Bayesian Optimization of Booster Disinfection Scheduling in Water Distribution Networks

•Bayesian optimization is applied for water quality control in distribution networks.•Coupling BO with EPANET to optimize the scheduling of multiple chlorine boosters.•Systematic testing of acquisition functions, covariance kernels, and BO parameters.•Results revealed substantial variability in the...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 242; p. 120117
Main Authors Moeini, Mohammadreza, Sela, Lina, Taha, Ahmad F., Abokifa, Ahmed A.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.08.2023
Subjects
Online AccessGet full text
ISSN0043-1354
1879-2448
1879-2448
DOI10.1016/j.watres.2023.120117

Cover

Abstract •Bayesian optimization is applied for water quality control in distribution networks.•Coupling BO with EPANET to optimize the scheduling of multiple chlorine boosters.•Systematic testing of acquisition functions, covariance kernels, and BO parameters.•Results revealed substantial variability in the performance of different BO methods.•Choice of acquisition function more influential than choice of covariance kernel. Chlorine remains the most widely used disinfectant in drinking water treatment and distribution systems worldwide. To maintain a minimum residual throughout the distribution network, chlorine dosage needs to be regulated by optimizing the locations of chlorine boosters and their scheduling (i.e., chlorine injection rates). Such optimization can be computationally expensive since it requires numerous evaluations of water quality (WQ) simulation models. In recent years, Bayesian optimization (BO) has garnered considerable attention due to its efficiency in optimizing black-box functions in a wide range of applications. This study presents the first attempt to implement BO for the optimization of WQ in water distribution networks. The developed python-based framework couples BO with EPANET-MSX to optimize the scheduling of chlorine sources, while ensuring the delivery of water that satisfies water quality standards. Using Gaussian process regression to build the BO surrogate model, a comprehensive analysis was conducted to evaluate the performance of different BO methods. To that end, systematic testing of different acquisition functions, including the probability of improvement, expected improvement, upper confidence bound, and entropy search, in conjunction with different covariance kernels, including Matérn, squared-exponential, gamma-exponential, and rational quadratic, was conducted. Additionally, a thorough sensitivity analysis was performed to understand the influence of different BO parameters, including the number of initial points, covariance kernel length scale, and the level of exploration vs exploitation. The results revealed substantial variability in the performance of different BO methods and showed that the choice of the acquisition function has a more profound influence on the performance of BO than the covariance kernel.
AbstractList Chlorine remains the most widely used disinfectant in drinking water treatment and distribution systems worldwide. To maintain a minimum residual throughout the distribution network, chlorine dosage needs to be regulated by optimizing the locations of chlorine boosters and their scheduling (i.e., chlorine injection rates). Such optimization can be computationally expensive since it requires numerous evaluations of water quality (WQ) simulation models. In recent years, Bayesian optimization (BO) has garnered considerable attention due to its efficiency in optimizing black-box functions in a wide range of applications. This study presents the first attempt to implement BO for the optimization of WQ in water distribution networks. The developed python-based framework couples BO with EPANET-MSX to optimize the scheduling of chlorine sources, while ensuring the delivery of water that satisfies water quality standards. Using Gaussian process regression to build the BO surrogate model, a comprehensive analysis was conducted to evaluate the performance of different BO methods. To that end, systematic testing of different acquisition functions, including the probability of improvement, expected improvement, upper confidence bound, and entropy search, in conjunction with different covariance kernels, including Matérn, squared-exponential, gamma-exponential, and rational quadratic, was conducted. Additionally, a thorough sensitivity analysis was performed to understand the influence of different BO parameters, including the number of initial points, covariance kernel length scale, and the level of exploration vs exploitation. The results revealed substantial variability in the performance of different BO methods and showed that the choice of the acquisition function has a more profound influence on the performance of BO than the covariance kernel.Chlorine remains the most widely used disinfectant in drinking water treatment and distribution systems worldwide. To maintain a minimum residual throughout the distribution network, chlorine dosage needs to be regulated by optimizing the locations of chlorine boosters and their scheduling (i.e., chlorine injection rates). Such optimization can be computationally expensive since it requires numerous evaluations of water quality (WQ) simulation models. In recent years, Bayesian optimization (BO) has garnered considerable attention due to its efficiency in optimizing black-box functions in a wide range of applications. This study presents the first attempt to implement BO for the optimization of WQ in water distribution networks. The developed python-based framework couples BO with EPANET-MSX to optimize the scheduling of chlorine sources, while ensuring the delivery of water that satisfies water quality standards. Using Gaussian process regression to build the BO surrogate model, a comprehensive analysis was conducted to evaluate the performance of different BO methods. To that end, systematic testing of different acquisition functions, including the probability of improvement, expected improvement, upper confidence bound, and entropy search, in conjunction with different covariance kernels, including Matérn, squared-exponential, gamma-exponential, and rational quadratic, was conducted. Additionally, a thorough sensitivity analysis was performed to understand the influence of different BO parameters, including the number of initial points, covariance kernel length scale, and the level of exploration vs exploitation. The results revealed substantial variability in the performance of different BO methods and showed that the choice of the acquisition function has a more profound influence on the performance of BO than the covariance kernel.
Chlorine remains the most widely used disinfectant in drinking water treatment and distribution systems worldwide. To maintain a minimum residual throughout the distribution network, chlorine dosage needs to be regulated by optimizing the locations of chlorine boosters and their scheduling (i.e., chlorine injection rates). Such optimization can be computationally expensive since it requires numerous evaluations of water quality (WQ) simulation models. In recent years, Bayesian optimization (BO) has garnered considerable attention due to its efficiency in optimizing black-box functions in a wide range of applications. This study presents the first attempt to implement BO for the optimization of WQ in water distribution networks. The developed python-based framework couples BO with EPANET-MSX to optimize the scheduling of chlorine sources, while ensuring the delivery of water that satisfies water quality standards. Using Gaussian process regression to build the BO surrogate model, a comprehensive analysis was conducted to evaluate the performance of different BO methods. To that end, systematic testing of different acquisition functions, including the probability of improvement, expected improvement, upper confidence bound, and entropy search, in conjunction with different covariance kernels, including Matérn, squared-exponential, gamma-exponential, and rational quadratic, was conducted. Additionally, a thorough sensitivity analysis was performed to understand the influence of different BO parameters, including the number of initial points, covariance kernel length scale, and the level of exploration vs exploitation. The results revealed substantial variability in the performance of different BO methods and showed that the choice of the acquisition function has a more profound influence on the performance of BO than the covariance kernel.
•Bayesian optimization is applied for water quality control in distribution networks.•Coupling BO with EPANET to optimize the scheduling of multiple chlorine boosters.•Systematic testing of acquisition functions, covariance kernels, and BO parameters.•Results revealed substantial variability in the performance of different BO methods.•Choice of acquisition function more influential than choice of covariance kernel. Chlorine remains the most widely used disinfectant in drinking water treatment and distribution systems worldwide. To maintain a minimum residual throughout the distribution network, chlorine dosage needs to be regulated by optimizing the locations of chlorine boosters and their scheduling (i.e., chlorine injection rates). Such optimization can be computationally expensive since it requires numerous evaluations of water quality (WQ) simulation models. In recent years, Bayesian optimization (BO) has garnered considerable attention due to its efficiency in optimizing black-box functions in a wide range of applications. This study presents the first attempt to implement BO for the optimization of WQ in water distribution networks. The developed python-based framework couples BO with EPANET-MSX to optimize the scheduling of chlorine sources, while ensuring the delivery of water that satisfies water quality standards. Using Gaussian process regression to build the BO surrogate model, a comprehensive analysis was conducted to evaluate the performance of different BO methods. To that end, systematic testing of different acquisition functions, including the probability of improvement, expected improvement, upper confidence bound, and entropy search, in conjunction with different covariance kernels, including Matérn, squared-exponential, gamma-exponential, and rational quadratic, was conducted. Additionally, a thorough sensitivity analysis was performed to understand the influence of different BO parameters, including the number of initial points, covariance kernel length scale, and the level of exploration vs exploitation. The results revealed substantial variability in the performance of different BO methods and showed that the choice of the acquisition function has a more profound influence on the performance of BO than the covariance kernel.
ArticleNumber 120117
Author Abokifa, Ahmed A.
Sela, Lina
Taha, Ahmad F.
Moeini, Mohammadreza
Author_xml – sequence: 1
  givenname: Mohammadreza
  surname: Moeini
  fullname: Moeini, Mohammadreza
  organization: Ph.D. Student; Department of Civil, Materials, and Environmental Engineering; The University of Illinois Chicago; Chicago, IL 60607, USA
– sequence: 2
  givenname: Lina
  orcidid: 0000-0002-5834-8451
  surname: Sela
  fullname: Sela, Lina
  organization: Associate Professor; Department of Civil, Architectural, and Environmental Engineering; The University of Texas at Austin; Austin TX 78712, USA
– sequence: 3
  givenname: Ahmad F.
  surname: Taha
  fullname: Taha, Ahmad F.
  organization: Associate Professor; Department of Civil and Environmental Engineering; Vanderbilt University; Nashville, TN 37235, USA
– sequence: 4
  givenname: Ahmed A.
  orcidid: 0000-0002-2474-6670
  surname: Abokifa
  fullname: Abokifa, Ahmed A.
  email: abokifa@uic.edu
  organization: Assistant Professor; Department of Civil, Materials, and Environmental Engineering; The University of Illinois Chicago; Chicago, IL 60607, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37393806$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtP3DAUhS0EguHxDxDKsptM_cqrC6RCnxIqC1qxtBznGu40Yw-2UwS_njAZNiygK0tX3zmWzrdPtp13QMgxo3NGWflxMb_XKUCcc8rFnHHKWLVFZqyumpxLWW-TGaVS5EwUco_sx7iglHIuml2yJyrRiJqWM3J9ph8gonbZ5SrhEh91Qu8yb7Mz72OCkH3BiM6CWd-vzC10Q4_uJkOXXesNkAK2wxr4Beneh7_xkOxY3Uc42rwH5M-3r7_Pf-QXl99_nn--yI1oipTrpiihAG0qUxaCtZSBZJ2uS9PyxvJathp4WYCsWmqt1OOVV4WkXWtNo1srDsiHqXcV_N0AMaklRgN9rx34ISpeC8nLSkr2P-j4IWdFM6InG3Rol9CpVcClDg_qZbcR-DQBJvgYA1hlMK2nS0FjrxhVz5LUQk2S1LMkNUkaw_JV-KX_ndjpFINxz38IQUWD4Ax0GEY9qvP4dsETy8muWg
CitedBy_id crossref_primary_10_2166_hydro_2024_090
crossref_primary_10_3390_w16020345
crossref_primary_10_1016_j_jconhyd_2024_104307
crossref_primary_10_1080_1573062X_2024_2397783
crossref_primary_10_1061_JOEEDU_EEENG_7433
crossref_primary_10_1007_s40899_024_01064_9
crossref_primary_10_1016_j_watres_2024_121331
crossref_primary_10_1016_j_ejrh_2025_102206
crossref_primary_10_3390_w16010168
crossref_primary_10_3390_w16030486
crossref_primary_10_2166_ws_2024_161
crossref_primary_10_1016_j_watres_2024_122441
crossref_primary_10_1007_s00521_024_10187_1
crossref_primary_10_2166_aqua_2024_365
crossref_primary_10_2166_ws_2024_197
crossref_primary_10_1016_j_scs_2024_105615
Cites_doi 10.1080/23249676.2015.1128367
10.1061/(ASCE)WR.1943-5452.0000060
10.1061/(ASCE)WR.1943-5452.0001125
10.1016/j.watres.2017.03.031
10.1061/(ASCE)WR.1943-5452.0000979
10.1029/2020WR027771
10.1016/0043-1354(94)00202-I
10.1016/j.watres.2014.03.070
10.1016/j.watres.2019.01.020
10.1061/(ASCE)0733-9496(2007)133:4(372)
10.1029/2021WR029856
10.1061/(ASCE)0733-9496(2004)130:5(367)
10.1061/(ASCE)WR.1943-5452.0000585
10.1061/(ASCE)WR.1943-5452.0000056
10.1007/s10898-018-0641-2
10.1142/S0129065704001899
10.1061/(ASCE)WR.1943-5452.0000191
10.1016/0043-1354(93)90108-T
10.1016/j.watres.2016.08.006
10.1021/es072011z
10.1016/j.watres.2011.06.032
10.1061/(ASCE)0733-9496(1996)122:2(137)
10.1080/03052150500478007
10.1016/S0043-1354(99)00073-1
10.1080/10643389.2013.790746
10.1061/(ASCE)0733-9496(2003)129:6(493)
10.1061/(ASCE)WR.1943-5452.0000604
10.1007/s10661-013-3153-z
10.1109/JPROC.2015.2494218
10.1002/j.1551-8833.1999.tb08573.x
10.1016/j.watres.2007.07.025
10.1061/(ASCE)0733-9496(2008)134:6(556)
10.1016/j.envsoft.2017.02.009
10.2166/hydro.2018.113
10.1061/(ASCE)0733-9496(2004)130:1(53)
10.1061/(ASCE)0733-9372(1994)120:4(803)
10.1016/j.watres.2015.11.025
10.1061/(ASCE)0733-9496(1998)124:2(99)
10.1061/(ASCE)0733-9496(2002)128:5(322)
10.1002/j.1551-8833.1999.tb08574.x
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.watres.2023.120117
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
ExternalDocumentID 37393806
10_1016_j_watres_2023_120117
S0043135423005535
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
~HD
BNPGV
NPM
SSH
7X8
7S9
AGCQF
L.6
ID FETCH-LOGICAL-c395t-a956e5eac7c6531b01e41da86cb29f284bae265e47b0ff4ab2927540dbfc9abf3
IEDL.DBID AIKHN
ISSN 0043-1354
1879-2448
IngestDate Fri Sep 05 15:05:26 EDT 2025
Sun Sep 28 05:46:26 EDT 2025
Thu Apr 03 07:06:19 EDT 2025
Thu Apr 24 23:10:20 EDT 2025
Thu Sep 25 00:39:26 EDT 2025
Fri Feb 23 02:37:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Water distribution networks
chlorine residual
booster chlorination systems
Bayesian optimization
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-a956e5eac7c6531b01e41da86cb29f284bae265e47b0ff4ab2927540dbfc9abf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2474-6670
0000-0002-5834-8451
PMID 37393806
PQID 2832842159
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2834267441
proquest_miscellaneous_2832842159
pubmed_primary_37393806
crossref_citationtrail_10_1016_j_watres_2023_120117
crossref_primary_10_1016_j_watres_2023_120117
elsevier_sciencedirect_doi_10_1016_j_watres_2023_120117
PublicationCentury 2000
PublicationDate 2023-08-15
PublicationDateYYYYMMDD 2023-08-15
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sousa, Muranho, Sá Marques, Gomes (bib0046) 2016; 142
Wu, Poloczek, Wilson, Frazier (bib0052) 2017
Maheshwari, Abokifa, Gudi, Biswas (bib0028) 2018; 144
Abokifa, Yang, Lo, Biswas (bib0003) 2016; 89
Archetti, Candelieri (bib0004) 2019
Creaco, Alvisi, Franchini (bib0009) 2016; 142
Liu, Zhang, Knibbe, Feng, Liu, Medema, van der Meer (bib0025) 2017; 116
Maheshwari, Abokifa, Gudi, Biswas (bib0027) 2020; 276
Ostfeld, Salomons, Ormsbee, Uber, Bros, Kalungi, Burd, Zazula-Coetzee, Belrain, Kang, Lansey, Shen, McBean, Yi Wu, Walski, Alvisi, Franchini, Johnson, Ghimire, Barkdoll, Koppel, Vassiljev, Hoon Kim, Chung, Guen Yoo, Diao, Zhou, Li, Liu, Chang, Gao, Qu, Yuan, Devi Prasad, Laucelli, Vamvakeridou Lyroudia, Kapelan, Savic, Berardi, Barbaro, Giustolisi, Asadzadeh, Tolson, McKillop, Wu, Walski, Alvisi, Franchini, Johnson, Ghimire, Barkdoll, Koppel, Vassiljev, Kim, Chung, Yoo, Diao, Zhou, Li, Liu, Chang, Gao, Qu, Yuan, Prasad, Laucelli, Lyroudia Vamvakeridou, Kapelan, Savic, Berardi, Barbaro, Giustolisi, Asadzadeh, Tolson, McKillop (bib0035) 2012; 138
Gelbart, Snoek, Adams (bib0014) 2014
Lansey, Pasha, Pool, Elshorbagy, Uber (bib0022) 2007; 133
Snoek, Larochelle, Ryan (bib54) 2012; 25
Ohar, Ostfeld (bib0033) 2014; 58
Mala-Jetmarova, Sultanova, Savic (bib0030) 2017; 93
Nono, Basupi, Odirile, Parida (bib0032) 2018; 20
Sathasivan, Kastl, Korotta-Gamage, Gunasekera (bib0042) 2020
Biswas, Lu, Clark (bib0006) 1993; 27
Li, McDonald, Sathasivan, Khan (bib0024) 2019; 153
Wang, Taha, Abokifa (bib0049) 2021; 57
Ostfeld, Salomons (bib0034) 2006; 38
Wang, Taha, Chakrabarty, Sela, Abokifa (bib0050) 2022; 58
Frazier (bib0013) 2018
LeChevallier (bib0023) 1999; 91
Hennig, Schuler (bib0017) 2012; 13
Ozdemir, Metin Ger (bib0037) 1999; 33
Jimenez, J., 2020. pyGPGO Documentation.
Kang, Lansey (bib0021) 2010; 136
Prasad, Walters, Savic (bib0038) 2004; 130
Boccelli, Tryby, Uber, Rossman, Zierolf, Polycarpou (bib0007) 1998; 124
Propato, Uber (bib0039) 2004; 130
Shang, Uber, Rossman (bib0045) 2008; 42
Shahriari, Swersky, Wang, Adams, De Freitas (bib53) 2015; 104
Wang, Jegelka (bib0051) 2017; 7
Gibbs, Dandy, Maier (bib0015) 2010; 136
Ostfeld, Uber, Salomons, Berry, Hart, Al (bib0036) 2008; 134
(bib0043) 2023
Behzadian, Alimohammadnejad, Ardeshir, Jalilsani, Vasheghani (bib0005) 2012; 10
Rossman, Boulos (bib0040) 1996; 122
Seeger (bib0044) 2004; 14
Fisher, Kastl, Sathasivan (bib0011) 2011; 45
Makris, Andra, Botsaris (bib0029) 2014
Goyal, Patel, Goyala, Patelb (bib0016) 2017; 5
Rossman, Clark, Grayman (bib0041) 1994; 120
Abokifa, Maheshwari, Gudi, Biswas (bib0001) 2019; 145
Abokifa, Yang, Lo, Biswas (bib0002) 2016; 104
Candelieri, Perego, Archetti (bib0008) 2018; 71
Deborde, von Gunten (bib0010) 2008; 42
Munavalli, Kumar (bib0031) 2003; 129
Tryby, Boccelli, Koechling, Uber, Summers, Rossman (bib0048) 1999; 91
Islam, Sadiq, Rodriguez (bib0019) 2013; 185
Tryby, Boccelli, Uber, Rossman (bib0047) 2002; 128
Lu, Biswas, Clark (bib0026) 1995; 29
Goyal (10.1016/j.watres.2023.120117_bib0016) 2017; 5
Snoek (10.1016/j.watres.2023.120117_bib54) 2012; 25
Tryby (10.1016/j.watres.2023.120117_bib0047) 2002; 128
Makris (10.1016/j.watres.2023.120117_bib0029) 2014
Deborde (10.1016/j.watres.2023.120117_bib0010) 2008; 42
Liu (10.1016/j.watres.2023.120117_bib0025) 2017; 116
Seeger (10.1016/j.watres.2023.120117_bib0044) 2004; 14
Rossman (10.1016/j.watres.2023.120117_bib0040) 1996; 122
Munavalli (10.1016/j.watres.2023.120117_bib0031) 2003; 129
Ostfeld (10.1016/j.watres.2023.120117_bib0036) 2008; 134
Candelieri (10.1016/j.watres.2023.120117_bib0008) 2018; 71
(10.1016/j.watres.2023.120117_bib0043) 2023
Li (10.1016/j.watres.2023.120117_bib0024) 2019; 153
Wu (10.1016/j.watres.2023.120117_bib0052) 2017
Wang (10.1016/j.watres.2023.120117_bib0050) 2022; 58
Nono (10.1016/j.watres.2023.120117_bib0032) 2018; 20
Creaco (10.1016/j.watres.2023.120117_bib0009) 2016; 142
Ostfeld (10.1016/j.watres.2023.120117_bib0034) 2006; 38
Wang (10.1016/j.watres.2023.120117_bib0051) 2017; 7
Shahriari (10.1016/j.watres.2023.120117_bib53) 2015; 104
Frazier (10.1016/j.watres.2023.120117_sbref0013) 2018
Ozdemir (10.1016/j.watres.2023.120117_bib0037) 1999; 33
Behzadian (10.1016/j.watres.2023.120117_bib0005) 2012; 10
Hennig (10.1016/j.watres.2023.120117_bib0017) 2012; 13
LeChevallier (10.1016/j.watres.2023.120117_bib0023) 1999; 91
10.1016/j.watres.2023.120117_bib0020
Mala-Jetmarova (10.1016/j.watres.2023.120117_bib0030) 2017; 93
Ostfeld (10.1016/j.watres.2023.120117_bib0035) 2012; 138
Fisher (10.1016/j.watres.2023.120117_bib0011) 2011; 45
Islam (10.1016/j.watres.2023.120117_bib0019) 2013; 185
Rossman (10.1016/j.watres.2023.120117_bib0041) 1994; 120
Maheshwari (10.1016/j.watres.2023.120117_bib0028) 2018; 144
Tryby (10.1016/j.watres.2023.120117_bib0048) 1999; 91
Maheshwari (10.1016/j.watres.2023.120117_bib0027) 2020; 276
Wang (10.1016/j.watres.2023.120117_bib0049) 2021; 57
Abokifa (10.1016/j.watres.2023.120117_bib0001) 2019; 145
Lu (10.1016/j.watres.2023.120117_bib0026) 1995; 29
Boccelli (10.1016/j.watres.2023.120117_bib0007) 1998; 124
Propato (10.1016/j.watres.2023.120117_bib0039) 2004; 130
Prasad (10.1016/j.watres.2023.120117_bib0038) 2004; 130
Sousa (10.1016/j.watres.2023.120117_bib0046) 2016; 142
Abokifa (10.1016/j.watres.2023.120117_bib0002) 2016; 104
Shang (10.1016/j.watres.2023.120117_bib0045) 2008; 42
Abokifa (10.1016/j.watres.2023.120117_bib0003) 2016; 89
Lansey (10.1016/j.watres.2023.120117_bib0022) 2007; 133
Gelbart (10.1016/j.watres.2023.120117_bib0014) 2014
Kang (10.1016/j.watres.2023.120117_bib0021) 2010; 136
Gibbs (10.1016/j.watres.2023.120117_bib0015) 2010; 136
Ohar (10.1016/j.watres.2023.120117_bib0033) 2014; 58
Sathasivan (10.1016/j.watres.2023.120117_bib0042) 2020
Archetti (10.1016/j.watres.2023.120117_bib0004) 2019
Biswas (10.1016/j.watres.2023.120117_bib0006) 1993; 27
References_xml – volume: 142
  year: 2016
  ident: bib0009
  article-title: Multistep Approach for Optimizing Design and Operation of the C-Town Pipe Network Model
  publication-title: J. Water Resour. Plan. Manag.
– volume: 153
  start-page: 335
  year: 2019
  end-page: 348
  ident: bib0024
  article-title: Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: A systematic review
  publication-title: Water Res
– volume: 144
  year: 2018
  ident: bib0028
  article-title: Coordinated Decentralization-Based Optimization of Disinfectant Dosing in Large-Scale Water Distribution Networks
  publication-title: J. Water Resour. Plan. Manag.
– volume: 14
  start-page: 69
  year: 2004
  end-page: 106
  ident: bib0044
  article-title: Gaussian processes for machine learning
  publication-title: Int. J. Neural Syst.
– volume: 10
  start-page: 51
  year: 2012
  end-page: 60
  ident: bib0005
  article-title: A novel approach for water quality management in water distribution systems by multi-objective booster chlorination
  publication-title: Int. J. Civ. Eng.
– volume: 122
  start-page: 137
  year: 1996
  end-page: 146
  ident: bib0040
  article-title: Numerical Methods for Modeling Water Quality in Distribution Systems: A Comparison
  publication-title: J. Water Resour. Plan. Manag.
– year: 2014
  ident: bib0029
  article-title: Pipe scales and biofilms in drinking-water distribution systems: Undermining finished water quality
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 91
  start-page: 95
  year: 1999
  end-page: 108
  ident: bib0048
  article-title: Booster chlorination for managing disinfectant residuals
  publication-title: J. Am. Water Works Assoc.
– volume: 130
  start-page: 367
  year: 2004
  end-page: 376
  ident: bib0038
  article-title: Booster disinfection of water supply networks: Multiobjective approach
  publication-title: J. water Resour. Plan. Manag.
– volume: 27
  start-page: 1715
  year: 1993
  end-page: 1724
  ident: bib0006
  article-title: A model for chlorine concentration decay in pipes
  publication-title: Water Res
– volume: 91
  start-page: 86
  year: 1999
  end-page: 94
  ident: bib0023
  article-title: The case for maintaining a disinfectant residual
  publication-title: J. Am. Water Works Assoc.
– start-page: 184
  year: 2020
  ident: bib0042
  article-title: Trihalomethane species model for drinking water supply systems
  publication-title: Water Res
– volume: 145
  year: 2019
  ident: bib0001
  article-title: Influence of Dead-End Sections of Drinking Water Distribution Networks on Optimization of Booster Chlorination Systems
  publication-title: J. Water Resour. Plan. Manag.
– year: 2018
  ident: bib0013
  article-title: A Tutorial on Bayesian Optimization
  publication-title: arXiv Prepr
– volume: 33
  start-page: 3637
  year: 1999
  end-page: 3645
  ident: bib0037
  article-title: Unsteady 2-D chlorine transport in water supply pipes
  publication-title: Water Res
– volume: 71
  start-page: 213
  year: 2018
  end-page: 235
  ident: bib0008
  article-title: Bayesian optimization of pump operations in water distribution systems
  publication-title: J. Glob. Optim.
– volume: 128
  start-page: 322
  year: 2002
  end-page: 333
  ident: bib0047
  article-title: Facility Location Model for Booster Disinfection of Water Supply Networks
  publication-title: J. Water Resour. Plan. Manag.
– volume: 120
  start-page: 803
  year: 1994
  end-page: 820
  ident: bib0041
  article-title: Modeling Chlorine Residuals in Drinking-Water Distribution Systems
  publication-title: J. Environ. Eng.
– volume: 104
  start-page: 148
  year: 2015
  end-page: 175
  ident: bib53
  article-title: Taking the human out of the loop: A review of Bayesian optimization
  publication-title: Proc. IEEE
– year: 2023
  ident: bib0043
  publication-title: 1.7. Gaussian Processes — scikit-learn [WWW Document]
– volume: 134
  start-page: 556
  year: 2008
  end-page: 568
  ident: bib0036
  article-title: The Battle of the Water Sensor Networks (BWSN): A Design Challenge for Engineers and Algorithms
  publication-title: J. Water Resour. Plan. Manag.
– volume: 89
  start-page: 107
  year: 2016
  end-page: 117
  ident: bib0003
  article-title: Water quality modeling in the dead end sections of drinking water distribution networks
  publication-title: Water Res
– volume: 29
  start-page: 881
  year: 1995
  end-page: 894
  ident: bib0026
  article-title: Simultaneous transport of substrates, disinfectants and microorganisms in water pipes
  publication-title: Water Res
– volume: 129
  start-page: 493
  year: 2003
  end-page: 505
  ident: bib0031
  article-title: Optimal Scheduling of Multiple Chlorine Sources in Water Distribution Systems
  publication-title: J. Water Resour. Plan. Manag.
– volume: 13
  start-page: 1809
  year: 2012
  end-page: 1837
  ident: bib0017
  article-title: Entropy search for information-efficient global optimization
  publication-title: J. Mach. Learn. Res.
– volume: 5
  start-page: 51
  year: 2017
  end-page: 60
  ident: bib0016
  article-title: Optimal location and scheduling of booster chlorination stations for drinking water distribution system
  publication-title: J. Appl. Water Eng. Res.
– volume: 58
  start-page: 209
  year: 2014
  end-page: 220
  ident: bib0033
  article-title: Optimal design and operation of booster chlorination stations layout in water distribution systems
  publication-title: Water Res
– volume: 93
  start-page: 209
  year: 2017
  end-page: 254
  ident: bib0030
  article-title: Lost in optimisation of water distribution systems? A literature review of system operation
  publication-title: Environ. Model. Softw.
– volume: 38
  start-page: 337
  year: 2006
  end-page: 352
  ident: bib0034
  article-title: Conjunctive optimal scheduling of pumping and booster chlorine injections in water distribution systems
  publication-title: Eng. Optim.
– volume: 42
  start-page: 808
  year: 2008
  end-page: 814
  ident: bib0045
  article-title: Modeling reaction and transport of multiple species in water distribution systems
  publication-title: Environ. Sci. Technol.
– volume: 57
  year: 2021
  ident: bib0049
  article-title: How Effective is Model Predictive Control in Real-Time Water Quality Regulation? State-Space Modeling and Scalable Control
  publication-title: Water Resour. Res
– start-page: 5268
  year: 2017
  end-page: 5279
  ident: bib0052
  article-title: Bayesian optimization with gradients
  publication-title: Adv. Neural Inf. Process. Syst. 2017-Decem
– reference: Jimenez, J., 2020. pyGPGO Documentation.
– volume: 7
  start-page: 5530
  year: 2017
  end-page: 5543
  ident: bib0051
  article-title: Max-value entropy search for efficient Bayesian optimization. 34th Int. Conf. Mach. Learn
  publication-title: ICML 2017
– volume: 185
  start-page: 8035
  year: 2013
  end-page: 8050
  ident: bib0019
  article-title: Optimizing booster chlorination in water distribution networks: A water quality index approach
  publication-title: Environ. Monit. Assess.
– volume: 138
  start-page: 523
  year: 2012
  end-page: 532
  ident: bib0035
  article-title: Battle of the water calibration networks
  publication-title: J. Water Resour. Plan. Manag.
– volume: 133
  start-page: 372
  year: 2007
  end-page: 376
  ident: bib0022
  article-title: Locating Satellite Booster Disinfectant Stations
  publication-title: J. Water Resour. Plan. Manag.
– volume: 20
  start-page: 1025
  year: 2018
  end-page: 1041
  ident: bib0032
  article-title: Integrating booster chlorination and operational interventions in water distribution systems
  publication-title: J. Hydroinformatics
– volume: 130
  start-page: 53
  year: 2004
  end-page: 62
  ident: bib0039
  article-title: Linear Least-Squares Formulation for Operation of Booster Disinfection Systems
  publication-title: J. Water Resour. Plan. Manag.
– year: 2019
  ident: bib0004
  article-title: Bayesian Optimization and Data Science
  publication-title: Springer
– volume: 58
  year: 2022
  ident: bib0050
  article-title: Model Order Reduction for Water Quality Dynamics
  publication-title: Water Resour. Res.
– volume: 42
  start-page: 13
  year: 2008
  end-page: 51
  ident: bib0010
  article-title: Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: A critical review
  publication-title: Water Res
– volume: 124
  start-page: 99
  year: 1998
  end-page: 111
  ident: bib0007
  article-title: Optimal Scheduling of Booster Disinfection in Water Distribution Systems
  publication-title: J. Water Resour. Plan. Manag.
– start-page: 250
  year: 2014
  end-page: 259
  ident: bib0014
  article-title: Bayesian optimization with unknown constraints
  publication-title: Uncertain. Artif. Intell. - Proc. 30th Conf. UAI 2014
– volume: 136
  start-page: 493
  year: 2010
  end-page: 501
  ident: bib0015
  article-title: Calibration and Optimization of the Pumping and Disinfection of a Real Water Supply System
  publication-title: J. Water Resour. Plan. Manag.
– volume: 25
  year: 2012
  ident: bib54
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Advances in neural information processing systems
– volume: 276
  year: 2020
  ident: bib0027
  article-title: Optimization of disinfectant dosage for simultaneous control of lead and disinfection-byproducts in water distribution networks
  publication-title: J. Environ. Manage.
– volume: 104
  start-page: 208
  year: 2016
  end-page: 219
  ident: bib0002
  article-title: Investigating the role of biofilms in trihalomethane formation in water distribution systems with a multicomponent model
  publication-title: Water Res
– volume: 136
  start-page: 463
  year: 2010
  end-page: 473
  ident: bib0021
  article-title: Real-Time Optimal Valve Operation and Booster Disinfection for Water Quality in Water Distribution Systems
  publication-title: J. Water Resour. Plan. Manag.
– volume: 142
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib0046
  article-title: Optimal Management of Water Distribution Networks with Simulated Annealing: The C-Town Problem
  publication-title: J. Water Resour. Plan. Manag.
– volume: 45
  start-page: 4896
  year: 2011
  end-page: 4908
  ident: bib0011
  article-title: Evaluation of suitable chlorine bulk-decay models for water distribution systems
  publication-title: Water Res
– volume: 116
  start-page: 135
  year: 2017
  end-page: 148
  ident: bib0025
  article-title: Potential impacts of changing supply-water quality on drinking water distribution: A review
  publication-title: Water Res
– volume: 5
  start-page: 51
  issue: 1
  year: 2017
  ident: 10.1016/j.watres.2023.120117_bib0016
  article-title: Optimal location and scheduling of booster chlorination stations for drinking water distribution system
  publication-title: J. Appl. Water Eng. Res.
  doi: 10.1080/23249676.2015.1128367
– volume: 136
  start-page: 493
  issue: 4
  year: 2010
  ident: 10.1016/j.watres.2023.120117_bib0015
  article-title: Calibration and Optimization of the Pumping and Disinfection of a Real Water Supply System
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0000060
– volume: 145
  issue: 12
  year: 2019
  ident: 10.1016/j.watres.2023.120117_bib0001
  article-title: Influence of Dead-End Sections of Drinking Water Distribution Networks on Optimization of Booster Chlorination Systems
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0001125
– volume: 116
  start-page: 135
  year: 2017
  ident: 10.1016/j.watres.2023.120117_bib0025
  article-title: Potential impacts of changing supply-water quality on drinking water distribution: A review
  publication-title: Water Res
  doi: 10.1016/j.watres.2017.03.031
– volume: 144
  issue: 10
  year: 2018
  ident: 10.1016/j.watres.2023.120117_bib0028
  article-title: Coordinated Decentralization-Based Optimization of Disinfectant Dosing in Large-Scale Water Distribution Networks
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0000979
– volume: 57
  issue: 5
  year: 2021
  ident: 10.1016/j.watres.2023.120117_bib0049
  article-title: How Effective is Model Predictive Control in Real-Time Water Quality Regulation? State-Space Modeling and Scalable Control
  publication-title: Water Resour. Res
  doi: 10.1029/2020WR027771
– volume: 29
  start-page: 881
  issue: 3
  year: 1995
  ident: 10.1016/j.watres.2023.120117_bib0026
  article-title: Simultaneous transport of substrates, disinfectants and microorganisms in water pipes
  publication-title: Water Res
  doi: 10.1016/0043-1354(94)00202-I
– volume: 58
  start-page: 209
  year: 2014
  ident: 10.1016/j.watres.2023.120117_bib0033
  article-title: Optimal design and operation of booster chlorination stations layout in water distribution systems
  publication-title: Water Res
  doi: 10.1016/j.watres.2014.03.070
– volume: 153
  start-page: 335
  year: 2019
  ident: 10.1016/j.watres.2023.120117_bib0024
  article-title: Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: A systematic review
  publication-title: Water Res
  doi: 10.1016/j.watres.2019.01.020
– volume: 133
  start-page: 372
  issue: 4
  year: 2007
  ident: 10.1016/j.watres.2023.120117_bib0022
  article-title: Locating Satellite Booster Disinfectant Stations
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(2007)133:4(372)
– start-page: 250
  year: 2014
  ident: 10.1016/j.watres.2023.120117_bib0014
  article-title: Bayesian optimization with unknown constraints
– volume: 276
  issue: July
  year: 2020
  ident: 10.1016/j.watres.2023.120117_bib0027
  article-title: Optimization of disinfectant dosage for simultaneous control of lead and disinfection-byproducts in water distribution networks
  publication-title: J. Environ. Manage.
– volume: 58
  issue: 4
  year: 2022
  ident: 10.1016/j.watres.2023.120117_bib0050
  article-title: Model Order Reduction for Water Quality Dynamics
  publication-title: Water Resour. Res.
  doi: 10.1029/2021WR029856
– volume: 130
  start-page: 367
  issue: 5
  year: 2004
  ident: 10.1016/j.watres.2023.120117_bib0038
  article-title: Booster disinfection of water supply networks: Multiobjective approach
  publication-title: J. water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(2004)130:5(367)
– volume: 142
  issue: 5
  year: 2016
  ident: 10.1016/j.watres.2023.120117_bib0009
  article-title: Multistep Approach for Optimizing Design and Operation of the C-Town Pipe Network Model
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0000585
– volume: 13
  start-page: 1809
  year: 2012
  ident: 10.1016/j.watres.2023.120117_bib0017
  article-title: Entropy search for information-efficient global optimization
  publication-title: J. Mach. Learn. Res.
– volume: 136
  start-page: 463
  issue: 4
  year: 2010
  ident: 10.1016/j.watres.2023.120117_bib0021
  article-title: Real-Time Optimal Valve Operation and Booster Disinfection for Water Quality in Water Distribution Systems
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0000056
– year: 2019
  ident: 10.1016/j.watres.2023.120117_bib0004
  article-title: Bayesian Optimization and Data Science
  publication-title: Springer
– volume: 71
  start-page: 213
  issue: 1
  year: 2018
  ident: 10.1016/j.watres.2023.120117_bib0008
  article-title: Bayesian optimization of pump operations in water distribution systems
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-018-0641-2
– volume: 7
  start-page: 5530
  year: 2017
  ident: 10.1016/j.watres.2023.120117_bib0051
  article-title: Max-value entropy search for efficient Bayesian optimization. 34th Int. Conf. Mach. Learn
  publication-title: ICML 2017
– ident: 10.1016/j.watres.2023.120117_bib0020
– volume: 14
  start-page: 69
  issue: 2
  year: 2004
  ident: 10.1016/j.watres.2023.120117_bib0044
  article-title: Gaussian processes for machine learning
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065704001899
– volume: 138
  start-page: 523
  issue: 5
  year: 2012
  ident: 10.1016/j.watres.2023.120117_bib0035
  article-title: Battle of the water calibration networks
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0000191
– year: 2018
  ident: 10.1016/j.watres.2023.120117_sbref0013
  article-title: A Tutorial on Bayesian Optimization
  publication-title: arXiv Prepr
– volume: 27
  start-page: 1715
  issue: 12
  year: 1993
  ident: 10.1016/j.watres.2023.120117_bib0006
  article-title: A model for chlorine concentration decay in pipes
  publication-title: Water Res
  doi: 10.1016/0043-1354(93)90108-T
– volume: 104
  start-page: 208
  year: 2016
  ident: 10.1016/j.watres.2023.120117_bib0002
  article-title: Investigating the role of biofilms in trihalomethane formation in water distribution systems with a multicomponent model
  publication-title: Water Res
  doi: 10.1016/j.watres.2016.08.006
– volume: 42
  start-page: 808
  issue: 3
  year: 2008
  ident: 10.1016/j.watres.2023.120117_bib0045
  article-title: Modeling reaction and transport of multiple species in water distribution systems
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es072011z
– volume: 45
  start-page: 4896
  issue: 16
  year: 2011
  ident: 10.1016/j.watres.2023.120117_bib0011
  article-title: Evaluation of suitable chlorine bulk-decay models for water distribution systems
  publication-title: Water Res
  doi: 10.1016/j.watres.2011.06.032
– volume: 122
  start-page: 137
  issue: 2
  year: 1996
  ident: 10.1016/j.watres.2023.120117_bib0040
  article-title: Numerical Methods for Modeling Water Quality in Distribution Systems: A Comparison
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(1996)122:2(137)
– volume: 38
  start-page: 337
  issue: 3
  year: 2006
  ident: 10.1016/j.watres.2023.120117_bib0034
  article-title: Conjunctive optimal scheduling of pumping and booster chlorine injections in water distribution systems
  publication-title: Eng. Optim.
  doi: 10.1080/03052150500478007
– start-page: 184
  year: 2020
  ident: 10.1016/j.watres.2023.120117_bib0042
  article-title: Trihalomethane species model for drinking water supply systems
  publication-title: Water Res
– start-page: 5268
  issue: 3
  year: 2017
  ident: 10.1016/j.watres.2023.120117_bib0052
  article-title: Bayesian optimization with gradients
  publication-title: Adv. Neural Inf. Process. Syst. 2017-Decem
– volume: 33
  start-page: 3637
  issue: 17
  year: 1999
  ident: 10.1016/j.watres.2023.120117_bib0037
  article-title: Unsteady 2-D chlorine transport in water supply pipes
  publication-title: Water Res
  doi: 10.1016/S0043-1354(99)00073-1
– year: 2014
  ident: 10.1016/j.watres.2023.120117_bib0029
  article-title: Pipe scales and biofilms in drinking-water distribution systems: Undermining finished water quality
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2013.790746
– volume: 129
  start-page: 493
  issue: 6
  year: 2003
  ident: 10.1016/j.watres.2023.120117_bib0031
  article-title: Optimal Scheduling of Multiple Chlorine Sources in Water Distribution Systems
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(2003)129:6(493)
– volume: 142
  start-page: 1
  issue: 5
  year: 2016
  ident: 10.1016/j.watres.2023.120117_bib0046
  article-title: Optimal Management of Water Distribution Networks with Simulated Annealing: The C-Town Problem
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0000604
– volume: 185
  start-page: 8035
  issue: 10
  year: 2013
  ident: 10.1016/j.watres.2023.120117_bib0019
  article-title: Optimizing booster chlorination in water distribution networks: A water quality index approach
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-013-3153-z
– volume: 104
  start-page: 148
  issue: 1
  year: 2015
  ident: 10.1016/j.watres.2023.120117_bib53
  article-title: Taking the human out of the loop: A review of Bayesian optimization
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume: 91
  start-page: 86
  issue: 1
  year: 1999
  ident: 10.1016/j.watres.2023.120117_bib0023
  article-title: The case for maintaining a disinfectant residual
  publication-title: J. Am. Water Works Assoc.
  doi: 10.1002/j.1551-8833.1999.tb08573.x
– volume: 25
  year: 2012
  ident: 10.1016/j.watres.2023.120117_bib54
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Advances in neural information processing systems
– volume: 42
  start-page: 13
  issue: 1–2
  year: 2008
  ident: 10.1016/j.watres.2023.120117_bib0010
  article-title: Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: A critical review
  publication-title: Water Res
  doi: 10.1016/j.watres.2007.07.025
– volume: 134
  start-page: 556
  issue: 6
  year: 2008
  ident: 10.1016/j.watres.2023.120117_bib0036
  article-title: The Battle of the Water Sensor Networks (BWSN): A Design Challenge for Engineers and Algorithms
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(2008)134:6(556)
– volume: 10
  start-page: 51
  issue: 1
  year: 2012
  ident: 10.1016/j.watres.2023.120117_bib0005
  article-title: A novel approach for water quality management in water distribution systems by multi-objective booster chlorination
  publication-title: Int. J. Civ. Eng.
– volume: 93
  start-page: 209
  year: 2017
  ident: 10.1016/j.watres.2023.120117_bib0030
  article-title: Lost in optimisation of water distribution systems? A literature review of system operation
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2017.02.009
– volume: 20
  start-page: 1025
  issue: 5
  year: 2018
  ident: 10.1016/j.watres.2023.120117_bib0032
  article-title: Integrating booster chlorination and operational interventions in water distribution systems
  publication-title: J. Hydroinformatics
  doi: 10.2166/hydro.2018.113
– volume: 130
  start-page: 53
  issue: 1
  year: 2004
  ident: 10.1016/j.watres.2023.120117_bib0039
  article-title: Linear Least-Squares Formulation for Operation of Booster Disinfection Systems
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(2004)130:1(53)
– year: 2023
  ident: 10.1016/j.watres.2023.120117_bib0043
– volume: 120
  start-page: 803
  issue: 4
  year: 1994
  ident: 10.1016/j.watres.2023.120117_bib0041
  article-title: Modeling Chlorine Residuals in Drinking-Water Distribution Systems
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(1994)120:4(803)
– volume: 89
  start-page: 107
  year: 2016
  ident: 10.1016/j.watres.2023.120117_bib0003
  article-title: Water quality modeling in the dead end sections of drinking water distribution networks
  publication-title: Water Res
  doi: 10.1016/j.watres.2015.11.025
– volume: 124
  start-page: 99
  issue: 2
  year: 1998
  ident: 10.1016/j.watres.2023.120117_bib0007
  article-title: Optimal Scheduling of Booster Disinfection in Water Distribution Systems
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(1998)124:2(99)
– volume: 128
  start-page: 322
  issue: 5
  year: 2002
  ident: 10.1016/j.watres.2023.120117_bib0047
  article-title: Facility Location Model for Booster Disinfection of Water Supply Networks
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(2002)128:5(322)
– volume: 91
  start-page: 95
  issue: 1
  year: 1999
  ident: 10.1016/j.watres.2023.120117_bib0048
  article-title: Booster chlorination for managing disinfectant residuals
  publication-title: J. Am. Water Works Assoc.
  doi: 10.1002/j.1551-8833.1999.tb08574.x
SSID ssj0002239
Score 2.5157967
Snippet •Bayesian optimization is applied for water quality control in distribution networks.•Coupling BO with EPANET to optimize the scheduling of multiple chlorine...
Chlorine remains the most widely used disinfectant in drinking water treatment and distribution systems worldwide. To maintain a minimum residual throughout...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120117
SubjectTerms Bayesian optimization
Bayesian theory
booster chlorination systems
chlorine
chlorine residual
covariance
disinfectants
disinfection
entropy
normal distribution
probability
water
water distribution
Water distribution networks
water quality
water treatment
Title Bayesian Optimization of Booster Disinfection Scheduling in Water Distribution Networks
URI https://dx.doi.org/10.1016/j.watres.2023.120117
https://www.ncbi.nlm.nih.gov/pubmed/37393806
https://www.proquest.com/docview/2832842159
https://www.proquest.com/docview/2834267441
Volume 242
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xWGBAvCkvGYk1bRLHcTLyVAFRBqhgi2zHQUWQVqUIsfDbuWucCgaoxBjrLFl39n2f43sAHCJHNWGutcdz7VNR7Zzed6kSZsKDwo9M7FO-83UnbnejywfxMAMndS4MhVU631_59LG3diMtp83WoNejHF8EPy6QD1AhKS5mYT5EtMcb2PzRxVW7M3HIiIBp_dBME-oMunGY17uinIwmdRFvBoSG8jeE-o2BjpHofBmWHIVkR9UqV2DGlquw-K2w4BrcH6sPS-mR7AZdwovLtWT9gh33KatjyE57r3UcVslu0XI5haQ_sl7J7pUTmDTDYp0qWPx1HbrnZ3cnbc-1UPAMT8XIU3j9sQKdqzQxnjbtBzYKcpXERodpgdCklQ1jYSOp_aKIFI6GEklcrguTKl3wDZgr-6XdAhYIbZIiMSYNdJRKpUScKMGp_pmUqOMG8FptmXH1xanNxXNWB5I9ZZWyM1J2Vim7Ad5k1qCqrzFFXtYWyX7skwwhYMrMg9qAGR4hehdRpe2_oRB6tSRC7pP-KYNcRiJ5bMBmZf3JejlVFUz8ePvfa9uBBfqif9WB2IW50fDN7iHZGel9mG1-BvtuS38BZ37-KA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIAD4s14BolroV2apj2Ol8ZrHADBLUrSFA1Bh2AI8e-x13SCAyBxTR01shP7a2N_BthBjGpbuTEBz01IpNo53e8SE2bKoyKMbRJSvfNFN-ncxKd34m4MDupaGEqr9L6_8ulDb-1H9rw29557ParxxeDHBeIBIpLiYhwm8F0RbvaJ9slZpztyyBgBs_qimSbUFXTDNK93TTUZu9RFfDeiaCh_ilA_IdBhJDqehRkPIVm7WuUcjLlyHqa_EAsuwO2-_nBUHsku0SU8-VpL1i_Yfp-qOl7YYe-1zsMq2RVaLqeU9HvWK9mt9gKjZlisWyWLvy7CzfHR9UEn8C0UAsszMQg0fv44gc5V2gRPmwkjF0e5ThNrWlmBoclo10qEi6UJiyLWONqSCOJyU9hMm4IvQaPsl24FWCSMTYvU2iwycSa1FkmqBSf-MylRx03gtdqU9fzi1ObiUdWJZA-qUrYiZatK2U0IRrOeK36NP-RlbRH1bZ8oDAF_zNyuDajwCNG9iC5d_w2F0KulMWKf7FcZxDISwWMTlivrj9bLiVUwDZPVf69tCyY71xfn6vyke7YGU_SE_ltHYh0ag5c3t4HAZ2A2_cb-BGQWAB0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Optimization+of+Booster+Disinfection+Scheduling+in+Water+Distribution+Networks&rft.jtitle=Water+research+%28Oxford%29&rft.au=Moeini%2C+Mohammadreza&rft.au=Sela%2C+Lina&rft.au=Taha%2C+Ahmad+F&rft.au=Abokifa%2C+Ahmed+A&rft.date=2023-08-15&rft.eissn=1879-2448&rft.volume=242&rft.spage=120117&rft_id=info:doi/10.1016%2Fj.watres.2023.120117&rft_id=info%3Apmid%2F37393806&rft.externalDocID=37393806
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon