Bayesian Optimization of Booster Disinfection Scheduling in Water Distribution Networks
•Bayesian optimization is applied for water quality control in distribution networks.•Coupling BO with EPANET to optimize the scheduling of multiple chlorine boosters.•Systematic testing of acquisition functions, covariance kernels, and BO parameters.•Results revealed substantial variability in the...
Saved in:
Published in | Water research (Oxford) Vol. 242; p. 120117 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0043-1354 1879-2448 1879-2448 |
DOI | 10.1016/j.watres.2023.120117 |
Cover
Abstract | •Bayesian optimization is applied for water quality control in distribution networks.•Coupling BO with EPANET to optimize the scheduling of multiple chlorine boosters.•Systematic testing of acquisition functions, covariance kernels, and BO parameters.•Results revealed substantial variability in the performance of different BO methods.•Choice of acquisition function more influential than choice of covariance kernel.
Chlorine remains the most widely used disinfectant in drinking water treatment and distribution systems worldwide. To maintain a minimum residual throughout the distribution network, chlorine dosage needs to be regulated by optimizing the locations of chlorine boosters and their scheduling (i.e., chlorine injection rates). Such optimization can be computationally expensive since it requires numerous evaluations of water quality (WQ) simulation models. In recent years, Bayesian optimization (BO) has garnered considerable attention due to its efficiency in optimizing black-box functions in a wide range of applications. This study presents the first attempt to implement BO for the optimization of WQ in water distribution networks. The developed python-based framework couples BO with EPANET-MSX to optimize the scheduling of chlorine sources, while ensuring the delivery of water that satisfies water quality standards. Using Gaussian process regression to build the BO surrogate model, a comprehensive analysis was conducted to evaluate the performance of different BO methods. To that end, systematic testing of different acquisition functions, including the probability of improvement, expected improvement, upper confidence bound, and entropy search, in conjunction with different covariance kernels, including Matérn, squared-exponential, gamma-exponential, and rational quadratic, was conducted. Additionally, a thorough sensitivity analysis was performed to understand the influence of different BO parameters, including the number of initial points, covariance kernel length scale, and the level of exploration vs exploitation. The results revealed substantial variability in the performance of different BO methods and showed that the choice of the acquisition function has a more profound influence on the performance of BO than the covariance kernel. |
---|---|
AbstractList | Chlorine remains the most widely used disinfectant in drinking water treatment and distribution systems worldwide. To maintain a minimum residual throughout the distribution network, chlorine dosage needs to be regulated by optimizing the locations of chlorine boosters and their scheduling (i.e., chlorine injection rates). Such optimization can be computationally expensive since it requires numerous evaluations of water quality (WQ) simulation models. In recent years, Bayesian optimization (BO) has garnered considerable attention due to its efficiency in optimizing black-box functions in a wide range of applications. This study presents the first attempt to implement BO for the optimization of WQ in water distribution networks. The developed python-based framework couples BO with EPANET-MSX to optimize the scheduling of chlorine sources, while ensuring the delivery of water that satisfies water quality standards. Using Gaussian process regression to build the BO surrogate model, a comprehensive analysis was conducted to evaluate the performance of different BO methods. To that end, systematic testing of different acquisition functions, including the probability of improvement, expected improvement, upper confidence bound, and entropy search, in conjunction with different covariance kernels, including Matérn, squared-exponential, gamma-exponential, and rational quadratic, was conducted. Additionally, a thorough sensitivity analysis was performed to understand the influence of different BO parameters, including the number of initial points, covariance kernel length scale, and the level of exploration vs exploitation. The results revealed substantial variability in the performance of different BO methods and showed that the choice of the acquisition function has a more profound influence on the performance of BO than the covariance kernel.Chlorine remains the most widely used disinfectant in drinking water treatment and distribution systems worldwide. To maintain a minimum residual throughout the distribution network, chlorine dosage needs to be regulated by optimizing the locations of chlorine boosters and their scheduling (i.e., chlorine injection rates). Such optimization can be computationally expensive since it requires numerous evaluations of water quality (WQ) simulation models. In recent years, Bayesian optimization (BO) has garnered considerable attention due to its efficiency in optimizing black-box functions in a wide range of applications. This study presents the first attempt to implement BO for the optimization of WQ in water distribution networks. The developed python-based framework couples BO with EPANET-MSX to optimize the scheduling of chlorine sources, while ensuring the delivery of water that satisfies water quality standards. Using Gaussian process regression to build the BO surrogate model, a comprehensive analysis was conducted to evaluate the performance of different BO methods. To that end, systematic testing of different acquisition functions, including the probability of improvement, expected improvement, upper confidence bound, and entropy search, in conjunction with different covariance kernels, including Matérn, squared-exponential, gamma-exponential, and rational quadratic, was conducted. Additionally, a thorough sensitivity analysis was performed to understand the influence of different BO parameters, including the number of initial points, covariance kernel length scale, and the level of exploration vs exploitation. The results revealed substantial variability in the performance of different BO methods and showed that the choice of the acquisition function has a more profound influence on the performance of BO than the covariance kernel. Chlorine remains the most widely used disinfectant in drinking water treatment and distribution systems worldwide. To maintain a minimum residual throughout the distribution network, chlorine dosage needs to be regulated by optimizing the locations of chlorine boosters and their scheduling (i.e., chlorine injection rates). Such optimization can be computationally expensive since it requires numerous evaluations of water quality (WQ) simulation models. In recent years, Bayesian optimization (BO) has garnered considerable attention due to its efficiency in optimizing black-box functions in a wide range of applications. This study presents the first attempt to implement BO for the optimization of WQ in water distribution networks. The developed python-based framework couples BO with EPANET-MSX to optimize the scheduling of chlorine sources, while ensuring the delivery of water that satisfies water quality standards. Using Gaussian process regression to build the BO surrogate model, a comprehensive analysis was conducted to evaluate the performance of different BO methods. To that end, systematic testing of different acquisition functions, including the probability of improvement, expected improvement, upper confidence bound, and entropy search, in conjunction with different covariance kernels, including Matérn, squared-exponential, gamma-exponential, and rational quadratic, was conducted. Additionally, a thorough sensitivity analysis was performed to understand the influence of different BO parameters, including the number of initial points, covariance kernel length scale, and the level of exploration vs exploitation. The results revealed substantial variability in the performance of different BO methods and showed that the choice of the acquisition function has a more profound influence on the performance of BO than the covariance kernel. •Bayesian optimization is applied for water quality control in distribution networks.•Coupling BO with EPANET to optimize the scheduling of multiple chlorine boosters.•Systematic testing of acquisition functions, covariance kernels, and BO parameters.•Results revealed substantial variability in the performance of different BO methods.•Choice of acquisition function more influential than choice of covariance kernel. Chlorine remains the most widely used disinfectant in drinking water treatment and distribution systems worldwide. To maintain a minimum residual throughout the distribution network, chlorine dosage needs to be regulated by optimizing the locations of chlorine boosters and their scheduling (i.e., chlorine injection rates). Such optimization can be computationally expensive since it requires numerous evaluations of water quality (WQ) simulation models. In recent years, Bayesian optimization (BO) has garnered considerable attention due to its efficiency in optimizing black-box functions in a wide range of applications. This study presents the first attempt to implement BO for the optimization of WQ in water distribution networks. The developed python-based framework couples BO with EPANET-MSX to optimize the scheduling of chlorine sources, while ensuring the delivery of water that satisfies water quality standards. Using Gaussian process regression to build the BO surrogate model, a comprehensive analysis was conducted to evaluate the performance of different BO methods. To that end, systematic testing of different acquisition functions, including the probability of improvement, expected improvement, upper confidence bound, and entropy search, in conjunction with different covariance kernels, including Matérn, squared-exponential, gamma-exponential, and rational quadratic, was conducted. Additionally, a thorough sensitivity analysis was performed to understand the influence of different BO parameters, including the number of initial points, covariance kernel length scale, and the level of exploration vs exploitation. The results revealed substantial variability in the performance of different BO methods and showed that the choice of the acquisition function has a more profound influence on the performance of BO than the covariance kernel. |
ArticleNumber | 120117 |
Author | Abokifa, Ahmed A. Sela, Lina Taha, Ahmad F. Moeini, Mohammadreza |
Author_xml | – sequence: 1 givenname: Mohammadreza surname: Moeini fullname: Moeini, Mohammadreza organization: Ph.D. Student; Department of Civil, Materials, and Environmental Engineering; The University of Illinois Chicago; Chicago, IL 60607, USA – sequence: 2 givenname: Lina orcidid: 0000-0002-5834-8451 surname: Sela fullname: Sela, Lina organization: Associate Professor; Department of Civil, Architectural, and Environmental Engineering; The University of Texas at Austin; Austin TX 78712, USA – sequence: 3 givenname: Ahmad F. surname: Taha fullname: Taha, Ahmad F. organization: Associate Professor; Department of Civil and Environmental Engineering; Vanderbilt University; Nashville, TN 37235, USA – sequence: 4 givenname: Ahmed A. orcidid: 0000-0002-2474-6670 surname: Abokifa fullname: Abokifa, Ahmed A. email: abokifa@uic.edu organization: Assistant Professor; Department of Civil, Materials, and Environmental Engineering; The University of Illinois Chicago; Chicago, IL 60607, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37393806$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtP3DAUhS0EguHxDxDKsptM_cqrC6RCnxIqC1qxtBznGu40Yw-2UwS_njAZNiygK0tX3zmWzrdPtp13QMgxo3NGWflxMb_XKUCcc8rFnHHKWLVFZqyumpxLWW-TGaVS5EwUco_sx7iglHIuml2yJyrRiJqWM3J9ph8gonbZ5SrhEh91Qu8yb7Mz72OCkH3BiM6CWd-vzC10Q4_uJkOXXesNkAK2wxr4Beneh7_xkOxY3Uc42rwH5M-3r7_Pf-QXl99_nn--yI1oipTrpiihAG0qUxaCtZSBZJ2uS9PyxvJathp4WYCsWmqt1OOVV4WkXWtNo1srDsiHqXcV_N0AMaklRgN9rx34ISpeC8nLSkr2P-j4IWdFM6InG3Rol9CpVcClDg_qZbcR-DQBJvgYA1hlMK2nS0FjrxhVz5LUQk2S1LMkNUkaw_JV-KX_ndjpFINxz38IQUWD4Ax0GEY9qvP4dsETy8muWg |
CitedBy_id | crossref_primary_10_2166_hydro_2024_090 crossref_primary_10_3390_w16020345 crossref_primary_10_1016_j_jconhyd_2024_104307 crossref_primary_10_1080_1573062X_2024_2397783 crossref_primary_10_1061_JOEEDU_EEENG_7433 crossref_primary_10_1007_s40899_024_01064_9 crossref_primary_10_1016_j_watres_2024_121331 crossref_primary_10_1016_j_ejrh_2025_102206 crossref_primary_10_3390_w16010168 crossref_primary_10_3390_w16030486 crossref_primary_10_2166_ws_2024_161 crossref_primary_10_1016_j_watres_2024_122441 crossref_primary_10_1007_s00521_024_10187_1 crossref_primary_10_2166_aqua_2024_365 crossref_primary_10_2166_ws_2024_197 crossref_primary_10_1016_j_scs_2024_105615 |
Cites_doi | 10.1080/23249676.2015.1128367 10.1061/(ASCE)WR.1943-5452.0000060 10.1061/(ASCE)WR.1943-5452.0001125 10.1016/j.watres.2017.03.031 10.1061/(ASCE)WR.1943-5452.0000979 10.1029/2020WR027771 10.1016/0043-1354(94)00202-I 10.1016/j.watres.2014.03.070 10.1016/j.watres.2019.01.020 10.1061/(ASCE)0733-9496(2007)133:4(372) 10.1029/2021WR029856 10.1061/(ASCE)0733-9496(2004)130:5(367) 10.1061/(ASCE)WR.1943-5452.0000585 10.1061/(ASCE)WR.1943-5452.0000056 10.1007/s10898-018-0641-2 10.1142/S0129065704001899 10.1061/(ASCE)WR.1943-5452.0000191 10.1016/0043-1354(93)90108-T 10.1016/j.watres.2016.08.006 10.1021/es072011z 10.1016/j.watres.2011.06.032 10.1061/(ASCE)0733-9496(1996)122:2(137) 10.1080/03052150500478007 10.1016/S0043-1354(99)00073-1 10.1080/10643389.2013.790746 10.1061/(ASCE)0733-9496(2003)129:6(493) 10.1061/(ASCE)WR.1943-5452.0000604 10.1007/s10661-013-3153-z 10.1109/JPROC.2015.2494218 10.1002/j.1551-8833.1999.tb08573.x 10.1016/j.watres.2007.07.025 10.1061/(ASCE)0733-9496(2008)134:6(556) 10.1016/j.envsoft.2017.02.009 10.2166/hydro.2018.113 10.1061/(ASCE)0733-9496(2004)130:1(53) 10.1061/(ASCE)0733-9372(1994)120:4(803) 10.1016/j.watres.2015.11.025 10.1061/(ASCE)0733-9496(1998)124:2(99) 10.1061/(ASCE)0733-9496(2002)128:5(322) 10.1002/j.1551-8833.1999.tb08574.x |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.watres.2023.120117 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
ExternalDocumentID | 37393806 10_1016_j_watres_2023_120117 S0043135423005535 |
Genre | Journal Article |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCU SDF SDG SDP SES SEW SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 MVM OHT R2- SEN SEP WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ ~HD BNPGV NPM SSH 7X8 7S9 AGCQF L.6 |
ID | FETCH-LOGICAL-c395t-a956e5eac7c6531b01e41da86cb29f284bae265e47b0ff4ab2927540dbfc9abf3 |
IEDL.DBID | AIKHN |
ISSN | 0043-1354 1879-2448 |
IngestDate | Fri Sep 05 15:05:26 EDT 2025 Sun Sep 28 05:46:26 EDT 2025 Thu Apr 03 07:06:19 EDT 2025 Thu Apr 24 23:10:20 EDT 2025 Thu Sep 25 00:39:26 EDT 2025 Fri Feb 23 02:37:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Water distribution networks chlorine residual booster chlorination systems Bayesian optimization |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-a956e5eac7c6531b01e41da86cb29f284bae265e47b0ff4ab2927540dbfc9abf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2474-6670 0000-0002-5834-8451 |
PMID | 37393806 |
PQID | 2832842159 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2834267441 proquest_miscellaneous_2832842159 pubmed_primary_37393806 crossref_citationtrail_10_1016_j_watres_2023_120117 crossref_primary_10_1016_j_watres_2023_120117 elsevier_sciencedirect_doi_10_1016_j_watres_2023_120117 |
PublicationCentury | 2000 |
PublicationDate | 2023-08-15 |
PublicationDateYYYYMMDD | 2023-08-15 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Sousa, Muranho, Sá Marques, Gomes (bib0046) 2016; 142 Wu, Poloczek, Wilson, Frazier (bib0052) 2017 Maheshwari, Abokifa, Gudi, Biswas (bib0028) 2018; 144 Abokifa, Yang, Lo, Biswas (bib0003) 2016; 89 Archetti, Candelieri (bib0004) 2019 Creaco, Alvisi, Franchini (bib0009) 2016; 142 Liu, Zhang, Knibbe, Feng, Liu, Medema, van der Meer (bib0025) 2017; 116 Maheshwari, Abokifa, Gudi, Biswas (bib0027) 2020; 276 Ostfeld, Salomons, Ormsbee, Uber, Bros, Kalungi, Burd, Zazula-Coetzee, Belrain, Kang, Lansey, Shen, McBean, Yi Wu, Walski, Alvisi, Franchini, Johnson, Ghimire, Barkdoll, Koppel, Vassiljev, Hoon Kim, Chung, Guen Yoo, Diao, Zhou, Li, Liu, Chang, Gao, Qu, Yuan, Devi Prasad, Laucelli, Vamvakeridou Lyroudia, Kapelan, Savic, Berardi, Barbaro, Giustolisi, Asadzadeh, Tolson, McKillop, Wu, Walski, Alvisi, Franchini, Johnson, Ghimire, Barkdoll, Koppel, Vassiljev, Kim, Chung, Yoo, Diao, Zhou, Li, Liu, Chang, Gao, Qu, Yuan, Prasad, Laucelli, Lyroudia Vamvakeridou, Kapelan, Savic, Berardi, Barbaro, Giustolisi, Asadzadeh, Tolson, McKillop (bib0035) 2012; 138 Gelbart, Snoek, Adams (bib0014) 2014 Lansey, Pasha, Pool, Elshorbagy, Uber (bib0022) 2007; 133 Snoek, Larochelle, Ryan (bib54) 2012; 25 Ohar, Ostfeld (bib0033) 2014; 58 Mala-Jetmarova, Sultanova, Savic (bib0030) 2017; 93 Nono, Basupi, Odirile, Parida (bib0032) 2018; 20 Sathasivan, Kastl, Korotta-Gamage, Gunasekera (bib0042) 2020 Biswas, Lu, Clark (bib0006) 1993; 27 Li, McDonald, Sathasivan, Khan (bib0024) 2019; 153 Wang, Taha, Abokifa (bib0049) 2021; 57 Ostfeld, Salomons (bib0034) 2006; 38 Wang, Taha, Chakrabarty, Sela, Abokifa (bib0050) 2022; 58 Frazier (bib0013) 2018 LeChevallier (bib0023) 1999; 91 Hennig, Schuler (bib0017) 2012; 13 Ozdemir, Metin Ger (bib0037) 1999; 33 Jimenez, J., 2020. pyGPGO Documentation. Kang, Lansey (bib0021) 2010; 136 Prasad, Walters, Savic (bib0038) 2004; 130 Boccelli, Tryby, Uber, Rossman, Zierolf, Polycarpou (bib0007) 1998; 124 Propato, Uber (bib0039) 2004; 130 Shang, Uber, Rossman (bib0045) 2008; 42 Shahriari, Swersky, Wang, Adams, De Freitas (bib53) 2015; 104 Wang, Jegelka (bib0051) 2017; 7 Gibbs, Dandy, Maier (bib0015) 2010; 136 Ostfeld, Uber, Salomons, Berry, Hart, Al (bib0036) 2008; 134 (bib0043) 2023 Behzadian, Alimohammadnejad, Ardeshir, Jalilsani, Vasheghani (bib0005) 2012; 10 Rossman, Boulos (bib0040) 1996; 122 Seeger (bib0044) 2004; 14 Fisher, Kastl, Sathasivan (bib0011) 2011; 45 Makris, Andra, Botsaris (bib0029) 2014 Goyal, Patel, Goyala, Patelb (bib0016) 2017; 5 Rossman, Clark, Grayman (bib0041) 1994; 120 Abokifa, Maheshwari, Gudi, Biswas (bib0001) 2019; 145 Abokifa, Yang, Lo, Biswas (bib0002) 2016; 104 Candelieri, Perego, Archetti (bib0008) 2018; 71 Deborde, von Gunten (bib0010) 2008; 42 Munavalli, Kumar (bib0031) 2003; 129 Tryby, Boccelli, Koechling, Uber, Summers, Rossman (bib0048) 1999; 91 Islam, Sadiq, Rodriguez (bib0019) 2013; 185 Tryby, Boccelli, Uber, Rossman (bib0047) 2002; 128 Lu, Biswas, Clark (bib0026) 1995; 29 Goyal (10.1016/j.watres.2023.120117_bib0016) 2017; 5 Snoek (10.1016/j.watres.2023.120117_bib54) 2012; 25 Tryby (10.1016/j.watres.2023.120117_bib0047) 2002; 128 Makris (10.1016/j.watres.2023.120117_bib0029) 2014 Deborde (10.1016/j.watres.2023.120117_bib0010) 2008; 42 Liu (10.1016/j.watres.2023.120117_bib0025) 2017; 116 Seeger (10.1016/j.watres.2023.120117_bib0044) 2004; 14 Rossman (10.1016/j.watres.2023.120117_bib0040) 1996; 122 Munavalli (10.1016/j.watres.2023.120117_bib0031) 2003; 129 Ostfeld (10.1016/j.watres.2023.120117_bib0036) 2008; 134 Candelieri (10.1016/j.watres.2023.120117_bib0008) 2018; 71 (10.1016/j.watres.2023.120117_bib0043) 2023 Li (10.1016/j.watres.2023.120117_bib0024) 2019; 153 Wu (10.1016/j.watres.2023.120117_bib0052) 2017 Wang (10.1016/j.watres.2023.120117_bib0050) 2022; 58 Nono (10.1016/j.watres.2023.120117_bib0032) 2018; 20 Creaco (10.1016/j.watres.2023.120117_bib0009) 2016; 142 Ostfeld (10.1016/j.watres.2023.120117_bib0034) 2006; 38 Wang (10.1016/j.watres.2023.120117_bib0051) 2017; 7 Shahriari (10.1016/j.watres.2023.120117_bib53) 2015; 104 Frazier (10.1016/j.watres.2023.120117_sbref0013) 2018 Ozdemir (10.1016/j.watres.2023.120117_bib0037) 1999; 33 Behzadian (10.1016/j.watres.2023.120117_bib0005) 2012; 10 Hennig (10.1016/j.watres.2023.120117_bib0017) 2012; 13 LeChevallier (10.1016/j.watres.2023.120117_bib0023) 1999; 91 10.1016/j.watres.2023.120117_bib0020 Mala-Jetmarova (10.1016/j.watres.2023.120117_bib0030) 2017; 93 Ostfeld (10.1016/j.watres.2023.120117_bib0035) 2012; 138 Fisher (10.1016/j.watres.2023.120117_bib0011) 2011; 45 Islam (10.1016/j.watres.2023.120117_bib0019) 2013; 185 Rossman (10.1016/j.watres.2023.120117_bib0041) 1994; 120 Maheshwari (10.1016/j.watres.2023.120117_bib0028) 2018; 144 Tryby (10.1016/j.watres.2023.120117_bib0048) 1999; 91 Maheshwari (10.1016/j.watres.2023.120117_bib0027) 2020; 276 Wang (10.1016/j.watres.2023.120117_bib0049) 2021; 57 Abokifa (10.1016/j.watres.2023.120117_bib0001) 2019; 145 Lu (10.1016/j.watres.2023.120117_bib0026) 1995; 29 Boccelli (10.1016/j.watres.2023.120117_bib0007) 1998; 124 Propato (10.1016/j.watres.2023.120117_bib0039) 2004; 130 Prasad (10.1016/j.watres.2023.120117_bib0038) 2004; 130 Sousa (10.1016/j.watres.2023.120117_bib0046) 2016; 142 Abokifa (10.1016/j.watres.2023.120117_bib0002) 2016; 104 Shang (10.1016/j.watres.2023.120117_bib0045) 2008; 42 Abokifa (10.1016/j.watres.2023.120117_bib0003) 2016; 89 Lansey (10.1016/j.watres.2023.120117_bib0022) 2007; 133 Gelbart (10.1016/j.watres.2023.120117_bib0014) 2014 Kang (10.1016/j.watres.2023.120117_bib0021) 2010; 136 Gibbs (10.1016/j.watres.2023.120117_bib0015) 2010; 136 Ohar (10.1016/j.watres.2023.120117_bib0033) 2014; 58 Sathasivan (10.1016/j.watres.2023.120117_bib0042) 2020 Archetti (10.1016/j.watres.2023.120117_bib0004) 2019 Biswas (10.1016/j.watres.2023.120117_bib0006) 1993; 27 |
References_xml | – volume: 142 year: 2016 ident: bib0009 article-title: Multistep Approach for Optimizing Design and Operation of the C-Town Pipe Network Model publication-title: J. Water Resour. Plan. Manag. – volume: 153 start-page: 335 year: 2019 end-page: 348 ident: bib0024 article-title: Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: A systematic review publication-title: Water Res – volume: 144 year: 2018 ident: bib0028 article-title: Coordinated Decentralization-Based Optimization of Disinfectant Dosing in Large-Scale Water Distribution Networks publication-title: J. Water Resour. Plan. Manag. – volume: 14 start-page: 69 year: 2004 end-page: 106 ident: bib0044 article-title: Gaussian processes for machine learning publication-title: Int. J. Neural Syst. – volume: 10 start-page: 51 year: 2012 end-page: 60 ident: bib0005 article-title: A novel approach for water quality management in water distribution systems by multi-objective booster chlorination publication-title: Int. J. Civ. Eng. – volume: 122 start-page: 137 year: 1996 end-page: 146 ident: bib0040 article-title: Numerical Methods for Modeling Water Quality in Distribution Systems: A Comparison publication-title: J. Water Resour. Plan. Manag. – year: 2014 ident: bib0029 article-title: Pipe scales and biofilms in drinking-water distribution systems: Undermining finished water quality publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 91 start-page: 95 year: 1999 end-page: 108 ident: bib0048 article-title: Booster chlorination for managing disinfectant residuals publication-title: J. Am. Water Works Assoc. – volume: 130 start-page: 367 year: 2004 end-page: 376 ident: bib0038 article-title: Booster disinfection of water supply networks: Multiobjective approach publication-title: J. water Resour. Plan. Manag. – volume: 27 start-page: 1715 year: 1993 end-page: 1724 ident: bib0006 article-title: A model for chlorine concentration decay in pipes publication-title: Water Res – volume: 91 start-page: 86 year: 1999 end-page: 94 ident: bib0023 article-title: The case for maintaining a disinfectant residual publication-title: J. Am. Water Works Assoc. – start-page: 184 year: 2020 ident: bib0042 article-title: Trihalomethane species model for drinking water supply systems publication-title: Water Res – volume: 145 year: 2019 ident: bib0001 article-title: Influence of Dead-End Sections of Drinking Water Distribution Networks on Optimization of Booster Chlorination Systems publication-title: J. Water Resour. Plan. Manag. – year: 2018 ident: bib0013 article-title: A Tutorial on Bayesian Optimization publication-title: arXiv Prepr – volume: 33 start-page: 3637 year: 1999 end-page: 3645 ident: bib0037 article-title: Unsteady 2-D chlorine transport in water supply pipes publication-title: Water Res – volume: 71 start-page: 213 year: 2018 end-page: 235 ident: bib0008 article-title: Bayesian optimization of pump operations in water distribution systems publication-title: J. Glob. Optim. – volume: 128 start-page: 322 year: 2002 end-page: 333 ident: bib0047 article-title: Facility Location Model for Booster Disinfection of Water Supply Networks publication-title: J. Water Resour. Plan. Manag. – volume: 120 start-page: 803 year: 1994 end-page: 820 ident: bib0041 article-title: Modeling Chlorine Residuals in Drinking-Water Distribution Systems publication-title: J. Environ. Eng. – volume: 104 start-page: 148 year: 2015 end-page: 175 ident: bib53 article-title: Taking the human out of the loop: A review of Bayesian optimization publication-title: Proc. IEEE – year: 2023 ident: bib0043 publication-title: 1.7. Gaussian Processes — scikit-learn [WWW Document] – volume: 134 start-page: 556 year: 2008 end-page: 568 ident: bib0036 article-title: The Battle of the Water Sensor Networks (BWSN): A Design Challenge for Engineers and Algorithms publication-title: J. Water Resour. Plan. Manag. – volume: 89 start-page: 107 year: 2016 end-page: 117 ident: bib0003 article-title: Water quality modeling in the dead end sections of drinking water distribution networks publication-title: Water Res – volume: 29 start-page: 881 year: 1995 end-page: 894 ident: bib0026 article-title: Simultaneous transport of substrates, disinfectants and microorganisms in water pipes publication-title: Water Res – volume: 129 start-page: 493 year: 2003 end-page: 505 ident: bib0031 article-title: Optimal Scheduling of Multiple Chlorine Sources in Water Distribution Systems publication-title: J. Water Resour. Plan. Manag. – volume: 13 start-page: 1809 year: 2012 end-page: 1837 ident: bib0017 article-title: Entropy search for information-efficient global optimization publication-title: J. Mach. Learn. Res. – volume: 5 start-page: 51 year: 2017 end-page: 60 ident: bib0016 article-title: Optimal location and scheduling of booster chlorination stations for drinking water distribution system publication-title: J. Appl. Water Eng. Res. – volume: 58 start-page: 209 year: 2014 end-page: 220 ident: bib0033 article-title: Optimal design and operation of booster chlorination stations layout in water distribution systems publication-title: Water Res – volume: 93 start-page: 209 year: 2017 end-page: 254 ident: bib0030 article-title: Lost in optimisation of water distribution systems? A literature review of system operation publication-title: Environ. Model. Softw. – volume: 38 start-page: 337 year: 2006 end-page: 352 ident: bib0034 article-title: Conjunctive optimal scheduling of pumping and booster chlorine injections in water distribution systems publication-title: Eng. Optim. – volume: 42 start-page: 808 year: 2008 end-page: 814 ident: bib0045 article-title: Modeling reaction and transport of multiple species in water distribution systems publication-title: Environ. Sci. Technol. – volume: 57 year: 2021 ident: bib0049 article-title: How Effective is Model Predictive Control in Real-Time Water Quality Regulation? State-Space Modeling and Scalable Control publication-title: Water Resour. Res – start-page: 5268 year: 2017 end-page: 5279 ident: bib0052 article-title: Bayesian optimization with gradients publication-title: Adv. Neural Inf. Process. Syst. 2017-Decem – reference: Jimenez, J., 2020. pyGPGO Documentation. – volume: 7 start-page: 5530 year: 2017 end-page: 5543 ident: bib0051 article-title: Max-value entropy search for efficient Bayesian optimization. 34th Int. Conf. Mach. Learn publication-title: ICML 2017 – volume: 185 start-page: 8035 year: 2013 end-page: 8050 ident: bib0019 article-title: Optimizing booster chlorination in water distribution networks: A water quality index approach publication-title: Environ. Monit. Assess. – volume: 138 start-page: 523 year: 2012 end-page: 532 ident: bib0035 article-title: Battle of the water calibration networks publication-title: J. Water Resour. Plan. Manag. – volume: 133 start-page: 372 year: 2007 end-page: 376 ident: bib0022 article-title: Locating Satellite Booster Disinfectant Stations publication-title: J. Water Resour. Plan. Manag. – volume: 20 start-page: 1025 year: 2018 end-page: 1041 ident: bib0032 article-title: Integrating booster chlorination and operational interventions in water distribution systems publication-title: J. Hydroinformatics – volume: 130 start-page: 53 year: 2004 end-page: 62 ident: bib0039 article-title: Linear Least-Squares Formulation for Operation of Booster Disinfection Systems publication-title: J. Water Resour. Plan. Manag. – year: 2019 ident: bib0004 article-title: Bayesian Optimization and Data Science publication-title: Springer – volume: 58 year: 2022 ident: bib0050 article-title: Model Order Reduction for Water Quality Dynamics publication-title: Water Resour. Res. – volume: 42 start-page: 13 year: 2008 end-page: 51 ident: bib0010 article-title: Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: A critical review publication-title: Water Res – volume: 124 start-page: 99 year: 1998 end-page: 111 ident: bib0007 article-title: Optimal Scheduling of Booster Disinfection in Water Distribution Systems publication-title: J. Water Resour. Plan. Manag. – start-page: 250 year: 2014 end-page: 259 ident: bib0014 article-title: Bayesian optimization with unknown constraints publication-title: Uncertain. Artif. Intell. - Proc. 30th Conf. UAI 2014 – volume: 136 start-page: 493 year: 2010 end-page: 501 ident: bib0015 article-title: Calibration and Optimization of the Pumping and Disinfection of a Real Water Supply System publication-title: J. Water Resour. Plan. Manag. – volume: 25 year: 2012 ident: bib54 article-title: Practical bayesian optimization of machine learning algorithms publication-title: Advances in neural information processing systems – volume: 276 year: 2020 ident: bib0027 article-title: Optimization of disinfectant dosage for simultaneous control of lead and disinfection-byproducts in water distribution networks publication-title: J. Environ. Manage. – volume: 104 start-page: 208 year: 2016 end-page: 219 ident: bib0002 article-title: Investigating the role of biofilms in trihalomethane formation in water distribution systems with a multicomponent model publication-title: Water Res – volume: 136 start-page: 463 year: 2010 end-page: 473 ident: bib0021 article-title: Real-Time Optimal Valve Operation and Booster Disinfection for Water Quality in Water Distribution Systems publication-title: J. Water Resour. Plan. Manag. – volume: 142 start-page: 1 year: 2016 end-page: 9 ident: bib0046 article-title: Optimal Management of Water Distribution Networks with Simulated Annealing: The C-Town Problem publication-title: J. Water Resour. Plan. Manag. – volume: 45 start-page: 4896 year: 2011 end-page: 4908 ident: bib0011 article-title: Evaluation of suitable chlorine bulk-decay models for water distribution systems publication-title: Water Res – volume: 116 start-page: 135 year: 2017 end-page: 148 ident: bib0025 article-title: Potential impacts of changing supply-water quality on drinking water distribution: A review publication-title: Water Res – volume: 5 start-page: 51 issue: 1 year: 2017 ident: 10.1016/j.watres.2023.120117_bib0016 article-title: Optimal location and scheduling of booster chlorination stations for drinking water distribution system publication-title: J. Appl. Water Eng. Res. doi: 10.1080/23249676.2015.1128367 – volume: 136 start-page: 493 issue: 4 year: 2010 ident: 10.1016/j.watres.2023.120117_bib0015 article-title: Calibration and Optimization of the Pumping and Disinfection of a Real Water Supply System publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000060 – volume: 145 issue: 12 year: 2019 ident: 10.1016/j.watres.2023.120117_bib0001 article-title: Influence of Dead-End Sections of Drinking Water Distribution Networks on Optimization of Booster Chlorination Systems publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0001125 – volume: 116 start-page: 135 year: 2017 ident: 10.1016/j.watres.2023.120117_bib0025 article-title: Potential impacts of changing supply-water quality on drinking water distribution: A review publication-title: Water Res doi: 10.1016/j.watres.2017.03.031 – volume: 144 issue: 10 year: 2018 ident: 10.1016/j.watres.2023.120117_bib0028 article-title: Coordinated Decentralization-Based Optimization of Disinfectant Dosing in Large-Scale Water Distribution Networks publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000979 – volume: 57 issue: 5 year: 2021 ident: 10.1016/j.watres.2023.120117_bib0049 article-title: How Effective is Model Predictive Control in Real-Time Water Quality Regulation? State-Space Modeling and Scalable Control publication-title: Water Resour. Res doi: 10.1029/2020WR027771 – volume: 29 start-page: 881 issue: 3 year: 1995 ident: 10.1016/j.watres.2023.120117_bib0026 article-title: Simultaneous transport of substrates, disinfectants and microorganisms in water pipes publication-title: Water Res doi: 10.1016/0043-1354(94)00202-I – volume: 58 start-page: 209 year: 2014 ident: 10.1016/j.watres.2023.120117_bib0033 article-title: Optimal design and operation of booster chlorination stations layout in water distribution systems publication-title: Water Res doi: 10.1016/j.watres.2014.03.070 – volume: 153 start-page: 335 year: 2019 ident: 10.1016/j.watres.2023.120117_bib0024 article-title: Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: A systematic review publication-title: Water Res doi: 10.1016/j.watres.2019.01.020 – volume: 133 start-page: 372 issue: 4 year: 2007 ident: 10.1016/j.watres.2023.120117_bib0022 article-title: Locating Satellite Booster Disinfectant Stations publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2007)133:4(372) – start-page: 250 year: 2014 ident: 10.1016/j.watres.2023.120117_bib0014 article-title: Bayesian optimization with unknown constraints – volume: 276 issue: July year: 2020 ident: 10.1016/j.watres.2023.120117_bib0027 article-title: Optimization of disinfectant dosage for simultaneous control of lead and disinfection-byproducts in water distribution networks publication-title: J. Environ. Manage. – volume: 58 issue: 4 year: 2022 ident: 10.1016/j.watres.2023.120117_bib0050 article-title: Model Order Reduction for Water Quality Dynamics publication-title: Water Resour. Res. doi: 10.1029/2021WR029856 – volume: 130 start-page: 367 issue: 5 year: 2004 ident: 10.1016/j.watres.2023.120117_bib0038 article-title: Booster disinfection of water supply networks: Multiobjective approach publication-title: J. water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2004)130:5(367) – volume: 142 issue: 5 year: 2016 ident: 10.1016/j.watres.2023.120117_bib0009 article-title: Multistep Approach for Optimizing Design and Operation of the C-Town Pipe Network Model publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000585 – volume: 13 start-page: 1809 year: 2012 ident: 10.1016/j.watres.2023.120117_bib0017 article-title: Entropy search for information-efficient global optimization publication-title: J. Mach. Learn. Res. – volume: 136 start-page: 463 issue: 4 year: 2010 ident: 10.1016/j.watres.2023.120117_bib0021 article-title: Real-Time Optimal Valve Operation and Booster Disinfection for Water Quality in Water Distribution Systems publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000056 – year: 2019 ident: 10.1016/j.watres.2023.120117_bib0004 article-title: Bayesian Optimization and Data Science publication-title: Springer – volume: 71 start-page: 213 issue: 1 year: 2018 ident: 10.1016/j.watres.2023.120117_bib0008 article-title: Bayesian optimization of pump operations in water distribution systems publication-title: J. Glob. Optim. doi: 10.1007/s10898-018-0641-2 – volume: 7 start-page: 5530 year: 2017 ident: 10.1016/j.watres.2023.120117_bib0051 article-title: Max-value entropy search for efficient Bayesian optimization. 34th Int. Conf. Mach. Learn publication-title: ICML 2017 – ident: 10.1016/j.watres.2023.120117_bib0020 – volume: 14 start-page: 69 issue: 2 year: 2004 ident: 10.1016/j.watres.2023.120117_bib0044 article-title: Gaussian processes for machine learning publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065704001899 – volume: 138 start-page: 523 issue: 5 year: 2012 ident: 10.1016/j.watres.2023.120117_bib0035 article-title: Battle of the water calibration networks publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000191 – year: 2018 ident: 10.1016/j.watres.2023.120117_sbref0013 article-title: A Tutorial on Bayesian Optimization publication-title: arXiv Prepr – volume: 27 start-page: 1715 issue: 12 year: 1993 ident: 10.1016/j.watres.2023.120117_bib0006 article-title: A model for chlorine concentration decay in pipes publication-title: Water Res doi: 10.1016/0043-1354(93)90108-T – volume: 104 start-page: 208 year: 2016 ident: 10.1016/j.watres.2023.120117_bib0002 article-title: Investigating the role of biofilms in trihalomethane formation in water distribution systems with a multicomponent model publication-title: Water Res doi: 10.1016/j.watres.2016.08.006 – volume: 42 start-page: 808 issue: 3 year: 2008 ident: 10.1016/j.watres.2023.120117_bib0045 article-title: Modeling reaction and transport of multiple species in water distribution systems publication-title: Environ. Sci. Technol. doi: 10.1021/es072011z – volume: 45 start-page: 4896 issue: 16 year: 2011 ident: 10.1016/j.watres.2023.120117_bib0011 article-title: Evaluation of suitable chlorine bulk-decay models for water distribution systems publication-title: Water Res doi: 10.1016/j.watres.2011.06.032 – volume: 122 start-page: 137 issue: 2 year: 1996 ident: 10.1016/j.watres.2023.120117_bib0040 article-title: Numerical Methods for Modeling Water Quality in Distribution Systems: A Comparison publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(1996)122:2(137) – volume: 38 start-page: 337 issue: 3 year: 2006 ident: 10.1016/j.watres.2023.120117_bib0034 article-title: Conjunctive optimal scheduling of pumping and booster chlorine injections in water distribution systems publication-title: Eng. Optim. doi: 10.1080/03052150500478007 – start-page: 184 year: 2020 ident: 10.1016/j.watres.2023.120117_bib0042 article-title: Trihalomethane species model for drinking water supply systems publication-title: Water Res – start-page: 5268 issue: 3 year: 2017 ident: 10.1016/j.watres.2023.120117_bib0052 article-title: Bayesian optimization with gradients publication-title: Adv. Neural Inf. Process. Syst. 2017-Decem – volume: 33 start-page: 3637 issue: 17 year: 1999 ident: 10.1016/j.watres.2023.120117_bib0037 article-title: Unsteady 2-D chlorine transport in water supply pipes publication-title: Water Res doi: 10.1016/S0043-1354(99)00073-1 – year: 2014 ident: 10.1016/j.watres.2023.120117_bib0029 article-title: Pipe scales and biofilms in drinking-water distribution systems: Undermining finished water quality publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2013.790746 – volume: 129 start-page: 493 issue: 6 year: 2003 ident: 10.1016/j.watres.2023.120117_bib0031 article-title: Optimal Scheduling of Multiple Chlorine Sources in Water Distribution Systems publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2003)129:6(493) – volume: 142 start-page: 1 issue: 5 year: 2016 ident: 10.1016/j.watres.2023.120117_bib0046 article-title: Optimal Management of Water Distribution Networks with Simulated Annealing: The C-Town Problem publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000604 – volume: 185 start-page: 8035 issue: 10 year: 2013 ident: 10.1016/j.watres.2023.120117_bib0019 article-title: Optimizing booster chlorination in water distribution networks: A water quality index approach publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-013-3153-z – volume: 104 start-page: 148 issue: 1 year: 2015 ident: 10.1016/j.watres.2023.120117_bib53 article-title: Taking the human out of the loop: A review of Bayesian optimization publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2494218 – volume: 91 start-page: 86 issue: 1 year: 1999 ident: 10.1016/j.watres.2023.120117_bib0023 article-title: The case for maintaining a disinfectant residual publication-title: J. Am. Water Works Assoc. doi: 10.1002/j.1551-8833.1999.tb08573.x – volume: 25 year: 2012 ident: 10.1016/j.watres.2023.120117_bib54 article-title: Practical bayesian optimization of machine learning algorithms publication-title: Advances in neural information processing systems – volume: 42 start-page: 13 issue: 1–2 year: 2008 ident: 10.1016/j.watres.2023.120117_bib0010 article-title: Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: A critical review publication-title: Water Res doi: 10.1016/j.watres.2007.07.025 – volume: 134 start-page: 556 issue: 6 year: 2008 ident: 10.1016/j.watres.2023.120117_bib0036 article-title: The Battle of the Water Sensor Networks (BWSN): A Design Challenge for Engineers and Algorithms publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2008)134:6(556) – volume: 10 start-page: 51 issue: 1 year: 2012 ident: 10.1016/j.watres.2023.120117_bib0005 article-title: A novel approach for water quality management in water distribution systems by multi-objective booster chlorination publication-title: Int. J. Civ. Eng. – volume: 93 start-page: 209 year: 2017 ident: 10.1016/j.watres.2023.120117_bib0030 article-title: Lost in optimisation of water distribution systems? A literature review of system operation publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2017.02.009 – volume: 20 start-page: 1025 issue: 5 year: 2018 ident: 10.1016/j.watres.2023.120117_bib0032 article-title: Integrating booster chlorination and operational interventions in water distribution systems publication-title: J. Hydroinformatics doi: 10.2166/hydro.2018.113 – volume: 130 start-page: 53 issue: 1 year: 2004 ident: 10.1016/j.watres.2023.120117_bib0039 article-title: Linear Least-Squares Formulation for Operation of Booster Disinfection Systems publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2004)130:1(53) – year: 2023 ident: 10.1016/j.watres.2023.120117_bib0043 – volume: 120 start-page: 803 issue: 4 year: 1994 ident: 10.1016/j.watres.2023.120117_bib0041 article-title: Modeling Chlorine Residuals in Drinking-Water Distribution Systems publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(1994)120:4(803) – volume: 89 start-page: 107 year: 2016 ident: 10.1016/j.watres.2023.120117_bib0003 article-title: Water quality modeling in the dead end sections of drinking water distribution networks publication-title: Water Res doi: 10.1016/j.watres.2015.11.025 – volume: 124 start-page: 99 issue: 2 year: 1998 ident: 10.1016/j.watres.2023.120117_bib0007 article-title: Optimal Scheduling of Booster Disinfection in Water Distribution Systems publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(1998)124:2(99) – volume: 128 start-page: 322 issue: 5 year: 2002 ident: 10.1016/j.watres.2023.120117_bib0047 article-title: Facility Location Model for Booster Disinfection of Water Supply Networks publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2002)128:5(322) – volume: 91 start-page: 95 issue: 1 year: 1999 ident: 10.1016/j.watres.2023.120117_bib0048 article-title: Booster chlorination for managing disinfectant residuals publication-title: J. Am. Water Works Assoc. doi: 10.1002/j.1551-8833.1999.tb08574.x |
SSID | ssj0002239 |
Score | 2.5157967 |
Snippet | •Bayesian optimization is applied for water quality control in distribution networks.•Coupling BO with EPANET to optimize the scheduling of multiple chlorine... Chlorine remains the most widely used disinfectant in drinking water treatment and distribution systems worldwide. To maintain a minimum residual throughout... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 120117 |
SubjectTerms | Bayesian optimization Bayesian theory booster chlorination systems chlorine chlorine residual covariance disinfectants disinfection entropy normal distribution probability water water distribution Water distribution networks water quality water treatment |
Title | Bayesian Optimization of Booster Disinfection Scheduling in Water Distribution Networks |
URI | https://dx.doi.org/10.1016/j.watres.2023.120117 https://www.ncbi.nlm.nih.gov/pubmed/37393806 https://www.proquest.com/docview/2832842159 https://www.proquest.com/docview/2834267441 |
Volume | 242 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xWGBAvCkvGYk1bRLHcTLyVAFRBqhgi2zHQUWQVqUIsfDbuWucCgaoxBjrLFl39n2f43sAHCJHNWGutcdz7VNR7Zzed6kSZsKDwo9M7FO-83UnbnejywfxMAMndS4MhVU631_59LG3diMtp83WoNejHF8EPy6QD1AhKS5mYT5EtMcb2PzRxVW7M3HIiIBp_dBME-oMunGY17uinIwmdRFvBoSG8jeE-o2BjpHofBmWHIVkR9UqV2DGlquw-K2w4BrcH6sPS-mR7AZdwovLtWT9gh33KatjyE57r3UcVslu0XI5haQ_sl7J7pUTmDTDYp0qWPx1HbrnZ3cnbc-1UPAMT8XIU3j9sQKdqzQxnjbtBzYKcpXERodpgdCklQ1jYSOp_aKIFI6GEklcrguTKl3wDZgr-6XdAhYIbZIiMSYNdJRKpUScKMGp_pmUqOMG8FptmXH1xanNxXNWB5I9ZZWyM1J2Vim7Ad5k1qCqrzFFXtYWyX7skwwhYMrMg9qAGR4hehdRpe2_oRB6tSRC7pP-KYNcRiJ5bMBmZf3JejlVFUz8ePvfa9uBBfqif9WB2IW50fDN7iHZGel9mG1-BvtuS38BZ37-KA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIAD4s14BolroV2apj2Ol8ZrHADBLUrSFA1Bh2AI8e-x13SCAyBxTR01shP7a2N_BthBjGpbuTEBz01IpNo53e8SE2bKoyKMbRJSvfNFN-ncxKd34m4MDupaGEqr9L6_8ulDb-1H9rw29557ParxxeDHBeIBIpLiYhwm8F0RbvaJ9slZpztyyBgBs_qimSbUFXTDNK93TTUZu9RFfDeiaCh_ilA_IdBhJDqehRkPIVm7WuUcjLlyHqa_EAsuwO2-_nBUHsku0SU8-VpL1i_Yfp-qOl7YYe-1zsMq2RVaLqeU9HvWK9mt9gKjZlisWyWLvy7CzfHR9UEn8C0UAsszMQg0fv44gc5V2gRPmwkjF0e5ThNrWlmBoclo10qEi6UJiyLWONqSCOJyU9hMm4IvQaPsl24FWCSMTYvU2iwycSa1FkmqBSf-MylRx03gtdqU9fzi1ObiUdWJZA-qUrYiZatK2U0IRrOeK36NP-RlbRH1bZ8oDAF_zNyuDajwCNG9iC5d_w2F0KulMWKf7FcZxDISwWMTlivrj9bLiVUwDZPVf69tCyY71xfn6vyke7YGU_SE_ltHYh0ag5c3t4HAZ2A2_cb-BGQWAB0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Optimization+of+Booster+Disinfection+Scheduling+in+Water+Distribution+Networks&rft.jtitle=Water+research+%28Oxford%29&rft.au=Moeini%2C+Mohammadreza&rft.au=Sela%2C+Lina&rft.au=Taha%2C+Ahmad+F&rft.au=Abokifa%2C+Ahmed+A&rft.date=2023-08-15&rft.eissn=1879-2448&rft.volume=242&rft.spage=120117&rft_id=info:doi/10.1016%2Fj.watres.2023.120117&rft_id=info%3Apmid%2F37393806&rft.externalDocID=37393806 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |