Circular RNA expression profile of Alzheimer’s disease and its clinical significance as biomarkers for the disease risk and progression
To investigate circular RNA (circRNA) expression profile via microarray, and further assess the potential of candidate circRNAs as biomarkers in Alzheimer’s disease (AD). CircRNA expression profile in cerebrospinal fluid from 8 AD patients and 8 control (Ctrl) subjects was assessed by microarray. Su...
Saved in:
Published in | The international journal of biochemistry & cell biology Vol. 123; p. 105747 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1357-2725 1878-5875 1878-5875 |
DOI | 10.1016/j.biocel.2020.105747 |
Cover
Abstract | To investigate circular RNA (circRNA) expression profile via microarray, and further assess the potential of candidate circRNAs as biomarkers in Alzheimer’s disease (AD).
CircRNA expression profile in cerebrospinal fluid from 8 AD patients and 8 control (Ctrl) subjects was assessed by microarray. Subsequently, 10 candidate circRNAs from microarray were validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in cerebrospinal fluid from 80 AD patients and 40 Ctrl subjects.
By microarray, 112 circRNAs were upregulated and 51 circRNAs were downregulated in AD patients compared with Ctrl subjects, and these circRNAs were enriched in AD related pathways such as neurotrophin signaling pathway, natural killer cell mediated cytotoxicity and cholinergic synapse. By RT-qPCR, circ-LPAR1, circ-AXL and circ-GPHN were increased, whereas circ-PCCA, circ-HAUS4, circ-KIF18B and circ-TTC39C were decreased in AD patients compared with Ctrl subjects, and these circRNAs were disclosed to predict AD risk by receiver operating characteristics curve analysis. Further forward-stepwise multivariate logistic regression revealed that circ-AXL, circ-GPHN, circ-ITPR3, circ-PCCA and cic-TTC39C were independent predictive factors for AD risk. Besides, in AD patients, circ-AXL and circ-GPHN negatively correlated, while circ-PCCA and circ-HAUS4 positively correlated with mini–mental state examination score; Circ-AXL negatively correlated, while circ-PCCA, circ-HAUS4 and circ-KIF18B positively correlated with Aβ42; Circ-AXL and circ-GPHN positively correlated, whereas circ-HAUS4 negatively correlated with t-tau; Circ-AXL positively correlated with p-tau.
Our study provides an overview of circRNA expression profile in AD, and identifies that circ-AXL, circ-GPHN and circ-PCCA hold clinical implications for guiding disease management in AD patients. |
---|---|
AbstractList | To investigate circular RNA (circRNA) expression profile via microarray, and further assess the potential of candidate circRNAs as biomarkers in Alzheimer’s disease (AD).CircRNA expression profile in cerebrospinal fluid from 8 AD patients and 8 control (Ctrl) subjects was assessed by microarray. Subsequently, 10 candidate circRNAs from microarray were validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in cerebrospinal fluid from 80 AD patients and 40 Ctrl subjects.By microarray, 112 circRNAs were upregulated and 51 circRNAs were downregulated in AD patients compared with Ctrl subjects, and these circRNAs were enriched in AD related pathways such as neurotrophin signaling pathway, natural killer cell mediated cytotoxicity and cholinergic synapse. By RT-qPCR, circ-LPAR1, circ-AXL and circ-GPHN were increased, whereas circ-PCCA, circ-HAUS4, circ-KIF18B and circ-TTC39C were decreased in AD patients compared with Ctrl subjects, and these circRNAs were disclosed to predict AD risk by receiver operating characteristics curve analysis. Further forward-stepwise multivariate logistic regression revealed that circ-AXL, circ-GPHN, circ-ITPR3, circ-PCCA and cic-TTC39C were independent predictive factors for AD risk. Besides, in AD patients, circ-AXL and circ-GPHN negatively correlated, while circ-PCCA and circ-HAUS4 positively correlated with mini–mental state examination score; Circ-AXL negatively correlated, while circ-PCCA, circ-HAUS4 and circ-KIF18B positively correlated with Aβ42; Circ-AXL and circ-GPHN positively correlated, whereas circ-HAUS4 negatively correlated with t-tau; Circ-AXL positively correlated with p-tau.Our study provides an overview of circRNA expression profile in AD, and identifies that circ-AXL, circ-GPHN and circ-PCCA hold clinical implications for guiding disease management in AD patients. To investigate circular RNA (circRNA) expression profile via microarray, and further assess the potential of candidate circRNAs as biomarkers in Alzheimer's disease (AD).OBJECTIVETo investigate circular RNA (circRNA) expression profile via microarray, and further assess the potential of candidate circRNAs as biomarkers in Alzheimer's disease (AD).CircRNA expression profile in cerebrospinal fluid from 8 AD patients and 8 control (Ctrl) subjects was assessed by microarray. Subsequently, 10 candidate circRNAs from microarray were validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in cerebrospinal fluid from 80 AD patients and 40 Ctrl subjects.METHODSCircRNA expression profile in cerebrospinal fluid from 8 AD patients and 8 control (Ctrl) subjects was assessed by microarray. Subsequently, 10 candidate circRNAs from microarray were validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in cerebrospinal fluid from 80 AD patients and 40 Ctrl subjects.By microarray, 112 circRNAs were upregulated and 51 circRNAs were downregulated in AD patients compared with Ctrl subjects, and these circRNAs were enriched in AD related pathways such as neurotrophin signaling pathway, natural killer cell mediated cytotoxicity and cholinergic synapse. By RT-qPCR, circ-LPAR1, circ-AXL and circ-GPHN were increased, whereas circ-PCCA, circ-HAUS4, circ-KIF18B and circ-TTC39C were decreased in AD patients compared with Ctrl subjects, and these circRNAs were disclosed to predict AD risk by receiver operating characteristics curve analysis. Further forward-stepwise multivariate logistic regression revealed that circ-AXL, circ-GPHN, circ-ITPR3, circ-PCCA and cic-TTC39C were independent predictive factors for AD risk. Besides, in AD patients, circ-AXL and circ-GPHN negatively correlated, while circ-PCCA and circ-HAUS4 positively correlated with mini-mental state examination score; Circ-AXL negatively correlated, while circ-PCCA, circ-HAUS4 and circ-KIF18B positively correlated with Aβ42; Circ-AXL and circ-GPHN positively correlated, whereas circ-HAUS4 negatively correlated with t-tau; Circ-AXL positively correlated with p-tau.RESULTSBy microarray, 112 circRNAs were upregulated and 51 circRNAs were downregulated in AD patients compared with Ctrl subjects, and these circRNAs were enriched in AD related pathways such as neurotrophin signaling pathway, natural killer cell mediated cytotoxicity and cholinergic synapse. By RT-qPCR, circ-LPAR1, circ-AXL and circ-GPHN were increased, whereas circ-PCCA, circ-HAUS4, circ-KIF18B and circ-TTC39C were decreased in AD patients compared with Ctrl subjects, and these circRNAs were disclosed to predict AD risk by receiver operating characteristics curve analysis. Further forward-stepwise multivariate logistic regression revealed that circ-AXL, circ-GPHN, circ-ITPR3, circ-PCCA and cic-TTC39C were independent predictive factors for AD risk. Besides, in AD patients, circ-AXL and circ-GPHN negatively correlated, while circ-PCCA and circ-HAUS4 positively correlated with mini-mental state examination score; Circ-AXL negatively correlated, while circ-PCCA, circ-HAUS4 and circ-KIF18B positively correlated with Aβ42; Circ-AXL and circ-GPHN positively correlated, whereas circ-HAUS4 negatively correlated with t-tau; Circ-AXL positively correlated with p-tau.Our study provides an overview of circRNA expression profile in AD, and identifies that circ-AXL, circ-GPHN and circ-PCCA hold clinical implications for guiding disease management in AD patients.CONCLUSIONOur study provides an overview of circRNA expression profile in AD, and identifies that circ-AXL, circ-GPHN and circ-PCCA hold clinical implications for guiding disease management in AD patients. To investigate circular RNA (circRNA) expression profile via microarray, and further assess the potential of candidate circRNAs as biomarkers in Alzheimer's disease (AD). CircRNA expression profile in cerebrospinal fluid from 8 AD patients and 8 control (Ctrl) subjects was assessed by microarray. Subsequently, 10 candidate circRNAs from microarray were validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in cerebrospinal fluid from 80 AD patients and 40 Ctrl subjects. By microarray, 112 circRNAs were upregulated and 51 circRNAs were downregulated in AD patients compared with Ctrl subjects, and these circRNAs were enriched in AD related pathways such as neurotrophin signaling pathway, natural killer cell mediated cytotoxicity and cholinergic synapse. By RT-qPCR, circ-LPAR1, circ-AXL and circ-GPHN were increased, whereas circ-PCCA, circ-HAUS4, circ-KIF18B and circ-TTC39C were decreased in AD patients compared with Ctrl subjects, and these circRNAs were disclosed to predict AD risk by receiver operating characteristics curve analysis. Further forward-stepwise multivariate logistic regression revealed that circ-AXL, circ-GPHN, circ-ITPR3, circ-PCCA and cic-TTC39C were independent predictive factors for AD risk. Besides, in AD patients, circ-AXL and circ-GPHN negatively correlated, while circ-PCCA and circ-HAUS4 positively correlated with mini-mental state examination score; Circ-AXL negatively correlated, while circ-PCCA, circ-HAUS4 and circ-KIF18B positively correlated with Aβ42; Circ-AXL and circ-GPHN positively correlated, whereas circ-HAUS4 negatively correlated with t-tau; Circ-AXL positively correlated with p-tau. Our study provides an overview of circRNA expression profile in AD, and identifies that circ-AXL, circ-GPHN and circ-PCCA hold clinical implications for guiding disease management in AD patients. |
ArticleNumber | 105747 |
Author | Fan, Hua Ni, Ming Li, Yuanlong Zhang, Wei Hong, Xuejiao Sun, Jun Chen, Ci Ma, Peizhi Zhang, Lei Fang, Fengqin |
Author_xml | – sequence: 1 givenname: Yuanlong surname: Li fullname: Li, Yuanlong organization: Department of Pharmacy, Henan Provincial People’s Hospital, Zhengzhou, China – sequence: 2 givenname: Hua surname: Fan fullname: Fan, Hua organization: The First Affiliated Hospital of Henan University of Science and Technology, School of Clinical Medicine, Henan University of Science and Technology, Luoyang, China – sequence: 3 givenname: Jun surname: Sun fullname: Sun, Jun organization: Department of Pharmacy, Henan Provincial People’s Hospital, Zhengzhou, China – sequence: 4 givenname: Ming surname: Ni fullname: Ni, Ming organization: Department of Pharmacy, Henan Provincial People’s Hospital, Zhengzhou, China – sequence: 5 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: Department of Pharmacy, Henan Provincial People’s Hospital, Zhengzhou, China – sequence: 6 givenname: Ci surname: Chen fullname: Chen, Ci organization: Department of Pharmacy, Henan Provincial People’s Hospital, Zhengzhou, China – sequence: 7 givenname: Xuejiao surname: Hong fullname: Hong, Xuejiao organization: Department of Pharmacy, Henan Provincial People’s Hospital, Zhengzhou, China – sequence: 8 givenname: Fengqin surname: Fang fullname: Fang, Fengqin organization: Department of Pharmacy, Henan Provincial People’s Hospital, Zhengzhou, China – sequence: 9 givenname: Wei surname: Zhang fullname: Zhang, Wei organization: Department of Pharmacy, Henan Provincial People’s Hospital, Zhengzhou, China – sequence: 10 givenname: Peizhi surname: Ma fullname: Ma, Peizhi email: liyuanlong011075@126.com organization: Department of Pharmacy, Henan Provincial People’s Hospital, Zhengzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32315771$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctu1DAUtVAr-oA_QMhLNhliO44TFkijEVCkqpUQrC2Pfd3eaSYZfDMVsGLLJ_B7fEk9zZQFC7rylX0evuecsIN-6IGxF6KciVLUr1ezJQ4eupks5e5Km8o8YceiMU2hG6MP8qy0KaSR-oidEK3KshRaqqfsSEkltDHimP1aYPLbziX-6WLO4dsmAREOPd-kIWIHfIh83v24BlxD-vPzN_GABI6Auz5wHIn7Dnv0ruOEVz3GPPY-vxLP31u7dAOJeBwSH6_hLzch3dwLZJerveMzdhhdR_B8f56yL-_ffV6cFeeXHz4u5ueFV60ei2UVqqqONQjhlG-00yBrb0S9NKFRslRtW7sQwQjjoxYh1q12QcEuBhUrpU7Zq0k3e3_dAo12jZRz7FwPw5as1Fq0omor-ThUtaquVdmKDH25h26Xawh2kzAv_90-JJ0BbyaATwNRgmg9jm7Mi4_JYWdFaXe12pWdarW7Wu1UayZX_5Af9B-hvZ1okPO8RUiWPEKuJ2ACP9ow4P8F7gAejL_o |
CitedBy_id | crossref_primary_10_1007_s12031_024_02262_y crossref_primary_10_52586_4923 crossref_primary_10_3390_antiox9111095 crossref_primary_10_3389_fnins_2021_710473 crossref_primary_10_1016_j_tig_2021_08_010 crossref_primary_10_1038_s41598_024_55013_9 crossref_primary_10_52586_5060 crossref_primary_10_3233_CH_211259 crossref_primary_10_3390_ijms241713480 crossref_primary_10_1016_j_intimp_2023_109791 crossref_primary_10_1002_ptr_7619 crossref_primary_10_3389_fgene_2022_1049786 crossref_primary_10_4236_abb_2022_1312035 crossref_primary_10_3390_ijms25137104 crossref_primary_10_1186_s12929_023_00954_y crossref_primary_10_3389_fnins_2023_1097878 crossref_primary_10_3389_fnins_2024_1421675 crossref_primary_10_1038_s41598_025_88152_8 crossref_primary_10_31083_j_jin2204105 crossref_primary_10_3892_mmr_2021_12241 crossref_primary_10_3390_pharmaceutics13091397 crossref_primary_10_12677_ojns_2024_122051 crossref_primary_10_3892_mmr_2023_12942 crossref_primary_10_3390_ijms23084134 crossref_primary_10_3389_fncel_2024_1470641 crossref_primary_10_1016_j_ncrna_2023_11_011 crossref_primary_10_1016_j_biocel_2022_106313 crossref_primary_10_3389_fgene_2023_1231486 crossref_primary_10_3390_ncrna9020023 crossref_primary_10_1007_s13258_022_01315_z crossref_primary_10_3390_ijms22168505 crossref_primary_10_3389_fnmol_2022_1078441 crossref_primary_10_1016_j_brainres_2022_147878 crossref_primary_10_3389_fcell_2022_804247 crossref_primary_10_1177_25424823241309024 crossref_primary_10_1016_j_brainresbull_2024_111004 crossref_primary_10_1021_acs_jcim_5c00174 crossref_primary_10_1007_s11064_022_03563_7 crossref_primary_10_1007_s11011_022_00912_x crossref_primary_10_1038_s41467_024_55706_9 crossref_primary_10_3389_fimmu_2020_582825 crossref_primary_10_31083_j_fbl2904161 crossref_primary_10_1016_j_jinorgbio_2024_112601 crossref_primary_10_1007_s11011_022_01051_z crossref_primary_10_3390_biomedicines11051316 crossref_primary_10_3390_ijms21249582 crossref_primary_10_1155_2020_6798590 crossref_primary_10_1007_s12035_020_02106_x crossref_primary_10_1007_s12035_024_03977_0 crossref_primary_10_3390_ijms24054308 crossref_primary_10_1007_s12031_024_02236_0 crossref_primary_10_1007_s11011_024_01520_7 crossref_primary_10_1007_s12035_022_03177_8 crossref_primary_10_2174_1871527321666220829164211 crossref_primary_10_3390_plants12193391 crossref_primary_10_1038_s41419_021_03743_3 crossref_primary_10_1016_j_neulet_2022_136531 crossref_primary_10_1016_j_ecoenv_2025_118060 crossref_primary_10_1016_j_arr_2023_102003 crossref_primary_10_3389_fgene_2025_1506169 crossref_primary_10_1155_2022_7386946 crossref_primary_10_3389_fneur_2020_538301 crossref_primary_10_3389_fonc_2021_757541 crossref_primary_10_1007_s12640_022_00523_5 crossref_primary_10_1038_s42003_024_07060_1 crossref_primary_10_2174_0115680266293212240405042540 crossref_primary_10_3390_molecules27061816 crossref_primary_10_3389_fnagi_2021_691512 crossref_primary_10_1186_s40364_022_00405_0 |
Cites_doi | 10.1038/s41598-017-09076-6 10.1016/j.preghy.2019.06.009 10.18632/aging.101427 10.1016/j.tins.2016.06.006 10.18632/aging.101387 10.1016/j.neubiorev.2019.09.014 10.21147/j.issn.1000-9604.2018.06.10 10.1002/hipo.20573 10.1002/jcla.22954 10.1111/ene.13439 10.1001/archneur.56.7.857 10.1016/j.jalz.2011.03.005 10.1093/jnen/60.8.759 10.1056/NEJMoa1202753 10.1159/000494870 10.1186/gb-2003-5-1-r1 10.1097/01.jnen.0000435847.59828.db 10.1186/s12935-019-0994-8 10.1002/wrna.1463 10.1007/978-981-13-1426-1_19 10.1146/annurev-med-042915-103753 10.1016/j.csbj.2018.10.010 10.1080/15384101.2019.1629773 10.1038/nature20412 10.1074/jbc.M800985200 10.1016/S0140-6736(15)01124-1 10.1007/s00401-019-02004-0 10.1016/j.neulet.2017.10.014 10.1016/j.febslet.2015.02.001 10.1002/glia.23214 10.1126/science.aam8526 10.1186/1742-2094-8-49 |
ContentType | Journal Article |
Copyright | 2020 Copyright © 2020. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2020 – notice: Copyright © 2020. Published by Elsevier Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biocel.2020.105747 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1878-5875 |
ExternalDocumentID | 32315771 10_1016_j_biocel_2020_105747 S1357272520300649 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29J 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W K-O KOM L7B M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPCBC SSU SSZ T5K WH7 ZU3 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 ACLOT EFKBS ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-b4d446f6e11a3c85a5e26c716b7d83203996adfe717cf51df695ad3e27253f433 |
IEDL.DBID | AIKHN |
ISSN | 1357-2725 1878-5875 |
IngestDate | Sun Sep 28 10:25:20 EDT 2025 Sun Sep 28 10:11:20 EDT 2025 Wed Feb 19 02:29:06 EST 2025 Tue Jul 01 01:52:12 EDT 2025 Thu Apr 24 22:53:48 EDT 2025 Fri Feb 23 02:48:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | miRNAs AUC SD PNS MMSE circular RNA SAMP8 CSF KEGG RT-qPCR reverse transcription quantitative polymerase chain reaction mini-mental state examination score AD Aβ42 Alzheimer’s disease CI ROC GO Ctrl clinical significance SAMR1 PCA CircRNAs FC expression profile |
Language | English |
License | Copyright © 2020. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-b4d446f6e11a3c85a5e26c716b7d83203996adfe717cf51df695ad3e27253f433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 32315771 |
PQID | 2393663091 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2551914942 proquest_miscellaneous_2393663091 pubmed_primary_32315771 crossref_citationtrail_10_1016_j_biocel_2020_105747 crossref_primary_10_1016_j_biocel_2020_105747 elsevier_sciencedirect_doi_10_1016_j_biocel_2020_105747 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The international journal of biochemistry & cell biology |
PublicationTitleAlternate | Int J Biochem Cell Biol |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yang, Wang, Shang, Chen, Yang, Qu, Ding, Li (bib0050) 2019; 18 Lane, Hardy, Schott (bib0115) 2018; 25 Idda, Munk, Abdelmohsen, Gorospe (bib0125) 2018; 9 Nunomura, Perry, Aliev, Hirai, Takeda, Balraj, Jones, Ghanbari, Wataya, Shimohama, Chiba, Atwood, Petersen, Smith (bib0085) 2001; 60 Hales, Rees, Seyfried, Dammer, Duong, Gearing, Montine, Troncoso, Thambisetty, Levey, Lah, Wingo (bib0165) 2013; 72 Scheltens, Blennow, Breteler, de Strooper, Frisoni, Salloway, Van der Flier (bib0015) 2016; 388 Solana, Tarazona, Solana (bib0135) 2018; 2018 Canter, Penney, Tsai (bib0005) 2016; 539 Li, Ma, Sun, Shi (bib0100) 2018; 10 Dong, Deng, Peng, Pan, Wang (bib0055) 2019 Banning LCP, Deckers, Verhey, Aalten (bib0150) 2019; 107 Wang, Wang, Wu, Bai (bib0110) 2019; 19 McKhann, Knopman, Chertkow, Hyman, Jack, Kawas, Klunk, Koroshetz, Manly, Mayeux, Mohs, Morris, Rossor, Scheltens, Carrillo, Thies, Weintraub, Phelps (bib0080) 2011; 7 Clark, Sheppard, Fillenbaum, Galasko, Morris, Koss, Mohs, Heyman (bib0155) 1999; 56 Huang, Qin, Zhou, Xu, Yang, Zhang, Zhong, Liang, Chen, Zhang, Wu, Zhong (bib0070) 2018; 10 Yang, Li, Liu, Xu, Wang, Yan, Zhou, Yang, Wei (bib0060) 2018; 30 Zhang, Chen, Liu, Wan, Tang, Zheng, Xiong (bib0145) 2018; 675 Wang, Xu, Chen, Zhang, Zhang, Zhan, Huang, Xia, Peng (bib0040) 2018; 10 Piwecka, Glazar, Hernandez-Miranda, Memczak, Wolf, Rybak-Wolf, Filipchyk, Klironomos, Cerda Jara, Fenske, Trimbuch, Zywitza, Plass, Schreyer, Ayoub, Kocks, Kuhn, Rosenmund, Birchmeier, Rajewsky (bib0045) 2017; 357 Huang, Xu, Yang, Yu, Zhang, Qin, Zhou, Zhong, Wu (bib0075) 2018; 16 Deng, Lei, Huang, Yang, Fan, Wang (bib0030) 2019; 17 Bateman, Xiong, Benzinger, Fagan, Goate, Fox, Marcus, Cairns, Xie, Blazey, Holtzman, Santacruz, Buckles, Oliver, Moulder, Aisen, Ghetti, Klunk, McDade, Martins, Masters, Mayeux, Ringman, Rossor, Schofield, Sperling, Salloway, Morris, Dominantly Inherited Alzheimer N (bib0020) 2012; 367 Akhter (bib0130) 2018; 1087 Dang, Ouyang, Zhang, Wang, Lin, Sun, Wang, Wang, Huang (bib0090) 2017; 7 Peng, Jing, Chen, Xu (bib0105) 2019; 33 Shi, Liu, Zhou, Yu, Jiang (bib0120) 2009; 19 Chen, Schuman (bib0035) 2016; 39 Ray, DuBois, Gruber, Guzik, Gulinello, Perumal, Raine, Kozakiewicz, Williamson, Shafit-Zagardo (bib0140) 2017; 65 Xia, Ding, Zhang, Li, Zeng, Zhu, Guo, Hou, Zhu, Zheng, Wang (bib0065) 2018; 50 Graham, Bonito-Oliva, Sakmar (bib0025) 2017; 68 Dourlen, Kilinc, Malmanche, Chapuis, Lambert (bib0010) 2019; 138 Enright, John, Gaul, Tuschl, Sander, Marks (bib0095) 2003; 5 Smolinsky, Eichler, Buchmeier, Meier, Schwarz (bib0170) 2008; 283 Wang, Tan, Lu, Peng, Zhu, Zhang, Sun (bib0175) 2015; 589 Weinger, Brosnan, Loudig, Goldberg, Macian, Arnett, Prieto, Tsiperson, Shafit-Zagardo (bib0160) 2011; 8 Peng (10.1016/j.biocel.2020.105747_bib0105) 2019; 33 Scheltens (10.1016/j.biocel.2020.105747_bib0015) 2016; 388 McKhann (10.1016/j.biocel.2020.105747_bib0080) 2011; 7 Weinger (10.1016/j.biocel.2020.105747_bib0160) 2011; 8 Yang (10.1016/j.biocel.2020.105747_bib0050) 2019; 18 Dourlen (10.1016/j.biocel.2020.105747_bib0010) 2019; 138 Wang (10.1016/j.biocel.2020.105747_bib0040) 2018; 10 Lane (10.1016/j.biocel.2020.105747_bib0115) 2018; 25 Xia (10.1016/j.biocel.2020.105747_bib0065) 2018; 50 Idda (10.1016/j.biocel.2020.105747_bib0125) 2018; 9 Hales (10.1016/j.biocel.2020.105747_bib0165) 2013; 72 Banning LCP (10.1016/j.biocel.2020.105747_bib0150) 2019; 107 Dang (10.1016/j.biocel.2020.105747_bib0090) 2017; 7 Ray (10.1016/j.biocel.2020.105747_bib0140) 2017; 65 Enright (10.1016/j.biocel.2020.105747_bib0095) 2003; 5 Deng (10.1016/j.biocel.2020.105747_bib0030) 2019; 17 Yang (10.1016/j.biocel.2020.105747_bib0060) 2018; 30 Graham (10.1016/j.biocel.2020.105747_bib0025) 2017; 68 Chen (10.1016/j.biocel.2020.105747_bib0035) 2016; 39 Canter (10.1016/j.biocel.2020.105747_bib0005) 2016; 539 Zhang (10.1016/j.biocel.2020.105747_bib0145) 2018; 675 Smolinsky (10.1016/j.biocel.2020.105747_bib0170) 2008; 283 Huang (10.1016/j.biocel.2020.105747_bib0070) 2018; 10 Huang (10.1016/j.biocel.2020.105747_bib0075) 2018; 16 Akhter (10.1016/j.biocel.2020.105747_bib0130) 2018; 1087 Clark (10.1016/j.biocel.2020.105747_bib0155) 1999; 56 Nunomura (10.1016/j.biocel.2020.105747_bib0085) 2001; 60 Wang (10.1016/j.biocel.2020.105747_bib0175) 2015; 589 Bateman (10.1016/j.biocel.2020.105747_bib0020) 2012; 367 Dong (10.1016/j.biocel.2020.105747_bib0055) 2019 Shi (10.1016/j.biocel.2020.105747_bib0120) 2009; 19 Solana (10.1016/j.biocel.2020.105747_bib0135) 2018; 2018 Piwecka (10.1016/j.biocel.2020.105747_bib0045) 2017; 357 Li (10.1016/j.biocel.2020.105747_bib0100) 2018; 10 Wang (10.1016/j.biocel.2020.105747_bib0110) 2019; 19 |
References_xml | – volume: 30 start-page: 656 year: 2018 end-page: 668 ident: bib0060 article-title: Novel circular RNA expression profile of uveal melanoma revealed by microarray publication-title: Chin J Cancer Res – volume: 33 year: 2019 ident: bib0105 article-title: The role of circular RNA HECTD1 expression in disease risk, disease severity, inflammation, and recurrence of acute ischemic stroke publication-title: J Clin Lab Anal – volume: 2018 year: 2018 ident: bib0135 article-title: Immunosenescence of Natural Killer Cells, Inflammation, and Alzheimer’s disease publication-title: Int J Alzheimers Dis – year: 2019 ident: bib0055 article-title: CircRNA expression profiles and function prediction in peripheral blood mononuclear cells of patients with acute ischemic stroke publication-title: J Cell Physiol – volume: 17 start-page: 216 year: 2019 end-page: 225 ident: bib0030 article-title: Circular RNA expression profiling identifies hsa_circ_0011460 as a novel molecule in severe preeclampsia publication-title: Pregnancy Hypertens – volume: 5 start-page: R1 year: 2003 ident: bib0095 article-title: MicroRNA targets in Drosophila publication-title: Genome Biol – volume: 50 start-page: 1903 year: 2018 end-page: 1915 ident: bib0065 article-title: Circular RNA Expression Profiling Identifies Prostate Cancer- Specific circRNAs in Prostate Cancer publication-title: Cell Physiol Biochem – volume: 19 start-page: 328 year: 2019 ident: bib0110 article-title: Circular RNA ITCH suppressed prostate cancer progression by increasing HOXB13 expression via spongy miR-17-5p publication-title: Cancer Cell Int – volume: 7 start-page: 263 year: 2011 end-page: 269 ident: bib0080 article-title: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimers Dement – volume: 10 start-page: 1373 year: 2018 end-page: 1386 ident: bib0100 article-title: Identification of the tumor-suppressive function of circular RNA ITCH in glioma cells through sponging miR-214 and promoting linear ITCH expression publication-title: Am J Transl Res – volume: 10 start-page: 253 year: 2018 end-page: 265 ident: bib0070 article-title: Comprehensive analysis of differentially expressed profiles of Alzheimer’s disease associated circular RNAs in an Alzheimer’s disease mouse model publication-title: Aging (Albany NY) – volume: 357 year: 2017 ident: bib0045 article-title: Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function publication-title: Science – volume: 589 start-page: 726 year: 2015 end-page: 729 ident: bib0175 article-title: MicroRNA-138 promotes tau phosphorylation by targeting retinoic acid receptor alpha publication-title: FEBS Lett – volume: 388 start-page: 505 year: 2016 end-page: 517 ident: bib0015 article-title: Alzheimer’s disease publication-title: Lancet – volume: 39 start-page: 597 year: 2016 end-page: 604 ident: bib0035 article-title: Circular RNAs in Brain and Other Tissues: A Functional Enigma publication-title: Trends Neurosci – volume: 107 start-page: 346 year: 2019 end-page: 359 ident: bib0150 article-title: Affective symptoms and AT(N) biomarkers in mild cognitive impairment and Alzheimer’s disease: A systematic literature review publication-title: Neurosci Biobehav Rev – volume: 283 start-page: 17370 year: 2008 end-page: 17379 ident: bib0170 article-title: Splice-specific functions of gephyrin in molybdenum cofactor biosynthesis publication-title: J Biol Chem – volume: 8 start-page: 49 year: 2011 ident: bib0160 article-title: Loss of the receptor tyrosine kinase Axl leads to enhanced inflammation in the CNS and delayed removal of myelin debris during experimental autoimmune encephalomyelitis publication-title: J Neuroinflammation – volume: 138 start-page: 221 year: 2019 end-page: 236 ident: bib0010 article-title: The new genetic landscape of Alzheimer’s disease: from amyloid cascade to genetically driven synaptic failure hypothesis? publication-title: Acta Neuropathol – volume: 16 start-page: 523 year: 2018 end-page: 531 ident: bib0075 article-title: Identification of Differentially Expressed Profiles of Alzheimer’s Disease Associated Circular RNAs in a Panax Notoginseng Saponins-Treated Alzheimer’s Disease Mouse Model publication-title: Comput Struct Biotechnol J – volume: 65 start-page: 2051 year: 2017 end-page: 2069 ident: bib0140 article-title: Loss of Gas6 and Axl signaling results in extensive axonal damage, motor deficits, prolonged neuroinflammation, and less remyelination following cuprizone exposure publication-title: Glia – volume: 7 start-page: 9060 year: 2017 ident: bib0090 article-title: Circular RNAs expression profiles in human gastric cancer publication-title: Sci Rep – volume: 25 start-page: 59 year: 2018 end-page: 70 ident: bib0115 article-title: Alzheimer’s disease publication-title: Eur J Neurol – volume: 1087 start-page: 239 year: 2018 end-page: 243 ident: bib0130 article-title: Circular RNA and Alzheimer’s disease publication-title: Adv Exp Med Biol – volume: 56 start-page: 857 year: 1999 end-page: 862 ident: bib0155 article-title: Variability in annual Mini-Mental State Examination score in patients with probable Alzheimer disease: a clinical perspective of data from the Consortium to Establish a Registry for Alzheimer’s Disease publication-title: Arch Neurol – volume: 9 year: 2018 ident: bib0125 article-title: Noncoding RNAs in Alzheimer’s disease publication-title: Wiley Interdiscip Rev RNA – volume: 60 start-page: 759 year: 2001 end-page: 767 ident: bib0085 article-title: Oxidative damage is the earliest event in Alzheimer disease publication-title: J Neuropathol Exp Neurol – volume: 19 start-page: 1055 year: 2009 end-page: 1064 ident: bib0120 article-title: Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: Meta-analyses of MRI studies publication-title: Hippocampus – volume: 675 start-page: 133 year: 2018 end-page: 139 ident: bib0145 article-title: Inhibition of BDNF production by MPP(+) through up-regulation of miR-210-3p contributes to dopaminergic neuron damage in MPTP model publication-title: Neurosci Lett – volume: 539 start-page: 187 year: 2016 end-page: 196 ident: bib0005 article-title: The road to restoring neural circuits for the treatment of Alzheimer’s disease publication-title: Nature – volume: 68 start-page: 413 year: 2017 end-page: 430 ident: bib0025 article-title: Update on Alzheimer’s Disease Therapy and Prevention Strategies publication-title: Annu Rev Med – volume: 72 start-page: 1009 year: 2013 end-page: 1015 ident: bib0165 article-title: Abnormal gephyrin immunoreactivity associated with Alzheimer disease pathologic changes publication-title: J Neuropathol Exp Neurol – volume: 367 start-page: 795 year: 2012 end-page: 804 ident: bib0020 article-title: Clinical and biomarker changes in dominantly inherited Alzheimer’s disease publication-title: N Engl J Med – volume: 10 start-page: 775 year: 2018 end-page: 788 ident: bib0040 article-title: Identifying circRNA-associated-ceRNA networks in the hippocampus of Abeta1-42-induced Alzheimer’s disease-like rats using microarray analysis publication-title: Aging (Albany NY) – volume: 18 start-page: 2197 year: 2019 end-page: 2214 ident: bib0050 article-title: Circular RNA circ_0000950 promotes neuron apoptosis, suppresses neurite outgrowth and elevates inflammatory cytokines levels via directly sponging miR-103 in Alzheimer's disease publication-title: Cell Cycle – volume: 7 start-page: 9060 year: 2017 ident: 10.1016/j.biocel.2020.105747_bib0090 article-title: Circular RNAs expression profiles in human gastric cancer publication-title: Sci Rep doi: 10.1038/s41598-017-09076-6 – volume: 17 start-page: 216 year: 2019 ident: 10.1016/j.biocel.2020.105747_bib0030 article-title: Circular RNA expression profiling identifies hsa_circ_0011460 as a novel molecule in severe preeclampsia publication-title: Pregnancy Hypertens doi: 10.1016/j.preghy.2019.06.009 – volume: 10 start-page: 775 year: 2018 ident: 10.1016/j.biocel.2020.105747_bib0040 article-title: Identifying circRNA-associated-ceRNA networks in the hippocampus of Abeta1-42-induced Alzheimer’s disease-like rats using microarray analysis publication-title: Aging (Albany NY) doi: 10.18632/aging.101427 – volume: 39 start-page: 597 year: 2016 ident: 10.1016/j.biocel.2020.105747_bib0035 article-title: Circular RNAs in Brain and Other Tissues: A Functional Enigma publication-title: Trends Neurosci doi: 10.1016/j.tins.2016.06.006 – volume: 10 start-page: 253 year: 2018 ident: 10.1016/j.biocel.2020.105747_bib0070 article-title: Comprehensive analysis of differentially expressed profiles of Alzheimer’s disease associated circular RNAs in an Alzheimer’s disease mouse model publication-title: Aging (Albany NY) doi: 10.18632/aging.101387 – volume: 107 start-page: 346 year: 2019 ident: 10.1016/j.biocel.2020.105747_bib0150 article-title: Affective symptoms and AT(N) biomarkers in mild cognitive impairment and Alzheimer’s disease: A systematic literature review publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2019.09.014 – year: 2019 ident: 10.1016/j.biocel.2020.105747_bib0055 article-title: CircRNA expression profiles and function prediction in peripheral blood mononuclear cells of patients with acute ischemic stroke publication-title: J Cell Physiol – volume: 30 start-page: 656 year: 2018 ident: 10.1016/j.biocel.2020.105747_bib0060 article-title: Novel circular RNA expression profile of uveal melanoma revealed by microarray publication-title: Chin J Cancer Res doi: 10.21147/j.issn.1000-9604.2018.06.10 – volume: 10 start-page: 1373 year: 2018 ident: 10.1016/j.biocel.2020.105747_bib0100 article-title: Identification of the tumor-suppressive function of circular RNA ITCH in glioma cells through sponging miR-214 and promoting linear ITCH expression publication-title: Am J Transl Res – volume: 19 start-page: 1055 year: 2009 ident: 10.1016/j.biocel.2020.105747_bib0120 article-title: Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: Meta-analyses of MRI studies publication-title: Hippocampus doi: 10.1002/hipo.20573 – volume: 33 year: 2019 ident: 10.1016/j.biocel.2020.105747_bib0105 article-title: The role of circular RNA HECTD1 expression in disease risk, disease severity, inflammation, and recurrence of acute ischemic stroke publication-title: J Clin Lab Anal doi: 10.1002/jcla.22954 – volume: 25 start-page: 59 year: 2018 ident: 10.1016/j.biocel.2020.105747_bib0115 article-title: Alzheimer’s disease publication-title: Eur J Neurol doi: 10.1111/ene.13439 – volume: 56 start-page: 857 year: 1999 ident: 10.1016/j.biocel.2020.105747_bib0155 article-title: Variability in annual Mini-Mental State Examination score in patients with probable Alzheimer disease: a clinical perspective of data from the Consortium to Establish a Registry for Alzheimer’s Disease publication-title: Arch Neurol doi: 10.1001/archneur.56.7.857 – volume: 7 start-page: 263 year: 2011 ident: 10.1016/j.biocel.2020.105747_bib0080 article-title: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.005 – volume: 60 start-page: 759 year: 2001 ident: 10.1016/j.biocel.2020.105747_bib0085 article-title: Oxidative damage is the earliest event in Alzheimer disease publication-title: J Neuropathol Exp Neurol doi: 10.1093/jnen/60.8.759 – volume: 367 start-page: 795 year: 2012 ident: 10.1016/j.biocel.2020.105747_bib0020 article-title: Clinical and biomarker changes in dominantly inherited Alzheimer’s disease publication-title: N Engl J Med doi: 10.1056/NEJMoa1202753 – volume: 50 start-page: 1903 year: 2018 ident: 10.1016/j.biocel.2020.105747_bib0065 article-title: Circular RNA Expression Profiling Identifies Prostate Cancer- Specific circRNAs in Prostate Cancer publication-title: Cell Physiol Biochem doi: 10.1159/000494870 – volume: 5 start-page: R1 year: 2003 ident: 10.1016/j.biocel.2020.105747_bib0095 article-title: MicroRNA targets in Drosophila publication-title: Genome Biol doi: 10.1186/gb-2003-5-1-r1 – volume: 72 start-page: 1009 year: 2013 ident: 10.1016/j.biocel.2020.105747_bib0165 article-title: Abnormal gephyrin immunoreactivity associated with Alzheimer disease pathologic changes publication-title: J Neuropathol Exp Neurol doi: 10.1097/01.jnen.0000435847.59828.db – volume: 19 start-page: 328 year: 2019 ident: 10.1016/j.biocel.2020.105747_bib0110 article-title: Circular RNA ITCH suppressed prostate cancer progression by increasing HOXB13 expression via spongy miR-17-5p publication-title: Cancer Cell Int doi: 10.1186/s12935-019-0994-8 – volume: 9 year: 2018 ident: 10.1016/j.biocel.2020.105747_bib0125 article-title: Noncoding RNAs in Alzheimer’s disease publication-title: Wiley Interdiscip Rev RNA doi: 10.1002/wrna.1463 – volume: 1087 start-page: 239 year: 2018 ident: 10.1016/j.biocel.2020.105747_bib0130 article-title: Circular RNA and Alzheimer’s disease publication-title: Adv Exp Med Biol doi: 10.1007/978-981-13-1426-1_19 – volume: 68 start-page: 413 year: 2017 ident: 10.1016/j.biocel.2020.105747_bib0025 article-title: Update on Alzheimer’s Disease Therapy and Prevention Strategies publication-title: Annu Rev Med doi: 10.1146/annurev-med-042915-103753 – volume: 16 start-page: 523 year: 2018 ident: 10.1016/j.biocel.2020.105747_bib0075 article-title: Identification of Differentially Expressed Profiles of Alzheimer’s Disease Associated Circular RNAs in a Panax Notoginseng Saponins-Treated Alzheimer’s Disease Mouse Model publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2018.10.010 – volume: 18 start-page: 2197 year: 2019 ident: 10.1016/j.biocel.2020.105747_bib0050 article-title: Circular RNA circ_0000950 promotes neuron apoptosis, suppresses neurite outgrowth and elevates inflammatory cytokines levels via directly sponging miR-103 in Alzheimer's disease publication-title: Cell Cycle doi: 10.1080/15384101.2019.1629773 – volume: 2018 year: 2018 ident: 10.1016/j.biocel.2020.105747_bib0135 article-title: Immunosenescence of Natural Killer Cells, Inflammation, and Alzheimer’s disease publication-title: Int J Alzheimers Dis – volume: 539 start-page: 187 year: 2016 ident: 10.1016/j.biocel.2020.105747_bib0005 article-title: The road to restoring neural circuits for the treatment of Alzheimer’s disease publication-title: Nature doi: 10.1038/nature20412 – volume: 283 start-page: 17370 year: 2008 ident: 10.1016/j.biocel.2020.105747_bib0170 article-title: Splice-specific functions of gephyrin in molybdenum cofactor biosynthesis publication-title: J Biol Chem doi: 10.1074/jbc.M800985200 – volume: 388 start-page: 505 year: 2016 ident: 10.1016/j.biocel.2020.105747_bib0015 article-title: Alzheimer’s disease publication-title: Lancet doi: 10.1016/S0140-6736(15)01124-1 – volume: 138 start-page: 221 year: 2019 ident: 10.1016/j.biocel.2020.105747_bib0010 article-title: The new genetic landscape of Alzheimer’s disease: from amyloid cascade to genetically driven synaptic failure hypothesis? publication-title: Acta Neuropathol doi: 10.1007/s00401-019-02004-0 – volume: 675 start-page: 133 year: 2018 ident: 10.1016/j.biocel.2020.105747_bib0145 article-title: Inhibition of BDNF production by MPP(+) through up-regulation of miR-210-3p contributes to dopaminergic neuron damage in MPTP model publication-title: Neurosci Lett doi: 10.1016/j.neulet.2017.10.014 – volume: 589 start-page: 726 year: 2015 ident: 10.1016/j.biocel.2020.105747_bib0175 article-title: MicroRNA-138 promotes tau phosphorylation by targeting retinoic acid receptor alpha publication-title: FEBS Lett doi: 10.1016/j.febslet.2015.02.001 – volume: 65 start-page: 2051 year: 2017 ident: 10.1016/j.biocel.2020.105747_bib0140 article-title: Loss of Gas6 and Axl signaling results in extensive axonal damage, motor deficits, prolonged neuroinflammation, and less remyelination following cuprizone exposure publication-title: Glia doi: 10.1002/glia.23214 – volume: 357 year: 2017 ident: 10.1016/j.biocel.2020.105747_bib0045 article-title: Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function publication-title: Science doi: 10.1126/science.aam8526 – volume: 8 start-page: 49 year: 2011 ident: 10.1016/j.biocel.2020.105747_bib0160 article-title: Loss of the receptor tyrosine kinase Axl leads to enhanced inflammation in the CNS and delayed removal of myelin debris during experimental autoimmune encephalomyelitis publication-title: J Neuroinflammation doi: 10.1186/1742-2094-8-49 |
SSID | ssj0001523 |
Score | 2.5699413 |
Snippet | To investigate circular RNA (circRNA) expression profile via microarray, and further assess the potential of candidate circRNAs as biomarkers in Alzheimer’s... To investigate circular RNA (circRNA) expression profile via microarray, and further assess the potential of candidate circRNAs as biomarkers in Alzheimer's... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 105747 |
SubjectTerms | Aged Alzheimer Disease - cerebrospinal fluid Alzheimer Disease - genetics Alzheimer’s disease Amyloid beta-Peptides - cerebrospinal fluid Amyloid beta-Peptides - genetics Amyloid beta-Peptides - metabolism biomarkers Biomarkers - cerebrospinal fluid cerebrospinal fluid circular RNA clinical significance cytotoxicity disease control Disease Progression Down-Regulation expression profile Female Gene Ontology Humans Killer Cells, Natural - immunology Logistic Models Male Microarray Analysis microarray technology MicroRNAs - cerebrospinal fluid MicroRNAs - genetics Middle Aged mini-mental state examination score natural killer cells Nerve Growth Factors - cerebrospinal fluid Nerve Growth Factors - genetics Non-Neuronal Cholinergic System - genetics Peptide Fragments - cerebrospinal fluid Peptide Fragments - genetics Peptide Fragments - metabolism quantitative polymerase chain reaction Real-Time Polymerase Chain Reaction regression analysis reverse transcription reverse transcription quantitative polymerase chain reaction risk RNA, Circular - cerebrospinal fluid RNA, Circular - genetics ROC Curve Signal Transduction - genetics synapse tau Proteins - cerebrospinal fluid tau Proteins - genetics tau Proteins - metabolism Up-Regulation |
Title | Circular RNA expression profile of Alzheimer’s disease and its clinical significance as biomarkers for the disease risk and progression |
URI | https://dx.doi.org/10.1016/j.biocel.2020.105747 https://www.ncbi.nlm.nih.gov/pubmed/32315771 https://www.proquest.com/docview/2393663091 https://www.proquest.com/docview/2551914942 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WyG4IGh5LI_KSIhb2MaOnc0xrKgWEHsAKvVmOY6tBrXZarOVWg6IKz-Bv8cvYfxaCQmoxC2J7MTKTGa-yXzjAXiu2lKYipeZFkpkRcNt1hRUZ63IFdcHwlifMX2_EPOj4u0xP96CWaqFcbTKaPuDTffWOl6ZxLc5Oe-6yceccZdF5BT1FB1rtQ07FL39dAQ79Zt388XGIKOL8jx7HJ-5CamCztO8mg79hMtB0NDz1vVZ-bOH-hsC9Z7o8A7cjhCS1GGVd2HL9LuwV_cYPp9dkRfEkzr93_JduPEqHd2cpdZue_B91q08_5R8WNTEXEYybE9iB2-ytKQ-_XJiujOz-vntx0BiHoeoviXdeiCpoJI4_odjGznlIWogrpzfMX5WA0E4TBBebuY6Fru_geeEhSfeg6PD159m8yz2ZMg0q_gaBdliAGmFyXPF9JQrbqjQGHQ1ZYvG4QDxjlCtNRglasvz1oqKq5YZ996ZLRi7D6N-2ZuHQHQxdbshaqqoKqgqGzQFtMkrhZDGMMvGwJIcpI4blru-GacyMdM-yyA96aQng_TGkG1mnYcNO64ZXyYRy98UT6JPuWbms6QREuXnEi2qN8uLQbpt5RDJIRT7xxiEqhWGpwUdw4OgTpv1MgTdvCzzR_-9tsdwy50FTtsTGK1XF-Ypoqd1sw_bL7_m-_Eb-QUzNxp7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKESoXBC0_SwsYCXEL29ix0xy3K6oF2j1AK_VmOY6tBrXZarOVgAPiyiP09foknfHPIiSgErcoGSdWZjLzTeazh5BXuimlrUSZGallVtTCZXXBTNbIXAuzLa3zFdODqZwcFe-PxfEKGae1MEirjL4_-HTvreOZYXybw_O2HX7KucAqomBgpxBYq1vkdoFtDsCo33z_xfOAAOVZ9iCdoXhaP-dJXnULUQIrECx0vMUuK3-OT3_Dnz4O7d0n9yKApKMwxwdkxXbrZGPUQfJ89pW-pp7S6f-Vr5M7u-lobZwau22Qn-N27tmn9ON0RO2XSIXtaOzfTWeOjk6_ndj2zM6vflz2NFZxqO4a2i56mpZTUmR_INcITYfqnuJifuT7zHsKYJgCuFyORQ67v4FnhIUnPiRHe28Px5MsdmTIDK_EAtTYQPropM1zzc2O0MIyaSDlqssGXMM2oB2pG2chRzRO5I2TldANt_jeuSs4f0RWu1lnnxBqih3cC9EwzXTBdFmDI2B1XmkANJY7PiA86UGZuF05ds04VYmX9lkF7SnUngraG5BsOeo8bNdxg3yZVKx-MzsFEeWGkS-TRSjQH5ZZdGdnF73CTeUAxwEQ-4cMANUKktOCDcjjYE7L-XKA3KIs86f_PbcXZG1yeLCv9t9NP2ySu3glsNu2yOpifmGfAY5a1M_9d3INgIAbPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circular+RNA+expression+profile+of+Alzheimer%E2%80%99s+disease+and+its+clinical+significance+as+biomarkers+for+the+disease+risk+and+progression&rft.jtitle=The+international+journal+of+biochemistry+%26+cell+biology&rft.au=Li%2C+Yuanlong&rft.au=Fan%2C+Hua&rft.au=Sun%2C+Jun&rft.au=Ni%2C+Ming&rft.date=2020-06-01&rft.pub=Elsevier+Ltd&rft.issn=1357-2725&rft.eissn=1878-5875&rft.volume=123&rft_id=info:doi/10.1016%2Fj.biocel.2020.105747&rft.externalDocID=S1357272520300649 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1357-2725&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1357-2725&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1357-2725&client=summon |