PAXgene fixation enables comprehensive metabolomic and proteomic analyses of tissue specimens by MALDI MSI
An alcohol-based non-crosslinking tissue fixative, PAXgene Tissue System, has been proposed as alternative fixation method to formalin, providing superior and morphological preservation. To date, metabolites have not been assessed in PAXgene-fixed tissues. The study focuses on a comparison between P...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1862; no. 1; pp. 51 - 60 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 |
DOI | 10.1016/j.bbagen.2017.10.005 |
Cover
Abstract | An alcohol-based non-crosslinking tissue fixative, PAXgene Tissue System, has been proposed as alternative fixation method to formalin, providing superior and morphological preservation. To date, metabolites have not been assessed in PAXgene-fixed tissues. The study focuses on a comparison between PAXgene and standard formalin fixation for metabolomic analysis by MALDI mass spectrometry imaging. Therefore, fifty-six samples from seven mice organs were fixed with PAXgene (PFPE) or formalin (FFPE), embedded in paraffin, and processed to a tissue microarray. PAXgene was able to spatially preserve metabolites in organs achieving an overlap of common metabolites ranging from 34 to 78% with FFPE. Highly similar signal intensities and visualization of molecules demonstrated negligible differences for metabolite imaging on PFPE compared to FFPE tissues. In addition, we performed proteomic analysis of intact proteins and peptides derived from enzymatic digestion. An overlap of 33 to 58% was found between FFPE and PFPE tissue samples in peptide analysis with a higher number of PFPE-specific peaks. Analysis of intact proteins achieved an overlap in the range of 0 to 28% owing to the poor detectability of cross-linked proteins in formalin-fixed tissues. Furthermore, metabolite and peptide profiles obtained from PFPE tissues were able to correctly classify organs independent of the fixation method, whereas a distinction of organs by protein profiles was only achieved by PAXgene fixation. Finally, we applied MALDI MSI to human biopsies by sequentially analyzing metabolites and peptides within the same tissue section. Concerning prospective studies, PAXgene can be used as an alternative fixative for multi-omic tissue analysis.
[Display omitted]
•a non-crosslinking tissue fixative, PAXgene Tissue System, is proposed for metabolomic and proteomic tissue analyses•a systematic comparison between PAXgene-fixed paraffin-embedded and FFPE tissue samples was performed by MALDI MSI•PAXgene-fixed paraffin-embedded tissues yield similar coverage in metabolite and peptide analyses compared to FFPE tissues•the detection of intact proteins is improved by PAXgene fixation |
---|---|
AbstractList | An alcohol-based non-crosslinking tissue fixative, PAXgene Tissue System, has been proposed as alternative fixation method to formalin, providing superior and morphological preservation. To date, metabolites have not been assessed in PAXgene-fixed tissues. The study focuses on a comparison between PAXgene and standard formalin fixation for metabolomic analysis by MALDI mass spectrometry imaging. Therefore, fifty-six samples from seven mice organs were fixed with PAXgene (PFPE) or formalin (FFPE), embedded in paraffin, and processed to a tissue microarray. PAXgene was able to spatially preserve metabolites in organs achieving an overlap of common metabolites ranging from 34 to 78% with FFPE. Highly similar signal intensities and visualization of molecules demonstrated negligible differences for metabolite imaging on PFPE compared to FFPE tissues. In addition, we performed proteomic analysis of intact proteins and peptides derived from enzymatic digestion. An overlap of 33 to 58% was found between FFPE and PFPE tissue samples in peptide analysis with a higher number of PFPE-specific peaks. Analysis of intact proteins achieved an overlap in the range of 0 to 28% owing to the poor detectability of cross-linked proteins in formalin-fixed tissues. Furthermore, metabolite and peptide profiles obtained from PFPE tissues were able to correctly classify organs independent of the fixation method, whereas a distinction of organs by protein profiles was only achieved by PAXgene fixation. Finally, we applied MALDI MSI to human biopsies by sequentially analyzing metabolites and peptides within the same tissue section. Concerning prospective studies, PAXgene can be used as an alternative fixative for multi-omic tissue analysis.An alcohol-based non-crosslinking tissue fixative, PAXgene Tissue System, has been proposed as alternative fixation method to formalin, providing superior and morphological preservation. To date, metabolites have not been assessed in PAXgene-fixed tissues. The study focuses on a comparison between PAXgene and standard formalin fixation for metabolomic analysis by MALDI mass spectrometry imaging. Therefore, fifty-six samples from seven mice organs were fixed with PAXgene (PFPE) or formalin (FFPE), embedded in paraffin, and processed to a tissue microarray. PAXgene was able to spatially preserve metabolites in organs achieving an overlap of common metabolites ranging from 34 to 78% with FFPE. Highly similar signal intensities and visualization of molecules demonstrated negligible differences for metabolite imaging on PFPE compared to FFPE tissues. In addition, we performed proteomic analysis of intact proteins and peptides derived from enzymatic digestion. An overlap of 33 to 58% was found between FFPE and PFPE tissue samples in peptide analysis with a higher number of PFPE-specific peaks. Analysis of intact proteins achieved an overlap in the range of 0 to 28% owing to the poor detectability of cross-linked proteins in formalin-fixed tissues. Furthermore, metabolite and peptide profiles obtained from PFPE tissues were able to correctly classify organs independent of the fixation method, whereas a distinction of organs by protein profiles was only achieved by PAXgene fixation. Finally, we applied MALDI MSI to human biopsies by sequentially analyzing metabolites and peptides within the same tissue section. Concerning prospective studies, PAXgene can be used as an alternative fixative for multi-omic tissue analysis. An alcohol-based non-crosslinking tissue fixative, PAXgene Tissue System, has been proposed as alternative fixation method to formalin, providing superior and morphological preservation. To date, metabolites have not been assessed in PAXgene-fixed tissues. The study focuses on a comparison between PAXgene and standard formalin fixation for metabolomic analysis by MALDI mass spectrometry imaging. Therefore, fifty-six samples from seven mice organs were fixed with PAXgene (PFPE) or formalin (FFPE), embedded in paraffin, and processed to a tissue microarray. PAXgene was able to spatially preserve metabolites in organs achieving an overlap of common metabolites ranging from 34 to 78% with FFPE. Highly similar signal intensities and visualization of molecules demonstrated negligible differences for metabolite imaging on PFPE compared to FFPE tissues. In addition, we performed proteomic analysis of intact proteins and peptides derived from enzymatic digestion. An overlap of 33 to 58% was found between FFPE and PFPE tissue samples in peptide analysis with a higher number of PFPE-specific peaks. Analysis of intact proteins achieved an overlap in the range of 0 to 28% owing to the poor detectability of cross-linked proteins in formalin-fixed tissues. Furthermore, metabolite and peptide profiles obtained from PFPE tissues were able to correctly classify organs independent of the fixation method, whereas a distinction of organs by protein profiles was only achieved by PAXgene fixation. Finally, we applied MALDI MSI to human biopsies by sequentially analyzing metabolites and peptides within the same tissue section. Concerning prospective studies, PAXgene can be used as an alternative fixative for multi-omic tissue analysis. An alcohol-based non-crosslinking tissue fixative, PAXgene Tissue System, has been proposed as alternative fixation method to formalin, providing superior and morphological preservation. To date, metabolites have not been assessed in PAXgene-fixed tissues. The study focuses on a comparison between PAXgene and standard formalin fixation for metabolomic analysis by MALDI mass spectrometry imaging. Therefore, fifty-six samples from seven mice organs were fixed with PAXgene (PFPE) or formalin (FFPE), embedded in paraffin, and processed to a tissue microarray. PAXgene was able to spatially preserve metabolites in organs achieving an overlap of common metabolites ranging from 34 to 78% with FFPE. Highly similar signal intensities and visualization of molecules demonstrated negligible differences for metabolite imaging on PFPE compared to FFPE tissues. In addition, we performed proteomic analysis of intact proteins and peptides derived from enzymatic digestion. An overlap of 33 to 58% was found between FFPE and PFPE tissue samples in peptide analysis with a higher number of PFPE-specific peaks. Analysis of intact proteins achieved an overlap in the range of 0 to 28% owing to the poor detectability of cross-linked proteins in formalin-fixed tissues. Furthermore, metabolite and peptide profiles obtained from PFPE tissues were able to correctly classify organs independent of the fixation method, whereas a distinction of organs by protein profiles was only achieved by PAXgene fixation. Finally, we applied MALDI MSI to human biopsies by sequentially analyzing metabolites and peptides within the same tissue section. Concerning prospective studies, PAXgene can be used as an alternative fixative for multi-omic tissue analysis. [Display omitted] •a non-crosslinking tissue fixative, PAXgene Tissue System, is proposed for metabolomic and proteomic tissue analyses•a systematic comparison between PAXgene-fixed paraffin-embedded and FFPE tissue samples was performed by MALDI MSI•PAXgene-fixed paraffin-embedded tissues yield similar coverage in metabolite and peptide analyses compared to FFPE tissues•the detection of intact proteins is improved by PAXgene fixation |
Author | Urban, Christian Buck, Achim Lordick, Florian Aichler, Michaela Walch, Axel Luber, Birgit Siveke, Jens T. |
Author_xml | – sequence: 1 givenname: Christian surname: Urban fullname: Urban, Christian email: christian.urban@helmholtz-muenchen.de organization: Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 2 givenname: Achim surname: Buck fullname: Buck, Achim email: achim.buck@helmholtz-muenchen.de organization: Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 3 givenname: Jens T. surname: Siveke fullname: Siveke, Jens T. email: j.siveke@dkfz-heidelberg.de organization: German Cancer Consortium (DKTK) and German Cancer Research Center, DKFZ, Heidelberg, Germany – sequence: 4 givenname: Florian surname: Lordick fullname: Lordick, Florian email: florian.lordick@medizin.uni-leipzig.de organization: University Cancer Center Leipzig (UCCL), University Medicine Leipzig, Leipzig, Germany – sequence: 5 givenname: Birgit surname: Luber fullname: Luber, Birgit email: birgit.luber@tum.de organization: Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Klinikum rechts der Isar, München, Germany – sequence: 6 givenname: Axel surname: Walch fullname: Walch, Axel email: axel.walch@helmholtz-muenchen.de organization: Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 7 givenname: Michaela surname: Aichler fullname: Aichler, Michaela email: michaela.aichler@helmholtz-muenchen.de organization: Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29024724$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUuP0zAUhS00iOkM_AOEvGSTcp3YTsICqRpelToCCZDYWX7cgKvELnY6ov8el3Y2LJi7se7V-Y6sc67IRYgBCXnOYMmAyVfbpTH6B4ZlDawtpyWAeEQWrGvrqgOQF2QBDfCKMykuyVXOWygjevGEXNY91Lyt-YJsP6--FxOkg_-tZx8DxaDNiJnaOO0S_sSQ_R3SCWdt4hgnb6kOju5SnPG86fGQCxAHOvuc90jzDq2fCknNgd6uNm_X9PbL-il5POgx47Pze02-vX_39eZjtfn0YX2z2lS26cVcaed63mjetq3rQFvJe9M1wFCbTrSddOBqw5GzXhsJDhrDZGehBS3kMDjbXJOXJ9_yx197zLOafLY4jjpg3GdVAxddzfpOPihlvWTQCCZ4kb44S_dmQqd2yU86HdR9lEXw-iSwKeaccFDWz38jnZP2o2Kgjr2prTr1po69Ha-llALzf-B7_wewNycMS553HpPK1mOw6HxCOysX_f8N_gDTurNB |
CitedBy_id | crossref_primary_10_1371_journal_pone_0203608 crossref_primary_10_1016_j_nbt_2019_05_003 crossref_primary_10_1016_j_talanta_2020_121238 crossref_primary_10_1021_acs_jproteome_3c00167 crossref_primary_10_1007_s00216_018_1199_z crossref_primary_10_1038_s41551_020_00681_x crossref_primary_10_1016_j_nantod_2021_101365 crossref_primary_10_1007_s12038_024_00442_x crossref_primary_10_1021_jasms_0c00195 crossref_primary_10_1111_jnc_14559 crossref_primary_10_1038_s41598_020_71465_1 crossref_primary_10_1093_ajcp_aqy026 crossref_primary_10_1002_pmic_202300001 crossref_primary_10_1515_cclm_2019_0858 |
Cites_doi | 10.1074/jbc.M310752200 10.1097/PDM.0b013e3181b520f8 10.1016/j.jmoldx.2012.05.002 10.1093/ajcp/aqw023 10.1021/pr060549i 10.1186/s12859-015-0752-4 10.1002/prca.201000152 10.1021/bc050340f 10.1371/journal.pone.0060638 10.1007/s00428-014-1624-4 10.1016/j.yexmp.2012.07.002 10.1136/jclinpath-2012-200983 10.2353/jmoldx.2006.050105 10.1002/path.4560 10.1078/0344-0338-00166 10.1039/c0an00269k 10.1021/ac100818g 10.1158/1541-7786.MCR-16-0262 10.1371/journal.pone.0027704 10.1016/j.ab.2014.09.012 10.1021/pr800286z 10.1136/jcp.2010.079905 10.1371/journal.pone.0136902 10.1002/pmic.201400454 10.1021/pr100664e 10.1038/nprot.2016.081 10.1016/j.jprot.2013.03.013 10.1097/00019606-200606000-00009 10.1002/pmic.201500424 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2017.10.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 60 |
ExternalDocumentID | 29024724 10_1016_j_bbagen_2017_10_005 S0304416517303264 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 ACLOT EFKBS ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-add943a4777d80ac649b8301eab85786d0d2b4e419ab60d03b168c070a56ffdc3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 |
IngestDate | Mon Sep 22 02:41:02 EDT 2025 Sat Sep 27 19:07:43 EDT 2025 Wed Feb 19 02:42:11 EST 2025 Tue Jul 01 00:22:09 EDT 2025 Thu Apr 24 22:57:25 EDT 2025 Fri Feb 23 02:34:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Formalin-fixed and paraffin-embedded Metabolomics PAXgene-fixed and paraffin-embedded Proteomics MALDI mass spectrometry imaging |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-add943a4777d80ac649b8301eab85786d0d2b4e419ab60d03b168c070a56ffdc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29024724 |
PQID | 1961035154 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2045821986 proquest_miscellaneous_1961035154 pubmed_primary_29024724 crossref_citationtrail_10_1016_j_bbagen_2017_10_005 crossref_primary_10_1016_j_bbagen_2017_10_005 elsevier_sciencedirect_doi_10_1016_j_bbagen_2017_10_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ergin, Meding, Langer, Kap, Viertler, Schott, Ferch, Riegman, Zatloukal, Walch, Becker (bb0035) 2010; 9 Oetjen, Aichler, Trede, Strehlow, Berger, Heldmann, Becker, Gottschalk, Kobarg, Wirtz, Schiffler, Thiele, Walch, Maass, Alexandrov (bb0075) 2013; 90 Renshaw (bb0005) 2007 Mathieson, Marcon, Antunes, Ashford, Betsou, Frasquilho, Kofanova, McKay, Pericleous, Smith, Unger, Zeller, Thomas (bb0050) 2016; 146 Stanta, Mucelli, Petrera, Bonin, Bussolati (bb0025) 2006; 15 Gundisch, Schott, Wolff, Tran, Beese, Viertler, Zatloukal, Becker (bb0040) 2013; 8 López-Fernández, Santos, Capelo, Fdez-Riverola, Glez-Peña, Reboiro-Jato (bb0110) 2015; 16 Wojakowska, Marczak, Jelonek, Polanski, Widlak, Pietrowska (bb0125) 2015; 10 Ly, Buck, Balluff, Sun, Gorzolka, Feuchtinger, Janssen, Kuppen, van de Velde, Weirich, Erlmeier, Langer, Aubele, Zitzelsberger, McDonnell, Aichler, Walch (bb0085) 2016; 11 Groelz, Sobin, Branton, Compton, Wyrich, Rainen (bb0070) 2013; 94 Kap, Smedts, Oosterhuis, Winther, Christensen, Reischauer, Viertler, Groelz, Becker, Zatloukal, Langer, Slotta-Huspenina, Bodo, de Jong, Oelmuller, Riegman (bb0045) 2011; 6 Andersen, Hager, Hansen, Tost (bb0065) 2015; 468 Strohalm, Kavan, Novák, Volný, Havlíček (bb0105) 2010; 82 Green-Mitchell, Cazares, Semmes, Nadler, Nyalwidhe (bb0145) 2011; 5 Dotti, Bonin, Basili, Nardon, Balani, Siracusano, Zanconati, Palmisano, De Manzini, Stanta (bb0010) 2010; 19 Viertler, Groelz, Gündisch, Kashofer, Reischauer, Riegman, Winther, Wyrich, Becker, Oelmüller, Zatloukal (bb0030) 2012; 14 Metz, Kersten, Baart, de Jong, Meiring, ten Hove, van Steenbergen, Hennink, Crommelin, Jiskoot (bb0090) 2006; 17 Olert, Wiedorn, Goldmann, Kuhl, Mehraein, Scherthan, Niketeghad, Vollmer, Muller, Muller-Navia (bb0020) 2001; 197 Zhang, Muller, Xu, Yoshida, Horlacher, Nikitin, Garessus, Magdeldin, Kinoshita, Fujinaka, Yaoita, Hasegawa, Lisacek, Yamamoto (bb0150) 2015; 15 Xia, Wishart (bb0115) 2002 Belloni, Lambertini, Nuciforo, Phillips, Bruening, Wong, Dummer (bb0055) 2013; 66 Djidja, Claude, Scriven, Allen, Carolan, Clench (bb0165) 2016 Chaurand, Latham, Lane, Mobley, Polosukhin, Wirth, Nanney, Caprioli (bb0140) 2008; 7 Gundisch, Slotta-Huspenina, Verderio, Ciniselli, Pizzamiglio, Schott, Drecoll, Viertler, Zatloukal, Kap, Riegman, Esposito, Specht, Babaryka, Asslaber, Bodo, den Bakker, den Hollander, Fend, Neumann, Reu, Perren, Langer, Lugli, Becker, Richter, Kayser, May, Carneiro, Lopes, Sobin, Hofler, Becker (bb0060) 2014; 465 Lemaire, Desmons, Tabet, Day, Salzet, Fournier (bb0160) 2007; 6 Delfour, Roger, Bret, Berthe, Rochaix, Kalfa, Raynaud, Bibeau, Maudelonde, Boulle (bb0015) 2006; 8 Hackett, McQuillan, El-Assaad, Aitken, Levina, Cohen, Siegele, Carter, Grau, Hunt, Lay (bb0135) 2011; 136 Metz, Kersten, Hoogerhout, Brugghe, Timmermans, de Jong, Meiring, ten Hove, Hennink, Crommelin, Jiskoot (bb0095) 2004; 279 Kelly, Breitkopf, Yuan, Goldsmith, Spentzos, Asara (bb0120) 2011; 6 Pietrowska, Gawin, Polańska, Widłak (bb0155) 2016; 16 van Essen, Verdaasdonk, Elshof, de Weger, van Diest (bb0100) 2010; 63 Cacciatore, Zadra, Bango, Penney, Tyekucheva, Yanes, Loda (bb0130) 2017; 15 Buck, Ly, Balluff, Sun, Gorzolka, Feuchtinger, Janssen, Kuppen, van de Velde, Weirich, Erlmeier, Langer, Aubele, Zitzelsberger, Aichler, Walch (bb0080) 2015; 237 van Essen (10.1016/j.bbagen.2017.10.005_bb0100) 2010; 63 Viertler (10.1016/j.bbagen.2017.10.005_bb0030) 2012; 14 Kap (10.1016/j.bbagen.2017.10.005_bb0045) 2011; 6 López-Fernández (10.1016/j.bbagen.2017.10.005_bb0110) 2015; 16 Ergin (10.1016/j.bbagen.2017.10.005_bb0035) 2010; 9 Stanta (10.1016/j.bbagen.2017.10.005_bb0025) 2006; 15 Mathieson (10.1016/j.bbagen.2017.10.005_bb0050) 2016; 146 Pietrowska (10.1016/j.bbagen.2017.10.005_bb0155) 2016; 16 Renshaw (10.1016/j.bbagen.2017.10.005_bb0005) 2007 Xia (10.1016/j.bbagen.2017.10.005_bb0115) 2002 Gundisch (10.1016/j.bbagen.2017.10.005_bb0040) 2013; 8 Cacciatore (10.1016/j.bbagen.2017.10.005_bb0130) 2017; 15 Olert (10.1016/j.bbagen.2017.10.005_bb0020) 2001; 197 Green-Mitchell (10.1016/j.bbagen.2017.10.005_bb0145) 2011; 5 Metz (10.1016/j.bbagen.2017.10.005_bb0090) 2006; 17 Buck (10.1016/j.bbagen.2017.10.005_bb0080) 2015; 237 Kelly (10.1016/j.bbagen.2017.10.005_bb0120) 2011; 6 Lemaire (10.1016/j.bbagen.2017.10.005_bb0160) 2007; 6 Andersen (10.1016/j.bbagen.2017.10.005_bb0065) 2015; 468 Oetjen (10.1016/j.bbagen.2017.10.005_bb0075) 2013; 90 Wojakowska (10.1016/j.bbagen.2017.10.005_bb0125) 2015; 10 Zhang (10.1016/j.bbagen.2017.10.005_bb0150) 2015; 15 Gundisch (10.1016/j.bbagen.2017.10.005_bb0060) 2014; 465 Strohalm (10.1016/j.bbagen.2017.10.005_bb0105) 2010; 82 Hackett (10.1016/j.bbagen.2017.10.005_bb0135) 2011; 136 Belloni (10.1016/j.bbagen.2017.10.005_bb0055) 2013; 66 Groelz (10.1016/j.bbagen.2017.10.005_bb0070) 2013; 94 Chaurand (10.1016/j.bbagen.2017.10.005_bb0140) 2008; 7 Delfour (10.1016/j.bbagen.2017.10.005_bb0015) 2006; 8 Metz (10.1016/j.bbagen.2017.10.005_bb0095) 2004; 279 Ly (10.1016/j.bbagen.2017.10.005_bb0085) 2016; 11 Djidja (10.1016/j.bbagen.2017.10.005_bb0165) 2016 Dotti (10.1016/j.bbagen.2017.10.005_bb0010) 2010; 19 |
References_xml | – volume: 11 start-page: 1428 year: 2016 end-page: 1443 ident: bb0085 publication-title: Nat. Protoc. – volume: 6 year: 2011 ident: bb0120 publication-title: PLoS One – year: 2002 ident: bb0115 article-title: Current Protocols in Bioinformatics – volume: 63 start-page: 1090 year: 2010 end-page: 1094 ident: bb0100 publication-title: J. Clin. Pathol. – volume: 14 start-page: 458 year: 2012 end-page: 466 ident: bb0030 publication-title: J. Mol. Diagn. – volume: 16 start-page: 318 year: 2015 ident: bb0110 publication-title: BMC Bioinforma. – volume: 15 start-page: 439 year: 2017 end-page: 447 ident: bb0130 publication-title: Mol. Cancer Res. – volume: 136 start-page: 2941 year: 2011 end-page: 2952 ident: bb0135 publication-title: Analyst – volume: 6 start-page: 1295 year: 2007 end-page: 1305 ident: bb0160 publication-title: J. Proteome Res. – volume: 94 start-page: 188 year: 2013 end-page: 194 ident: bb0070 publication-title: Exp. Mol. Pathol. – volume: 16 start-page: 1670 year: 2016 end-page: 1677 ident: bb0155 publication-title: Proteomics – volume: 465 start-page: 509 year: 2014 end-page: 519 ident: bb0060 publication-title: Virchows Arch. – volume: 237 start-page: 123 year: 2015 end-page: 132 ident: bb0080 publication-title: J. Pathol. – volume: 17 start-page: 815 year: 2006 end-page: 822 ident: bb0090 publication-title: Bioconjug. Chem. – volume: 66 start-page: 124 year: 2013 end-page: 135 ident: bb0055 publication-title: J. Clin. Pathol. – volume: 5 start-page: 448 year: 2011 end-page: 453 ident: bb0145 publication-title: Proteomics Clin. Appl. – volume: 9 start-page: 5188 year: 2010 end-page: 5196 ident: bb0035 publication-title: J. Proteome Res. – volume: 90 start-page: 52 year: 2013 end-page: 60 ident: bb0075 publication-title: J. Proteome – volume: 197 start-page: 823 year: 2001 end-page: 826 ident: bb0020 publication-title: Pathol. Res. Pract. – volume: 6 year: 2011 ident: bb0045 publication-title: PLoS One – volume: 7 start-page: 3543 year: 2008 end-page: 3555 ident: bb0140 publication-title: J. Proteome Res. – volume: 468 start-page: 50 year: 2015 end-page: 58 ident: bb0065 publication-title: Anal. Biochem. – volume: 15 start-page: 115 year: 2006 end-page: 123 ident: bb0025 publication-title: Diagn. Mol. Pathol. – volume: 82 start-page: 4648 year: 2010 end-page: 4651 ident: bb0105 publication-title: Anal. Chem. – volume: 8 start-page: 157 year: 2006 end-page: 169 ident: bb0015 publication-title: J. Mol. Diagn. – volume: 15 start-page: 2568 year: 2015 end-page: 2579 ident: bb0150 publication-title: Proteomics – volume: 19 start-page: 112 year: 2010 end-page: 122 ident: bb0010 publication-title: Diagn. Mol. Pathol. – volume: 146 start-page: 25 year: 2016 end-page: 40 ident: bb0050 publication-title: Am. J. Clin. Pathol. – volume: 10 year: 2015 ident: bb0125 publication-title: PLoS One – year: 2016 ident: bb0165 publication-title: Biochim. Biophys. Acta – volume: 279 start-page: 6235 year: 2004 end-page: 6243 ident: bb0095 publication-title: J. Biol. Chem. – year: 2007 ident: bb0005 article-title: Immunochemical Staining Techniques – volume: 8 year: 2013 ident: bb0040 publication-title: PLoS One – volume: 279 start-page: 6235 year: 2004 ident: 10.1016/j.bbagen.2017.10.005_bb0095 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M310752200 – volume: 19 start-page: 112 year: 2010 ident: 10.1016/j.bbagen.2017.10.005_bb0010 publication-title: Diagn. Mol. Pathol. doi: 10.1097/PDM.0b013e3181b520f8 – volume: 14 start-page: 458 year: 2012 ident: 10.1016/j.bbagen.2017.10.005_bb0030 publication-title: J. Mol. Diagn. doi: 10.1016/j.jmoldx.2012.05.002 – year: 2002 ident: 10.1016/j.bbagen.2017.10.005_bb0115 – volume: 146 start-page: 25 year: 2016 ident: 10.1016/j.bbagen.2017.10.005_bb0050 publication-title: Am. J. Clin. Pathol. doi: 10.1093/ajcp/aqw023 – volume: 6 start-page: 1295 year: 2007 ident: 10.1016/j.bbagen.2017.10.005_bb0160 publication-title: J. Proteome Res. doi: 10.1021/pr060549i – year: 2007 ident: 10.1016/j.bbagen.2017.10.005_bb0005 – volume: 16 start-page: 318 year: 2015 ident: 10.1016/j.bbagen.2017.10.005_bb0110 publication-title: BMC Bioinforma. doi: 10.1186/s12859-015-0752-4 – volume: 5 start-page: 448 year: 2011 ident: 10.1016/j.bbagen.2017.10.005_bb0145 publication-title: Proteomics Clin. Appl. doi: 10.1002/prca.201000152 – volume: 17 start-page: 815 year: 2006 ident: 10.1016/j.bbagen.2017.10.005_bb0090 publication-title: Bioconjug. Chem. doi: 10.1021/bc050340f – volume: 8 year: 2013 ident: 10.1016/j.bbagen.2017.10.005_bb0040 publication-title: PLoS One doi: 10.1371/journal.pone.0060638 – volume: 465 start-page: 509 year: 2014 ident: 10.1016/j.bbagen.2017.10.005_bb0060 publication-title: Virchows Arch. doi: 10.1007/s00428-014-1624-4 – volume: 94 start-page: 188 year: 2013 ident: 10.1016/j.bbagen.2017.10.005_bb0070 publication-title: Exp. Mol. Pathol. doi: 10.1016/j.yexmp.2012.07.002 – volume: 66 start-page: 124 year: 2013 ident: 10.1016/j.bbagen.2017.10.005_bb0055 publication-title: J. Clin. Pathol. doi: 10.1136/jclinpath-2012-200983 – volume: 8 start-page: 157 year: 2006 ident: 10.1016/j.bbagen.2017.10.005_bb0015 publication-title: J. Mol. Diagn. doi: 10.2353/jmoldx.2006.050105 – volume: 237 start-page: 123 year: 2015 ident: 10.1016/j.bbagen.2017.10.005_bb0080 publication-title: J. Pathol. doi: 10.1002/path.4560 – year: 2016 ident: 10.1016/j.bbagen.2017.10.005_bb0165 publication-title: Biochim. Biophys. Acta – volume: 6 year: 2011 ident: 10.1016/j.bbagen.2017.10.005_bb0120 publication-title: PLoS One – volume: 197 start-page: 823 year: 2001 ident: 10.1016/j.bbagen.2017.10.005_bb0020 publication-title: Pathol. Res. Pract. doi: 10.1078/0344-0338-00166 – volume: 136 start-page: 2941 year: 2011 ident: 10.1016/j.bbagen.2017.10.005_bb0135 publication-title: Analyst doi: 10.1039/c0an00269k – volume: 82 start-page: 4648 year: 2010 ident: 10.1016/j.bbagen.2017.10.005_bb0105 publication-title: Anal. Chem. doi: 10.1021/ac100818g – volume: 15 start-page: 439 year: 2017 ident: 10.1016/j.bbagen.2017.10.005_bb0130 publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-16-0262 – volume: 6 year: 2011 ident: 10.1016/j.bbagen.2017.10.005_bb0045 publication-title: PLoS One doi: 10.1371/journal.pone.0027704 – volume: 468 start-page: 50 year: 2015 ident: 10.1016/j.bbagen.2017.10.005_bb0065 publication-title: Anal. Biochem. doi: 10.1016/j.ab.2014.09.012 – volume: 7 start-page: 3543 year: 2008 ident: 10.1016/j.bbagen.2017.10.005_bb0140 publication-title: J. Proteome Res. doi: 10.1021/pr800286z – volume: 63 start-page: 1090 year: 2010 ident: 10.1016/j.bbagen.2017.10.005_bb0100 publication-title: J. Clin. Pathol. doi: 10.1136/jcp.2010.079905 – volume: 10 year: 2015 ident: 10.1016/j.bbagen.2017.10.005_bb0125 publication-title: PLoS One doi: 10.1371/journal.pone.0136902 – volume: 15 start-page: 2568 year: 2015 ident: 10.1016/j.bbagen.2017.10.005_bb0150 publication-title: Proteomics doi: 10.1002/pmic.201400454 – volume: 9 start-page: 5188 year: 2010 ident: 10.1016/j.bbagen.2017.10.005_bb0035 publication-title: J. Proteome Res. doi: 10.1021/pr100664e – volume: 11 start-page: 1428 year: 2016 ident: 10.1016/j.bbagen.2017.10.005_bb0085 publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.081 – volume: 90 start-page: 52 year: 2013 ident: 10.1016/j.bbagen.2017.10.005_bb0075 publication-title: J. Proteome doi: 10.1016/j.jprot.2013.03.013 – volume: 15 start-page: 115 year: 2006 ident: 10.1016/j.bbagen.2017.10.005_bb0025 publication-title: Diagn. Mol. Pathol. doi: 10.1097/00019606-200606000-00009 – volume: 16 start-page: 1670 year: 2016 ident: 10.1016/j.bbagen.2017.10.005_bb0155 publication-title: Proteomics doi: 10.1002/pmic.201500424 |
SSID | ssj0000595 |
Score | 2.3265173 |
Snippet | An alcohol-based non-crosslinking tissue fixative, PAXgene Tissue System, has been proposed as alternative fixation method to formalin, providing superior and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 51 |
SubjectTerms | Animals biopsy Fixatives - chemistry formalin Formalin-fixed and paraffin-embedded Humans image analysis MALDI mass spectrometry imaging matrix-assisted laser desorption-ionization mass spectrometry metabolites Metabolomics Metabolomics - methods Mice microarray technology PAXgene-fixed and paraffin-embedded peptides Peptides - analysis prospective studies protein composition proteins Proteomics Proteomics - methods Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods tissue analysis Tissue Fixation - methods tissues |
Title | PAXgene fixation enables comprehensive metabolomic and proteomic analyses of tissue specimens by MALDI MSI |
URI | https://dx.doi.org/10.1016/j.bbagen.2017.10.005 https://www.ncbi.nlm.nih.gov/pubmed/29024724 https://www.proquest.com/docview/1961035154 https://www.proquest.com/docview/2045821986 |
Volume | 1862 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9Ky9hextZ9ZeuKBntVE8eyJD-GtCXZ1jLoCnkz-jJLaZ3SuLC-9G_vnWR37CEU9mghYaHf6e7su_sdwNfaaVEbHbi0ynCBBohbtAS8lMGNrcvwwyWyfZ7K2bn4tigWWzDta2EorbLT_UmnR23djQy70xxeL5fDMwrqoTtRZCik6IQQJ6gQimT94P5vmge6D0WKJAhOs_vyuZjjZS1eWmJBzdRBzPEqNpmnTe5nNEPHr-Bl5z-ySdria9gKzS48Sx0l73bh-bRv4PYGLn5OFvjewOrln3j-LMRCqTWjPPKb8DvlrrOr0KIkXFJ5MjONZ5G6oXsixhJcsKpZGxFiVJlJDQHWzN6xk8mPwzk7OZu_hfPjo1_TGe9aK3CXl0XLUauVIjdCKeX1yDgpSqvxrgdjNd5h6Ud-bEUQWWmsHPlRbjOpHaoHU8i69i5_B9vNqgkfgPmgXG5KZWuvhRbe-JAb54UtTUFN1weQ9ydauY53nNpfXFZ9gtlFlXCoCAcaRRwGwB9XXSfejSfmqx6s6h_5qdA0PLHyS49thQBRvMQ0YXW7rlA5ZRRoLcTmOcTmr1HrazmA90kwHvc7LtEBUmPx8b_39gle4JNOv3z2YLu9uQ2f0Qlq7X6U8n3Ymcy_z04fAJ7tBl4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD5iTBN7mRi7deziSXs1bRrHdh6rDtRuLZoESH2zfIsoYimiQYIXfjvHdsK0hwppj0lsxfJ3fM6XnBvA98pKVmnpKTdCU4YGiBq0BLTk3g6NzfDDJVb7POaTM_ZzUSy2YNzlwoSwylb3J50etXV7p9_uZv9queyfBKce0okiQyFFEsKewXMWJAqF-uD-b5wH8ociuRIYDcO7_LkY5GUMntpQBjUTBzHIq9hknzbxz2iHjnbhVUsgySit8TVs-XoPXqSWknd7sDPuOri9gYvfowW-15NqeRsBID5mSq1JCCS_9ucpeJ388Q2KwmXITya6diTWbmivQskSnLCqSBMhIiE1M3QEWBNzR-aj2Y8pmZ9M38LZ0eHpeELb3grU5mXRUFRrJcs1E0I4OdCWs9JIPOxeG4mHmLuBGxrmWVZqwwdukJuMS4v6QRe8qpzN38F2var9ByDOC5vrUpjKSSaZ087n2jpmSl2Erus9yLsdVbYtPB76X1yqLsLsQiUcVMAh3EUcekAfZ12lwhtPjBcdWOofAVJoG56Y-a3DViFAwWGia7-6WSvUTlnwtBZs85hQzl-i2pe8B--TYDyud1giAxJD9vG_1_YVdian85maTY9_7cNLfCLT_59PsN1c3_jPyIga8yVK_AOPeQfv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PAXgene+fixation+enables+comprehensive+metabolomic+and+proteomic+analyses+of+tissue+specimens+by+MALDI+MSI&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Urban%2C+Christian&rft.au=Buck%2C+Achim&rft.au=Siveke%2C+Jens+T&rft.au=Lordick%2C+Florian&rft.date=2018-01-01&rft.issn=0304-4165&rft_id=info:doi/10.1016%2Fj.bbagen.2017.10.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |