Heavy metal (Cu2+) removal from wastewater by metal-organic framework composite adsorbent: Simulation-based- artificial neural network and response surface methodology

Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu2+) removal from wastewater using a MOF nanocomposite. Th...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental research Vol. 245; p. 117972
Main Authors Han, Feng, Hessen, Ahmad Saeed, Amari, Abdelfattah, Elboughdiri, Noureddine, Zahmatkesh, Sasan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 15.03.2024
Subjects
Online AccessGet full text
ISSN0013-9351
1096-0953
1096-0953
DOI10.1016/j.envres.2023.117972

Cover

Abstract Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu2+) removal from wastewater using a MOF nanocomposite. This work has been modeled by response surface methodology (RSM) and artificial neural network (ANN) algorithms. In addition, the optimization of the mentioned factors has been performed through the RSM method to find the optimal conditions. The findings show that RSM and ANN can accurately forecast the adsorption process's the Cu2+ removal efficiency (RE). The maximum values of RE are achieved at the highest value of time (150 min), the highest value of adsorbent dosage (0.008 g), and the highest value of pH (=6). The R2 values obtained were 0.9995, 0.9992, and 0.9996 for ANN modeling of adsorption capacity based on different adsorbent dosages, Cu2+ solution pHs, and different ion concentrations, respectively. The ANN demonstrated a high level of accuracy in predicting the local minima of the graph. In addition, the RSM optimization results showed that the optimum mode for RE occurred at an adsorbent dosage value of 0.007 g and a time value of 144.229 min. [Display omitted] •Optimize and predict heavy metal (Cu2+) removal from wastewater by using a MOF nanocomposite.•Cu2+ removal in solution has been modeled by RSM and ANN algorithms.•ANN was obtained for modeling RE based on ion and mixing time with R2 = 0.9996.•MOFs possess conventional porous materials like carbon-based compounds and zeolites.•MOF technique is the outstanding removal of heavy metals from wastewater.
AbstractList Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu ) removal from wastewater using a MOF nanocomposite. This work has been modeled by response surface methodology (RSM) and artificial neural network (ANN) algorithms. In addition, the optimization of the mentioned factors has been performed through the RSM method to find the optimal conditions. The findings show that RSM and ANN can accurately forecast the adsorption process's the Cu removal efficiency (RE). The maximum values of RE are achieved at the highest value of time (150 min), the highest value of adsorbent dosage (0.008 g), and the highest value of pH (=6). The R values obtained were 0.9995, 0.9992, and 0.9996 for ANN modeling of adsorption capacity based on different adsorbent dosages, Cu solution pHs, and different ion concentrations, respectively. The ANN demonstrated a high level of accuracy in predicting the local minima of the graph. In addition, the RSM optimization results showed that the optimum mode for RE occurred at an adsorbent dosage value of 0.007 g and a time value of 144.229 min.
Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu2+) removal from wastewater using a MOF nanocomposite. This work has been modeled by response surface methodology (RSM) and artificial neural network (ANN) algorithms. In addition, the optimization of the mentioned factors has been performed through the RSM method to find the optimal conditions. The findings show that RSM and ANN can accurately forecast the adsorption process's the Cu2+ removal efficiency (RE). The maximum values of RE are achieved at the highest value of time (150 min), the highest value of adsorbent dosage (0.008 g), and the highest value of pH (=6). The R2 values obtained were 0.9995, 0.9992, and 0.9996 for ANN modeling of adsorption capacity based on different adsorbent dosages, Cu2+ solution pHs, and different ion concentrations, respectively. The ANN demonstrated a high level of accuracy in predicting the local minima of the graph. In addition, the RSM optimization results showed that the optimum mode for RE occurred at an adsorbent dosage value of 0.007 g and a time value of 144.229 min. [Display omitted] •Optimize and predict heavy metal (Cu2+) removal from wastewater by using a MOF nanocomposite.•Cu2+ removal in solution has been modeled by RSM and ANN algorithms.•ANN was obtained for modeling RE based on ion and mixing time with R2 = 0.9996.•MOFs possess conventional porous materials like carbon-based compounds and zeolites.•MOF technique is the outstanding removal of heavy metals from wastewater.
Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu²⁺) removal from wastewater using a MOF nanocomposite. This work has been modeled by response surface methodology (RSM) and artificial neural network (ANN) algorithms. In addition, the optimization of the mentioned factors has been performed through the RSM method to find the optimal conditions. The findings show that RSM and ANN can accurately forecast the adsorption process's the Cu²⁺ removal efficiency (RE). The maximum values of RE are achieved at the highest value of time (150 min), the highest value of adsorbent dosage (0.008 g), and the highest value of pH (=6). The R² values obtained were 0.9995, 0.9992, and 0.9996 for ANN modeling of adsorption capacity based on different adsorbent dosages, Cu²⁺ solution pHs, and different ion concentrations, respectively. The ANN demonstrated a high level of accuracy in predicting the local minima of the graph. In addition, the RSM optimization results showed that the optimum mode for RE occurred at an adsorbent dosage value of 0.007 g and a time value of 144.229 min.
Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu2+) removal from wastewater using a MOF nanocomposite. This work has been modeled by response surface methodology (RSM) and artificial neural network (ANN) algorithms. In addition, the optimization of the mentioned factors has been performed through the RSM method to find the optimal conditions. The findings show that RSM and ANN can accurately forecast the adsorption process's the Cu2+ removal efficiency (RE). The maximum values of RE are achieved at the highest value of time (150 min), the highest value of adsorbent dosage (0.008 g), and the highest value of pH (=6). The R2 values obtained were 0.9995, 0.9992, and 0.9996 for ANN modeling of adsorption capacity based on different adsorbent dosages, Cu2+ solution pHs, and different ion concentrations, respectively. The ANN demonstrated a high level of accuracy in predicting the local minima of the graph. In addition, the RSM optimization results showed that the optimum mode for RE occurred at an adsorbent dosage value of 0.007 g and a time value of 144.229 min.Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu2+) removal from wastewater using a MOF nanocomposite. This work has been modeled by response surface methodology (RSM) and artificial neural network (ANN) algorithms. In addition, the optimization of the mentioned factors has been performed through the RSM method to find the optimal conditions. The findings show that RSM and ANN can accurately forecast the adsorption process's the Cu2+ removal efficiency (RE). The maximum values of RE are achieved at the highest value of time (150 min), the highest value of adsorbent dosage (0.008 g), and the highest value of pH (=6). The R2 values obtained were 0.9995, 0.9992, and 0.9996 for ANN modeling of adsorption capacity based on different adsorbent dosages, Cu2+ solution pHs, and different ion concentrations, respectively. The ANN demonstrated a high level of accuracy in predicting the local minima of the graph. In addition, the RSM optimization results showed that the optimum mode for RE occurred at an adsorbent dosage value of 0.007 g and a time value of 144.229 min.
ArticleNumber 117972
Author Zahmatkesh, Sasan
Han, Feng
Hessen, Ahmad Saeed
Amari, Abdelfattah
Elboughdiri, Noureddine
Author_xml – sequence: 1
  givenname: Feng
  surname: Han
  fullname: Han, Feng
  organization: The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
– sequence: 2
  givenname: Ahmad Saeed
  surname: Hessen
  fullname: Hessen, Ahmad Saeed
  organization: Department of Anesthesia Techniques, Al-Noor University College, Nineveh, Iraq
– sequence: 3
  givenname: Abdelfattah
  surname: Amari
  fullname: Amari, Abdelfattah
  email: abdelfattah.amari@enig.rnu.tn
  organization: Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia
– sequence: 4
  givenname: Noureddine
  orcidid: 0000-0003-2923-3062
  surname: Elboughdiri
  fullname: Elboughdiri, Noureddine
  organization: Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi
– sequence: 5
  givenname: Sasan
  orcidid: 0000-0002-6573-8810
  surname: Zahmatkesh
  fullname: Zahmatkesh, Sasan
  email: sasan_zahmatkesh@yahoo.com
  organization: Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38141913$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvEzEUhC1URNPCP0Boj0XVBnu9TnZ7qISiQpEqcQDO1lv7uTjs2sH2Jsov4m_iZAMHDvT0NNI386SZC3LmvENCXjM6Z5Qt3q3n6LYB47yiFZ8ztmyX1TMyY7RdlLQV_IzMKGW8bLlg5-QixnWWTHD6gpzzhtWsZXxGft0jbPfFgAn64mo1Vtdvi4CD32Zpgh-KHcSEO0gYiu7ElT48grMqAzDgzocfhfLDxkebsAAdfejQpZviix3GHpL1ruwgoi4LCMkaq2wOdziG40nHAHA6_40b7yIWcQwGFB6-fffa9_5x_5I8N9BHfHW6l-Tbh7uvq_vy4fPHT6v3D6XirUhlJzpDlWkawJZrXYNgtRCGc6UrRoWiplvUCtqmXShmqkrXDHIP2dCYCirFL8nVlLsJ_ueIMcnBRoV9Dw79GCXPDYpmWfPFk2jVUiHYcslYRt-c0LEbUMtNsAOEvfyzQwbqCVDBxxjQ_EUYlYe55VpOc8vD3HKaO9tu_rEpm46NpwC2f8p8O5kx97m1GGRUFp1CbQOqJLW3_w_4DRxZy6g
CitedBy_id crossref_primary_10_1007_s10661_025_13615_4
crossref_primary_10_1016_j_envres_2024_119229
crossref_primary_10_1016_j_jconhyd_2024_104426
crossref_primary_10_1016_j_watres_2024_121876
crossref_primary_10_1016_j_jssc_2024_124927
crossref_primary_10_1016_j_desal_2024_118183
crossref_primary_10_1016_j_jwpe_2024_106867
crossref_primary_10_1016_j_molliq_2024_125753
crossref_primary_10_1016_j_envres_2024_119980
crossref_primary_10_1080_03067319_2025_2474485
crossref_primary_10_1002_aoc_7748
crossref_primary_10_1016_j_jtice_2024_105685
crossref_primary_10_1016_j_jiec_2025_01_033
crossref_primary_10_1080_15422119_2024_2437408
crossref_primary_10_1016_j_seppur_2024_128574
Cites_doi 10.1016/j.ccr.2018.11.002
10.1016/j.jenvman.2023.119429
10.1021/acs.chemrev.9b00575
10.1080/01932691.2015.1062772
10.1016/j.envres.2023.117816
10.1016/j.seppur.2022.120783
10.1039/C5TA09924B
10.1016/j.jenvman.2023.118440
10.1016/j.ijbiomac.2019.07.208
10.1002/smll.201801454
10.1016/j.cep.2021.108662
10.1016/j.jenvman.2023.118842
10.1016/j.scitotenv.2021.149134
10.1002/qre.906
10.1016/j.chemosphere.2021.133464
10.1057/jos.2009.23
10.1016/j.gee.2017.05.003
10.1016/j.cej.2011.04.030
10.1039/D2EN00601D
10.1016/j.jenvman.2023.119761
10.1016/j.arabjc.2013.12.028
10.1016/j.est.2023.108708
10.1016/j.jclepro.2023.137932
10.1007/s13399-021-02174-6
10.1016/j.energy.2023.128176
10.1016/j.molliq.2021.115593
10.1016/j.eswa.2023.121732
10.1016/j.chemolab.2016.03.031
10.1016/j.apsusc.2019.02.211
10.1016/j.eswa.2008.09.053
10.1016/j.jwpe.2014.12.002
10.1007/s13201-019-0924-x
10.1016/j.molliq.2016.01.020
10.2166/wqrj.2021.023
10.1080/01496395.2020.1820523
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.envres.2023.117972
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Environmental Sciences
EISSN 1096-0953
ExternalDocumentID 38141913
10_1016_j_envres_2023_117972
S0013935123027767
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACLOT
ACNCT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLECG
BLXMC
C45
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
L7B
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
TAE
TEORI
TN5
TWZ
UPT
WH7
ZCA
ZU3
~02
~G-
~HD
~KM
.GJ
29G
3O-
53G
AAQXK
AAYJJ
AAYXX
ABEFU
ABFNM
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AEGFY
AFFNX
AGQPQ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
OHT
R2-
SEN
SEW
VOH
WUQ
XOL
XPP
ZGI
ZKB
ZMT
ZXP
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-b5bf0cf88ae93dd4a51455f33cd2105c0fb64ca9896c1f22d41a913f888f2a2c3
IEDL.DBID .~1
ISSN 0013-9351
1096-0953
IngestDate Thu Oct 02 22:53:21 EDT 2025
Wed Oct 01 14:24:30 EDT 2025
Mon Jul 21 06:05:44 EDT 2025
Wed Oct 01 05:15:02 EDT 2025
Thu Apr 24 22:55:23 EDT 2025
Sun Oct 19 01:27:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Metal-organic framework
Response surface methodology
Artificial neural network
Wastewater treatment
Modeling
Heavy metals
Language English
License Copyright © 2023 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-b5bf0cf88ae93dd4a51455f33cd2105c0fb64ca9896c1f22d41a913f888f2a2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2923-3062
0000-0002-6573-8810
PMID 38141913
PQID 2905517711
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153587436
proquest_miscellaneous_2905517711
pubmed_primary_38141913
crossref_primary_10_1016_j_envres_2023_117972
crossref_citationtrail_10_1016_j_envres_2023_117972
elsevier_sciencedirect_doi_10_1016_j_envres_2023_117972
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-15
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Environmental research
PublicationTitleAlternate Environ Res
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Amiri, M. K., S. P. G. Zaferani, M. R. S. Emami, S. Zahmatkesh, R. Pourhanasa, S. S. Namaghi, J. J. Klemeš, A. Bokhari and M. Hajiaghaei-Keshteli (2023). "Multi-objective optimization of thermophysical properties GO powders-DW/EG Nf by RSM, NSGA-II, ANN, MLP and ML." Energy: 128176.
Jiang, Chen, Wang, Zeng, Huang, Cheng, Liu, Xue, Wang (bib46) 2019; 380
Cavas, Karabay, Alyuruk, Doğan, Demir (bib5) 2011; 171
120783.
Liu, Zou, Zhu, Zhang (bib24) 2018; 14
Liu, Sun, Hu, Wang (bib49) 2016; 4
(2): 128-142.
149134.
307-319.
Heidari, Sobati, Movahedirad (bib38) 2016; 155
108708.
Ye, J., X. Cong, P. Zhang, G. Zeng, E. Hoffmann, Y. Wu, H. Zhang and W. Fang (2016). "Operational parameter impact and back propagation artificial neural network modeling for phosphate adsorption onto acid-activated neutralized red mud." Journal of Molecular Liquids
Giovagnoli, Romano (bib36) 2008; 24
115593.
Lan, Zhu, Zhang, Li, Chen, Wang, Wu, Xu (bib41) 2022; 293
Pavan Kumar, Malla, Yerra, Srinivasa Rao (bib14) 2019; 9
Pai, K. N., T. T. Nguyen, V. Prasad and A. Rajendran (2022). "Experimental validation of an adsorbent-agnostic artificial neural network (ANN) framework for the design and optimization of cyclic adsorption processes." Separation and Purification Technology
Zaferani, S. P. G., M. R. S. Emami, M. K. Amiri and E. Binaeian (2019). "Optimization of the removal Pb (II) and its Gibbs free energy by thiosemicarbazide modified chitosan using RSM and ANN modeling." International journal of biological macromolecules
Qiu, Xie, Qin (bib34) 2020
(13): 2232-2242.
Oladipo, Gazi (bib12) 2015; 8
Qian, Zhang, Chen, Yu, Ye, Ma, Li, Wang, Wang, Ni (bib25) 2023; 344
Mourabet, El Rhilassi, El Boujaady, Bennani-Ziatni, Taitai (bib31) 2017; 10
Al-Musawi, T. J., S. M. A. Arghavan, E. Allahyari, F. S. Arghavan, A. Othmani and N. Nasseh (2022). "Adsorption of malachite green dye onto almond peel waste: a study focusing on application of the ANN approach for optimization of the effect of environmental parameters." Biomass Conversion and Biorefinery: 1-12.
Fang, X., D. Zhang, Z. Chang, R. Li and S. Meng (2023). "Phosphorus removal from water by the metal-organic frameworks (MOFs)-based adsorbents: A review for structure, mechanism, and current progress." Environmental Research: 117816.
Rathi, B. S., P. S. Kumar and D.-V. N. Vo (2021). "Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment." Science of The Total Environment
Zou, Han, So (bib37) 2009; applications
Debnath, Deb, Das, Chattopadhyay, Saha (bib30) 2016; 37
Soltani, Faramarzi, Mousavi Parsa (bib15) 2021; 56
Tran, T. V., L. X. Nong, H.-T. T. Nguyen, V. H. Nguyen, D. T. C. Nguyen, T. T. Nguyen, P. Q. Trang, D. H. Nguyen and T. D. Nguyen (2021). "Response surface methodology modeling for methylene blue removal by chemically modified porous carbon: Adsorption mechanism and role of surface functional groups." Separation Science and Technology
Yap, Fow, Chen (bib23) 2017; 2
Said, Amin (bib40) 2015; 2
Kalaj, M., K. C. Bentz, S. Ayala Jr, J. M. Palomba, K. S. Barcus, Y. Katayama and S. M. Cohen (2020). "MOF-polymer hybrid materials: From simple composites to tailored architectures." Chemical reviews
Montevechi, J. A. B., R. G. de Almeida Filho, A. Paiva, R. Costa and A. L. Medeiros (2010). "Sensitivity analysis in discrete-event simulation using fractional factorial designs." Journal of Simulation
Behzad, M., K. Asghari, M. Eazi and M. Palhang (2009). "Generalization performance of support vector machines and neural networks in runoff modeling." Expert Systems with Applications
(4): 7624-7629.
Kaur, Kumar, Yusuf, Lee, Malik, Ahmadi, Kim (bib43) 2023; 116811
Amari, Elboughdiri, Said, Zahmatkesh, Ni (bib27) 2024; 351
108662.
Alshahrani, Yenugula, Algethami, Alharbi, Goswami, Naveed, Lasisi, Islam, Khan, Zahmatkesh (bib4) 2024; 238
(16): 8267-8302.
35-41.
Zahmatkesh, Gholian-Jouybari, Klemeš, Bokhari, Hajiaghaei-Keshteli (bib17) 2023; 417
Madhav, Ahamad, Singh, Kushawaha, Chauhan, Sharma, Singh (bib20) 2020; material
Bajwa, R. A., U. Farooq, S. Ullah, M. Salman, S. Haider and R. Hussain (2023). "Metal-organic framework (MOF) attached and their derived metal oxides (Co, Cu, Zn and Fe) as anode for lithium ion battery: A review." Journal of Energy Storage
Mahmoodi, Taghizadeh, Taghizadeh, Abdi, Hayati, Shekarchi (bib33) 2019; 480
Sun, Y., N. Zhang, Y. Yue, J. Xiao, X. Huang and A. Ishag (2022). "Recent advances in the application of zeolitic imidazolate frameworks (ZIFs) in environmental remediation: a review." Environmental Science: Nano
Zahmatkesh, Karimian, Chen, Ni (bib18) 2024; 349
Ibrahim, A. O., K. A. Adegoke, R. O. Adegoke, Y. A. AbdulWahab, V. B. Oyelami and M. O. Adesina (2021). "Adsorptive removal of different pollutants using metal-organic framework adsorbents." Journal of Molecular Liquids
Kolbadinejad, S., H. Mashhadimoslem, A. Ghaemi and M. Bastos-Neto (2022). "Deep learning analysis of Ar, Xe, Kr, and O2 adsorption on Activated Carbon and Zeolites using ANN approach." Chemical Engineering and Processing-Process Intensification
(11): 4069-4092.
Farshchi, Bozorg, Ehsani, Aghdasinia, Chen, Rostamnia, Ni (bib22) 2023; 345
Madhav (10.1016/j.envres.2023.117972_bib20) 2020; material
10.1016/j.envres.2023.117972_bib35
10.1016/j.envres.2023.117972_bib13
10.1016/j.envres.2023.117972_bib10
Liu (10.1016/j.envres.2023.117972_bib24) 2018; 14
10.1016/j.envres.2023.117972_bib32
Soltani (10.1016/j.envres.2023.117972_bib15) 2021; 56
Mahmoodi (10.1016/j.envres.2023.117972_bib33) 2019; 480
Mourabet (10.1016/j.envres.2023.117972_bib31) 2017; 10
Farshchi (10.1016/j.envres.2023.117972_bib22) 2023; 345
Lan (10.1016/j.envres.2023.117972_bib41) 2022; 293
Qiu (10.1016/j.envres.2023.117972_bib34) 2020
10.1016/j.envres.2023.117972_bib3
Cavas (10.1016/j.envres.2023.117972_bib5) 2011; 171
Zahmatkesh (10.1016/j.envres.2023.117972_bib18) 2024; 349
Zahmatkesh (10.1016/j.envres.2023.117972_bib17) 2023; 417
10.1016/j.envres.2023.117972_bib39
Amari (10.1016/j.envres.2023.117972_bib27) 2024; 351
10.1016/j.envres.2023.117972_bib42
Oladipo (10.1016/j.envres.2023.117972_bib12) 2015; 8
10.1016/j.envres.2023.117972_bib45
Heidari (10.1016/j.envres.2023.117972_bib38) 2016; 155
Qian (10.1016/j.envres.2023.117972_bib25) 2023; 344
10.1016/j.envres.2023.117972_bib21
10.1016/j.envres.2023.117972_bib44
Kaur (10.1016/j.envres.2023.117972_bib43) 2023; 116811
Debnath (10.1016/j.envres.2023.117972_bib30) 2016; 37
Said (10.1016/j.envres.2023.117972_bib40) 2015; 2
Giovagnoli (10.1016/j.envres.2023.117972_bib36) 2008; 24
Jiang (10.1016/j.envres.2023.117972_bib46) 2019; 380
Alshahrani (10.1016/j.envres.2023.117972_bib4) 2024; 238
Zou (10.1016/j.envres.2023.117972_bib37) 2009; applications
Yap (10.1016/j.envres.2023.117972_bib23) 2017; 2
Pavan Kumar (10.1016/j.envres.2023.117972_bib14) 2019; 9
10.1016/j.envres.2023.117972_bib28
10.1016/j.envres.2023.117972_bib47
10.1016/j.envres.2023.117972_bib48
10.1016/j.envres.2023.117972_bib26
Liu (10.1016/j.envres.2023.117972_bib49) 2016; 4
10.1016/j.envres.2023.117972_bib29
References_xml – volume: 345
  start-page: 118842
  year: 2023
  ident: bib22
  article-title: Green valorization of PET waste into functionalized Cu-MOF tailored to catalytic reduction of 4-nitrophenol
  publication-title: Journal of Environmental Management
– volume: applications:
  start-page: 14
  year: 2009
  end-page: 22
  ident: bib37
  article-title: Overview of artificial neural networks
  publication-title: Artificial neural networks: methods and
– reference: (16): 8267-8302.
– reference: Fang, X., D. Zhang, Z. Chang, R. Li and S. Meng (2023). "Phosphorus removal from water by the metal-organic frameworks (MOFs)-based adsorbents: A review for structure, mechanism, and current progress." Environmental Research: 117816.
– volume: 344
  start-page: 118440
  year: 2023
  ident: bib25
  article-title: Sulfur-decorated Fe/C composite synthesized from MIL-88A (Fe) for peroxymonosulfate activation towards tetracycline degradation: Multiple active sites and non-radical pathway dominated mechanism
  publication-title: Journal of Environmental Management
– volume: 380
  start-page: 471
  year: 2019
  end-page: 483
  ident: bib46
  article-title: The application of different typological and structural MOFs-based materials for the dyes adsorption
  publication-title: Coordination Chemistry Reviews
– reference: Zaferani, S. P. G., M. R. S. Emami, M. K. Amiri and E. Binaeian (2019). "Optimization of the removal Pb (II) and its Gibbs free energy by thiosemicarbazide modified chitosan using RSM and ANN modeling." International journal of biological macromolecules
– volume: 2
  start-page: 8
  year: 2015
  end-page: 17
  ident: bib40
  article-title: Overview on the response surface methodology (RSM) in extraction processes
  publication-title: Journal of Applied Science & Process Engineering
– volume: 14
  start-page: 1801454
  year: 2018
  ident: bib24
  article-title: Mesoporous metal–organic frameworks: synthetic strategies and emerging applications
  publication-title: Small
– volume: 10
  start-page: S3292
  year: 2017
  end-page: S3302
  ident: bib31
  article-title: Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite
  publication-title: Arabian Journal of Chemistry
– reference: (13): 2232-2242.
– reference: Ye, J., X. Cong, P. Zhang, G. Zeng, E. Hoffmann, Y. Wu, H. Zhang and W. Fang (2016). "Operational parameter impact and back propagation artificial neural network modeling for phosphate adsorption onto acid-activated neutralized red mud." Journal of Molecular Liquids
– reference: Kolbadinejad, S., H. Mashhadimoslem, A. Ghaemi and M. Bastos-Neto (2022). "Deep learning analysis of Ar, Xe, Kr, and O2 adsorption on Activated Carbon and Zeolites using ANN approach." Chemical Engineering and Processing-Process Intensification
– reference: Pai, K. N., T. T. Nguyen, V. Prasad and A. Rajendran (2022). "Experimental validation of an adsorbent-agnostic artificial neural network (ANN) framework for the design and optimization of cyclic adsorption processes." Separation and Purification Technology
– volume: 56
  start-page: 181
  year: 2021
  end-page: 193
  ident: bib15
  article-title: A review on adsorbent parameters for removal of dye products from industrial wastewater
  publication-title: Water Quality Research Journal
– reference: : 108708.
– volume: 24
  start-page: 401
  year: 2008
  end-page: 416
  ident: bib36
  article-title: Robust design via simulation experiments: a modified dual response surface approach
  publication-title: Quality and Reliability Engineering International
– reference: : 108662.
– reference: Bajwa, R. A., U. Farooq, S. Ullah, M. Salman, S. Haider and R. Hussain (2023). "Metal-organic framework (MOF) attached and their derived metal oxides (Co, Cu, Zn and Fe) as anode for lithium ion battery: A review." Journal of Energy Storage
– volume: 480
  start-page: 288
  year: 2019
  end-page: 299
  ident: bib33
  article-title: Bio-based magnetic metal-organic framework nanocomposite: Ultrasound-assisted synthesis and pollutant (heavy metal and dye) removal from aqueous media
  publication-title: Applied Surface Science
– reference: Behzad, M., K. Asghari, M. Eazi and M. Palhang (2009). "Generalization performance of support vector machines and neural networks in runoff modeling." Expert Systems with Applications
– reference: Amiri, M. K., S. P. G. Zaferani, M. R. S. Emami, S. Zahmatkesh, R. Pourhanasa, S. S. Namaghi, J. J. Klemeš, A. Bokhari and M. Hajiaghaei-Keshteli (2023). "Multi-objective optimization of thermophysical properties GO powders-DW/EG Nf by RSM, NSGA-II, ANN, MLP and ML." Energy: 128176.
– reference: (4): 7624-7629.
– volume: 171
  start-page: 557
  year: 2011
  end-page: 562
  ident: bib5
  article-title: Thomas and artificial neural network models for the fixed-bed adsorption of methylene blue by a beach waste Posidonia oceanica (L.) dead leaves
  publication-title: Chemical Engineering Journal
– volume: 8
  start-page: e81
  year: 2015
  end-page: e91
  ident: bib12
  article-title: Nickel removal from aqueous solutions by alginate-based composite beads: central composite design and artificial neural network modeling
  publication-title: J. Water Proc. Eng.
– reference: Tran, T. V., L. X. Nong, H.-T. T. Nguyen, V. H. Nguyen, D. T. C. Nguyen, T. T. Nguyen, P. Q. Trang, D. H. Nguyen and T. D. Nguyen (2021). "Response surface methodology modeling for methylene blue removal by chemically modified porous carbon: Adsorption mechanism and role of surface functional groups." Separation Science and Technology
– reference: Kalaj, M., K. C. Bentz, S. Ayala Jr, J. M. Palomba, K. S. Barcus, Y. Katayama and S. M. Cohen (2020). "MOF-polymer hybrid materials: From simple composites to tailored architectures." Chemical reviews
– volume: 116811
  year: 2023
  ident: bib43
  article-title: Schiff base-functionalized metal-organic frameworks as an efficient adsorbent for the decontamination of heavy metal ions in water
  publication-title: Environmental Research
– reference: : 149134.
– volume: 155
  start-page: 73
  year: 2016
  end-page: 85
  ident: bib38
  article-title: Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN)
  publication-title: Chemometrics and intelligent laboratory systems
– reference: Montevechi, J. A. B., R. G. de Almeida Filho, A. Paiva, R. Costa and A. L. Medeiros (2010). "Sensitivity analysis in discrete-event simulation using fractional factorial designs." Journal of Simulation
– start-page: 163
  year: 2020
  end-page: 175
  ident: bib34
  article-title: Ning
  publication-title: Study of Central Composite Design and Orthogonal Array Composite Design. Contemporary Experimental Design, Multivariate Analysis and Data Mining: Festschrift in Honour of Professor Kai-Tai Fang
– reference: (2): 128-142.
– reference: Sun, Y., N. Zhang, Y. Yue, J. Xiao, X. Huang and A. Ishag (2022). "Recent advances in the application of zeolitic imidazolate frameworks (ZIFs) in environmental remediation: a review." Environmental Science: Nano
– reference: : 307-319.
– volume: 2
  start-page: 218
  year: 2017
  end-page: 245
  ident: bib23
  article-title: Synthesis and applications of MOF-derived porous nanostructures
  publication-title: Green Energy & Environment
– volume: 9
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib14
  article-title: Removal of Cu (II) using three low-cost adsorbents and prediction of adsorption using artificial neural networks
  publication-title: Applied Water Science
– reference: (11): 4069-4092.
– reference: Rathi, B. S., P. S. Kumar and D.-V. N. Vo (2021). "Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment." Science of The Total Environment
– volume: material:
  start-page: 43
  year: 2020
  end-page: 62
  ident: bib20
  article-title: Water pollutants: sources and impact on the environment and human health." Sensors in water pollutants monitoring
  publication-title: Role of
– volume: 4
  start-page: 3584
  year: 2016
  end-page: 3616
  ident: bib49
  article-title: Composites of metal–organic frameworks and carbon-based materials: preparations, functionalities and applications
  publication-title: Journal of Materials Chemistry A
– volume: 293
  start-page: 133464
  year: 2022
  ident: bib41
  article-title: Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives
  publication-title: Chemosphere
– volume: 417
  start-page: 137932
  year: 2023
  ident: bib17
  article-title: Sustainable and optimized values for municipal wastewater: The removal of biological oxygen demand and chemical oxygen demand by various levels of geranular activated carbon-and genetic algorithm-based simulation
  publication-title: Journal of Cleaner Production
– volume: 238
  start-page: 121732
  year: 2024
  ident: bib4
  article-title: "Establishing the fuzzy integrated hybrid MCDM framework to identify the key barriers to implementing artificial intelligence-enabled sustainable cloud system in an IT industry."
  publication-title: Expert Systems with Applications
– volume: 37
  start-page: 775
  year: 2016
  end-page: 785
  ident: bib30
  article-title: Simple chemical route synthesis of Fe2O3 nanoparticles and its application for adsorptive removal of Congo red from aqueous media: artificial neural network modeling
  publication-title: Journal of Dispersion Science and Technology
– volume: 351
  start-page: 119761
  year: 2024
  ident: bib27
  article-title: Effects of CO2 concentration and time on algal biomass film, NO3–N concentration, and pH in the membrane bioreactor: Simulation-based ANN, RSM and NSGA-II
  publication-title: Journal of Environmental Management
– reference: : 120783.
– volume: 349
  start-page: 119429
  year: 2024
  ident: bib18
  article-title: Combination of coagulation and adsorption technologies for advanced wastewater treatment for potable water reuse: By ANN, NSGA-II, and RSM
  publication-title: Journal of Environmental Management
– reference: : 35-41.
– reference: : 115593.
– reference: Al-Musawi, T. J., S. M. A. Arghavan, E. Allahyari, F. S. Arghavan, A. Othmani and N. Nasseh (2022). "Adsorption of malachite green dye onto almond peel waste: a study focusing on application of the ANN approach for optimization of the effect of environmental parameters." Biomass Conversion and Biorefinery: 1-12.
– reference: Ibrahim, A. O., K. A. Adegoke, R. O. Adegoke, Y. A. AbdulWahab, V. B. Oyelami and M. O. Adesina (2021). "Adsorptive removal of different pollutants using metal-organic framework adsorbents." Journal of Molecular Liquids
– volume: 380
  start-page: 471
  year: 2019
  ident: 10.1016/j.envres.2023.117972_bib46
  article-title: The application of different typological and structural MOFs-based materials for the dyes adsorption
  publication-title: Coordination Chemistry Reviews
  doi: 10.1016/j.ccr.2018.11.002
– volume: 349
  start-page: 119429
  year: 2024
  ident: 10.1016/j.envres.2023.117972_bib18
  article-title: Combination of coagulation and adsorption technologies for advanced wastewater treatment for potable water reuse: By ANN, NSGA-II, and RSM
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2023.119429
– ident: 10.1016/j.envres.2023.117972_bib48
  doi: 10.1021/acs.chemrev.9b00575
– start-page: 163
  year: 2020
  ident: 10.1016/j.envres.2023.117972_bib34
  article-title: Ning
– volume: 37
  start-page: 775
  issue: 6
  year: 2016
  ident: 10.1016/j.envres.2023.117972_bib30
  article-title: Simple chemical route synthesis of Fe2O3 nanoparticles and its application for adsorptive removal of Congo red from aqueous media: artificial neural network modeling
  publication-title: Journal of Dispersion Science and Technology
  doi: 10.1080/01932691.2015.1062772
– ident: 10.1016/j.envres.2023.117972_bib42
  doi: 10.1016/j.envres.2023.117816
– volume: applications:
  start-page: 14
  year: 2009
  ident: 10.1016/j.envres.2023.117972_bib37
  article-title: Overview of artificial neural networks
  publication-title: Artificial neural networks: methods and
– volume: material:
  start-page: 43
  year: 2020
  ident: 10.1016/j.envres.2023.117972_bib20
  article-title: Water pollutants: sources and impact on the environment and human health." Sensors in water pollutants monitoring
  publication-title: Role of
– ident: 10.1016/j.envres.2023.117972_bib13
  doi: 10.1016/j.seppur.2022.120783
– volume: 116811
  year: 2023
  ident: 10.1016/j.envres.2023.117972_bib43
  article-title: Schiff base-functionalized metal-organic frameworks as an efficient adsorbent for the decontamination of heavy metal ions in water
  publication-title: Environmental Research
– volume: 4
  start-page: 3584
  issue: 10
  year: 2016
  ident: 10.1016/j.envres.2023.117972_bib49
  article-title: Composites of metal–organic frameworks and carbon-based materials: preparations, functionalities and applications
  publication-title: Journal of Materials Chemistry A
  doi: 10.1039/C5TA09924B
– volume: 344
  start-page: 118440
  year: 2023
  ident: 10.1016/j.envres.2023.117972_bib25
  article-title: Sulfur-decorated Fe/C composite synthesized from MIL-88A (Fe) for peroxymonosulfate activation towards tetracycline degradation: Multiple active sites and non-radical pathway dominated mechanism
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2023.118440
– ident: 10.1016/j.envres.2023.117972_bib26
  doi: 10.1016/j.ijbiomac.2019.07.208
– volume: 14
  start-page: 1801454
  issue: 37
  year: 2018
  ident: 10.1016/j.envres.2023.117972_bib24
  article-title: Mesoporous metal–organic frameworks: synthetic strategies and emerging applications
  publication-title: Small
  doi: 10.1002/smll.201801454
– ident: 10.1016/j.envres.2023.117972_bib10
  doi: 10.1016/j.cep.2021.108662
– volume: 345
  start-page: 118842
  year: 2023
  ident: 10.1016/j.envres.2023.117972_bib22
  article-title: Green valorization of PET waste into functionalized Cu-MOF tailored to catalytic reduction of 4-nitrophenol
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2023.118842
– ident: 10.1016/j.envres.2023.117972_bib21
  doi: 10.1016/j.scitotenv.2021.149134
– volume: 24
  start-page: 401
  issue: 4
  year: 2008
  ident: 10.1016/j.envres.2023.117972_bib36
  article-title: Robust design via simulation experiments: a modified dual response surface approach
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.906
– volume: 293
  start-page: 133464
  year: 2022
  ident: 10.1016/j.envres.2023.117972_bib41
  article-title: Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.133464
– ident: 10.1016/j.envres.2023.117972_bib35
  doi: 10.1057/jos.2009.23
– volume: 2
  start-page: 218
  issue: 3
  year: 2017
  ident: 10.1016/j.envres.2023.117972_bib23
  article-title: Synthesis and applications of MOF-derived porous nanostructures
  publication-title: Green Energy & Environment
  doi: 10.1016/j.gee.2017.05.003
– volume: 171
  start-page: 557
  issue: 2
  year: 2011
  ident: 10.1016/j.envres.2023.117972_bib5
  article-title: Thomas and artificial neural network models for the fixed-bed adsorption of methylene blue by a beach waste Posidonia oceanica (L.) dead leaves
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2011.04.030
– ident: 10.1016/j.envres.2023.117972_bib47
  doi: 10.1039/D2EN00601D
– volume: 351
  start-page: 119761
  year: 2024
  ident: 10.1016/j.envres.2023.117972_bib27
  article-title: Effects of CO2 concentration and time on algal biomass film, NO3–N concentration, and pH in the membrane bioreactor: Simulation-based ANN, RSM and NSGA-II
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2023.119761
– volume: 10
  start-page: S3292
  year: 2017
  ident: 10.1016/j.envres.2023.117972_bib31
  article-title: Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite
  publication-title: Arabian Journal of Chemistry
  doi: 10.1016/j.arabjc.2013.12.028
– ident: 10.1016/j.envres.2023.117972_bib44
  doi: 10.1016/j.est.2023.108708
– volume: 417
  start-page: 137932
  year: 2023
  ident: 10.1016/j.envres.2023.117972_bib17
  article-title: Sustainable and optimized values for municipal wastewater: The removal of biological oxygen demand and chemical oxygen demand by various levels of geranular activated carbon-and genetic algorithm-based simulation
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2023.137932
– ident: 10.1016/j.envres.2023.117972_bib3
  doi: 10.1007/s13399-021-02174-6
– ident: 10.1016/j.envres.2023.117972_bib28
  doi: 10.1016/j.energy.2023.128176
– ident: 10.1016/j.envres.2023.117972_bib45
  doi: 10.1016/j.molliq.2021.115593
– volume: 238
  start-page: 121732
  year: 2024
  ident: 10.1016/j.envres.2023.117972_bib4
  article-title: "Establishing the fuzzy integrated hybrid MCDM framework to identify the key barriers to implementing artificial intelligence-enabled sustainable cloud system in an IT industry."
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121732
– volume: 155
  start-page: 73
  year: 2016
  ident: 10.1016/j.envres.2023.117972_bib38
  article-title: Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN)
  publication-title: Chemometrics and intelligent laboratory systems
  doi: 10.1016/j.chemolab.2016.03.031
– volume: 480
  start-page: 288
  year: 2019
  ident: 10.1016/j.envres.2023.117972_bib33
  article-title: Bio-based magnetic metal-organic framework nanocomposite: Ultrasound-assisted synthesis and pollutant (heavy metal and dye) removal from aqueous media
  publication-title: Applied Surface Science
  doi: 10.1016/j.apsusc.2019.02.211
– ident: 10.1016/j.envres.2023.117972_bib39
  doi: 10.1016/j.eswa.2008.09.053
– volume: 2
  start-page: 8
  issue: 1
  year: 2015
  ident: 10.1016/j.envres.2023.117972_bib40
  article-title: Overview on the response surface methodology (RSM) in extraction processes
  publication-title: Journal of Applied Science & Process Engineering
– volume: 8
  start-page: e81
  year: 2015
  ident: 10.1016/j.envres.2023.117972_bib12
  article-title: Nickel removal from aqueous solutions by alginate-based composite beads: central composite design and artificial neural network modeling
  publication-title: J. Water Proc. Eng.
  doi: 10.1016/j.jwpe.2014.12.002
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.envres.2023.117972_bib14
  article-title: Removal of Cu (II) using three low-cost adsorbents and prediction of adsorption using artificial neural networks
  publication-title: Applied Water Science
  doi: 10.1007/s13201-019-0924-x
– ident: 10.1016/j.envres.2023.117972_bib32
  doi: 10.1016/j.molliq.2016.01.020
– volume: 56
  start-page: 181
  issue: 4
  year: 2021
  ident: 10.1016/j.envres.2023.117972_bib15
  article-title: A review on adsorbent parameters for removal of dye products from industrial wastewater
  publication-title: Water Quality Research Journal
  doi: 10.2166/wqrj.2021.023
– ident: 10.1016/j.envres.2023.117972_bib29
  doi: 10.1080/01496395.2020.1820523
SSID ssj0011530
Score 2.5097218
Snippet Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117972
SubjectTerms adsorbents
Adsorption
Algorithms
Artificial neural network
coordination polymers
Heavy metals
Hydrogen-Ion Concentration
Kinetics
Metal-organic framework
Metal-Organic Frameworks
Metals, Heavy
Modeling
nanocomposites
neural networks
Neural Networks, Computer
pollutants
Response surface methodology
Wastewater
Wastewater treatment
Water Pollutants, Chemical
Title Heavy metal (Cu2+) removal from wastewater by metal-organic framework composite adsorbent: Simulation-based- artificial neural network and response surface methodology
URI https://dx.doi.org/10.1016/j.envres.2023.117972
https://www.ncbi.nlm.nih.gov/pubmed/38141913
https://www.proquest.com/docview/2905517711
https://www.proquest.com/docview/3153587436
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1096-0953
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011530
  issn: 0013-9351
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1096-0953
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011530
  issn: 0013-9351
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1096-0953
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011530
  issn: 0013-9351
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1096-0953
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011530
  issn: 0013-9351
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1096-0953
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011530
  issn: 0013-9351
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lvggitlo9bUsEHxRJu7v52F3fytFyKvZFC31b8gkn3l65j4ov_jv-m84k2Ss-HAWf7m5vwobMZDJJfjM_Qt5ogy5QK2ZCWzDReMPAB2qmua-UDKKwkabzy6WaXIlP1_J6h4yHXBiEVWbfn3x69Nb5yWkezdOb6RRzfEvMKwXXi_eQCjPKhaiRxeDk9wbmAQEPLwYWA5Qe0ucixsv3t7CpPUEKcby9bOtq2_K0LfyMy9DFE_I4x4_0LHVxj-z4fp8cnN-lq8Gfeb4u98mjdCpHU7LRU_IHvtz-ojOPYm_H6-r9O7rwszmYG8VEE_pTL_E0DQabmizHEvGTBYGM46KIQ0ewl6faLecLA6_9QL9OZ5kKjOHS6BjFcUwFKiiWzYwfEXROde_gvRGd6-lyvQjaeprIrOMx_zNydXH-bTxhmaqBWd7KFTPShMKGptG-5c4JLbEAeuDcOthTSlsEo4TVbdMqW4aqcqLUbcmhQRMqXVl-QHb7ee9fEGqNBZVJL33jRGGkDkp5jnXjQlO7yo8IHzTU2VzHHOk0fnQDYO17l_TaoV67pNcRYZtWN6mOxz3y9aD87h977GCpuafl68FWOpiqeP-iez9fg1BbQHxa12W5XYaDvcoGwjo1Is-ToW36C8GVgO01f_nffXtFHsIvgRi6Uh6S3dVi7Y8gqFqZ4zhrjsmDs4-fJ5d_AUNXJV0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1PigU0WrbU6sRfFAk7e4m2Y--laPl1LYvttC3JZ9w4u2V-6j44r_jv-lMkj3pw1HwacNmQkJmMpkkv5kh5L3SqAJVybRvMiZqpxnoQMUUd0UpvchMSNN5flGOrsSXa3m9QYa9LwzCKpPujzo9aOv05zDN5uHNeIw-vjn6lYLqxXfIsnpAHgoJJRDqg98rnAdYPDzr0xggee8_F0BerruFU-0B5hDH58umKtbtT-vsz7APnT4lT5IBSY_jGJ-RDddtk52Tf_5qUJkW7HybbMVrORq9jZ6TP1C4_UUnDsk-DJfFp4905iZTkDeKnib0p5rjdRrMNtWJjsXMTwYIEpCLIhAd0V6OKjufzjR0e0S_jScpFxjDvdEyihMZI1RQjJsZPgF1TlVnod8Az3V0vpx5ZRyN2azDPf8LcnV6cjkcsZSrgRneyAXTUvvM-LpWruHWCiUxArrn3Fg4VEqTeV0Ko5q6KU3ui8KKXDU5hwa1L1Rh-A7Z7Kad2yPUaAMsk0662opMS-XL0nEMHOfryhZuQHjPodakQOaYT-NH2yPWvreRry3ytY18HRC2anUTA3ncQ1_1zG_vCGQLe809Ld_1stLCWsUHGNW56RKImgwM1KrK8_U0HORV1mDXlQOyGwVtNV6wrgScr_nL_x7bW_JodHl-1p59vvj6ijyGGoGAuly-JpuL2dLtg4W10G_CCvoLzWQm8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heavy+metal+%28Cu2%2B%29+removal+from+wastewater+by+metal-organic+framework+composite+adsorbent%3A+Simulation-based-+artificial+neural+network+and+response+surface+methodology&rft.jtitle=Environmental+research&rft.au=Han%2C+Feng&rft.au=Hessen%2C+Ahmad+Saeed&rft.au=Amari%2C+Abdelfattah&rft.au=Elboughdiri%2C+Noureddine&rft.date=2024-03-15&rft.issn=1096-0953&rft.eissn=1096-0953&rft.volume=245&rft.spage=117972&rft_id=info:doi/10.1016%2Fj.envres.2023.117972&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9351&client=summon