Heavy metal (Cu2+) removal from wastewater by metal-organic framework composite adsorbent: Simulation-based- artificial neural network and response surface methodology
Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu2+) removal from wastewater using a MOF nanocomposite. Th...
Saved in:
| Published in | Environmental research Vol. 245; p. 117972 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier Inc
15.03.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0013-9351 1096-0953 1096-0953 |
| DOI | 10.1016/j.envres.2023.117972 |
Cover
| Abstract | Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu2+) removal from wastewater using a MOF nanocomposite. This work has been modeled by response surface methodology (RSM) and artificial neural network (ANN) algorithms. In addition, the optimization of the mentioned factors has been performed through the RSM method to find the optimal conditions. The findings show that RSM and ANN can accurately forecast the adsorption process's the Cu2+ removal efficiency (RE). The maximum values of RE are achieved at the highest value of time (150 min), the highest value of adsorbent dosage (0.008 g), and the highest value of pH (=6). The R2 values obtained were 0.9995, 0.9992, and 0.9996 for ANN modeling of adsorption capacity based on different adsorbent dosages, Cu2+ solution pHs, and different ion concentrations, respectively. The ANN demonstrated a high level of accuracy in predicting the local minima of the graph. In addition, the RSM optimization results showed that the optimum mode for RE occurred at an adsorbent dosage value of 0.007 g and a time value of 144.229 min.
[Display omitted]
•Optimize and predict heavy metal (Cu2+) removal from wastewater by using a MOF nanocomposite.•Cu2+ removal in solution has been modeled by RSM and ANN algorithms.•ANN was obtained for modeling RE based on ion and mixing time with R2 = 0.9996.•MOFs possess conventional porous materials like carbon-based compounds and zeolites.•MOF technique is the outstanding removal of heavy metals from wastewater. |
|---|---|
| AbstractList | Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu
) removal from wastewater using a MOF nanocomposite. This work has been modeled by response surface methodology (RSM) and artificial neural network (ANN) algorithms. In addition, the optimization of the mentioned factors has been performed through the RSM method to find the optimal conditions. The findings show that RSM and ANN can accurately forecast the adsorption process's the Cu
removal efficiency (RE). The maximum values of RE are achieved at the highest value of time (150 min), the highest value of adsorbent dosage (0.008 g), and the highest value of pH (=6). The R
values obtained were 0.9995, 0.9992, and 0.9996 for ANN modeling of adsorption capacity based on different adsorbent dosages, Cu
solution pHs, and different ion concentrations, respectively. The ANN demonstrated a high level of accuracy in predicting the local minima of the graph. In addition, the RSM optimization results showed that the optimum mode for RE occurred at an adsorbent dosage value of 0.007 g and a time value of 144.229 min. Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu2+) removal from wastewater using a MOF nanocomposite. This work has been modeled by response surface methodology (RSM) and artificial neural network (ANN) algorithms. In addition, the optimization of the mentioned factors has been performed through the RSM method to find the optimal conditions. The findings show that RSM and ANN can accurately forecast the adsorption process's the Cu2+ removal efficiency (RE). The maximum values of RE are achieved at the highest value of time (150 min), the highest value of adsorbent dosage (0.008 g), and the highest value of pH (=6). The R2 values obtained were 0.9995, 0.9992, and 0.9996 for ANN modeling of adsorption capacity based on different adsorbent dosages, Cu2+ solution pHs, and different ion concentrations, respectively. The ANN demonstrated a high level of accuracy in predicting the local minima of the graph. In addition, the RSM optimization results showed that the optimum mode for RE occurred at an adsorbent dosage value of 0.007 g and a time value of 144.229 min. [Display omitted] •Optimize and predict heavy metal (Cu2+) removal from wastewater by using a MOF nanocomposite.•Cu2+ removal in solution has been modeled by RSM and ANN algorithms.•ANN was obtained for modeling RE based on ion and mixing time with R2 = 0.9996.•MOFs possess conventional porous materials like carbon-based compounds and zeolites.•MOF technique is the outstanding removal of heavy metals from wastewater. Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu²⁺) removal from wastewater using a MOF nanocomposite. This work has been modeled by response surface methodology (RSM) and artificial neural network (ANN) algorithms. In addition, the optimization of the mentioned factors has been performed through the RSM method to find the optimal conditions. The findings show that RSM and ANN can accurately forecast the adsorption process's the Cu²⁺ removal efficiency (RE). The maximum values of RE are achieved at the highest value of time (150 min), the highest value of adsorbent dosage (0.008 g), and the highest value of pH (=6). The R² values obtained were 0.9995, 0.9992, and 0.9996 for ANN modeling of adsorption capacity based on different adsorbent dosages, Cu²⁺ solution pHs, and different ion concentrations, respectively. The ANN demonstrated a high level of accuracy in predicting the local minima of the graph. In addition, the RSM optimization results showed that the optimum mode for RE occurred at an adsorbent dosage value of 0.007 g and a time value of 144.229 min. Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu2+) removal from wastewater using a MOF nanocomposite. This work has been modeled by response surface methodology (RSM) and artificial neural network (ANN) algorithms. In addition, the optimization of the mentioned factors has been performed through the RSM method to find the optimal conditions. The findings show that RSM and ANN can accurately forecast the adsorption process's the Cu2+ removal efficiency (RE). The maximum values of RE are achieved at the highest value of time (150 min), the highest value of adsorbent dosage (0.008 g), and the highest value of pH (=6). The R2 values obtained were 0.9995, 0.9992, and 0.9996 for ANN modeling of adsorption capacity based on different adsorbent dosages, Cu2+ solution pHs, and different ion concentrations, respectively. The ANN demonstrated a high level of accuracy in predicting the local minima of the graph. In addition, the RSM optimization results showed that the optimum mode for RE occurred at an adsorbent dosage value of 0.007 g and a time value of 144.229 min.Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The current investigation was designed to model, forecast, and optimize heavy metal (Cu2+) removal from wastewater using a MOF nanocomposite. This work has been modeled by response surface methodology (RSM) and artificial neural network (ANN) algorithms. In addition, the optimization of the mentioned factors has been performed through the RSM method to find the optimal conditions. The findings show that RSM and ANN can accurately forecast the adsorption process's the Cu2+ removal efficiency (RE). The maximum values of RE are achieved at the highest value of time (150 min), the highest value of adsorbent dosage (0.008 g), and the highest value of pH (=6). The R2 values obtained were 0.9995, 0.9992, and 0.9996 for ANN modeling of adsorption capacity based on different adsorbent dosages, Cu2+ solution pHs, and different ion concentrations, respectively. The ANN demonstrated a high level of accuracy in predicting the local minima of the graph. In addition, the RSM optimization results showed that the optimum mode for RE occurred at an adsorbent dosage value of 0.007 g and a time value of 144.229 min. |
| ArticleNumber | 117972 |
| Author | Zahmatkesh, Sasan Han, Feng Hessen, Ahmad Saeed Amari, Abdelfattah Elboughdiri, Noureddine |
| Author_xml | – sequence: 1 givenname: Feng surname: Han fullname: Han, Feng organization: The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China – sequence: 2 givenname: Ahmad Saeed surname: Hessen fullname: Hessen, Ahmad Saeed organization: Department of Anesthesia Techniques, Al-Noor University College, Nineveh, Iraq – sequence: 3 givenname: Abdelfattah surname: Amari fullname: Amari, Abdelfattah email: abdelfattah.amari@enig.rnu.tn organization: Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia – sequence: 4 givenname: Noureddine orcidid: 0000-0003-2923-3062 surname: Elboughdiri fullname: Elboughdiri, Noureddine organization: Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi – sequence: 5 givenname: Sasan orcidid: 0000-0002-6573-8810 surname: Zahmatkesh fullname: Zahmatkesh, Sasan email: sasan_zahmatkesh@yahoo.com organization: Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38141913$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUFvEzEUhC1URNPCP0Boj0XVBnu9TnZ7qISiQpEqcQDO1lv7uTjs2sH2Jsov4m_iZAMHDvT0NNI386SZC3LmvENCXjM6Z5Qt3q3n6LYB47yiFZ8ztmyX1TMyY7RdlLQV_IzMKGW8bLlg5-QixnWWTHD6gpzzhtWsZXxGft0jbPfFgAn64mo1Vtdvi4CD32Zpgh-KHcSEO0gYiu7ElT48grMqAzDgzocfhfLDxkebsAAdfejQpZviix3GHpL1ruwgoi4LCMkaq2wOdziG40nHAHA6_40b7yIWcQwGFB6-fffa9_5x_5I8N9BHfHW6l-Tbh7uvq_vy4fPHT6v3D6XirUhlJzpDlWkawJZrXYNgtRCGc6UrRoWiplvUCtqmXShmqkrXDHIP2dCYCirFL8nVlLsJ_ueIMcnBRoV9Dw79GCXPDYpmWfPFk2jVUiHYcslYRt-c0LEbUMtNsAOEvfyzQwbqCVDBxxjQ_EUYlYe55VpOc8vD3HKaO9tu_rEpm46NpwC2f8p8O5kx97m1GGRUFp1CbQOqJLW3_w_4DRxZy6g |
| CitedBy_id | crossref_primary_10_1007_s10661_025_13615_4 crossref_primary_10_1016_j_envres_2024_119229 crossref_primary_10_1016_j_jconhyd_2024_104426 crossref_primary_10_1016_j_watres_2024_121876 crossref_primary_10_1016_j_jssc_2024_124927 crossref_primary_10_1016_j_desal_2024_118183 crossref_primary_10_1016_j_jwpe_2024_106867 crossref_primary_10_1016_j_molliq_2024_125753 crossref_primary_10_1016_j_envres_2024_119980 crossref_primary_10_1080_03067319_2025_2474485 crossref_primary_10_1002_aoc_7748 crossref_primary_10_1016_j_jtice_2024_105685 crossref_primary_10_1016_j_jiec_2025_01_033 crossref_primary_10_1080_15422119_2024_2437408 crossref_primary_10_1016_j_seppur_2024_128574 |
| Cites_doi | 10.1016/j.ccr.2018.11.002 10.1016/j.jenvman.2023.119429 10.1021/acs.chemrev.9b00575 10.1080/01932691.2015.1062772 10.1016/j.envres.2023.117816 10.1016/j.seppur.2022.120783 10.1039/C5TA09924B 10.1016/j.jenvman.2023.118440 10.1016/j.ijbiomac.2019.07.208 10.1002/smll.201801454 10.1016/j.cep.2021.108662 10.1016/j.jenvman.2023.118842 10.1016/j.scitotenv.2021.149134 10.1002/qre.906 10.1016/j.chemosphere.2021.133464 10.1057/jos.2009.23 10.1016/j.gee.2017.05.003 10.1016/j.cej.2011.04.030 10.1039/D2EN00601D 10.1016/j.jenvman.2023.119761 10.1016/j.arabjc.2013.12.028 10.1016/j.est.2023.108708 10.1016/j.jclepro.2023.137932 10.1007/s13399-021-02174-6 10.1016/j.energy.2023.128176 10.1016/j.molliq.2021.115593 10.1016/j.eswa.2023.121732 10.1016/j.chemolab.2016.03.031 10.1016/j.apsusc.2019.02.211 10.1016/j.eswa.2008.09.053 10.1016/j.jwpe.2014.12.002 10.1007/s13201-019-0924-x 10.1016/j.molliq.2016.01.020 10.2166/wqrj.2021.023 10.1080/01496395.2020.1820523 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Inc. Copyright © 2023 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2023 Elsevier Inc. – notice: Copyright © 2023 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.envres.2023.117972 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Environmental Sciences |
| EISSN | 1096-0953 |
| ExternalDocumentID | 38141913 10_1016_j_envres_2023_117972 S0013935123027767 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACLOT ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLECG BLXMC C45 CS3 DM4 DU5 EBS EFBJH EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM L7B LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPCBC SSJ SSZ T5K TAE TEORI TN5 TWZ UPT WH7 ZCA ZU3 ~02 ~G- ~HD ~KM .GJ 29G 3O- 53G AAQXK AAYJJ AAYXX ABEFU ABFNM ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AEGFY AFFNX AGQPQ ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ OHT R2- SEN SEW VOH WUQ XOL XPP ZGI ZKB ZMT ZXP AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c395t-b5bf0cf88ae93dd4a51455f33cd2105c0fb64ca9896c1f22d41a913f888f2a2c3 |
| IEDL.DBID | .~1 |
| ISSN | 0013-9351 1096-0953 |
| IngestDate | Thu Oct 02 22:53:21 EDT 2025 Wed Oct 01 14:24:30 EDT 2025 Mon Jul 21 06:05:44 EDT 2025 Wed Oct 01 05:15:02 EDT 2025 Thu Apr 24 22:55:23 EDT 2025 Sun Oct 19 01:27:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Metal-organic framework Response surface methodology Artificial neural network Wastewater treatment Modeling Heavy metals |
| Language | English |
| License | Copyright © 2023 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c395t-b5bf0cf88ae93dd4a51455f33cd2105c0fb64ca9896c1f22d41a913f888f2a2c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-2923-3062 0000-0002-6573-8810 |
| PMID | 38141913 |
| PQID | 2905517711 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3153587436 proquest_miscellaneous_2905517711 pubmed_primary_38141913 crossref_primary_10_1016_j_envres_2023_117972 crossref_citationtrail_10_1016_j_envres_2023_117972 elsevier_sciencedirect_doi_10_1016_j_envres_2023_117972 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-15 |
| PublicationDateYYYYMMDD | 2024-03-15 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Environmental research |
| PublicationTitleAlternate | Environ Res |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Amiri, M. K., S. P. G. Zaferani, M. R. S. Emami, S. Zahmatkesh, R. Pourhanasa, S. S. Namaghi, J. J. Klemeš, A. Bokhari and M. Hajiaghaei-Keshteli (2023). "Multi-objective optimization of thermophysical properties GO powders-DW/EG Nf by RSM, NSGA-II, ANN, MLP and ML." Energy: 128176. Jiang, Chen, Wang, Zeng, Huang, Cheng, Liu, Xue, Wang (bib46) 2019; 380 Cavas, Karabay, Alyuruk, Doğan, Demir (bib5) 2011; 171 120783. Liu, Zou, Zhu, Zhang (bib24) 2018; 14 Liu, Sun, Hu, Wang (bib49) 2016; 4 (2): 128-142. 149134. 307-319. Heidari, Sobati, Movahedirad (bib38) 2016; 155 108708. Ye, J., X. Cong, P. Zhang, G. Zeng, E. Hoffmann, Y. Wu, H. Zhang and W. Fang (2016). "Operational parameter impact and back propagation artificial neural network modeling for phosphate adsorption onto acid-activated neutralized red mud." Journal of Molecular Liquids Giovagnoli, Romano (bib36) 2008; 24 115593. Lan, Zhu, Zhang, Li, Chen, Wang, Wu, Xu (bib41) 2022; 293 Pavan Kumar, Malla, Yerra, Srinivasa Rao (bib14) 2019; 9 Pai, K. N., T. T. Nguyen, V. Prasad and A. Rajendran (2022). "Experimental validation of an adsorbent-agnostic artificial neural network (ANN) framework for the design and optimization of cyclic adsorption processes." Separation and Purification Technology Zaferani, S. P. G., M. R. S. Emami, M. K. Amiri and E. Binaeian (2019). "Optimization of the removal Pb (II) and its Gibbs free energy by thiosemicarbazide modified chitosan using RSM and ANN modeling." International journal of biological macromolecules Qiu, Xie, Qin (bib34) 2020 (13): 2232-2242. Oladipo, Gazi (bib12) 2015; 8 Qian, Zhang, Chen, Yu, Ye, Ma, Li, Wang, Wang, Ni (bib25) 2023; 344 Mourabet, El Rhilassi, El Boujaady, Bennani-Ziatni, Taitai (bib31) 2017; 10 Al-Musawi, T. J., S. M. A. Arghavan, E. Allahyari, F. S. Arghavan, A. Othmani and N. Nasseh (2022). "Adsorption of malachite green dye onto almond peel waste: a study focusing on application of the ANN approach for optimization of the effect of environmental parameters." Biomass Conversion and Biorefinery: 1-12. Fang, X., D. Zhang, Z. Chang, R. Li and S. Meng (2023). "Phosphorus removal from water by the metal-organic frameworks (MOFs)-based adsorbents: A review for structure, mechanism, and current progress." Environmental Research: 117816. Rathi, B. S., P. S. Kumar and D.-V. N. Vo (2021). "Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment." Science of The Total Environment Zou, Han, So (bib37) 2009; applications Debnath, Deb, Das, Chattopadhyay, Saha (bib30) 2016; 37 Soltani, Faramarzi, Mousavi Parsa (bib15) 2021; 56 Tran, T. V., L. X. Nong, H.-T. T. Nguyen, V. H. Nguyen, D. T. C. Nguyen, T. T. Nguyen, P. Q. Trang, D. H. Nguyen and T. D. Nguyen (2021). "Response surface methodology modeling for methylene blue removal by chemically modified porous carbon: Adsorption mechanism and role of surface functional groups." Separation Science and Technology Yap, Fow, Chen (bib23) 2017; 2 Said, Amin (bib40) 2015; 2 Kalaj, M., K. C. Bentz, S. Ayala Jr, J. M. Palomba, K. S. Barcus, Y. Katayama and S. M. Cohen (2020). "MOF-polymer hybrid materials: From simple composites to tailored architectures." Chemical reviews Montevechi, J. A. B., R. G. de Almeida Filho, A. Paiva, R. Costa and A. L. Medeiros (2010). "Sensitivity analysis in discrete-event simulation using fractional factorial designs." Journal of Simulation Behzad, M., K. Asghari, M. Eazi and M. Palhang (2009). "Generalization performance of support vector machines and neural networks in runoff modeling." Expert Systems with Applications (4): 7624-7629. Kaur, Kumar, Yusuf, Lee, Malik, Ahmadi, Kim (bib43) 2023; 116811 Amari, Elboughdiri, Said, Zahmatkesh, Ni (bib27) 2024; 351 108662. Alshahrani, Yenugula, Algethami, Alharbi, Goswami, Naveed, Lasisi, Islam, Khan, Zahmatkesh (bib4) 2024; 238 (16): 8267-8302. 35-41. Zahmatkesh, Gholian-Jouybari, Klemeš, Bokhari, Hajiaghaei-Keshteli (bib17) 2023; 417 Madhav, Ahamad, Singh, Kushawaha, Chauhan, Sharma, Singh (bib20) 2020; material Bajwa, R. A., U. Farooq, S. Ullah, M. Salman, S. Haider and R. Hussain (2023). "Metal-organic framework (MOF) attached and their derived metal oxides (Co, Cu, Zn and Fe) as anode for lithium ion battery: A review." Journal of Energy Storage Mahmoodi, Taghizadeh, Taghizadeh, Abdi, Hayati, Shekarchi (bib33) 2019; 480 Sun, Y., N. Zhang, Y. Yue, J. Xiao, X. Huang and A. Ishag (2022). "Recent advances in the application of zeolitic imidazolate frameworks (ZIFs) in environmental remediation: a review." Environmental Science: Nano Zahmatkesh, Karimian, Chen, Ni (bib18) 2024; 349 Ibrahim, A. O., K. A. Adegoke, R. O. Adegoke, Y. A. AbdulWahab, V. B. Oyelami and M. O. Adesina (2021). "Adsorptive removal of different pollutants using metal-organic framework adsorbents." Journal of Molecular Liquids Kolbadinejad, S., H. Mashhadimoslem, A. Ghaemi and M. Bastos-Neto (2022). "Deep learning analysis of Ar, Xe, Kr, and O2 adsorption on Activated Carbon and Zeolites using ANN approach." Chemical Engineering and Processing-Process Intensification (11): 4069-4092. Farshchi, Bozorg, Ehsani, Aghdasinia, Chen, Rostamnia, Ni (bib22) 2023; 345 Madhav (10.1016/j.envres.2023.117972_bib20) 2020; material 10.1016/j.envres.2023.117972_bib35 10.1016/j.envres.2023.117972_bib13 10.1016/j.envres.2023.117972_bib10 Liu (10.1016/j.envres.2023.117972_bib24) 2018; 14 10.1016/j.envres.2023.117972_bib32 Soltani (10.1016/j.envres.2023.117972_bib15) 2021; 56 Mahmoodi (10.1016/j.envres.2023.117972_bib33) 2019; 480 Mourabet (10.1016/j.envres.2023.117972_bib31) 2017; 10 Farshchi (10.1016/j.envres.2023.117972_bib22) 2023; 345 Lan (10.1016/j.envres.2023.117972_bib41) 2022; 293 Qiu (10.1016/j.envres.2023.117972_bib34) 2020 10.1016/j.envres.2023.117972_bib3 Cavas (10.1016/j.envres.2023.117972_bib5) 2011; 171 Zahmatkesh (10.1016/j.envres.2023.117972_bib18) 2024; 349 Zahmatkesh (10.1016/j.envres.2023.117972_bib17) 2023; 417 10.1016/j.envres.2023.117972_bib39 Amari (10.1016/j.envres.2023.117972_bib27) 2024; 351 10.1016/j.envres.2023.117972_bib42 Oladipo (10.1016/j.envres.2023.117972_bib12) 2015; 8 10.1016/j.envres.2023.117972_bib45 Heidari (10.1016/j.envres.2023.117972_bib38) 2016; 155 Qian (10.1016/j.envres.2023.117972_bib25) 2023; 344 10.1016/j.envres.2023.117972_bib21 10.1016/j.envres.2023.117972_bib44 Kaur (10.1016/j.envres.2023.117972_bib43) 2023; 116811 Debnath (10.1016/j.envres.2023.117972_bib30) 2016; 37 Said (10.1016/j.envres.2023.117972_bib40) 2015; 2 Giovagnoli (10.1016/j.envres.2023.117972_bib36) 2008; 24 Jiang (10.1016/j.envres.2023.117972_bib46) 2019; 380 Alshahrani (10.1016/j.envres.2023.117972_bib4) 2024; 238 Zou (10.1016/j.envres.2023.117972_bib37) 2009; applications Yap (10.1016/j.envres.2023.117972_bib23) 2017; 2 Pavan Kumar (10.1016/j.envres.2023.117972_bib14) 2019; 9 10.1016/j.envres.2023.117972_bib28 10.1016/j.envres.2023.117972_bib47 10.1016/j.envres.2023.117972_bib48 10.1016/j.envres.2023.117972_bib26 Liu (10.1016/j.envres.2023.117972_bib49) 2016; 4 10.1016/j.envres.2023.117972_bib29 |
| References_xml | – volume: 345 start-page: 118842 year: 2023 ident: bib22 article-title: Green valorization of PET waste into functionalized Cu-MOF tailored to catalytic reduction of 4-nitrophenol publication-title: Journal of Environmental Management – volume: applications: start-page: 14 year: 2009 end-page: 22 ident: bib37 article-title: Overview of artificial neural networks publication-title: Artificial neural networks: methods and – reference: (16): 8267-8302. – reference: Fang, X., D. Zhang, Z. Chang, R. Li and S. Meng (2023). "Phosphorus removal from water by the metal-organic frameworks (MOFs)-based adsorbents: A review for structure, mechanism, and current progress." Environmental Research: 117816. – volume: 344 start-page: 118440 year: 2023 ident: bib25 article-title: Sulfur-decorated Fe/C composite synthesized from MIL-88A (Fe) for peroxymonosulfate activation towards tetracycline degradation: Multiple active sites and non-radical pathway dominated mechanism publication-title: Journal of Environmental Management – volume: 380 start-page: 471 year: 2019 end-page: 483 ident: bib46 article-title: The application of different typological and structural MOFs-based materials for the dyes adsorption publication-title: Coordination Chemistry Reviews – reference: Zaferani, S. P. G., M. R. S. Emami, M. K. Amiri and E. Binaeian (2019). "Optimization of the removal Pb (II) and its Gibbs free energy by thiosemicarbazide modified chitosan using RSM and ANN modeling." International journal of biological macromolecules – volume: 2 start-page: 8 year: 2015 end-page: 17 ident: bib40 article-title: Overview on the response surface methodology (RSM) in extraction processes publication-title: Journal of Applied Science & Process Engineering – volume: 14 start-page: 1801454 year: 2018 ident: bib24 article-title: Mesoporous metal–organic frameworks: synthetic strategies and emerging applications publication-title: Small – volume: 10 start-page: S3292 year: 2017 end-page: S3302 ident: bib31 article-title: Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite publication-title: Arabian Journal of Chemistry – reference: (13): 2232-2242. – reference: Ye, J., X. Cong, P. Zhang, G. Zeng, E. Hoffmann, Y. Wu, H. Zhang and W. Fang (2016). "Operational parameter impact and back propagation artificial neural network modeling for phosphate adsorption onto acid-activated neutralized red mud." Journal of Molecular Liquids – reference: Kolbadinejad, S., H. Mashhadimoslem, A. Ghaemi and M. Bastos-Neto (2022). "Deep learning analysis of Ar, Xe, Kr, and O2 adsorption on Activated Carbon and Zeolites using ANN approach." Chemical Engineering and Processing-Process Intensification – reference: Pai, K. N., T. T. Nguyen, V. Prasad and A. Rajendran (2022). "Experimental validation of an adsorbent-agnostic artificial neural network (ANN) framework for the design and optimization of cyclic adsorption processes." Separation and Purification Technology – volume: 56 start-page: 181 year: 2021 end-page: 193 ident: bib15 article-title: A review on adsorbent parameters for removal of dye products from industrial wastewater publication-title: Water Quality Research Journal – reference: : 108708. – volume: 24 start-page: 401 year: 2008 end-page: 416 ident: bib36 article-title: Robust design via simulation experiments: a modified dual response surface approach publication-title: Quality and Reliability Engineering International – reference: : 108662. – reference: Bajwa, R. A., U. Farooq, S. Ullah, M. Salman, S. Haider and R. Hussain (2023). "Metal-organic framework (MOF) attached and their derived metal oxides (Co, Cu, Zn and Fe) as anode for lithium ion battery: A review." Journal of Energy Storage – volume: 480 start-page: 288 year: 2019 end-page: 299 ident: bib33 article-title: Bio-based magnetic metal-organic framework nanocomposite: Ultrasound-assisted synthesis and pollutant (heavy metal and dye) removal from aqueous media publication-title: Applied Surface Science – reference: Behzad, M., K. Asghari, M. Eazi and M. Palhang (2009). "Generalization performance of support vector machines and neural networks in runoff modeling." Expert Systems with Applications – reference: Amiri, M. K., S. P. G. Zaferani, M. R. S. Emami, S. Zahmatkesh, R. Pourhanasa, S. S. Namaghi, J. J. Klemeš, A. Bokhari and M. Hajiaghaei-Keshteli (2023). "Multi-objective optimization of thermophysical properties GO powders-DW/EG Nf by RSM, NSGA-II, ANN, MLP and ML." Energy: 128176. – reference: (4): 7624-7629. – volume: 171 start-page: 557 year: 2011 end-page: 562 ident: bib5 article-title: Thomas and artificial neural network models for the fixed-bed adsorption of methylene blue by a beach waste Posidonia oceanica (L.) dead leaves publication-title: Chemical Engineering Journal – volume: 8 start-page: e81 year: 2015 end-page: e91 ident: bib12 article-title: Nickel removal from aqueous solutions by alginate-based composite beads: central composite design and artificial neural network modeling publication-title: J. Water Proc. Eng. – reference: Tran, T. V., L. X. Nong, H.-T. T. Nguyen, V. H. Nguyen, D. T. C. Nguyen, T. T. Nguyen, P. Q. Trang, D. H. Nguyen and T. D. Nguyen (2021). "Response surface methodology modeling for methylene blue removal by chemically modified porous carbon: Adsorption mechanism and role of surface functional groups." Separation Science and Technology – reference: Kalaj, M., K. C. Bentz, S. Ayala Jr, J. M. Palomba, K. S. Barcus, Y. Katayama and S. M. Cohen (2020). "MOF-polymer hybrid materials: From simple composites to tailored architectures." Chemical reviews – volume: 116811 year: 2023 ident: bib43 article-title: Schiff base-functionalized metal-organic frameworks as an efficient adsorbent for the decontamination of heavy metal ions in water publication-title: Environmental Research – reference: : 149134. – volume: 155 start-page: 73 year: 2016 end-page: 85 ident: bib38 article-title: Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN) publication-title: Chemometrics and intelligent laboratory systems – reference: Montevechi, J. A. B., R. G. de Almeida Filho, A. Paiva, R. Costa and A. L. Medeiros (2010). "Sensitivity analysis in discrete-event simulation using fractional factorial designs." Journal of Simulation – start-page: 163 year: 2020 end-page: 175 ident: bib34 article-title: Ning publication-title: Study of Central Composite Design and Orthogonal Array Composite Design. Contemporary Experimental Design, Multivariate Analysis and Data Mining: Festschrift in Honour of Professor Kai-Tai Fang – reference: (2): 128-142. – reference: Sun, Y., N. Zhang, Y. Yue, J. Xiao, X. Huang and A. Ishag (2022). "Recent advances in the application of zeolitic imidazolate frameworks (ZIFs) in environmental remediation: a review." Environmental Science: Nano – reference: : 307-319. – volume: 2 start-page: 218 year: 2017 end-page: 245 ident: bib23 article-title: Synthesis and applications of MOF-derived porous nanostructures publication-title: Green Energy & Environment – volume: 9 start-page: 1 year: 2019 end-page: 9 ident: bib14 article-title: Removal of Cu (II) using three low-cost adsorbents and prediction of adsorption using artificial neural networks publication-title: Applied Water Science – reference: (11): 4069-4092. – reference: Rathi, B. S., P. S. Kumar and D.-V. N. Vo (2021). "Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment." Science of The Total Environment – volume: material: start-page: 43 year: 2020 end-page: 62 ident: bib20 article-title: Water pollutants: sources and impact on the environment and human health." Sensors in water pollutants monitoring publication-title: Role of – volume: 4 start-page: 3584 year: 2016 end-page: 3616 ident: bib49 article-title: Composites of metal–organic frameworks and carbon-based materials: preparations, functionalities and applications publication-title: Journal of Materials Chemistry A – volume: 293 start-page: 133464 year: 2022 ident: bib41 article-title: Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives publication-title: Chemosphere – volume: 417 start-page: 137932 year: 2023 ident: bib17 article-title: Sustainable and optimized values for municipal wastewater: The removal of biological oxygen demand and chemical oxygen demand by various levels of geranular activated carbon-and genetic algorithm-based simulation publication-title: Journal of Cleaner Production – volume: 238 start-page: 121732 year: 2024 ident: bib4 article-title: "Establishing the fuzzy integrated hybrid MCDM framework to identify the key barriers to implementing artificial intelligence-enabled sustainable cloud system in an IT industry." publication-title: Expert Systems with Applications – volume: 37 start-page: 775 year: 2016 end-page: 785 ident: bib30 article-title: Simple chemical route synthesis of Fe2O3 nanoparticles and its application for adsorptive removal of Congo red from aqueous media: artificial neural network modeling publication-title: Journal of Dispersion Science and Technology – volume: 351 start-page: 119761 year: 2024 ident: bib27 article-title: Effects of CO2 concentration and time on algal biomass film, NO3–N concentration, and pH in the membrane bioreactor: Simulation-based ANN, RSM and NSGA-II publication-title: Journal of Environmental Management – reference: : 120783. – volume: 349 start-page: 119429 year: 2024 ident: bib18 article-title: Combination of coagulation and adsorption technologies for advanced wastewater treatment for potable water reuse: By ANN, NSGA-II, and RSM publication-title: Journal of Environmental Management – reference: : 35-41. – reference: : 115593. – reference: Al-Musawi, T. J., S. M. A. Arghavan, E. Allahyari, F. S. Arghavan, A. Othmani and N. Nasseh (2022). "Adsorption of malachite green dye onto almond peel waste: a study focusing on application of the ANN approach for optimization of the effect of environmental parameters." Biomass Conversion and Biorefinery: 1-12. – reference: Ibrahim, A. O., K. A. Adegoke, R. O. Adegoke, Y. A. AbdulWahab, V. B. Oyelami and M. O. Adesina (2021). "Adsorptive removal of different pollutants using metal-organic framework adsorbents." Journal of Molecular Liquids – volume: 380 start-page: 471 year: 2019 ident: 10.1016/j.envres.2023.117972_bib46 article-title: The application of different typological and structural MOFs-based materials for the dyes adsorption publication-title: Coordination Chemistry Reviews doi: 10.1016/j.ccr.2018.11.002 – volume: 349 start-page: 119429 year: 2024 ident: 10.1016/j.envres.2023.117972_bib18 article-title: Combination of coagulation and adsorption technologies for advanced wastewater treatment for potable water reuse: By ANN, NSGA-II, and RSM publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2023.119429 – ident: 10.1016/j.envres.2023.117972_bib48 doi: 10.1021/acs.chemrev.9b00575 – start-page: 163 year: 2020 ident: 10.1016/j.envres.2023.117972_bib34 article-title: Ning – volume: 37 start-page: 775 issue: 6 year: 2016 ident: 10.1016/j.envres.2023.117972_bib30 article-title: Simple chemical route synthesis of Fe2O3 nanoparticles and its application for adsorptive removal of Congo red from aqueous media: artificial neural network modeling publication-title: Journal of Dispersion Science and Technology doi: 10.1080/01932691.2015.1062772 – ident: 10.1016/j.envres.2023.117972_bib42 doi: 10.1016/j.envres.2023.117816 – volume: applications: start-page: 14 year: 2009 ident: 10.1016/j.envres.2023.117972_bib37 article-title: Overview of artificial neural networks publication-title: Artificial neural networks: methods and – volume: material: start-page: 43 year: 2020 ident: 10.1016/j.envres.2023.117972_bib20 article-title: Water pollutants: sources and impact on the environment and human health." Sensors in water pollutants monitoring publication-title: Role of – ident: 10.1016/j.envres.2023.117972_bib13 doi: 10.1016/j.seppur.2022.120783 – volume: 116811 year: 2023 ident: 10.1016/j.envres.2023.117972_bib43 article-title: Schiff base-functionalized metal-organic frameworks as an efficient adsorbent for the decontamination of heavy metal ions in water publication-title: Environmental Research – volume: 4 start-page: 3584 issue: 10 year: 2016 ident: 10.1016/j.envres.2023.117972_bib49 article-title: Composites of metal–organic frameworks and carbon-based materials: preparations, functionalities and applications publication-title: Journal of Materials Chemistry A doi: 10.1039/C5TA09924B – volume: 344 start-page: 118440 year: 2023 ident: 10.1016/j.envres.2023.117972_bib25 article-title: Sulfur-decorated Fe/C composite synthesized from MIL-88A (Fe) for peroxymonosulfate activation towards tetracycline degradation: Multiple active sites and non-radical pathway dominated mechanism publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2023.118440 – ident: 10.1016/j.envres.2023.117972_bib26 doi: 10.1016/j.ijbiomac.2019.07.208 – volume: 14 start-page: 1801454 issue: 37 year: 2018 ident: 10.1016/j.envres.2023.117972_bib24 article-title: Mesoporous metal–organic frameworks: synthetic strategies and emerging applications publication-title: Small doi: 10.1002/smll.201801454 – ident: 10.1016/j.envres.2023.117972_bib10 doi: 10.1016/j.cep.2021.108662 – volume: 345 start-page: 118842 year: 2023 ident: 10.1016/j.envres.2023.117972_bib22 article-title: Green valorization of PET waste into functionalized Cu-MOF tailored to catalytic reduction of 4-nitrophenol publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2023.118842 – ident: 10.1016/j.envres.2023.117972_bib21 doi: 10.1016/j.scitotenv.2021.149134 – volume: 24 start-page: 401 issue: 4 year: 2008 ident: 10.1016/j.envres.2023.117972_bib36 article-title: Robust design via simulation experiments: a modified dual response surface approach publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.906 – volume: 293 start-page: 133464 year: 2022 ident: 10.1016/j.envres.2023.117972_bib41 article-title: Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.133464 – ident: 10.1016/j.envres.2023.117972_bib35 doi: 10.1057/jos.2009.23 – volume: 2 start-page: 218 issue: 3 year: 2017 ident: 10.1016/j.envres.2023.117972_bib23 article-title: Synthesis and applications of MOF-derived porous nanostructures publication-title: Green Energy & Environment doi: 10.1016/j.gee.2017.05.003 – volume: 171 start-page: 557 issue: 2 year: 2011 ident: 10.1016/j.envres.2023.117972_bib5 article-title: Thomas and artificial neural network models for the fixed-bed adsorption of methylene blue by a beach waste Posidonia oceanica (L.) dead leaves publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2011.04.030 – ident: 10.1016/j.envres.2023.117972_bib47 doi: 10.1039/D2EN00601D – volume: 351 start-page: 119761 year: 2024 ident: 10.1016/j.envres.2023.117972_bib27 article-title: Effects of CO2 concentration and time on algal biomass film, NO3–N concentration, and pH in the membrane bioreactor: Simulation-based ANN, RSM and NSGA-II publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2023.119761 – volume: 10 start-page: S3292 year: 2017 ident: 10.1016/j.envres.2023.117972_bib31 article-title: Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite publication-title: Arabian Journal of Chemistry doi: 10.1016/j.arabjc.2013.12.028 – ident: 10.1016/j.envres.2023.117972_bib44 doi: 10.1016/j.est.2023.108708 – volume: 417 start-page: 137932 year: 2023 ident: 10.1016/j.envres.2023.117972_bib17 article-title: Sustainable and optimized values for municipal wastewater: The removal of biological oxygen demand and chemical oxygen demand by various levels of geranular activated carbon-and genetic algorithm-based simulation publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2023.137932 – ident: 10.1016/j.envres.2023.117972_bib3 doi: 10.1007/s13399-021-02174-6 – ident: 10.1016/j.envres.2023.117972_bib28 doi: 10.1016/j.energy.2023.128176 – ident: 10.1016/j.envres.2023.117972_bib45 doi: 10.1016/j.molliq.2021.115593 – volume: 238 start-page: 121732 year: 2024 ident: 10.1016/j.envres.2023.117972_bib4 article-title: "Establishing the fuzzy integrated hybrid MCDM framework to identify the key barriers to implementing artificial intelligence-enabled sustainable cloud system in an IT industry." publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.121732 – volume: 155 start-page: 73 year: 2016 ident: 10.1016/j.envres.2023.117972_bib38 article-title: Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN) publication-title: Chemometrics and intelligent laboratory systems doi: 10.1016/j.chemolab.2016.03.031 – volume: 480 start-page: 288 year: 2019 ident: 10.1016/j.envres.2023.117972_bib33 article-title: Bio-based magnetic metal-organic framework nanocomposite: Ultrasound-assisted synthesis and pollutant (heavy metal and dye) removal from aqueous media publication-title: Applied Surface Science doi: 10.1016/j.apsusc.2019.02.211 – ident: 10.1016/j.envres.2023.117972_bib39 doi: 10.1016/j.eswa.2008.09.053 – volume: 2 start-page: 8 issue: 1 year: 2015 ident: 10.1016/j.envres.2023.117972_bib40 article-title: Overview on the response surface methodology (RSM) in extraction processes publication-title: Journal of Applied Science & Process Engineering – volume: 8 start-page: e81 year: 2015 ident: 10.1016/j.envres.2023.117972_bib12 article-title: Nickel removal from aqueous solutions by alginate-based composite beads: central composite design and artificial neural network modeling publication-title: J. Water Proc. Eng. doi: 10.1016/j.jwpe.2014.12.002 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.envres.2023.117972_bib14 article-title: Removal of Cu (II) using three low-cost adsorbents and prediction of adsorption using artificial neural networks publication-title: Applied Water Science doi: 10.1007/s13201-019-0924-x – ident: 10.1016/j.envres.2023.117972_bib32 doi: 10.1016/j.molliq.2016.01.020 – volume: 56 start-page: 181 issue: 4 year: 2021 ident: 10.1016/j.envres.2023.117972_bib15 article-title: A review on adsorbent parameters for removal of dye products from industrial wastewater publication-title: Water Quality Research Journal doi: 10.2166/wqrj.2021.023 – ident: 10.1016/j.envres.2023.117972_bib29 doi: 10.1080/01496395.2020.1820523 |
| SSID | ssj0011530 |
| Score | 2.5097218 |
| Snippet | Metal-organic framework (MOF)--based composites have received significant attention in a variety of applications, including pollutant adsorption processes. The... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 117972 |
| SubjectTerms | adsorbents Adsorption Algorithms Artificial neural network coordination polymers Heavy metals Hydrogen-Ion Concentration Kinetics Metal-organic framework Metal-Organic Frameworks Metals, Heavy Modeling nanocomposites neural networks Neural Networks, Computer pollutants Response surface methodology Wastewater Wastewater treatment Water Pollutants, Chemical |
| Title | Heavy metal (Cu2+) removal from wastewater by metal-organic framework composite adsorbent: Simulation-based- artificial neural network and response surface methodology |
| URI | https://dx.doi.org/10.1016/j.envres.2023.117972 https://www.ncbi.nlm.nih.gov/pubmed/38141913 https://www.proquest.com/docview/2905517711 https://www.proquest.com/docview/3153587436 |
| Volume | 245 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1096-0953 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011530 issn: 0013-9351 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1096-0953 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011530 issn: 0013-9351 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1096-0953 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011530 issn: 0013-9351 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1096-0953 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011530 issn: 0013-9351 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1096-0953 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011530 issn: 0013-9351 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lvggitlo9bUsEHxRJu7v52F3fytFyKvZFC31b8gkn3l65j4ov_jv-m84k2Ss-HAWf7m5vwobMZDJJfjM_Qt5ogy5QK2ZCWzDReMPAB2qmua-UDKKwkabzy6WaXIlP1_J6h4yHXBiEVWbfn3x69Nb5yWkezdOb6RRzfEvMKwXXi_eQCjPKhaiRxeDk9wbmAQEPLwYWA5Qe0ucixsv3t7CpPUEKcby9bOtq2_K0LfyMy9DFE_I4x4_0LHVxj-z4fp8cnN-lq8Gfeb4u98mjdCpHU7LRU_IHvtz-ojOPYm_H6-r9O7rwszmYG8VEE_pTL_E0DQabmizHEvGTBYGM46KIQ0ewl6faLecLA6_9QL9OZ5kKjOHS6BjFcUwFKiiWzYwfEXROde_gvRGd6-lyvQjaeprIrOMx_zNydXH-bTxhmaqBWd7KFTPShMKGptG-5c4JLbEAeuDcOthTSlsEo4TVbdMqW4aqcqLUbcmhQRMqXVl-QHb7ee9fEGqNBZVJL33jRGGkDkp5jnXjQlO7yo8IHzTU2VzHHOk0fnQDYO17l_TaoV67pNcRYZtWN6mOxz3y9aD87h977GCpuafl68FWOpiqeP-iez9fg1BbQHxa12W5XYaDvcoGwjo1Is-ToW36C8GVgO01f_nffXtFHsIvgRi6Uh6S3dVi7Y8gqFqZ4zhrjsmDs4-fJ5d_AUNXJV0 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1PigU0WrbU6sRfFAk7e4m2Y--laPl1LYvttC3JZ9w4u2V-6j44r_jv-lMkj3pw1HwacNmQkJmMpkkv5kh5L3SqAJVybRvMiZqpxnoQMUUd0UpvchMSNN5flGOrsSXa3m9QYa9LwzCKpPujzo9aOv05zDN5uHNeIw-vjn6lYLqxXfIsnpAHgoJJRDqg98rnAdYPDzr0xggee8_F0BerruFU-0B5hDH58umKtbtT-vsz7APnT4lT5IBSY_jGJ-RDddtk52Tf_5qUJkW7HybbMVrORq9jZ6TP1C4_UUnDsk-DJfFp4905iZTkDeKnib0p5rjdRrMNtWJjsXMTwYIEpCLIhAd0V6OKjufzjR0e0S_jScpFxjDvdEyihMZI1RQjJsZPgF1TlVnod8Az3V0vpx5ZRyN2azDPf8LcnV6cjkcsZSrgRneyAXTUvvM-LpWruHWCiUxArrn3Fg4VEqTeV0Ko5q6KU3ui8KKXDU5hwa1L1Rh-A7Z7Kad2yPUaAMsk0662opMS-XL0nEMHOfryhZuQHjPodakQOaYT-NH2yPWvreRry3ytY18HRC2anUTA3ncQ1_1zG_vCGQLe809Ld_1stLCWsUHGNW56RKImgwM1KrK8_U0HORV1mDXlQOyGwVtNV6wrgScr_nL_x7bW_JodHl-1p59vvj6ijyGGoGAuly-JpuL2dLtg4W10G_CCvoLzWQm8g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heavy+metal+%28Cu2%2B%29+removal+from+wastewater+by+metal-organic+framework+composite+adsorbent%3A+Simulation-based-+artificial+neural+network+and+response+surface+methodology&rft.jtitle=Environmental+research&rft.au=Han%2C+Feng&rft.au=Hessen%2C+Ahmad+Saeed&rft.au=Amari%2C+Abdelfattah&rft.au=Elboughdiri%2C+Noureddine&rft.date=2024-03-15&rft.issn=1096-0953&rft.eissn=1096-0953&rft.volume=245&rft.spage=117972&rft_id=info:doi/10.1016%2Fj.envres.2023.117972&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9351&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9351&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9351&client=summon |