Fusion of Higher Order Spectra and Texture Extraction Methods for Automated Stroke Severity Classification with MRI Images

This paper presents a scientific foundation for automated stroke severity classification. We have constructed and assessed a system which extracts diagnostically relevant information from Magnetic Resonance Imaging (MRI) images. The design was based on 267 images that show the brain from individual...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental research and public health Vol. 18; no. 15; p. 8059
Main Authors Faust, Oliver, En Wei Koh, Joel, Jahmunah, Vicnesh, Sabut, Sukant, Ciaccio, Edward J., Majid, Arshad, Ali, Ali, Lip, Gregory Y. H., Acharya, U. Rajendra
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 29.07.2021
MDPI
Subjects
Online AccessGet full text
ISSN1660-4601
1661-7827
1660-4601
DOI10.3390/ijerph18158059

Cover

Abstract This paper presents a scientific foundation for automated stroke severity classification. We have constructed and assessed a system which extracts diagnostically relevant information from Magnetic Resonance Imaging (MRI) images. The design was based on 267 images that show the brain from individual subjects after stroke. They were labeled as either Lacunar Syndrome (LACS), Partial Anterior Circulation Syndrome (PACS), or Total Anterior Circulation Stroke (TACS). The labels indicate different physiological processes which manifest themselves in distinct image texture. The processing system was tasked with extracting texture information that could be used to classify a brain MRI image from a stroke survivor into either LACS, PACS, or TACS. We analyzed 6475 features that were obtained with Gray-Level Run Length Matrix (GLRLM), Higher Order Spectra (HOS), as well as a combination of Discrete Wavelet Transform (DWT) and Gray-Level Co-occurrence Matrix (GLCM) methods. The resulting features were ranked based on the p-value extracted with the Analysis Of Variance (ANOVA) algorithm. The ranked features were used to train and test four types of Support Vector Machine (SVM) classification algorithms according to the rules of 10-fold cross-validation. We found that SVM with Radial Basis Function (RBF) kernel achieves: Accuracy (ACC) = 93.62%, Specificity (SPE) = 95.91%, Sensitivity (SEN) = 92.44%, and Dice-score = 0.95. These results indicate that computer aided stroke severity diagnosis support is possible. Such systems might lead to progress in stroke diagnosis by enabling healthcare professionals to improve diagnosis and management of stroke patients with the same resources.
AbstractList This paper presents a scientific foundation for automated stroke severity classification. We have constructed and assessed a system which extracts diagnostically relevant information from Magnetic Resonance Imaging (MRI) images. The design was based on 267 images that show the brain from individual subjects after stroke. They were labeled as either Lacunar Syndrome (LACS), Partial Anterior Circulation Syndrome (PACS), or Total Anterior Circulation Stroke (TACS). The labels indicate different physiological processes which manifest themselves in distinct image texture. The processing system was tasked with extracting texture information that could be used to classify a brain MRI image from a stroke survivor into either LACS, PACS, or TACS. We analyzed 6475 features that were obtained with Gray-Level Run Length Matrix (GLRLM), Higher Order Spectra (HOS), as well as a combination of Discrete Wavelet Transform (DWT) and Gray-Level Co-occurrence Matrix (GLCM) methods. The resulting features were ranked based on the p-value extracted with the Analysis Of Variance (ANOVA) algorithm. The ranked features were used to train and test four types of Support Vector Machine (SVM) classification algorithms according to the rules of 10-fold cross-validation. We found that SVM with Radial Basis Function (RBF) kernel achieves: Accuracy (ACC) = 93.62%, Specificity (SPE) = 95.91%, Sensitivity (SEN) = 92.44%, and Dice-score = 0.95. These results indicate that computer aided stroke severity diagnosis support is possible. Such systems might lead to progress in stroke diagnosis by enabling healthcare professionals to improve diagnosis and management of stroke patients with the same resources.This paper presents a scientific foundation for automated stroke severity classification. We have constructed and assessed a system which extracts diagnostically relevant information from Magnetic Resonance Imaging (MRI) images. The design was based on 267 images that show the brain from individual subjects after stroke. They were labeled as either Lacunar Syndrome (LACS), Partial Anterior Circulation Syndrome (PACS), or Total Anterior Circulation Stroke (TACS). The labels indicate different physiological processes which manifest themselves in distinct image texture. The processing system was tasked with extracting texture information that could be used to classify a brain MRI image from a stroke survivor into either LACS, PACS, or TACS. We analyzed 6475 features that were obtained with Gray-Level Run Length Matrix (GLRLM), Higher Order Spectra (HOS), as well as a combination of Discrete Wavelet Transform (DWT) and Gray-Level Co-occurrence Matrix (GLCM) methods. The resulting features were ranked based on the p-value extracted with the Analysis Of Variance (ANOVA) algorithm. The ranked features were used to train and test four types of Support Vector Machine (SVM) classification algorithms according to the rules of 10-fold cross-validation. We found that SVM with Radial Basis Function (RBF) kernel achieves: Accuracy (ACC) = 93.62%, Specificity (SPE) = 95.91%, Sensitivity (SEN) = 92.44%, and Dice-score = 0.95. These results indicate that computer aided stroke severity diagnosis support is possible. Such systems might lead to progress in stroke diagnosis by enabling healthcare professionals to improve diagnosis and management of stroke patients with the same resources.
This paper presents a scientific foundation for automated stroke severity classification. We have constructed and assessed a system which extracts diagnostically relevant information from Magnetic Resonance Imaging (MRI) images. The design was based on 267 images that show the brain from individual subjects after stroke. They were labeled as either Lacunar Syndrome (LACS), Partial Anterior Circulation Syndrome (PACS), or Total Anterior Circulation Stroke (TACS). The labels indicate different physiological processes which manifest themselves in distinct image texture. The processing system was tasked with extracting texture information that could be used to classify a brain MRI image from a stroke survivor into either LACS, PACS, or TACS. We analyzed 6475 features that were obtained with Gray-Level Run Length Matrix (GLRLM), Higher Order Spectra (HOS), as well as a combination of Discrete Wavelet Transform (DWT) and Gray-Level Co-occurrence Matrix (GLCM) methods. The resulting features were ranked based on the p-value extracted with the Analysis Of Variance (ANOVA) algorithm. The ranked features were used to train and test four types of Support Vector Machine (SVM) classification algorithms according to the rules of 10-fold cross-validation. We found that SVM with Radial Basis Function (RBF) kernel achieves: Accuracy (ACC) = 93.62%, Specificity (SPE) = 95.91%, Sensitivity (SEN) = 92.44%, and Dice-score = 0.95. These results indicate that computer aided stroke severity diagnosis support is possible. Such systems might lead to progress in stroke diagnosis by enabling healthcare professionals to improve diagnosis and management of stroke patients with the same resources.
Author Faust, Oliver
Ciaccio, Edward J.
En Wei Koh, Joel
Jahmunah, Vicnesh
Majid, Arshad
Ali, Ali
Acharya, U. Rajendra
Lip, Gregory Y. H.
Sabut, Sukant
AuthorAffiliation 6 Sheffield Teaching Hospitals NIHR Biomedical Research Centre, Sheffield S10 2JF, UK; Ali.Ali@sth.nhs.uk
8 Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
10 Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
3 School of Electronics Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India; sukanta207@gmail.com
4 Department of Medicine-Cardiology, Columbia University, New York, NY 10027, USA; ciaccio@columbia.edu
5 Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK; arshad.majid@sheffield.ac.uk
1 Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, UK
11 International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
9 School of Science and Technology, Singapore University of Social Sciences, 463 Clementi Road,
AuthorAffiliation_xml – name: 1 Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, UK
– name: 9 School of Science and Technology, Singapore University of Social Sciences, 463 Clementi Road, Singapore 599494, Singapore
– name: 3 School of Electronics Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India; sukanta207@gmail.com
– name: 10 Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
– name: 2 School of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore; falco_peregrinus14@yahoo.co.uk (J.E.W.K.); e0145834@u.nus.edu (V.J.); aru@np.edu.sg (U.R.A.)
– name: 6 Sheffield Teaching Hospitals NIHR Biomedical Research Centre, Sheffield S10 2JF, UK; Ali.Ali@sth.nhs.uk
– name: 4 Department of Medicine-Cardiology, Columbia University, New York, NY 10027, USA; ciaccio@columbia.edu
– name: 5 Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK; arshad.majid@sheffield.ac.uk
– name: 8 Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
– name: 11 International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
– name: 7 Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L69 7TX, UK; Gregory.Lip@liverpool.ac.uk
Author_xml – sequence: 1
  givenname: Oliver
  orcidid: 0000-0002-3979-4077
  surname: Faust
  fullname: Faust, Oliver
– sequence: 2
  givenname: Joel
  surname: En Wei Koh
  fullname: En Wei Koh, Joel
– sequence: 3
  givenname: Vicnesh
  surname: Jahmunah
  fullname: Jahmunah, Vicnesh
– sequence: 4
  givenname: Sukant
  surname: Sabut
  fullname: Sabut, Sukant
– sequence: 5
  givenname: Edward J.
  surname: Ciaccio
  fullname: Ciaccio, Edward J.
– sequence: 6
  givenname: Arshad
  surname: Majid
  fullname: Majid, Arshad
– sequence: 7
  givenname: Ali
  surname: Ali
  fullname: Ali, Ali
– sequence: 8
  givenname: Gregory Y. H.
  orcidid: 0000-0002-7566-1626
  surname: Lip
  fullname: Lip, Gregory Y. H.
– sequence: 9
  givenname: U. Rajendra
  orcidid: 0000-0003-2689-8552
  surname: Acharya
  fullname: Acharya, U. Rajendra
BookMark eNqFkM1r3DAUxEVJaT7aa8-CXnrZRLIkW7oUwpI0CwmBbnoWsvy81ta2XElOsv3r490NpAmUXiTx9Jt5zByjg973gNBnSk4ZU-TMrSEMDZVUSCLUO3RE85zMeE7owV_vQ3Qc45oQJnmuPqBDxllOGFdH6M_lGJ3vsa_xlVs1EPBtqKZzOYBNwWDTV_gOHtMYAF88ThObtvgNpMZXEdc-4PMx-c4kqPAyBf8L8BLuIbi0wfPWxOhqZ81O9OBSg29-LPCiMyuIH9H72rQRPj3fJ-jn5cXd_Gp2fft9MT-_nlmmRJqpmoKwABlnkJHSEJZRLkRZkspSXlBjC8sLCWBELgpQSpVZQRUzrJBlDjU7QWd737EfzObBtK0egutM2GhK9LZF_brFSfFtrxjGsoPKQj8Ff1F54_Trn941euXvtWRcFIpPBl-fDYL_PUJMunPRQtuaHvwYdSbERJFst-vLG3Ttx9BPhWwpKUkuMzlRfE_Z4GMMUGvr0q7Vab9r_x3k9I3sP8mfAPPPulQ
CitedBy_id crossref_primary_10_3389_fneur_2023_1132318
crossref_primary_10_1186_s40001_024_02147_1
Cites_doi 10.1016/j.bspc.2012.08.004
10.1161/STROKEAHA.112.671594
10.4329/wjr.v8.i9.785
10.1016/B978-1-55860-335-6.50034-9
10.1016/j.neuroimage.2008.03.028
10.1159/000343658
10.1016/j.nicl.2017.06.016
10.1016/j.ejrad.2005.03.028
10.1016/j.neuroimage.2006.04.211
10.1145/312129.312220
10.1016/S0166-2236(99)01401-0
10.1161/STROKEAHA.111.646570
10.1002/eng2.12298
10.1016/j.compbiomed.2016.10.022
10.1016/j.bspc.2013.11.006
10.1161/CIRCULATIONAHA.111.040170
10.1016/S1053-8119(03)00377-X
10.1161/01.STR.25.7.1371
10.1056/NEJMcp072057
10.1109/ICCSCE50387.2020.9204948
10.1016/B978-0-12-336156-1.50061-6
10.1016/j.neuroimage.2006.04.225
10.1016/j.media.2004.06.007
10.1016/S0167-8655(01)00019-8
10.1016/S1474-4422(03)00266-7
10.1016/j.cmpb.2018.04.005
10.1212/WNL.54.8.1557
10.1109/ICIP.2006.312369
10.1109/IEMBS.2005.1615965
10.1109/RBME.2019.2934500
10.1001/jamaneurol.2013.413
10.1016/j.compbiomed.2018.02.002
10.1161/STROKEAHA.108.192616
10.1016/j.media.2004.06.019
10.1016/j.neuroimage.2005.07.021
10.1109/TKDE.2008.239
10.1016/j.neuroimage.2014.04.056
10.1007/s00415-012-6769-y
10.1016/0140-6736(92)91658-U
10.1016/j.neurad.2012.08.007
10.1161/CIRCULATIONAHA.110.971564
10.1016/j.compbiomed.2019.103536
10.1109/TSMC.1973.4309314
10.1038/nn1050
10.1016/j.knosys.2014.11.021
10.1007/s11760-018-1262-4
10.1016/S0933-3657(00)00073-7
10.1016/S0140-6736(06)68770-9
10.1016/j.cogsys.2019.05.005
10.1109/RBME.2012.2184750
10.1016/j.compbiomed.2021.104548
10.1016/j.bandl.2004.12.010
10.1016/j.cmpb.2011.10.001
10.1109/42.932750
10.1109/ICONIP.2002.1201981
10.1016/j.compbiomed.2019.103579
10.2307/1932409
10.1016/j.neuroimage.2011.04.014
10.7785/tcrt.2012.500214
10.1109/83.725367
10.1016/j.asoc.2019.105685
10.3233/IDA-130580
10.1016/j.neuroimage.2005.07.042
10.1093/brain/118.6.1593
10.1016/j.inffus.2003.10.001
10.1016/j.procs.2018.05.057
10.1109/36.752194
10.1080/00031305.1978.10479237
10.1007/BF00994018
10.1006/nimg.2000.0734
10.1016/j.cmpb.2005.06.012
10.1016/j.nicl.2012.10.003
10.1007/s00234-012-1091-z
10.1016/j.cognition.2003.11.002
10.1002/(SICI)1097-0193(200004)9:4<192::AID-HBM2>3.0.CO;2-Y
10.1007/s10439-005-9009-0
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/ijerph18158059
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1660-4601
ExternalDocumentID 10.3390/ijerph18158059
PMC8345794
10_3390_ijerph18158059
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
7XC
88E
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABGAM
ABUWG
ACGFO
ACGOD
ACIWK
ADBBV
AENEX
AFKRA
AFRAH
AFZYC
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
ESTFP
F5P
FYUFA
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
Q2X
RNS
RPM
SV3
TR2
UKHRP
XSB
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ADRAZ
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c395t-9f1e5cee243e20ba0321455bb0dc1471ac7c478eea5657e999b27193a378b6ef3
IEDL.DBID M48
ISSN 1660-4601
1661-7827
IngestDate Sun Oct 26 03:53:01 EDT 2025
Tue Sep 30 16:53:47 EDT 2025
Fri Sep 05 08:27:26 EDT 2025
Tue Oct 07 06:33:21 EDT 2025
Thu Oct 16 04:34:10 EDT 2025
Thu Apr 24 22:56:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-9f1e5cee243e20ba0321455bb0dc1471ac7c478eea5657e999b27193a378b6ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2689-8552
0000-0002-7566-1626
0000-0002-3979-4077
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijerph18158059
PMID 34360349
PQID 2558806828
PQPubID 54923
ParticipantIDs unpaywall_primary_10_3390_ijerph18158059
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8345794
proquest_miscellaneous_2559430259
proquest_journals_2558806828
crossref_citationtrail_10_3390_ijerph18158059
crossref_primary_10_3390_ijerph18158059
PublicationCentury 2000
PublicationDate 20210729
PublicationDateYYYYMMDD 2021-07-29
PublicationDate_xml – month: 7
  year: 2021
  text: 20210729
  day: 29
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle International journal of environmental research and public health
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Martis (ref_65) 2013; 8
Karthik (ref_87) 2019; 84
Hall (ref_34) 2001; 21
Sarmento (ref_80) 2019; 13
Debs (ref_85) 2020; 116
Kannathal (ref_60) 2005; 80
Acharya (ref_69) 2016; 79
Colliot (ref_32) 2006; 32
Hojjatoleslami (ref_35) 2001; 20
Matthis (ref_22) 2013; 55
Anbeek (ref_29) 2004; 8
ref_54
Vogt (ref_13) 2012; 43
Zaidi (ref_12) 2012; 43
ref_51
Lettau (ref_23) 2013; 40
Noronha (ref_66) 2014; 10
Newcombe (ref_25) 2013; 260
Rekik (ref_42) 2012; 1
Lopez (ref_2) 2006; 367
Colliot (ref_31) 2006; 29
Faust (ref_84) 2012; 5
Dirnagl (ref_5) 1999; 22
Stamatakis (ref_38) 2005; 94
He (ref_44) 2009; 21
Prastawa (ref_36) 2004; 8
Last (ref_73) 2001; 22
Galloway (ref_63) 1974; 75
Chen (ref_83) 2017; 15
Seghier (ref_15) 2008; 41
Akdemir (ref_57) 2018; 132
Bates (ref_8) 2003; 6
Acharya (ref_88) 2019; 58
Soh (ref_59) 1999; 37
Bonita (ref_1) 1992; 339
Vupputuri (ref_89) 2020; 116
Baygin (ref_91) 2021; 134
Tang (ref_62) 1998; 7
Latchaw (ref_7) 2009; 40
Feigin (ref_4) 2003; 2
Wu (ref_39) 2006; 32
Acharya (ref_55) 2012; 107
Verikas (ref_58) 2018; 12
Cortes (ref_75) 1995; 20
Fiez (ref_10) 2000; 9
Acharya (ref_56) 2011; 10
Dice (ref_79) 1945; 26
Lindgren (ref_11) 1994; 25
Baliyan (ref_21) 2016; 8
Wilke (ref_16) 2011; 56
ref_76
Susan (ref_50) 2020; 3
Filippi (ref_19) 1995; 118
Acharya (ref_68) 2015; 75
Mitra (ref_86) 2014; 98
Faust (ref_90) 2018; 161
Mishra (ref_52) 2014; 4
Raghavendra (ref_70) 2018; 95
Ashton (ref_18) 2003; 17
Lansberg (ref_20) 2000; 54
Ye (ref_78) 2014; 6
Dronkers (ref_9) 2004; 92
Domenech (ref_26) 2012; 34
Swapna (ref_67) 2013; 17
Berrar (ref_74) 2019; 1
Sajja (ref_37) 2006; 34
Assi (ref_71) 2018; 8
ref_82
Smith (ref_3) 2011; 124
Rangaraju (ref_14) 2013; 70
Datta (ref_33) 2006; 29
ref_81
Chang (ref_77) 2010; 11
Hoaglin (ref_72) 1978; 32
ref_47
Haralick (ref_53) 1973; SMC-3
ref_46
ref_45
Gitelman (ref_27) 2001; 13
ref_43
ref_41
Mehta (ref_28) 2003; 20
Xie (ref_40) 2005; 56
(ref_6) 2007; 357
Lutsep (ref_24) 1997; 41
Mohanty (ref_61) 2011; 1
Meyers (ref_17) 2011; 123
Kubat (ref_48) 1997; 97
ref_49
Capelle (ref_30) 2004; 5
Xu (ref_64) 2004; 27
References_xml – volume: 8
  start-page: 193
  year: 2013
  ident: ref_65
  article-title: Cardiac decision making using higher order spectra
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2012.08.004
– volume: 43
  start-page: 3238
  year: 2012
  ident: ref_12
  article-title: Final infarct volume is a stronger predictor of outcome than recanalization in patients with proximal middle cerebral artery occlusion treated with endovascular therapy
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.112.671594
– volume: 8
  start-page: 785
  year: 2016
  ident: ref_21
  article-title: Diffusion weighted imaging: Technique and applications
  publication-title: World J. Radiol.
  doi: 10.4329/wjr.v8.i9.785
– ident: ref_49
– volume: 41
  start-page: 574
  year: 1997
  ident: ref_24
  article-title: Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischemic stroke
  publication-title: Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc.
– ident: ref_45
  doi: 10.1016/B978-1-55860-335-6.50034-9
– volume: 8
  start-page: 1
  year: 2018
  ident: ref_71
  article-title: Bispectrum features and multilayer perceptron classifier to enhance seizure prediction
  publication-title: Sci. Rep.
– volume: 41
  start-page: 1253
  year: 2008
  ident: ref_15
  article-title: Lesion identification using unified segmentation-normalisation models and fuzzy clustering
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.03.028
– ident: ref_51
– volume: 34
  start-page: 376
  year: 2012
  ident: ref_26
  article-title: Hyperintensity of distal vessels on FLAIR is associated with slow progression of the infarction in acute ischemic stroke
  publication-title: Cerebrovasc. Dis.
  doi: 10.1159/000343658
– volume: 15
  start-page: 633
  year: 2017
  ident: ref_83
  article-title: Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2017.06.016
– volume: 56
  start-page: 12
  year: 2005
  ident: ref_40
  article-title: Semi-automated brain tumor and edema segmentation using MRI
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2005.03.028
– volume: 75
  start-page: 18555
  year: 1974
  ident: ref_63
  article-title: Texture analysis using grey level run lengths
  publication-title: NASA STI/Recon Tech. Rep. N
– volume: 32
  start-page: 1205
  year: 2006
  ident: ref_39
  article-title: Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.04.211
– ident: ref_46
  doi: 10.1145/312129.312220
– volume: 22
  start-page: 391
  year: 1999
  ident: ref_5
  article-title: Pathobiology of ischaemic stroke: An integrated view
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(99)01401-0
– volume: 43
  start-page: 1266
  year: 2012
  ident: ref_13
  article-title: Initial lesion volume is an independent predictor of clinical stroke outcome at day 90: An analysis of the Virtual International Stroke Trials Archive (VISTA) database
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.111.646570
– volume: 1
  start-page: 542
  year: 2019
  ident: ref_74
  article-title: Cross-validation
  publication-title: Encycl. Bioinform. Comput. Biol.
– volume: 3
  start-page: e12298
  year: 2020
  ident: ref_50
  article-title: The balancing trick: Optimized sampling of imbalanced datasets—A brief survey of the recent State of the Art
  publication-title: Eng. Rep.
  doi: 10.1002/eng2.12298
– volume: 79
  start-page: 250
  year: 2016
  ident: ref_69
  article-title: Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.10.022
– volume: 10
  start-page: 174
  year: 2014
  ident: ref_66
  article-title: Automated classification of glaucoma stages using higher order cumulant features
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.11.006
– volume: 4
  start-page: 47
  year: 2014
  ident: ref_52
  article-title: MRI and CT image fusion based on wavelet transform
  publication-title: Int. J. Inf. Comput. Technol.
– volume: 124
  start-page: 278
  year: 2011
  ident: ref_3
  article-title: Reducing the global burden of ischemic heart disease and stroke: A challenge for the cardiovascular community and the United Nations
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.111.040170
– volume: 20
  start-page: 1438
  year: 2003
  ident: ref_28
  article-title: Evaluation of voxel-based morphometry for focal lesion detection in individuals
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00377-X
– volume: 25
  start-page: 1371
  year: 1994
  ident: ref_11
  article-title: Comparison of clinical and neuroradiological findings in first-ever stroke. A population-based study
  publication-title: Stroke
  doi: 10.1161/01.STR.25.7.1371
– volume: 357
  start-page: 572
  year: 2007
  ident: ref_6
  article-title: Acute ischemic stroke
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMcp072057
– ident: ref_47
  doi: 10.1109/ICCSCE50387.2020.9204948
– ident: ref_43
  doi: 10.1016/B978-0-12-336156-1.50061-6
– volume: 32
  start-page: 1621
  year: 2006
  ident: ref_32
  article-title: Segmentation of focal cortical dysplasia lesions on MRI using level set evolution
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.04.225
– volume: 8
  start-page: 275
  year: 2004
  ident: ref_36
  article-title: A brain tumor segmentation framework based on outlier detection
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2004.06.007
– volume: 22
  start-page: 799
  year: 2001
  ident: ref_73
  article-title: Information-theoretic algorithm for feature selection
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(01)00019-8
– volume: 2
  start-page: 43
  year: 2003
  ident: ref_4
  article-title: Stroke epidemiology: A review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(03)00266-7
– volume: 161
  start-page: 1
  year: 2018
  ident: ref_90
  article-title: Deep learning for healthcare applications based on physiological signals: A review
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.04.005
– volume: 54
  start-page: 1557
  year: 2000
  ident: ref_20
  article-title: Comparison of diffusion-weighted MRI and CT in acute stroke
  publication-title: Neurology
  doi: 10.1212/WNL.54.8.1557
– ident: ref_82
  doi: 10.1109/ICIP.2006.312369
– ident: ref_41
  doi: 10.1109/IEMBS.2005.1615965
– volume: 13
  start-page: 130
  year: 2019
  ident: ref_80
  article-title: Automatic neuroimage processing and analysis in stroke—A systematic review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2019.2934500
– volume: 70
  start-page: 831
  year: 2013
  ident: ref_14
  article-title: Comparison of final infarct volumes in patients who received endovascular therapy or intravenous thrombolysis for acute intracranial large-vessel occlusions
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2013.413
– volume: 95
  start-page: 55
  year: 2018
  ident: ref_70
  article-title: Optimized multi-level elongated quinary patterns for the assessment of thyroid nodules in ultrasound images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.02.002
– volume: 40
  start-page: 3646
  year: 2009
  ident: ref_7
  article-title: Recommendations for imaging of acute ischemic stroke: A scientific statement from the American Heart Association
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.108.192616
– volume: 27
  start-page: 452
  year: 2004
  ident: ref_64
  article-title: Run-length encoding for volumetric texture
  publication-title: Heart
– volume: 8
  start-page: 205
  year: 2004
  ident: ref_29
  article-title: Automatic segmentation of different-sized white matter lesions by voxel probability estimation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2004.06.019
– volume: 29
  start-page: 162
  year: 2006
  ident: ref_31
  article-title: Individual voxel-based analysis of gray matter in focal cortical dysplasia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.07.021
– volume: 21
  start-page: 1263
  year: 2009
  ident: ref_44
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.239
– volume: 98
  start-page: 324
  year: 2014
  ident: ref_86
  article-title: Lesion segmentation from multimodal MRI using random forest following ischemic stroke
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.04.056
– volume: 260
  start-page: 335
  year: 2013
  ident: ref_25
  article-title: Diffusion imaging in neurological disease
  publication-title: J. Neurol.
  doi: 10.1007/s00415-012-6769-y
– volume: 339
  start-page: 342
  year: 1992
  ident: ref_1
  article-title: Epidemiology of stroke
  publication-title: Lancet
  doi: 10.1016/0140-6736(92)91658-U
– ident: ref_76
– volume: 40
  start-page: 149
  year: 2013
  ident: ref_23
  article-title: 3-T high-b-value diffusion-weighted MR imaging in hyperacute ischemic stroke
  publication-title: J. Neuroradiol.
  doi: 10.1016/j.neurad.2012.08.007
– volume: 123
  start-page: 2591
  year: 2011
  ident: ref_17
  article-title: Current status of endovascular stroke treatment
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.110.971564
– volume: 97
  start-page: 179
  year: 1997
  ident: ref_48
  article-title: Addressing the curse of imbalanced training sets: One-sided selection
  publication-title: ICML Citeseer
– volume: 116
  start-page: 103536
  year: 2020
  ident: ref_89
  article-title: Ischemic stroke segmentation in multi-sequence MRI by symmetry determined superpixel based hierarchical clustering
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103536
– volume: SMC-3
  start-page: 610
  year: 1973
  ident: ref_53
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1973.4309314
– volume: 6
  start-page: 448
  year: 2003
  ident: ref_8
  article-title: Voxel-based lesion–symptom mapping
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1050
– volume: 75
  start-page: 66
  year: 2015
  ident: ref_68
  article-title: Ultrasound-based tissue characterization and classification of fatty liver disease: A screening and diagnostic paradigm
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2014.11.021
– volume: 12
  start-page: 1107
  year: 2018
  ident: ref_58
  article-title: Automatic benthic imagery recognition using a hierarchical two-stage approach
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-018-1262-4
– volume: 21
  start-page: 43
  year: 2001
  ident: ref_34
  article-title: Automatic segmentation of non-enhancing brain tumors in magnetic resonance images
  publication-title: Artif. Intell. Med.
  doi: 10.1016/S0933-3657(00)00073-7
– volume: 367
  start-page: 1747
  year: 2006
  ident: ref_2
  article-title: Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)68770-9
– volume: 1
  start-page: 687
  year: 2011
  ident: ref_61
  article-title: Classifying benign and malignant mass using GLCM and GLRLM based texture features from mammogram
  publication-title: Int. J. Eng. Res. Appl.
– volume: 58
  start-page: 134
  year: 2019
  ident: ref_88
  article-title: Automatic detection of ischemic stroke using higher order spectra features in brain MRI images
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2019.05.005
– volume: 17
  start-page: 300
  year: 2003
  ident: ref_18
  article-title: Accuracy and reproducibility of manual and semiautomated quantification of MS lesions by MRI
  publication-title: J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med.
– volume: 5
  start-page: 15
  year: 2012
  ident: ref_84
  article-title: Formal design methods for reliable computer-aided diagnosis: A review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2012.2184750
– volume: 134
  start-page: 104548
  year: 2021
  ident: ref_91
  article-title: Automated ASD detection using hybrid deep lightweight features extracted from EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104548
– volume: 94
  start-page: 167
  year: 2005
  ident: ref_38
  article-title: Identifying lesions on structural brain images—Validation of the method and application to neuropsychological patients
  publication-title: Brain Lang.
  doi: 10.1016/j.bandl.2004.12.010
– volume: 107
  start-page: 233
  year: 2012
  ident: ref_55
  article-title: ThyroScreen system: High resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2011.10.001
– volume: 20
  start-page: 666
  year: 2001
  ident: ref_35
  article-title: Segmentation of large brain lesions
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.932750
– ident: ref_81
  doi: 10.1109/ICONIP.2002.1201981
– volume: 116
  start-page: 103579
  year: 2020
  ident: ref_85
  article-title: Simulated perfusion MRI data to boost training of convolutional neural networks for lesion fate prediction in acute stroke
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103579
– ident: ref_54
– volume: 26
  start-page: 297
  year: 1945
  ident: ref_79
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 56
  start-page: 2038
  year: 2011
  ident: ref_16
  article-title: Manual, semi-automated, and automated delineation of chronic brain lesions: A comparison of methods
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.04.014
– volume: 10
  start-page: 371
  year: 2011
  ident: ref_56
  article-title: Cost-effective and non-invasive automated benign & malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: A class of ThyroScan™ algorithms
  publication-title: Technol. Cancer Res. Treat.
  doi: 10.7785/tcrt.2012.500214
– volume: 7
  start-page: 1602
  year: 1998
  ident: ref_62
  article-title: Texture information in run-length matrices
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.725367
– volume: 11
  start-page: 1471
  year: 2010
  ident: ref_77
  article-title: Training and Testing Low-degree Polynomial Data Mappings via Linear SVM
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 9
  year: 2014
  ident: ref_78
  article-title: Dice similarity measure between single valued neutrosophic multisets and its application in medical diagnosis
  publication-title: Neutrosophic Sets Syst.
– volume: 84
  start-page: 105685
  year: 2019
  ident: ref_87
  article-title: A deep supervised approach for ischemic lesion segmentation from multimodal MRI using fully convolutional network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105685
– volume: 17
  start-page: 309
  year: 2013
  ident: ref_67
  article-title: Automated detection of diabetes using higher order spectral features extracted from heart rate signals
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-130580
– volume: 29
  start-page: 467
  year: 2006
  ident: ref_33
  article-title: Segmentation and quantification of black holes in multiple sclerosis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.07.042
– volume: 118
  start-page: 1593
  year: 1995
  ident: ref_19
  article-title: Intra-and inter-observer agreement of brain MRI lesion volume measurements in multiple sclerosis: A comparison of techniques
  publication-title: Brain
  doi: 10.1093/brain/118.6.1593
– volume: 5
  start-page: 203
  year: 2004
  ident: ref_30
  article-title: Evidential segmentation scheme of multi-echo MR images for the detection of brain tumors using neighborhood information
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2003.10.001
– volume: 132
  start-page: 40
  year: 2018
  ident: ref_57
  article-title: Application of feature extraction and classification methods for histopathological image using GLCM, LBP, LBGLCM, GLRLM and SFTA
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.05.057
– volume: 37
  start-page: 780
  year: 1999
  ident: ref_59
  article-title: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.752194
– volume: 32
  start-page: 17
  year: 1978
  ident: ref_72
  article-title: The hat matrix in regression and ANOVA
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1978.10479237
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_75
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 13
  start-page: 623
  year: 2001
  ident: ref_27
  article-title: Voxel-based morphometry of herpes simplex encephalitis
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0734
– volume: 80
  start-page: 187
  year: 2005
  ident: ref_60
  article-title: Entropies for detection of epilepsy in EEG
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2005.06.012
– volume: 1
  start-page: 164
  year: 2012
  ident: ref_42
  article-title: Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2012.10.003
– volume: 55
  start-page: 157
  year: 2013
  ident: ref_22
  article-title: The incidence and clinical predictors of acute infarction in patients with transient ischemic attack using MRI including DWI
  publication-title: Neuroradiology
  doi: 10.1007/s00234-012-1091-z
– volume: 92
  start-page: 145
  year: 2004
  ident: ref_9
  article-title: Lesion analysis of the brain areas involved in language comprehension
  publication-title: Cognition
  doi: 10.1016/j.cognition.2003.11.002
– volume: 9
  start-page: 192
  year: 2000
  ident: ref_10
  article-title: Lesion segmentation and manual warping to a reference brain: Intra-and interobserver reliability
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(200004)9:4<192::AID-HBM2>3.0.CO;2-Y
– volume: 34
  start-page: 142
  year: 2006
  ident: ref_37
  article-title: Unified approach for multiple sclerosis lesion segmentation on brain MRI
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-005-9009-0
SSID ssj0038469
Score 2.3015726
Snippet This paper presents a scientific foundation for automated stroke severity classification. We have constructed and assessed a system which extracts...
SourceID unpaywall
pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 8059
SubjectTerms Algorithms
Automation
Brain research
Classification
Hypotheses
Magnetic resonance imaging
Stroke
Support vector machines
Variance analysis
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEF_q9UFBip94WmUEQV-WZvO1l4ciVe5ohTulH9C3sF-h1TM57xJa_eud2STXnqC-BbJckpvZmd_Ozv5-jL0JCmEL5zKeZYXjmK9TriXVrYQShS4yYbx0wnSWHp7Fn86T8y0268_CUFtlHxN9oLaVoRr5HkJfdLUUFwjvFz84qUbR7movoaE6aQW77ynG7rDtkJixBmz7w3j25biPzRFmWwLEArMSx9woWxrHCBf-e5dfHX4ZJrxk5JlLb6epG-z5Z-fk3aZcqJ9Xaj6_lZYmD9hOhyfhoHWAh2zLlY_Y_bYYB-0Zo8fs16ShohhUBbR9HfCZGDeBxOfxAaBKC6cYpZulg_F1vWwPO8DUq0uvAHEtHDR1heDWWTipl9U3BycOJwFCePCymtRw5G0MVNiF6fERHH3HULV6ws4m49OPh7wTXeAmypKaZ4VwCWbOMI5cGGgVRJ7LXOvAGoGZTBlpYjlyTtGGqUN8qUOJKFBFcqRTV0RP2aCsSveMgY5NEts4TQONlyZTxtowsjYNpE6FKIaM9_9xbjpGchLGmOe4MiGb5Js2GbK36_GLlovjryN3e5Pl3Zxc5TceNGSv17dxNtEWiSpd1fgxxEcf0k_IDVOvn0h83Jt3yssLz8s9iuIEw9uQvVs7xX_e8_m_3_MFuxdSC00geZjtskG9bNxLxEC1ftU59m9ClAqr
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA-696Agfourp4wg6EuuTT_S5kkWueVO2FO8WzifSj5xvbVddls_7q930nbX3QNR8K2QpE2aycxvkslvCHkZOmactYIK4SxFe82pyvy-FZPMKSeYblMnTE740TR5d56eb93i92GV6IrPWiXNOA9pgi5DwPKApUGOWCBYGPfmW7-XxHiEi1mksbhO9niKaHxA9qYnH0afvJ-1bt09M4rGMOt4G2P09IPZF4tDQQuX5i1V6bZd-g02r4ZK3mjKhfz5Xc7nW3ZofIfI9Qi68JOLg6ZWB_ryCrnj_wzxLrndg1QYdVJ1j1yz5X1yq9vhg-7i0gNyOW58U6gcdMEi8N7TeILPaI-DAFkaOEPV3ywtHP6ol90NCpi0KatXgGAZRk1dIWK2Bk7rZXVh4dRih9AvgDZXp49iagUH_G4xTD4ew_FX1H-rh2Q6Pjx7e0T7TA5UxyKtqXDMpmiOoyS2UahkGLcE6UqFRjM0j1JnOslya6U_hbUIWlWUIbSUcZYrbl38iAzKqrSPCahEp4lJ8LcpfNRCamOi2BgeZooz5oaEruex0D3Nuc-2MS_Q3fHzXuzO-5C82tRfdAQff6y5vxaLol_oqwI9MtSAHP3WIXmxKcYl6s9dZGmrpq3jSe4j_4psR5w2X_Qk37sl5exzS_adx0mKOnNIXm8E7y_9fPLvVZ-Sm5GP0QkzGol9MqiXjX2GIKtWz_t19AtCKiRi
  priority: 102
  providerName: Unpaywall
Title Fusion of Higher Order Spectra and Texture Extraction Methods for Automated Stroke Severity Classification with MRI Images
URI https://www.proquest.com/docview/2558806828
https://www.proquest.com/docview/2559430259
https://pubmed.ncbi.nlm.nih.gov/PMC8345794
https://www.mdpi.com/1660-4601/18/15/8059/pdf?version=1627629539
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: HH5
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: KQ8
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: A8Z
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: DIK
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: GX1
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: 8C1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 20250731
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: M48
  dateStart: 20050501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfY9gDSNPEpysZ0SEjwYojz5eQBoTK125Bapm2VylNkJ7bY1iUjTcTGX89d0mYUDcFLlNhO7Pjsu9_Z5zvGXjtWZNaYmMexNRzldci1pHUroYTVNhZpEzphNA4PJv7naTC9tX9adOD8TtWO4klNytm76-83H3HCfyCNE1X292fnBtuEoiqIECyssQ2UUjGFcRj53Y6Ch3KWoLAIQ4f7qIW0DhzveH9VQN2izj9tJu_X-ZW6-aFms98E0vAh21ogSei3pH_E7pn8Mdtsl-GgPV30hP0c1rQcBoWF1qIDvpCvTaCw81gBqDyDU-TPdWlgcF2V7TEHGDVxpeeAiBb6dVUgrDUZnFRlcWHgxODwR_AOTUBNMjVqqAu0pAuj40M4vEQmNX_KJsPB6d4BX4Rb4KkXBxWPrTABykzX94zraOV4jRdzrZ0sFSjDVCpTX0bGKNoqNYgstSsR_ylPRjo01nvG1vMiN88ZaD8N_MzHvtZ4m8YqzTLXy7LQkToUwvYYX_Zxki58kVNIjFmCOgnRJFmlSY-96cpftV44_lpyZ0myZDmYElSbkE2FqFz22KsuG-cRbY6o3BR1U4Y80bv0CblC6q5G8sS9mpOffWs8ckeeHyBj67G33aD4Rztf_PcfbbMHLtnROJK78Q5br8ravEQgVOldtianEq_RnqDrcH-XbXwajI-O8Wl_Smk4AzBtMj7qf_0FbU4R6w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeBgSQnxqhQGHBIIXa3GcxM0DQhOsatk6JNZJfQv-ihiUpLSJxvij-Bs5O022IgFPe4tky458X787n-8IeR7kzOTWpjRNc0vRXidUCRe3YpLlKk-Z9q0TxkfJ8CR6P42nG-RX-xbGpVW2OtEralNqFyPfReiLrJagg_Bm_p26rlHudrVtodGwxYE9P0OXbfl69A7p-yIMB_uTt0O66ipANU_jiqY5szGahjDiNgyUDLgv1q1UYDRDVS210JHoWyvdjaBFAKVCgTBHctFXic05rnuNXI846hKUHzHtHDyOttzBbYY2j6LlFU2RSM7TYPf0i8VzQ3Ma931d1MtG8ALZ_pmXuVUXc3l-JmezS0ZvcJvcWqFV2GvY6w7ZsMVdcrMJ9UHzguke-TmoXcgNyhyarBH44Op5gmttjxuALAxM0AbUCwv7P6pF85QCxr539RIQNcNeXZUIna2B42pRfrVwbFHE0EEA37TTpTN5DgIXNobxxxGMvqEiXN4nJ1dy-A_IZlEWdpuAinQcmShJAoWfOpXamJAbkwRCJYzlPULbM870qt65a7sxy9DvcTTJ1mnSIy-7-fOm0sdfZ-60JMtWEr_MLvizR551wyir7gJGFras_RxX7T50S4g1Unc7umrf6yPF6Wdf9bvPoxiVZ4-86pjiP__58N__-ZRsDSfjw-xwdHTwiNwIXbJOIGiY7pDNalHbx4i2KvXEsziQT1ctU78B4h1Azg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA61ggpFvOK2VY-g6EvYuWfnQaTYLl3rVrEt7NuYK21dZ7a7M9T60_x1nmQu7QrqU98GEpIh535y8h1CXnrGV0brlKap0RTtdUIFs3krn_tGmNSXrnXCeD_ZPYo-TOLJCvnVvoWxZZWtTnSKWhXS5sj76PoiqyUYIPRNUxbxeXv4bnZGbQcpe9PattOoWWRPX5xj-LZ4O9pGWr8KguHO4ftd2nQYoDJM45KmxtcxmokgCnXgCe6FDrhbCE9JH9U2l0xGbKA1t7eDGp0pETB0eXjIBiLRJsR1b5CbLMTVUJbYpAv2QrTr1vX20f5RtMKsBozEiV7_5FTjGaJpjQcOI_WqQbz0cv-s0bxd5TN-cc6n0ysGcHiP3G08V9iqWe0-WdH5A7JWp_2gfs30kPwcVjb9BoWBuoIEPllsT7Bt7nED4LmCQzzUaq5h50c5r59VwNj1sV4AetCwVZUFutFawUE5L75pONAobhgsgGvgaUubHDeBTSHD-MsIRt9RKS4ekaNrOfzHZDUvcv2EgIhkHKkoSTyBnzLlUqkgVCrxmEh83_QIbc84kw32uW3BMc0wBrI0yZZp0iOvu_mzGvXjrzM3W5JljfQvskte7ZEX3TDKrb2M4bkuKjfHIt8Hdgm2ROpuR4v8vTySnxw7BPBBGMWoSHvkTccU__nP9X__53NyC6Up-zja39sgdwJbt-MxGqSbZLWcV_opOl6leOY4HMjX6xap37S9RRE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA-696Agfourp4wg6EuuTT_S5kkWueVO2FO8WzifSj5xvbVddls_7q930nbX3QNR8K2QpE2aycxvkslvCHkZOmactYIK4SxFe82pyvy-FZPMKSeYblMnTE740TR5d56eb93i92GV6IrPWiXNOA9pgi5DwPKApUGOWCBYGPfmW7-XxHiEi1mksbhO9niKaHxA9qYnH0afvJ-1bt09M4rGMOt4G2P09IPZF4tDQQuX5i1V6bZd-g02r4ZK3mjKhfz5Xc7nW3ZofIfI9Qi68JOLg6ZWB_ryCrnj_wzxLrndg1QYdVJ1j1yz5X1yq9vhg-7i0gNyOW58U6gcdMEi8N7TeILPaI-DAFkaOEPV3ywtHP6ol90NCpi0KatXgGAZRk1dIWK2Bk7rZXVh4dRih9AvgDZXp49iagUH_G4xTD4ew_FX1H-rh2Q6Pjx7e0T7TA5UxyKtqXDMpmiOoyS2UahkGLcE6UqFRjM0j1JnOslya6U_hbUIWlWUIbSUcZYrbl38iAzKqrSPCahEp4lJ8LcpfNRCamOi2BgeZooz5oaEruex0D3Nuc-2MS_Q3fHzXuzO-5C82tRfdAQff6y5vxaLol_oqwI9MtSAHP3WIXmxKcYl6s9dZGmrpq3jSe4j_4psR5w2X_Qk37sl5exzS_adx0mKOnNIXm8E7y_9fPLvVZ-Sm5GP0QkzGol9MqiXjX2GIKtWz_t19AtCKiRi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+Higher+Order+Spectra+and+Texture+Extraction+Methods+for+Automated+Stroke+Severity+Classification+with+MRI+Images&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.au=Faust%2C+Oliver&rft.au=En+Wei+Koh%2C+Joel&rft.au=Jahmunah%2C+Vicnesh&rft.au=Sabut%2C+Sukant&rft.date=2021-07-29&rft.issn=1660-4601&rft.eissn=1660-4601&rft.volume=18&rft.issue=15&rft.spage=8059&rft_id=info:doi/10.3390%2Fijerph18158059&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijerph18158059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon