-based memory within a microbial community
  publication-title: Cell Syst.
– volume: 119
  start-page: 2968
  year: 2015
  end-page: 2978
  ident: bb0100
  article-title: Electrical coupling in ensembles of nonexcitable cells: modeling the spatial map of single cell potentials
  publication-title: J. Phys. Chem. B
– volume: 139
  start-page: 313
  year: 2012
  end-page: 323
  ident: bb0255
  article-title: Transmembrane voltage potential controls embryonic eye patterning in
  publication-title: Development
– volume: 4
  start-page: 20403
  year: 2016
  ident: bb0105
  article-title: Bioelectrical signals and ion channels in the modeling of multicellular patterns and cancer biophysics
  publication-title: Sci. Rep.
– volume: 164
  start-page: 76
  year: 2018
  end-page: 93
  ident: bb0165
  article-title: The bioelectric code: an ancient computational medium for dynamic control of growth and form
  publication-title: Biosystems
– volume: 68
  year: 2022
  ident: bb0045
  article-title: Electrogenetics: bridging synthetic biology and electronics to remotely control the behavior of mammalian designer cells
  publication-title: Curr. Opin. Chem. Biol.
– volume: 460
  start-page: 1
  year: 2020
  ident: bb0160
  article-title: A systems-level view of pattern formation mechanisms in development
  publication-title: Dev. Biol.
– volume: 137
  start-page: 52
  year: 2018
  end-page: 68
  ident: bb0130
  article-title: Bioelectrical control of positional information in development and regeneration a review of conceptual and computational advances
  publication-title: Prog. Biophys. Mol. Biol.
– volume: 29
  start-page: 835
  year: 2019
  end-page: 847
  ident: bb0205
  article-title: Biological functions of Connexin43 beyond intercellular communication
  publication-title: Trends Cell Biol.
– volume: 29
  start-page: R641
  year: 2019
  end-page: R646
  ident: bb0030
  article-title: Neuronal homeostasis: voltage brings it all together
  publication-title: Curr. Biol.
– volume: 16
  start-page: 487
  year: 2015
  end-page: 497
  ident: bb0320
  article-title: From the neuron doctrine to neural networks
  publication-title: Nat. Rev. Neurosci.
– volume: 149
  start-page: 39
  year: 2019
  ident: bb0300
  article-title: From non-excitable single-cell to multicellular bioelectrical states supported by ion channels and gap junction proteins: electrical potentials as distributed controllers
  publication-title: Prog. Biophys. Mol. Biol.
– volume: 14
  start-page: 136
  year: 2020
  ident: bb0140
  article-title: HCN2 channel-induced rescue of brain teratogenesis via local and long-range bioelectric repair
  publication-title: Front. Cell. Neurosci.
– volume: 14
  start-page: 20170425
  year: 2017
  ident: bb0120
  article-title: Bioelectric gene and reaction networks: computational modelling of genetic biochemical and bioelectrical dynamics in pattern regulation
  publication-title: J. R. Soc. Interface
– volume: 557
  year: 2023
  ident: bb0180
  article-title: A computational model of cell membrane bioelectric polarization and depolarization connected with cell proliferation in different tissue geometries
  publication-title: J. Theor. Biol.
– volume: 8
  start-page: 433
  year: 2014
  end-page: 443
  ident: bb0210
  article-title: Functional formation of heterotypic gap junction channels by connexins-40 and -43
  publication-title: Channels
– volume: 16
  start-page: 27865
  year: 2015
  ident: bb0225
  article-title: Gap junctional blockade stochastically induces different species-specific head anatomies in genetically wild-type
  publication-title: Int. J. Mol. Sci.
– volume: 58
  start-page: 851
  year: 2014
  end-page: 861
  ident: bb0230
  article-title: Optogenetics in developmental biology: using light to control ion flux-dependent signals in Xenopus embryos
  publication-title: Int. J. Dev. Biol.
– volume: 9
  start-page: 998
  year: 2018
  ident: bb0275
  article-title: HCN2 rescues brain defects by enforcing endogenous voltage pre-patterns
  publication-title: Nat. Commun.
– volume: 116
  start-page: 948
  year: 2019
  ident: bb0135
  article-title: The role of early bioelectric signals in the regeneration of planarian anterior/posterior polarity
  publication-title: Biophys. J.
– volume: 123
  start-page: 3924
  year: 2019
  end-page: 3934
  ident: bb0125
  article-title: Synchronization of bioelectric oscillations in networks of nonexcitable cells: from single-cell to multicellular states
  publication-title: J. Phys. Chem. B
– volume: 376
  start-page: 20190763
  year: 2021
  ident: bb0270
  article-title: Spontaneous electrical low-frequency oscillations: a possible role in Hydra and all living systems
  publication-title: Philos. Trans. R. Soc. B
– volume: 4
  year: 2023
  ident: bb0295
  article-title: Emergent properties of collective gene-expression patterns in multicellular systems
  publication-title: Cell Rep. Phys. Sci.
– volume: 64
  start-page: 214
  year: 2016
  end-page: 226
  ident: bb0285
  article-title: Gap junction coupling confers isopotentiality on astrocyte syncytium
  publication-title: Glia
– volume: 9
  start-page: 4111
  year: 2018
  ident: bb0190
  article-title: Dynamic intercellular transport modulates the spatial patterning of differentiation during early neural commitment
  publication-title: Nat. Commun.
– volume: 148
  start-page: 47
  year: 2016
  end-page: 61
  ident: bb0305
  article-title: Synthetic collective intelligence
  publication-title: BioSystems
– volume: 121
  start-page: 7602
  year: 2017
  end-page: 7613
  ident: bb0250
  article-title: MicroRNA intercellular transfer and bioelectrical regulation of model multicellular ensembles by the gap junction connectivity
  publication-title: J. Phys. Chem. B
– volume: 10
  year: 2022
  ident: bb0035
  article-title: Mechanisms underlying influence of bioeectricity in development
  publication-title: Front. Cell Dev. Biol.
– volume: 30
  start-page: 681
  year: 2022
  end-page: 706
  ident: bb0280
  article-title: HCN2 channel-induced rescue of brain eye heart and gut teratogenesis caused by nicotine ethanol and aberrant notch signaling
  publication-title: Wound Repair Regen.
– volume: 1004
  start-page: 1
  year: 2023
  end-page: 31
  ident: bb0015
  article-title: Bioelectricity of non-excitable cells and multicellular pattern memories: biophysical modeling
  publication-title: Phys. Rep.
– volume: 6
  start-page: eabb3076
  year: 2020
  ident: bb0220
  article-title: Molecular basis of junctional current rectification at an electrical synapse
  publication-title: Sci. Adv.
– volume: 82
  start-page: 809
  year: 2014
  end-page: 821
  ident: bb0025
  article-title: Cell types network homeostasis and pathological compensation from a biologically plausible ion channel expression model
  publication-title: Neuron
– volume: 432
  start-page: 605
  year: 2020
  end-page: 620
  ident: bb0195
  article-title: Toward decoding bioelectric events in Xenopus embryogenesis new methodology for tracking interplay between calcium and resting potentials in vivo
  publication-title: J. Mol. Biol.
– volume: 7
  start-page: 1487
  year: 2015
  end-page: 1517
  ident: bb0265
  article-title: Re-membering the body: applications of computational neuroscience to the top-down control of regeneration of limbs and other complex organs
  publication-title: Integr. Biol.
– volume: 148
  year: 2021
  ident: bb0085
  article-title: Bioelectric signaling as a unique regulator of development and regeneration
  publication-title: Development
– volume: 5
  start-page: 129
  year: 2008
  end-page: 133
  ident: bb0150
  article-title: Spontaneous emergence of modularity in cellular networks
  publication-title: J. R. Soc. Interface
– year: 11 December 2021
  ident: bb0315
  article-title: New clues about the origins of biological intelligence
  publication-title: Sci. Am.
– volume: 20
  start-page: 3609
  year: 2019
  ident: bb0075
  article-title: The role of cell membrane information reception processing and communication in the structure and function of multicellular tissue
  publication-title: Int. J. Mol. Sci.
– volume: 16
  year: 2022
  ident: bb0310
  article-title: Technological approach to mind everywhere: an experimentally-grounded framework for understanding diverse bodies and minds
  publication-title: Front. Syst. Neurosci.
– volume: 6
  start-page: 35201
  year: 2016
  ident: bb0115
  article-title: The interplay between genetic and bioelectrical signaling permits a spatial regionalisation of membrane potentials in model multicellular ensembles
  publication-title: Sci. Rep.
– volume: 7
  start-page: 849
  year: 2015
  ident: bb0055
  article-title: Voltage-gated ion channels in cancer cell proliferation
  publication-title: Cancers (Basel)
– volume: 125
  start-page: 3061
  year: 2012
  end-page: 3073
  ident: bb0005
  article-title: Mechanosensitive mechanisms in transcriptional regulation
  publication-title: J. Cell Sci.
– year: 1992
  ident: bb0185
  article-title: Ion Channels of Excitable Membranes
– volume: 2018
  start-page: 237
  year: 1860
  end-page: 243
  ident: bb0290
  article-title: An update on minding the gap in cancer
  publication-title: Biochim. Biophys. Acta
– volume: 433
  start-page: 177
  year: 2018
  end-page: 189
  ident: bb0155
  article-title: Bioelectric signaling in regeneration: mechanisms of ionic controls of growth and form
  publication-title: Dev. Biol.
– volume: 4
  start-page: 55
  year: 2016
  ident: bb0110
  article-title: Exploring instructive physiological signaling with the bioelectric tissue simulation engine
  publication-title: Front. Bioeng. Biotechnol.
– volume: 50
  start-page: 447
  year: 2021
  end-page: 468
  ident: bb0235
  article-title: Measuring absolute membrane potential across space and time
  publication-title: Annu. Rev. Biophys.
– volume: 12
  start-page: 22
  year: 2015
  ident: bb0095
  article-title: Bioelectric memory: modeling resting potential bistability in amphibian embryos and mammalian cells
  publication-title: Theor. Biol. Med. Model.
– volume: 13
  start-page: 5300
  year: 2021
  ident: bb0215
  article-title: Cell systems bioelectricity: how different intercellular gap junctions could regionalize a multicellular aggregate
  publication-title: Cancers (Basel)
– volume: 35
  start-page: 16
  year: 2020
  end-page: 30
  ident: bb0200
  article-title: Morphological coordination: a common ancestral function unifying neural and non-neural signaling
  publication-title: Physiology (Bethesda)
– volume: 118
  start-page: 12444
  year: 2014
  end-page: 12450
  ident: bb0090
  article-title: Membrane potential bi-stability in non-excitable cells as described by inward and outward voltage-gated ion channels
  publication-title: J. Phys. Chem. B
– volume: 368
  start-page: 993
  year: 2020
  end-page: 1001
  ident: bb0040
  article-title: Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice
  publication-title: Science
– year: 2023
  ident: bb0145
  article-title: Information Integration During Bioelectric Regulation of Morphogenesis in the Embryonic Frog Brain
– volume: 100
  start-page: 1415
  year: 2020
  end-page: 1454
  ident: bb0060
  article-title: Ion channels controlling circadian rhythms in suprachiasmatic nucleus excitability
  publication-title: Physiol. Rev.
– year: 2023
  ident: bb0260
  article-title: Bioelectric networks: the cognitive glue enabling evolutionary scaling from physiology to mind
  publication-title: Anim. Cogn.
– volume: 184
  start-page: 1971
  year: 2021
  ident: bb0010
  article-title: Bioelectric signaling: reprogrammable circuits underlying embryogenesis regeneration and cancer
  publication-title: Cell.
– volume: 80
  start-page: 1195
  year: 2001
  end-page: 1209
  ident: bb0170
  article-title: Excitation wave propagation as a possible mechanism for signal transmission in pancreatic islets of Langerhans
  publication-title: Biophys. J.
– volume: 16
  start-page: 357
  year: 2020
  ident: bb0245
  article-title: Bioelectrical domain walls in homogeneous tissues
  publication-title: Nat. Phys.
– volume: 8
  start-page: 603
  year: 2020
  ident: bb0175
  article-title: Role of bioelectricity during cell proliferation in different cell types
  publication-title: Front. Bioeng. Biotechnol.
– volume: 11
  start-page: 3234
  year: 2020
  end-page: 3241
  ident: bb0020
  article-title: Bioelectrical coupling of single-cell states in multicellular systems
  publication-title: J. Phys. Chem. Lett.
– volume: 116
  start-page: 948
  year: 2019
  ident: 10.1016/j.bbagen.2023.130440_bb0135
  article-title: The role of early bioelectric signals in the regeneration of planarian anterior/posterior polarity
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2019.01.029
– volume: 13
  start-page: 6681
  year: 2022
  ident: 10.1016/j.bbagen.2023.130440_bb0050
  article-title: Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34363-w
– volume: 16
  start-page: 357
  year: 2020
  ident: 10.1016/j.bbagen.2023.130440_bb0245
  article-title: Bioelectrical domain walls in homogeneous tissues
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0765-4
– volume: 4
  start-page: 55
  year: 2016
  ident: 10.1016/j.bbagen.2023.130440_bb0110
  article-title: Exploring instructive physiological signaling with the bioelectric tissue simulation engine
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2016.00055
– volume: 58
  start-page: 851
  year: 2014
  ident: 10.1016/j.bbagen.2023.130440_bb0230
  article-title: Optogenetics in developmental biology: using light to control ion flux-dependent signals in Xenopus embryos
  publication-title: Int. J. Dev. Biol.
  doi: 10.1387/ijdb.140207ml
– volume: 368
  start-page: 993
  year: 2020
  ident: 10.1016/j.bbagen.2023.130440_bb0040
  article-title: Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice
  publication-title: Science
  doi: 10.1126/science.aau7187
– volume: 1004
  start-page: 1
  year: 2023
  ident: 10.1016/j.bbagen.2023.130440_bb0015
  article-title: Bioelectricity of non-excitable cells and multicellular pattern memories: biophysical modeling
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2022.12.003
– volume: 6
  start-page: eabb3076
  year: 2020
  ident: 10.1016/j.bbagen.2023.130440_bb0220
  article-title: Molecular basis of junctional current rectification at an electrical synapse
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb3076
– volume: 4
  year: 2023
  ident: 10.1016/j.bbagen.2023.130440_bb0295
  article-title: Emergent properties of collective gene-expression patterns in multicellular systems
  publication-title: Cell Rep. Phys. Sci.
– volume: 7
  start-page: 849
  year: 2015
  ident: 10.1016/j.bbagen.2023.130440_bb0055
  article-title: Voltage-gated ion channels in cancer cell proliferation
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers7020813
– volume: 50
  start-page: 447
  year: 2021
  ident: 10.1016/j.bbagen.2023.130440_bb0235
  article-title: Measuring absolute membrane potential across space and time
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-062920-063555
– volume: 29
  start-page: R641
  year: 2019
  ident: 10.1016/j.bbagen.2023.130440_bb0030
  article-title: Neuronal homeostasis: voltage brings it all together
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2019.05.029
– volume: 433
  start-page: 177
  year: 2018
  ident: 10.1016/j.bbagen.2023.130440_bb0155
  article-title: Bioelectric signaling in regeneration: mechanisms of ionic controls of growth and form
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2017.08.032
– volume: 4
  start-page: 20403
  year: 2016
  ident: 10.1016/j.bbagen.2023.130440_bb0105
  article-title: Bioelectrical signals and ion channels in the modeling of multicellular patterns and cancer biophysics
  publication-title: Sci. Rep.
  doi: 10.1038/srep20403
– year: 1992
  ident: 10.1016/j.bbagen.2023.130440_bb0185
– volume: 68
  year: 2022
  ident: 10.1016/j.bbagen.2023.130440_bb0045
  article-title: Electrogenetics: bridging synthetic biology and electronics to remotely control the behavior of mammalian designer cells
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2022.102151
– year: 2023
  ident: 10.1016/j.bbagen.2023.130440_bb0145
– volume: 29
  start-page: 835
  year: 2019
  ident: 10.1016/j.bbagen.2023.130440_bb0205
  article-title: Biological functions of Connexin43 beyond intercellular communication
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2019.07.001
– volume: 139
  start-page: 313
  year: 2012
  ident: 10.1016/j.bbagen.2023.130440_bb0255
  article-title: Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis
  publication-title: Development
  doi: 10.1242/dev.073759
– volume: 118
  start-page: 12444
  year: 2014
  ident: 10.1016/j.bbagen.2023.130440_bb0090
  article-title: Membrane potential bi-stability in non-excitable cells as described by inward and outward voltage-gated ion channels
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp508304h
– volume: 2018
  start-page: 237
  year: 1860
  ident: 10.1016/j.bbagen.2023.130440_bb0290
  article-title: An update on minding the gap in cancer
  publication-title: Biochim. Biophys. Acta
– volume: 16
  year: 2022
  ident: 10.1016/j.bbagen.2023.130440_bb0310
  article-title: Technological approach to mind everywhere: an experimentally-grounded framework for understanding diverse bodies and minds
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2022.768201
– year: 2021
  ident: 10.1016/j.bbagen.2023.130440_bb0315
  article-title: New clues about the origins of biological intelligence
  publication-title: Sci. Am.
– volume: 149
  start-page: 39
  year: 2019
  ident: 10.1016/j.bbagen.2023.130440_bb0300
  article-title: From non-excitable single-cell to multicellular bioelectrical states supported by ion channels and gap junction proteins: electrical potentials as distributed controllers
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/j.pbiomolbio.2019.06.004
– volume: 16
  start-page: 487
  year: 2015
  ident: 10.1016/j.bbagen.2023.130440_bb0320
  article-title: From the neuron doctrine to neural networks
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3962
– volume: 460
  start-page: 1
  year: 2020
  ident: 10.1016/j.bbagen.2023.130440_bb0160
  article-title: A systems-level view of pattern formation mechanisms in development
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2019.10.034
– volume: 8
  start-page: 603
  year: 2020
  ident: 10.1016/j.bbagen.2023.130440_bb0175
  article-title: Role of bioelectricity during cell proliferation in different cell types
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00603
– volume: 6
  start-page: 35201
  year: 2016
  ident: 10.1016/j.bbagen.2023.130440_bb0115
  article-title: The interplay between genetic and bioelectrical signaling permits a spatial regionalisation of membrane potentials in model multicellular ensembles
  publication-title: Sci. Rep.
  doi: 10.1038/srep35201
– volume: 10
  start-page: 417
  year: 2017
  ident: 10.1016/j.bbagen.2023.130440_bb0070
  article-title: Encoding membrane-potential-based memory within a microbial community
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2020.04.002
– volume: 148
  year: 2021
  ident: 10.1016/j.bbagen.2023.130440_bb0085
  article-title: Bioelectric signaling as a unique regulator of development and regeneration
  publication-title: Development
  doi: 10.1242/dev.180794
– volume: 164
  start-page: 76
  year: 2018
  ident: 10.1016/j.bbagen.2023.130440_bb0165
  article-title: The bioelectric code: an ancient computational medium for dynamic control of growth and form
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2017.08.009
– volume: 64
  start-page: 214
  year: 2016
  ident: 10.1016/j.bbagen.2023.130440_bb0285
  article-title: Gap junction coupling confers isopotentiality on astrocyte syncytium
  publication-title: Glia
  doi: 10.1002/glia.22924
– volume: 10
  year: 2022
  ident: 10.1016/j.bbagen.2023.130440_bb0035
  article-title: Mechanisms underlying influence of bioeectricity in development
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2022.772230
– volume: 184
  start-page: 1971
  year: 2021
  ident: 10.1016/j.bbagen.2023.130440_bb0010
  article-title: Bioelectric signaling: reprogrammable circuits underlying embryogenesis regeneration and cancer
  publication-title: Cell.
  doi: 10.1016/j.cell.2021.02.034
– volume: 80
  start-page: 1195
  year: 2001
  ident: 10.1016/j.bbagen.2023.130440_bb0170
  article-title: Excitation wave propagation as a possible mechanism for signal transmission in pancreatic islets of Langerhans
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)76096-1
– volume: 137
  start-page: 52
  year: 2018
  ident: 10.1016/j.bbagen.2023.130440_bb0130
  article-title: Bioelectrical control of positional information in development and regeneration a review of conceptual and computational advances
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/j.pbiomolbio.2018.03.008
– volume: 14
  start-page: 136
  year: 2020
  ident: 10.1016/j.bbagen.2023.130440_bb0140
  article-title: HCN2 channel-induced rescue of brain teratogenesis via local and long-range bioelectric repair
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2020.00136
– volume: 119
  start-page: 2968
  year: 2015
  ident: 10.1016/j.bbagen.2023.130440_bb0100
  article-title: Electrical coupling in ensembles of nonexcitable cells: modeling the spatial map of single cell potentials
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp512900x
– year: 2023
  ident: 10.1016/j.bbagen.2023.130440_bb0260
  article-title: Bioelectric networks: the cognitive glue enabling evolutionary scaling from physiology to mind
  publication-title: Anim. Cogn.
  doi: 10.1007/s10071-023-01780-3
– volume: 123
  start-page: 3924
  year: 2019
  ident: 10.1016/j.bbagen.2023.130440_bb0125
  article-title: Synchronization of bioelectric oscillations in networks of nonexcitable cells: from single-cell to multicellular states
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.9b01717
– volume: 8
  start-page: 433
  year: 2014
  ident: 10.1016/j.bbagen.2023.130440_bb0210
  article-title: Functional formation of heterotypic gap junction channels by connexins-40 and -43
  publication-title: Channels
  doi: 10.4161/19336950.2014.949188
– volume: 5
  start-page: 129
  year: 2008
  ident: 10.1016/j.bbagen.2023.130440_bb0150
  article-title: Spontaneous emergence of modularity in cellular networks
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2007.1108
– volume: 9
  start-page: 998
  year: 2018
  ident: 10.1016/j.bbagen.2023.130440_bb0275
  article-title: HCN2 rescues brain defects by enforcing endogenous voltage pre-patterns
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03334-5
– volume: 432
  start-page: 605
  year: 2020
  ident: 10.1016/j.bbagen.2023.130440_bb0195
  article-title: Toward decoding bioelectric events in Xenopus embryogenesis new methodology for tracking interplay between calcium and resting potentials in vivo
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2019.10.029
– volume: 82
  start-page: 809
  year: 2014
  ident: 10.1016/j.bbagen.2023.130440_bb0025
  article-title: Cell types network homeostasis and pathological compensation from a biologically plausible ion channel expression model
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.04.002
– volume: 11
  start-page: 3234
  year: 2020
  ident: 10.1016/j.bbagen.2023.130440_bb0020
  article-title: Bioelectrical coupling of single-cell states in multicellular systems
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c00641
– volume: 13
  start-page: 5300
  year: 2021
  ident: 10.1016/j.bbagen.2023.130440_bb0215
  article-title: Cell systems bioelectricity: how different intercellular gap junctions could regionalize a multicellular aggregate
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers13215300
– volume: 20
  start-page: 3609
  year: 2019
  ident: 10.1016/j.bbagen.2023.130440_bb0075
  article-title: The role of cell membrane information reception processing and communication in the structure and function of multicellular tissue
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20153609
– volume: 148
  start-page: 47
  year: 2016
  ident: 10.1016/j.bbagen.2023.130440_bb0305
  article-title: Synthetic collective intelligence
  publication-title: BioSystems
  doi: 10.1016/j.biosystems.2016.01.002
– volume: 125
  start-page: 3061
  year: 2012
  ident: 10.1016/j.bbagen.2023.130440_bb0005
  article-title: Mechanosensitive mechanisms in transcriptional regulation
  publication-title: J. Cell Sci.
– volume: 16
  start-page: 27865
  year: 2015
  ident: 10.1016/j.bbagen.2023.130440_bb0225
  article-title: Gap junctional blockade stochastically induces different species-specific head anatomies in genetically wild-type Girardia dorotocephala flatworms
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms161126065
– volume: 121
  start-page: 7602
  year: 2017
  ident: 10.1016/j.bbagen.2023.130440_bb0250
  article-title: MicroRNA intercellular transfer and bioelectrical regulation of model multicellular ensembles by the gap junction connectivity
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.7b04774
– volume: 14
  start-page: 20170425
  year: 2017
  ident: 10.1016/j.bbagen.2023.130440_bb0120
  article-title: Bioelectric gene and reaction networks: computational modelling of genetic biochemical and bioelectrical dynamics in pattern regulation
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2017.0425
– volume: 7
  start-page: 1487
  year: 2015
  ident: 10.1016/j.bbagen.2023.130440_bb0265
  article-title: Re-membering the body: applications of computational neuroscience to the top-down control of regeneration of limbs and other complex organs
  publication-title: Integr. Biol.
  doi: 10.1039/C5IB00221D
– volume: 6
  start-page: 595
  year: 2013
  ident: 10.1016/j.bbagen.2023.130440_bb0240
  article-title: Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model
  publication-title: Dis. Model. Mech.
– volume: 30
  start-page: 681
  year: 2022
  ident: 10.1016/j.bbagen.2023.130440_bb0280
  article-title: HCN2 channel-induced rescue of brain eye heart and gut teratogenesis caused by nicotine ethanol and aberrant notch signaling
  publication-title: Wound Repair Regen.
  doi: 10.1111/wrr.13032
– volume: 20
  start-page: 5
  year: 2020
  ident: 10.1016/j.bbagen.2023.130440_bb0080
  article-title: Bioelectrical and cytoskeletal patterns correlate with altered axial polarity in the follicular epithelium of the Drosophila mutant gurken
  publication-title: BMC Dev. Biol.
  doi: 10.1186/s12861-020-00210-8
– volume: 527
  start-page: 59
  year: 2015
  ident: 10.1016/j.bbagen.2023.130440_bb0065
  article-title: Ion channels enable electrical communication in bacterial communities
  publication-title: Nature
  doi: 10.1038/nature15709
– volume: 35
  start-page: 16
  year: 2020
  ident: 10.1016/j.bbagen.2023.130440_bb0200
  article-title: Morphological coordination: a common ancestral function unifying neural and non-neural signaling
  publication-title: Physiology (Bethesda)
– volume: 12
  start-page: 22
  year: 2015
  ident: 10.1016/j.bbagen.2023.130440_bb0095
  article-title: Bioelectric memory: modeling resting potential bistability in amphibian embryos and mammalian cells
  publication-title: Theor. Biol. Med. Model.
  doi: 10.1186/s12976-015-0019-9
– volume: 557
  year: 2023
  ident: 10.1016/j.bbagen.2023.130440_bb0180
  article-title: A computational model of cell membrane bioelectric polarization and depolarization connected with cell proliferation in different tissue geometries
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2022.111338
– volume: 9
  start-page: 4111
  year: 2018
  ident: 10.1016/j.bbagen.2023.130440_bb0190
  article-title: Dynamic intercellular transport modulates the spatial patterning of differentiation during early neural commitment
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06693-1
– volume: 100
  start-page: 1415
  year: 2020
  ident: 10.1016/j.bbagen.2023.130440_bb0060
  article-title: Ion channels controlling circadian rhythms in suprachiasmatic nucleus excitability
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00027.2019
– volume: 376
  start-page: 20190763
  year: 2021
  ident: 10.1016/j.bbagen.2023.130440_bb0270
  article-title: Spontaneous electrical low-frequency oscillations: a possible role in Hydra and all living systems
  publication-title: Philos. Trans. R. Soc. B
  doi: 10.1098/rstb.2019.0763
SSID ssj0000595
Score 2.4281785
Snippet Transmembrane electrical potential differences in cells modulate the spatio-temporal distribution of signaling ions and molecules that are instructive for...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130440
SubjectTerms bioelectricity
Developmental and regeneration bioelectricity
Instructive multicellular patterns
medicine
Membrane proteins
transcription (genetics)
Transcription regulation
Title Correcting instructive electric potential patterns in multicellular systems: External actions and endogenous processes
URI https://dx.doi.org/10.1016/j.bbagen.2023.130440
https://www.ncbi.nlm.nih.gov/pubmed/37527731
https://www.proquest.com/docview/2845105710
https://www.proquest.com/docview/2887624544
Volume 1867
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: ACRLP
  dateStart: 19950118
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: AIKHN
  dateStart: 19950118
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: AKRWK
  dateStart: 19640113
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_GRPRFdH7NjxHB17p1SZfWtzE2psJeVPAtJGkKE-kKGwNf_Nu9a1pF8AN8bEhLyF1zl-R3vx_AZSo0xh2RBAOJexMheRLEOuoFWicuDC1RdJUA2dlg-ihun6KnBozqWhiCVVZrv1_Ty9W6aulWs9kt5vPuPV3qYTpBx5p03VZWsAtJKgZXb58wD0wfIn-TIALqXZfPlRgvY_CnJRbUPidZZEFHIN-Hp5_SzzIMTXZhp8of2dAPcQ8aLm_BpleUfG3B1qgWcNuH9YiUNyzhmtm8JopdO-aVb-aWFYsVYYXwc0XJspkvsR8rIYZ0nk8AVeaZnpfXbFzRRTNfCbFkOk-Zy9OFZ3llha84cMsDeJyMH0bToJJZCCxPolVg0R46kolJSawqHcSZTrTlAoObs47zKNZaYIs2GpM9h20mtmFoRIZblZ7Q_BCa-SJ3x8CyXob7DxM73PeKzIVxIq3LjEu4ka6vwzbwenaVrTjISQrjRdVgs2flbaLIJsrbpA3Bx1uF5-D4o7-sDae--JLCMPHHmxe1nRUai-Za5w4nUWEUp1QU87Hf-lBoEZEQbTjyTvIxXi6jvpQ8PPn32E5hm548kPAMmug17hwTopXplB7fgY3hzd109g4mpwvV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED-GIvNFdH7Nzwi-1q1Lura-yZhMnXtxgm8hSVOYSFfYGPji3-5d004EdeBrmpZwd83dJb_7HcBlIhT6HRF73RBzExHy2ItU0PaUiq3vG6LoKgCyo-7gWdy_BC816FW1MASrLPd-t6cXu3U50iql2conk9YTXephOEHHmnTdhinQugg6IWVgVx9fOA-MHwJ3lSA8ml7VzxUgL63xryUa1A6nvsiCzkB-9k-_xZ-FH7rdhq0ygGQ3bo07ULNZAzZcS8n3BtR7VQe3XVj0qPWGIWAzm1RMsQvLXOubiWH5dE5gIfxcXtBsZjOcxwqMIR3oE0KVOarn2TXrl3zRzJVCzJjKEmazZOpoXlnuSg7sbA-eb_vj3sAr-yx4hsfB3DOoEBWEsU6oW1XSjVIVK8MFejdrLOdBpJTAEaUVRnsWx3RkfF-LFHOVtlB8H9ayaWYPgaXtFBMQHVlMfEVq_SgOjU21jbkObUf5TeCVdKUpScipF8abrNBmr9LpRJJOpNNJE7zlW7kj4VgxP6wUJ78Zk0Q_seLNi0rPEpVFslaZRSFKdOMUi2JA9tcc8i0iEKIJB85IluvlIdkm94_-vbZzqA_Gj0M5vBs9HMMmPXGowhNYQwuypxgdzfVZYf2fOtwNag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correcting+instructive+electric+potential+patterns+in+multicellular+systems%3A+External+actions+and+endogenous+processes&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Cervera%2C+Javier&rft.au=Levin%2C+Michael&rft.au=Mafe%2C+Salvador&rft.date=2023-10-01&rft.eissn=1872-8006&rft.spage=130440&rft_id=info:doi/10.1016%2Fj.bbagen.2023.130440&rft_id=info%3Apmid%2F37527731&rft.externalDocID=37527731
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon