A robust framework combined saliency detection and image recognition for garbage classification
•A robust framework combined saliency detection and image classification is proposed.•The smallest rectangle containing the saliency region is used for segmentation.•Data fusion is used to generate synthetic images for improving the robustness. Using deep learning to solve garbage classification has...
Saved in:
| Published in | Waste management (Elmsford) Vol. 140; pp. 193 - 203 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.03.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0956-053X 1879-2456 1879-2456 |
| DOI | 10.1016/j.wasman.2021.11.027 |
Cover
| Abstract | •A robust framework combined saliency detection and image classification is proposed.•The smallest rectangle containing the saliency region is used for segmentation.•Data fusion is used to generate synthetic images for improving the robustness.
Using deep learning to solve garbage classification has become a hot topic in computer version. The most widely used garbage dataset Trashnet only has garbage images with a white board as background. Previous studies based on Trashnet focus on using different networks to achieve a higher classification accuracy without considering the complex backgrounds which might encounter in practical applications. To solve this problem, we propose a framework that combines saliency detection and image classification to improve the generalization performance and robustness. A saliency network Salinet is adopted to obtain the garbage target area. Then, a smallest rectangle containing this area is created and used to segment the garbage. A classification network Inception V3 is used to identify the segmented garbage image. Images of the original Trashnet are fused with complex backgrounds of the other saliency detection datasets. The fused and original Trashnet are used together for training to improve the robustness to noises and complex backgrounds. Compared with the image classification networks and classic target detection algorithms, the proposed framework improves the accuracy of 0.50% − 15.79% on the testing sets fused with complex backgrounds. In addition, the proposed framework achieves the best performance with a gain of 4.80% in accuracy on the collected actual dataset. The comparisons prove that our framework is more robust to garbage classification in complex backgrounds. This method can be applied to smart trash cans to achieve automatic garbage classification. |
|---|---|
| AbstractList | Using deep learning to solve garbage classification has become a hot topic in computer version. The most widely used garbage dataset Trashnet only has garbage images with a white board as background. Previous studies based on Trashnet focus on using different networks to achieve a higher classification accuracy without considering the complex backgrounds which might encounter in practical applications. To solve this problem, we propose a framework that combines saliency detection and image classification to improve the generalization performance and robustness. A saliency network Salinet is adopted to obtain the garbage target area. Then, a smallest rectangle containing this area is created and used to segment the garbage. A classification network Inception V3 is used to identify the segmented garbage image. Images of the original Trashnet are fused with complex backgrounds of the other saliency detection datasets. The fused and original Trashnet are used together for training to improve the robustness to noises and complex backgrounds. Compared with the image classification networks and classic target detection algorithms, the proposed framework improves the accuracy of 0.50% − 15.79% on the testing sets fused with complex backgrounds. In addition, the proposed framework achieves the best performance with a gain of 4.80% in accuracy on the collected actual dataset. The comparisons prove that our framework is more robust to garbage classification in complex backgrounds. This method can be applied to smart trash cans to achieve automatic garbage classification. •A robust framework combined saliency detection and image classification is proposed.•The smallest rectangle containing the saliency region is used for segmentation.•Data fusion is used to generate synthetic images for improving the robustness. Using deep learning to solve garbage classification has become a hot topic in computer version. The most widely used garbage dataset Trashnet only has garbage images with a white board as background. Previous studies based on Trashnet focus on using different networks to achieve a higher classification accuracy without considering the complex backgrounds which might encounter in practical applications. To solve this problem, we propose a framework that combines saliency detection and image classification to improve the generalization performance and robustness. A saliency network Salinet is adopted to obtain the garbage target area. Then, a smallest rectangle containing this area is created and used to segment the garbage. A classification network Inception V3 is used to identify the segmented garbage image. Images of the original Trashnet are fused with complex backgrounds of the other saliency detection datasets. The fused and original Trashnet are used together for training to improve the robustness to noises and complex backgrounds. Compared with the image classification networks and classic target detection algorithms, the proposed framework improves the accuracy of 0.50% − 15.79% on the testing sets fused with complex backgrounds. In addition, the proposed framework achieves the best performance with a gain of 4.80% in accuracy on the collected actual dataset. The comparisons prove that our framework is more robust to garbage classification in complex backgrounds. This method can be applied to smart trash cans to achieve automatic garbage classification. Using deep learning to solve garbage classification has become a hot topic in computer version. The most widely used garbage dataset Trashnet only has garbage images with a white board as background. Previous studies based on Trashnet focus on using different networks to achieve a higher classification accuracy without considering the complex backgrounds which might encounter in practical applications. To solve this problem, we propose a framework that combines saliency detection and image classification to improve the generalization performance and robustness. A saliency network Salinet is adopted to obtain the garbage target area. Then, a smallest rectangle containing this area is created and used to segment the garbage. A classification network Inception V3 is used to identify the segmented garbage image. Images of the original Trashnet are fused with complex backgrounds of the other saliency detection datasets. The fused and original Trashnet are used together for training to improve the robustness to noises and complex backgrounds. Compared with the image classification networks and classic target detection algorithms, the proposed framework improves the accuracy of 0.50% - 15.79% on the testing sets fused with complex backgrounds. In addition, the proposed framework achieves the best performance with a gain of 4.80% in accuracy on the collected actual dataset. The comparisons prove that our framework is more robust to garbage classification in complex backgrounds. This method can be applied to smart trash cans to achieve automatic garbage classification. Using deep learning to solve garbage classification has become a hot topic in computer version. The most widely used garbage dataset Trashnet only has garbage images with a white board as background. Previous studies based on Trashnet focus on using different networks to achieve a higher classification accuracy without considering the complex backgrounds which might encounter in practical applications. To solve this problem, we propose a framework that combines saliency detection and image classification to improve the generalization performance and robustness. A saliency network Salinet is adopted to obtain the garbage target area. Then, a smallest rectangle containing this area is created and used to segment the garbage. A classification network Inception V3 is used to identify the segmented garbage image. Images of the original Trashnet are fused with complex backgrounds of the other saliency detection datasets. The fused and original Trashnet are used together for training to improve the robustness to noises and complex backgrounds. Compared with the image classification networks and classic target detection algorithms, the proposed framework improves the accuracy of 0.50% - 15.79% on the testing sets fused with complex backgrounds. In addition, the proposed framework achieves the best performance with a gain of 4.80% in accuracy on the collected actual dataset. The comparisons prove that our framework is more robust to garbage classification in complex backgrounds. This method can be applied to smart trash cans to achieve automatic garbage classification.Using deep learning to solve garbage classification has become a hot topic in computer version. The most widely used garbage dataset Trashnet only has garbage images with a white board as background. Previous studies based on Trashnet focus on using different networks to achieve a higher classification accuracy without considering the complex backgrounds which might encounter in practical applications. To solve this problem, we propose a framework that combines saliency detection and image classification to improve the generalization performance and robustness. A saliency network Salinet is adopted to obtain the garbage target area. Then, a smallest rectangle containing this area is created and used to segment the garbage. A classification network Inception V3 is used to identify the segmented garbage image. Images of the original Trashnet are fused with complex backgrounds of the other saliency detection datasets. The fused and original Trashnet are used together for training to improve the robustness to noises and complex backgrounds. Compared with the image classification networks and classic target detection algorithms, the proposed framework improves the accuracy of 0.50% - 15.79% on the testing sets fused with complex backgrounds. In addition, the proposed framework achieves the best performance with a gain of 4.80% in accuracy on the collected actual dataset. The comparisons prove that our framework is more robust to garbage classification in complex backgrounds. This method can be applied to smart trash cans to achieve automatic garbage classification. |
| Author | Wang, Cong Qin, Jiongming Yang, Shaohua Chen, Bin Ran, Xu |
| Author_xml | – sequence: 1 givenname: Jiongming surname: Qin fullname: Qin, Jiongming – sequence: 2 givenname: Cong surname: Wang fullname: Wang, Cong – sequence: 3 givenname: Xu surname: Ran fullname: Ran, Xu – sequence: 4 givenname: Shaohua surname: Yang fullname: Yang, Shaohua – sequence: 5 givenname: Bin surname: Chen fullname: Chen, Bin email: chenbin121@swu.edu.cn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34836728$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUFr3DAUhEVJSTZp_kEpOvZiV0-WZbuHQghtUgj00kJv4ll6WrS1rVTyNuTf184mlx6anARPMwMz3yk7muJEjL0FUYIA_WFX3mEecSqlkFAClEI2r9gG2qYrpKr1EduIrtaFqKufJ-w0550QoFoQx-ykUm2lG9lumLngKfb7PHOfcKS7mH5xG8c-TOR4xiHQZO-5o5nsHOLEcXI8jLglnsjG7RQerj4mvsXUr3c7YM7BB4vr1xv22uOQ6fzxPWM_vnz-fnld3Hy7-np5cVPYqqvnApXTDmtoBEkva6W9bLEh63rwHkEo8E2NlVO-U1IrXGpUBFAr9A6pF9UZe3_IvU3x957ybMaQLQ0DThT32UhdaaUFVO0LpEIJ6JYhF-m7R-m-H8mZ27R0T_fmab9F8PEgsCnmnMgbG-aH4nPCMBgQZoVlduYAy6ywDIBZYC1m9Y_5Kf8Z26eDjZY9_wRKJtsVE7mwMJmNi-H_AX8B1xOxTg |
| CitedBy_id | crossref_primary_10_3390_su17051902 crossref_primary_10_1007_s11356_024_33233_w crossref_primary_10_3390_s22197455 crossref_primary_10_2478_sbeef_2024_0010 crossref_primary_10_3389_fenvs_2023_1228732 crossref_primary_10_3390_s24092821 crossref_primary_10_1002_adc2_195 crossref_primary_10_1016_j_wasman_2023_02_014 crossref_primary_10_1117_1_JEI_32_4_043017 crossref_primary_10_1109_TAI_2023_3250207 crossref_primary_10_1007_s11554_025_01655_5 crossref_primary_10_1007_s11042_024_18474_8 crossref_primary_10_1088_1402_4896_ad76e8 crossref_primary_10_1016_j_iot_2023_100987 crossref_primary_10_1016_j_wasman_2024_01_047 crossref_primary_10_1007_s11356_023_28639_x crossref_primary_10_1088_2515_7620_ad3db7 crossref_primary_10_4018_JOEUC_351242 |
| Cites_doi | 10.1007/s00371-013-0867-4 10.1109/TPAMI.2011.130 10.1109/TPAMI.2012.120 10.1109/ACCESS.2020.2995681 10.1109/TPAMI.2016.2577031 10.1109/TPAMI.2016.2644615 10.1007/978-3-642-28658-2_85 10.1109/TII.2017.2786778 10.1016/j.promfg.2019.05.086 10.1109/CVPR.2013.407 10.1016/j.wasman.2017.09.019 10.1111/exsy.12343 10.1109/ACCESS.2019.2959033 10.1016/0031-3203(86)90030-0 10.1109/TPAMI.2015.2465960 10.1109/CVPR.2007.383047 10.1109/TIP.2019.2919937 10.1109/CVPR.2011.5995344 10.1016/j.wasman.2020.04.041 10.1109/BigData.2018.8622212 10.1016/j.compag.2018.02.024 10.1109/TIP.2016.2602079 10.1109/CVPR.2014.43 10.1109/ITOEC.2018.8740751 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.wasman.2021.11.027 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1879-2456 |
| EndPage | 203 |
| ExternalDocumentID | 34836728 10_1016_j_wasman_2021_11_027 S0956053X21006152 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 4.4 457 4G. 5VS 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL SDF SDG SES SPC SPCBC SSE SSJ SSZ T5K Y6R ~02 ~G- 1~5 29R 53G 7-5 AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RPZ SEN SEW TAE WUQ ~HD CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c395t-a4d6da5170e2f2546f28a7ecdb1ffa1041f75a3d4f94264a8103e1154afdaeb03 |
| IEDL.DBID | .~1 |
| ISSN | 0956-053X 1879-2456 |
| IngestDate | Thu Oct 02 07:05:12 EDT 2025 Sun Sep 28 04:59:54 EDT 2025 Thu Apr 03 07:03:58 EDT 2025 Sat Oct 25 04:50:53 EDT 2025 Thu Apr 24 23:09:51 EDT 2025 Fri Feb 23 02:43:47 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Garbage classification Image segmentation Data fusion Saliency detection |
| Language | English |
| License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c395t-a4d6da5170e2f2546f28a7ecdb1ffa1041f75a3d4f94264a8103e1154afdaeb03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 34836728 |
| PQID | 2604019187 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2636460138 proquest_miscellaneous_2604019187 pubmed_primary_34836728 crossref_citationtrail_10_1016_j_wasman_2021_11_027 crossref_primary_10_1016_j_wasman_2021_11_027 elsevier_sciencedirect_doi_10_1016_j_wasman_2021_11_027 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 2022-03-00 2022-Mar-01 20220301 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Waste management (Elmsford) |
| PublicationTitleAlternate | Waste Manag |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhang, Zhang, Dai, Harandi, Hartley (b0195) 2018 Liu, T., Sun, J., Zheng, N., N., Tang, X., Shum, H., Y., 2007. Learning to detect a salient object. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Minneapolis, MN, USA, pp. 1-8. Soni, Kandasamy (b0145) 2017 Jiang, Wang, Yuan, Wu, Zheng, Li (b0060) 2013 Jha, Pan, Elahi, Patel (b0070) 2019; 36 Cheng, M., M., Zhang, G., X., Mitra, N., J., Huang, X., Hu, S., M., 2011. Global contrast based on salient region detection. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Providence, RI, USA, pp. 409-416. Shi, Yan, Xu, Jia (b0140) 2016; 38 Gundupalli, Hait, Thakur (b0050) 2017; 70 Yan, Xu, Shi, Jia (b0180) 2013 Ahmad, K., Khan, K., Fuqaha, A., A., 2020. Intelligent Fusion of Deep Features for Improved Waste Classification. IEEE ACCESS. 8, 96495-96504. Zhou, Bai, Zhang, Zhao, Mei (b0205) 2020 Kittler, Illingworth (b0075) 1986; 19 Adedeji, Wang (b0020) 2019; 35 Wang, Lu, Wang, Feng, Wang, Yin, Ruan (b0160) 2017 Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (b0005) 2012; 34 Hu, Z., Cao, Z., Shi, J., 2012. Application of Pattern Recognizing Technique to Automatic Ioslating Garbage Can. In: Advances in Electronic Commerce, Web Application and Communication. pp. 543-548. Li, Y., Hou, X., Koch, C., Rehg, J., M., Yuille, A., L., 2014. The secrets of salient object segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Columbus, OH, USA, pp. 280-287. Szegedy, Vanhoucke, Ioffe, Shlens (b0135) 2016 Yang, M., Thung, G., 2016. Classification of Trash for Recyclability Status. Mach. Learn., Stanford, CA, USA, Project Rep. CS229. Gonzalez, R., C., Woods, R., E., 2007. Digital Image Processing, third ed. Knoxville, TN, USA: Gatesmark Publishing, pp. 742-745. Perazzi, Krahenbuhl, Pritch, Hornung (b0120) 2012 Redmon, J., Farhadi, A., 2018. YOLOv3: An Incremental Improvement. ArXiv preprint arXiv: 1804. 02767v1. Jha, S., K., Ahmad, Z., 2018. Soil microbial dynamics prediction using machine learning regression methods. Comput. Electron. Arg. 147, 158-165. Zhou, Nie, Adeli, Yin, Lian, Shen (b0200) 2020; 29 Zuiderveld (b0190) 1994 Long, Shelhamer, Darrell (b0105) 2015 Krizhevsky, Sutskever, Hinton (b0080) 2012 Kingma, D., P., Ba, J., 2014. Adam: A method for stochastic optimization. ArXiv preprint arXiv: 1412.6980. Ren, He, Girshick, Sun (b0125) 2017; 39 Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M., H., 2013. Saliency Detection via Graph-Based Manifold Ranking. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Portland, OR, USA, pp. 3166-3173. Vo, Hoang Son, Vo, Le (b0155) 2019; 7 Aral, R., A., Keskin, S., Kaya, M., Haciomeroglu, M., 2018. Classification of TrashNet Dataset Based on Deep Learning Models. In: 2018 IEEE International Conference on Big Data (Big Data 2018). pp. 2058-2062. . Badrinarayanan, Kendall, Cipolla (b0030) 2017; 39 Nowakowski, Pamula (b0115) 2020; 109 O'Toole, Karimian, Peyton (b0150) 2018; 14 Xu, Qi, Diao (b0170) 2020 Wang, B., Zhou, W., Shen, S., 2018. Garbage Classification and Environmental Monitoring based on Internet of Things. In: 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC 2018). pp. 1762-1766. Alpert, Galun, Brandt, Basri (b0010) 2012; 34 Li, Yu (b0110) 2016; 25 Cheng, Mitra, Huang, Hu (b0040) 2014; 30 Kim, Park, Roh, Shin (b0090) 2020 10.1016/j.wasman.2021.11.027_b0055 10.1016/j.wasman.2021.11.027_b0175 Li (10.1016/j.wasman.2021.11.027_b0110) 2016; 25 10.1016/j.wasman.2021.11.027_b0130 Xu (10.1016/j.wasman.2021.11.027_b0170) 2020 10.1016/j.wasman.2021.11.027_b0095 Kittler (10.1016/j.wasman.2021.11.027_b0075) 1986; 19 Kim (10.1016/j.wasman.2021.11.027_b0090) 2020 Alpert (10.1016/j.wasman.2021.11.027_b0010) 2012; 34 Zhang (10.1016/j.wasman.2021.11.027_b0195) 2018 Ren (10.1016/j.wasman.2021.11.027_b0125) 2017; 39 Zhou (10.1016/j.wasman.2021.11.027_b0205) 2020 Shi (10.1016/j.wasman.2021.11.027_b0140) 2016; 38 Cheng (10.1016/j.wasman.2021.11.027_b0040) 2014; 30 Szegedy (10.1016/j.wasman.2021.11.027_b0135) 2016 Soni (10.1016/j.wasman.2021.11.027_b0145) 2017 Nowakowski (10.1016/j.wasman.2021.11.027_b0115) 2020; 109 10.1016/j.wasman.2021.11.027_b0025 10.1016/j.wasman.2021.11.027_b0045 10.1016/j.wasman.2021.11.027_b0100 10.1016/j.wasman.2021.11.027_b0165 10.1016/j.wasman.2021.11.027_b0065 Yan (10.1016/j.wasman.2021.11.027_b0180) 2013 Perazzi (10.1016/j.wasman.2021.11.027_b0120) 2012 10.1016/j.wasman.2021.11.027_b0185 10.1016/j.wasman.2021.11.027_b0085 Wang (10.1016/j.wasman.2021.11.027_b0160) 2017 Zuiderveld (10.1016/j.wasman.2021.11.027_b0190) 1994 Achanta (10.1016/j.wasman.2021.11.027_b0005) 2012; 34 Vo (10.1016/j.wasman.2021.11.027_b0155) 2019; 7 Zhou (10.1016/j.wasman.2021.11.027_b0200) 2020; 29 Jha (10.1016/j.wasman.2021.11.027_b0070) 2019; 36 O'Toole (10.1016/j.wasman.2021.11.027_b0150) 2018; 14 Badrinarayanan (10.1016/j.wasman.2021.11.027_b0030) 2017; 39 Gundupalli (10.1016/j.wasman.2021.11.027_b0050) 2017; 70 Adedeji (10.1016/j.wasman.2021.11.027_b0020) 2019; 35 Long (10.1016/j.wasman.2021.11.027_b0105) 2015 Krizhevsky (10.1016/j.wasman.2021.11.027_b0080) 2012 10.1016/j.wasman.2021.11.027_b0015 10.1016/j.wasman.2021.11.027_b0035 Jiang (10.1016/j.wasman.2021.11.027_b0060) 2013 |
| References_xml | – start-page: 2083 year: 2013 end-page: 2090 ident: b0060 article-title: Salient object detection: A discriminative regional feature integration approach – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b0030 article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 36 start-page: e12343 year: 2019 ident: b0070 article-title: A comprehensive search for expert classification methods in disease diagnosis and prediction publication-title: Expert Syst. – start-page: 11771 year: 2020 end-page: 11780 ident: b0205 article-title: Look-into-Object: Self-supervised Structure Modeling for Object Recognition publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE – year: 2012 ident: b0080 article-title: ImageNet Classification with Deep Convolutional Neural Networks publication-title: 2012 Conference and Workshop on Neural Information Processing Systems (NIPS) – start-page: 136 year: 2017 end-page: 145 ident: b0160 article-title: Learning to detect salient objects with image-level supervision publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – reference: Hu, Z., Cao, Z., Shi, J., 2012. Application of Pattern Recognizing Technique to Automatic Ioslating Garbage Can. In: Advances in Electronic Commerce, Web Application and Communication. pp. 543-548. – reference: Liu, T., Sun, J., Zheng, N., N., Tang, X., Shum, H., Y., 2007. Learning to detect a salient object. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Minneapolis, MN, USA, pp. 1-8. – volume: 30 start-page: 443 year: 2014 end-page: 453 ident: b0040 article-title: Salientshape: group saliency in image collections publication-title: The Visual Computer. – reference: Aral, R., A., Keskin, S., Kaya, M., Haciomeroglu, M., 2018. Classification of TrashNet Dataset Based on Deep Learning Models. In: 2018 IEEE International Conference on Big Data (Big Data 2018). pp. 2058-2062. – volume: 34 start-page: 315 year: 2012 end-page: 327 ident: b0010 article-title: Image segmentation by probabilistic bottom-up aggregation and cue integration publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 19 start-page: 41 year: 1986 end-page: 47 ident: b0075 article-title: Minimum error thresholding publication-title: Pattern Recognition. – start-page: 194 year: 2017 end-page: 206 ident: b0145 article-title: Smart Garbage Bin System - A Comprehensive Survey publication-title: Smart Secure Systems-IoT and Analytics Perspective, 2017 and International Conference on Intelligent Information Technologies, International Conference on – reference: Yang, M., Thung, G., 2016. Classification of Trash for Recyclability Status. Mach. Learn., Stanford, CA, USA, Project Rep. CS229. – reference: Ahmad, K., Khan, K., Fuqaha, A., A., 2020. Intelligent Fusion of Deep Features for Improved Waste Classification. IEEE ACCESS. 8, 96495-96504. – start-page: 2818 year: 2016 end-page: 2826 ident: b0135 article-title: Rethinking the Inception Architecture for Computer Vision – volume: 29 start-page: 461 year: 2020 end-page: 475 ident: b0200 article-title: High-Resolution Encoder–Decoder Networks for Low-Contrast Medical Image Segmentation publication-title: IEEE Trans. Image Process. – volume: 25 start-page: 5012 year: 2016 end-page: 5024 ident: b0110 article-title: Visual Saliency Detection Based on Multiscale Deep CNN Features publication-title: IEEE Trans. Image Process. – volume: 7 start-page: 178631 year: 2019 end-page: 178639 ident: b0155 article-title: A Novel Framework for Trash Classification Using Deep Transfer Learning publication-title: IEEE ACCESS. – year: 2020 ident: b0170 article-title: Reach on Waste Classification and Identification by Transfer Learning and Lightweight Neural Network publication-title: Preprint. – reference: Gonzalez, R., C., Woods, R., E., 2007. Digital Image Processing, third ed. Knoxville, TN, USA: Gatesmark Publishing, pp. 742-745. – reference: Kingma, D., P., Ba, J., 2014. Adam: A method for stochastic optimization. ArXiv preprint arXiv: 1412.6980. – start-page: 474 year: 1994 end-page: 485 ident: b0190 article-title: Graphics Gems – start-page: 5620 year: 2020 end-page: 5629 ident: b0090 article-title: GroupFace: Learning Latent Groups and Constructing Group-Based Representations for Face Recognition publication-title: 2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE – reference: Wang, B., Zhou, W., Shen, S., 2018. Garbage Classification and Environmental Monitoring based on Internet of Things. In: 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC 2018). pp. 1762-1766. – volume: 109 start-page: 1 year: 2020 end-page: 9 ident: b0115 article-title: Application of deep learning object classifier to improve e-waste collection planning publication-title: Waste Manag. – reference: Cheng, M., M., Zhang, G., X., Mitra, N., J., Huang, X., Hu, S., M., 2011. Global contrast based on salient region detection. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Providence, RI, USA, pp. 409-416. – volume: 70 start-page: 13 year: 2017 end-page: 21 ident: b0050 article-title: Multi-material classification of dry recyclables from municipal solid waste based on thermal imaging publication-title: Waste Manag. – start-page: 733 year: 2012 end-page: 740 ident: b0120 article-title: Saliency filters: Contrast based filtering for salient region detection2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) publication-title: IEEE – volume: 14 start-page: 3477 year: 2018 end-page: 3485 ident: b0150 article-title: Classification of Nonferrous Metals Using Magnetic Induction Spectroscopy publication-title: IEEE Trans. Indus. Inform. – reference: . – reference: Li, Y., Hou, X., Koch, C., Rehg, J., M., Yuille, A., L., 2014. The secrets of salient object segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Columbus, OH, USA, pp. 280-287. – start-page: 9029 year: 2018 end-page: 9038 ident: b0195 article-title: Deep Unsupervised Saliency Detection: A Multiple Noisy Labeling Perspective – reference: Redmon, J., Farhadi, A., 2018. YOLOv3: An Incremental Improvement. ArXiv preprint arXiv: 1804. 02767v1. – volume: 34 start-page: 2274 year: 2012 end-page: 2282 ident: b0005 article-title: SLIC Superpixels Compared to State-of-the-Art Superpixel Methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Jha, S., K., Ahmad, Z., 2018. Soil microbial dynamics prediction using machine learning regression methods. Comput. Electron. Arg. 147, 158-165. – volume: 38 start-page: 717 year: 2016 end-page: 729 ident: b0140 article-title: Hierarchical Image Saliency Detection on Extended CSSD publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M., H., 2013. Saliency Detection via Graph-Based Manifold Ranking. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Portland, OR, USA, pp. 3166-3173. – volume: 35 start-page: 607 year: 2019 end-page: 612 ident: b0020 article-title: Intelligent Waste Classification System Using Deep Learning Convolutional Neural Network publication-title: Procedia Manufacturing. – start-page: 3434 year: 2015 end-page: 3440 ident: b0105 article-title: Fully convolutional networks for semantic segmentation – volume: 39 start-page: 1137 year: 2017 end-page: 1149 ident: b0125 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1155 year: 2013 end-page: 1162 ident: b0180 publication-title: Hierarchical saliency detection – volume: 30 start-page: 443 issue: 4 year: 2014 ident: 10.1016/j.wasman.2021.11.027_b0040 article-title: Salientshape: group saliency in image collections publication-title: The Visual Computer. doi: 10.1007/s00371-013-0867-4 – volume: 34 start-page: 315 issue: 2 year: 2012 ident: 10.1016/j.wasman.2021.11.027_b0010 article-title: Image segmentation by probabilistic bottom-up aggregation and cue integration publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.130 – volume: 34 start-page: 2274 issue: 11 year: 2012 ident: 10.1016/j.wasman.2021.11.027_b0005 article-title: SLIC Superpixels Compared to State-of-the-Art Superpixel Methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.120 – ident: 10.1016/j.wasman.2021.11.027_b0025 doi: 10.1109/ACCESS.2020.2995681 – start-page: 3434 year: 2015 ident: 10.1016/j.wasman.2021.11.027_b0105 – start-page: 733 year: 2012 ident: 10.1016/j.wasman.2021.11.027_b0120 article-title: Saliency filters: Contrast based filtering for salient region detection2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 136 year: 2017 ident: 10.1016/j.wasman.2021.11.027_b0160 article-title: Learning to detect salient objects with image-level supervision – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 10.1016/j.wasman.2021.11.027_b0125 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.wasman.2021.11.027_b0030 article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – ident: 10.1016/j.wasman.2021.11.027_b0055 doi: 10.1007/978-3-642-28658-2_85 – start-page: 9029 year: 2018 ident: 10.1016/j.wasman.2021.11.027_b0195 – start-page: 5620 year: 2020 ident: 10.1016/j.wasman.2021.11.027_b0090 article-title: GroupFace: Learning Latent Groups and Constructing Group-Based Representations for Face Recognition – ident: 10.1016/j.wasman.2021.11.027_b0045 – year: 2012 ident: 10.1016/j.wasman.2021.11.027_b0080 article-title: ImageNet Classification with Deep Convolutional Neural Networks publication-title: 2012 Conference and Workshop on Neural Information Processing Systems (NIPS) – start-page: 2818 year: 2016 ident: 10.1016/j.wasman.2021.11.027_b0135 – volume: 14 start-page: 3477 issue: 8 year: 2018 ident: 10.1016/j.wasman.2021.11.027_b0150 article-title: Classification of Nonferrous Metals Using Magnetic Induction Spectroscopy publication-title: IEEE Trans. Indus. Inform. doi: 10.1109/TII.2017.2786778 – ident: 10.1016/j.wasman.2021.11.027_b0085 – volume: 35 start-page: 607 year: 2019 ident: 10.1016/j.wasman.2021.11.027_b0020 article-title: Intelligent Waste Classification System Using Deep Learning Convolutional Neural Network publication-title: Procedia Manufacturing. doi: 10.1016/j.promfg.2019.05.086 – ident: 10.1016/j.wasman.2021.11.027_b0175 doi: 10.1109/CVPR.2013.407 – volume: 70 start-page: 13 year: 2017 ident: 10.1016/j.wasman.2021.11.027_b0050 article-title: Multi-material classification of dry recyclables from municipal solid waste based on thermal imaging publication-title: Waste Manag. doi: 10.1016/j.wasman.2017.09.019 – volume: 36 start-page: e12343 issue: 1 year: 2019 ident: 10.1016/j.wasman.2021.11.027_b0070 article-title: A comprehensive search for expert classification methods in disease diagnosis and prediction publication-title: Expert Syst. doi: 10.1111/exsy.12343 – volume: 7 start-page: 178631 year: 2019 ident: 10.1016/j.wasman.2021.11.027_b0155 article-title: A Novel Framework for Trash Classification Using Deep Transfer Learning publication-title: IEEE ACCESS. doi: 10.1109/ACCESS.2019.2959033 – year: 2020 ident: 10.1016/j.wasman.2021.11.027_b0170 article-title: Reach on Waste Classification and Identification by Transfer Learning and Lightweight Neural Network publication-title: Preprint. – volume: 19 start-page: 41 issue: 1 year: 1986 ident: 10.1016/j.wasman.2021.11.027_b0075 article-title: Minimum error thresholding publication-title: Pattern Recognition. doi: 10.1016/0031-3203(86)90030-0 – ident: 10.1016/j.wasman.2021.11.027_b0130 – start-page: 1155 year: 2013 ident: 10.1016/j.wasman.2021.11.027_b0180 – start-page: 474 year: 1994 ident: 10.1016/j.wasman.2021.11.027_b0190 – volume: 38 start-page: 717 issue: 4 year: 2016 ident: 10.1016/j.wasman.2021.11.027_b0140 article-title: Hierarchical Image Saliency Detection on Extended CSSD publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2465960 – ident: 10.1016/j.wasman.2021.11.027_b0095 doi: 10.1109/CVPR.2007.383047 – volume: 29 start-page: 461 year: 2020 ident: 10.1016/j.wasman.2021.11.027_b0200 article-title: High-Resolution Encoder–Decoder Networks for Low-Contrast Medical Image Segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2919937 – ident: 10.1016/j.wasman.2021.11.027_b0035 doi: 10.1109/CVPR.2011.5995344 – start-page: 11771 year: 2020 ident: 10.1016/j.wasman.2021.11.027_b0205 article-title: Look-into-Object: Self-supervised Structure Modeling for Object Recognition – volume: 109 start-page: 1 year: 2020 ident: 10.1016/j.wasman.2021.11.027_b0115 article-title: Application of deep learning object classifier to improve e-waste collection planning publication-title: Waste Manag. doi: 10.1016/j.wasman.2020.04.041 – ident: 10.1016/j.wasman.2021.11.027_b0015 doi: 10.1109/BigData.2018.8622212 – start-page: 194 year: 2017 ident: 10.1016/j.wasman.2021.11.027_b0145 article-title: Smart Garbage Bin System - A Comprehensive Survey – ident: 10.1016/j.wasman.2021.11.027_b0065 doi: 10.1016/j.compag.2018.02.024 – ident: 10.1016/j.wasman.2021.11.027_b0185 – volume: 25 start-page: 5012 issue: 11 year: 2016 ident: 10.1016/j.wasman.2021.11.027_b0110 article-title: Visual Saliency Detection Based on Multiscale Deep CNN Features publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2602079 – start-page: 2083 year: 2013 ident: 10.1016/j.wasman.2021.11.027_b0060 – ident: 10.1016/j.wasman.2021.11.027_b0100 doi: 10.1109/CVPR.2014.43 – ident: 10.1016/j.wasman.2021.11.027_b0165 doi: 10.1109/ITOEC.2018.8740751 |
| SSID | ssj0014810 |
| Score | 2.459401 |
| Snippet | •A robust framework combined saliency detection and image classification is proposed.•The smallest rectangle containing the saliency region is used for... Using deep learning to solve garbage classification has become a hot topic in computer version. The most widely used garbage dataset Trashnet only has garbage... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 193 |
| SubjectTerms | Algorithms computers data collection Data fusion Garbage Garbage classification image analysis Image Processing, Computer-Assisted Image segmentation municipal solid waste Saliency detection waste management |
| Title | A robust framework combined saliency detection and image recognition for garbage classification |
| URI | https://dx.doi.org/10.1016/j.wasman.2021.11.027 https://www.ncbi.nlm.nih.gov/pubmed/34836728 https://www.proquest.com/docview/2604019187 https://www.proquest.com/docview/2636460138 |
| Volume | 140 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2456 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014810 issn: 0956-053X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2456 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014810 issn: 0956-053X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2456 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014810 issn: 0956-053X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2456 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014810 issn: 0956-053X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2456 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014810 issn: 0956-053X databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB1Cekh7CG3SNtuPoEKvzlqW_LHHZWnYtjSXNLA3MdZH2dJ4Q9ZLbvntmZHtpYEmgV6FDLJGjN5Db94AfOaqsyzUNglFrRONUieIUiY2EJeoUitTx8XJP86K-YX-tsgXOzAbamFYVtnn_i6nx2zdj4z73RxfLZfjc7bQoyO0INLC9zLnYa1L7mJwcruVeRDaj44E0W-PZw_lc1HjdYPrS2QX1EyesJcn95b59_X0EPyM19DpS9jv8aOYdkt8BTu-OYC92dC27QBe_OUweAhmKq5X9WbdijCosAT9KtFh78SaMDhXXgrn26jIagQ2TiwvKceIrbKIRgnYil_8MEHjluE264tiSF_DxemXn7N50vdUSKya5G2C2hUOc1mmPgvshR-yCktvXS1DQOJmMpQ5KqfDhLES0u4pz5Y9GBz6OlVvYLdZNf4IhNWFTxXKoDHXgXlm8N5mngBVTjxFjkANW2lsbzjOfS_-mEFZ9tt0ATAcAOIihgIwgmT71VVnuPHE_HKIkrl3cAzdCU98-WkIqqEY8UMJNn61WRvieEQ7J7J6dI4qdMHvvCN4252I7XqVrlRRZtW7_17be3iecZ1FFLt9gN32euM_Evpp6-N4vI_h2fTr9_nZHbsiBV8 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1V5VA4IFoKLNDWSL2mG8fOxx6rFdXSrwuttDdr4g-0iGarblbc-O3MOMkKJKASV8uRHM9o_J785hngmLvOslDbJBS1TjRKnSBKmdhAXKJKrUwdNydfXRezW30-z-dbMB16YVhW2df-rqbHat2PjPvdHN8vFuPPbKFHKTQn0sLnMtXhJzrPSmZgJz82Og-C-9GSIBru8fShfy6KvL7j6g7ZBjWTJ2zmyY_L_Pl8-hv-jOfQ2Qt43gNIcdqtcRe2fLMHO9Ph3bY9ePaLxeBLMKfiYVmvV60IgwxL0L8SH_ZOrAiEc-ulcL6NkqxGYOPE4o6KjNhIi2iUkK34wjcTNG4Zb7PAKMZ0H27PPt5MZ0n_qEJi1SRvE9SucJjLMvVZYDP8kFVYeutqGQISOZOhzFE5HSYMlpB2T3n27MHg0NepegXbzbLxb0BYXfhUoQwacx2YaAbvbeYJUeVEVOQI1LCVxvaO4_zwxTczSMu-mi4AhgNAZMRQAEaQbL667xw3HplfDlEyv2WOoUPhkS8_DEE1FCO-KcHGL9crQySPeOdEVv-cowpd8EXvCF53GbFZr9KVKsqsevvfazuCndnN1aW5_HR98Q6eZtx0EZVv72G7fVj7A4JCbX0YU_0nsmQG9A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+framework+combined+saliency+detection+and+image+recognition+for+garbage+classification&rft.jtitle=Waste+management+%28Elmsford%29&rft.au=Qin%2C+Jiongming&rft.au=Wang%2C+Cong&rft.au=Ran%2C+Xu&rft.au=Yang%2C+Shaohua&rft.date=2022-03-01&rft.issn=0956-053X&rft.volume=140+p.193-203&rft.spage=193&rft.epage=203&rft_id=info:doi/10.1016%2Fj.wasman.2021.11.027&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-053X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-053X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-053X&client=summon |