Fusion of Higher Order Spectra and Texture Extraction Methods for Automated Stroke Severity Classification with MRI Images
This paper presents a scientific foundation for automated stroke severity classification. We have constructed and assessed a system which extracts diagnostically relevant information from Magnetic Resonance Imaging (MRI) images. The design was based on 267 images that show the brain from individual...
        Saved in:
      
    
          | Published in | International journal of environmental research and public health Vol. 18; no. 15; p. 8059 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        29.07.2021
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1660-4601 1661-7827 1660-4601  | 
| DOI | 10.3390/ijerph18158059 | 
Cover
| Abstract | This paper presents a scientific foundation for automated stroke severity classification. We have constructed and assessed a system which extracts diagnostically relevant information from Magnetic Resonance Imaging (MRI) images. The design was based on 267 images that show the brain from individual subjects after stroke. They were labeled as either Lacunar Syndrome (LACS), Partial Anterior Circulation Syndrome (PACS), or Total Anterior Circulation Stroke (TACS). The labels indicate different physiological processes which manifest themselves in distinct image texture. The processing system was tasked with extracting texture information that could be used to classify a brain MRI image from a stroke survivor into either LACS, PACS, or TACS. We analyzed 6475 features that were obtained with Gray-Level Run Length Matrix (GLRLM), Higher Order Spectra (HOS), as well as a combination of Discrete Wavelet Transform (DWT) and Gray-Level Co-occurrence Matrix (GLCM) methods. The resulting features were ranked based on the p-value extracted with the Analysis Of Variance (ANOVA) algorithm. The ranked features were used to train and test four types of Support Vector Machine (SVM) classification algorithms according to the rules of 10-fold cross-validation. We found that SVM with Radial Basis Function (RBF) kernel achieves: Accuracy (ACC) = 93.62%, Specificity (SPE) = 95.91%, Sensitivity (SEN) = 92.44%, and Dice-score = 0.95. These results indicate that computer aided stroke severity diagnosis support is possible. Such systems might lead to progress in stroke diagnosis by enabling healthcare professionals to improve diagnosis and management of stroke patients with the same resources. | 
    
|---|---|
| AbstractList | This paper presents a scientific foundation for automated stroke severity classification. We have constructed and assessed a system which extracts diagnostically relevant information from Magnetic Resonance Imaging (MRI) images. The design was based on 267 images that show the brain from individual subjects after stroke. They were labeled as either Lacunar Syndrome (LACS), Partial Anterior Circulation Syndrome (PACS), or Total Anterior Circulation Stroke (TACS). The labels indicate different physiological processes which manifest themselves in distinct image texture. The processing system was tasked with extracting texture information that could be used to classify a brain MRI image from a stroke survivor into either LACS, PACS, or TACS. We analyzed 6475 features that were obtained with Gray-Level Run Length Matrix (GLRLM), Higher Order Spectra (HOS), as well as a combination of Discrete Wavelet Transform (DWT) and Gray-Level Co-occurrence Matrix (GLCM) methods. The resulting features were ranked based on the p-value extracted with the Analysis Of Variance (ANOVA) algorithm. The ranked features were used to train and test four types of Support Vector Machine (SVM) classification algorithms according to the rules of 10-fold cross-validation. We found that SVM with Radial Basis Function (RBF) kernel achieves: Accuracy (ACC) = 93.62%, Specificity (SPE) = 95.91%, Sensitivity (SEN) = 92.44%, and Dice-score = 0.95. These results indicate that computer aided stroke severity diagnosis support is possible. Such systems might lead to progress in stroke diagnosis by enabling healthcare professionals to improve diagnosis and management of stroke patients with the same resources.This paper presents a scientific foundation for automated stroke severity classification. We have constructed and assessed a system which extracts diagnostically relevant information from Magnetic Resonance Imaging (MRI) images. The design was based on 267 images that show the brain from individual subjects after stroke. They were labeled as either Lacunar Syndrome (LACS), Partial Anterior Circulation Syndrome (PACS), or Total Anterior Circulation Stroke (TACS). The labels indicate different physiological processes which manifest themselves in distinct image texture. The processing system was tasked with extracting texture information that could be used to classify a brain MRI image from a stroke survivor into either LACS, PACS, or TACS. We analyzed 6475 features that were obtained with Gray-Level Run Length Matrix (GLRLM), Higher Order Spectra (HOS), as well as a combination of Discrete Wavelet Transform (DWT) and Gray-Level Co-occurrence Matrix (GLCM) methods. The resulting features were ranked based on the p-value extracted with the Analysis Of Variance (ANOVA) algorithm. The ranked features were used to train and test four types of Support Vector Machine (SVM) classification algorithms according to the rules of 10-fold cross-validation. We found that SVM with Radial Basis Function (RBF) kernel achieves: Accuracy (ACC) = 93.62%, Specificity (SPE) = 95.91%, Sensitivity (SEN) = 92.44%, and Dice-score = 0.95. These results indicate that computer aided stroke severity diagnosis support is possible. Such systems might lead to progress in stroke diagnosis by enabling healthcare professionals to improve diagnosis and management of stroke patients with the same resources. This paper presents a scientific foundation for automated stroke severity classification. We have constructed and assessed a system which extracts diagnostically relevant information from Magnetic Resonance Imaging (MRI) images. The design was based on 267 images that show the brain from individual subjects after stroke. They were labeled as either Lacunar Syndrome (LACS), Partial Anterior Circulation Syndrome (PACS), or Total Anterior Circulation Stroke (TACS). The labels indicate different physiological processes which manifest themselves in distinct image texture. The processing system was tasked with extracting texture information that could be used to classify a brain MRI image from a stroke survivor into either LACS, PACS, or TACS. We analyzed 6475 features that were obtained with Gray-Level Run Length Matrix (GLRLM), Higher Order Spectra (HOS), as well as a combination of Discrete Wavelet Transform (DWT) and Gray-Level Co-occurrence Matrix (GLCM) methods. The resulting features were ranked based on the p-value extracted with the Analysis Of Variance (ANOVA) algorithm. The ranked features were used to train and test four types of Support Vector Machine (SVM) classification algorithms according to the rules of 10-fold cross-validation. We found that SVM with Radial Basis Function (RBF) kernel achieves: Accuracy (ACC) = 93.62%, Specificity (SPE) = 95.91%, Sensitivity (SEN) = 92.44%, and Dice-score = 0.95. These results indicate that computer aided stroke severity diagnosis support is possible. Such systems might lead to progress in stroke diagnosis by enabling healthcare professionals to improve diagnosis and management of stroke patients with the same resources.  | 
    
| Author | Faust, Oliver Ciaccio, Edward J. En Wei Koh, Joel Jahmunah, Vicnesh Majid, Arshad Ali, Ali Acharya, U. Rajendra Lip, Gregory Y. H. Sabut, Sukant  | 
    
| AuthorAffiliation | 6 Sheffield Teaching Hospitals NIHR Biomedical Research Centre, Sheffield S10 2JF, UK; Ali.Ali@sth.nhs.uk 8 Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark 10 Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan 3 School of Electronics Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India; sukanta207@gmail.com 4 Department of Medicine-Cardiology, Columbia University, New York, NY 10027, USA; ciaccio@columbia.edu 5 Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK; arshad.majid@sheffield.ac.uk 1 Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, UK 11 International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan 9 School of Science and Technology, Singapore University of Social Sciences, 463 Clementi Road,  | 
    
| AuthorAffiliation_xml | – name: 1 Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, UK – name: 9 School of Science and Technology, Singapore University of Social Sciences, 463 Clementi Road, Singapore 599494, Singapore – name: 3 School of Electronics Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India; sukanta207@gmail.com – name: 10 Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan – name: 2 School of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore; falco_peregrinus14@yahoo.co.uk (J.E.W.K.); e0145834@u.nus.edu (V.J.); aru@np.edu.sg (U.R.A.) – name: 6 Sheffield Teaching Hospitals NIHR Biomedical Research Centre, Sheffield S10 2JF, UK; Ali.Ali@sth.nhs.uk – name: 4 Department of Medicine-Cardiology, Columbia University, New York, NY 10027, USA; ciaccio@columbia.edu – name: 5 Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK; arshad.majid@sheffield.ac.uk – name: 8 Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark – name: 11 International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan – name: 7 Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L69 7TX, UK; Gregory.Lip@liverpool.ac.uk  | 
    
| Author_xml | – sequence: 1 givenname: Oliver orcidid: 0000-0002-3979-4077 surname: Faust fullname: Faust, Oliver – sequence: 2 givenname: Joel surname: En Wei Koh fullname: En Wei Koh, Joel – sequence: 3 givenname: Vicnesh surname: Jahmunah fullname: Jahmunah, Vicnesh – sequence: 4 givenname: Sukant surname: Sabut fullname: Sabut, Sukant – sequence: 5 givenname: Edward J. surname: Ciaccio fullname: Ciaccio, Edward J. – sequence: 6 givenname: Arshad surname: Majid fullname: Majid, Arshad – sequence: 7 givenname: Ali surname: Ali fullname: Ali, Ali – sequence: 8 givenname: Gregory Y. H. orcidid: 0000-0002-7566-1626 surname: Lip fullname: Lip, Gregory Y. H. – sequence: 9 givenname: U. Rajendra orcidid: 0000-0003-2689-8552 surname: Acharya fullname: Acharya, U. Rajendra  | 
    
| BookMark | eNqFkM1r3DAUxEVJaT7aa8-CXnrZRLIkW7oUwpI0CwmBbnoWsvy81ta2XElOsv3r490NpAmUXiTx9Jt5zByjg973gNBnSk4ZU-TMrSEMDZVUSCLUO3RE85zMeE7owV_vQ3Qc45oQJnmuPqBDxllOGFdH6M_lGJ3vsa_xlVs1EPBtqKZzOYBNwWDTV_gOHtMYAF88ThObtvgNpMZXEdc-4PMx-c4kqPAyBf8L8BLuIbi0wfPWxOhqZ81O9OBSg29-LPCiMyuIH9H72rQRPj3fJ-jn5cXd_Gp2fft9MT-_nlmmRJqpmoKwABlnkJHSEJZRLkRZkspSXlBjC8sLCWBELgpQSpVZQRUzrJBlDjU7QWd737EfzObBtK0egutM2GhK9LZF_brFSfFtrxjGsoPKQj8Ff1F54_Trn941euXvtWRcFIpPBl-fDYL_PUJMunPRQtuaHvwYdSbERJFst-vLG3Ttx9BPhWwpKUkuMzlRfE_Z4GMMUGvr0q7Vab9r_x3k9I3sP8mfAPPPulQ | 
    
| CitedBy_id | crossref_primary_10_3389_fneur_2023_1132318 crossref_primary_10_1186_s40001_024_02147_1  | 
    
| Cites_doi | 10.1016/j.bspc.2012.08.004 10.1161/STROKEAHA.112.671594 10.4329/wjr.v8.i9.785 10.1016/B978-1-55860-335-6.50034-9 10.1016/j.neuroimage.2008.03.028 10.1159/000343658 10.1016/j.nicl.2017.06.016 10.1016/j.ejrad.2005.03.028 10.1016/j.neuroimage.2006.04.211 10.1145/312129.312220 10.1016/S0166-2236(99)01401-0 10.1161/STROKEAHA.111.646570 10.1002/eng2.12298 10.1016/j.compbiomed.2016.10.022 10.1016/j.bspc.2013.11.006 10.1161/CIRCULATIONAHA.111.040170 10.1016/S1053-8119(03)00377-X 10.1161/01.STR.25.7.1371 10.1056/NEJMcp072057 10.1109/ICCSCE50387.2020.9204948 10.1016/B978-0-12-336156-1.50061-6 10.1016/j.neuroimage.2006.04.225 10.1016/j.media.2004.06.007 10.1016/S0167-8655(01)00019-8 10.1016/S1474-4422(03)00266-7 10.1016/j.cmpb.2018.04.005 10.1212/WNL.54.8.1557 10.1109/ICIP.2006.312369 10.1109/IEMBS.2005.1615965 10.1109/RBME.2019.2934500 10.1001/jamaneurol.2013.413 10.1016/j.compbiomed.2018.02.002 10.1161/STROKEAHA.108.192616 10.1016/j.media.2004.06.019 10.1016/j.neuroimage.2005.07.021 10.1109/TKDE.2008.239 10.1016/j.neuroimage.2014.04.056 10.1007/s00415-012-6769-y 10.1016/0140-6736(92)91658-U 10.1016/j.neurad.2012.08.007 10.1161/CIRCULATIONAHA.110.971564 10.1016/j.compbiomed.2019.103536 10.1109/TSMC.1973.4309314 10.1038/nn1050 10.1016/j.knosys.2014.11.021 10.1007/s11760-018-1262-4 10.1016/S0933-3657(00)00073-7 10.1016/S0140-6736(06)68770-9 10.1016/j.cogsys.2019.05.005 10.1109/RBME.2012.2184750 10.1016/j.compbiomed.2021.104548 10.1016/j.bandl.2004.12.010 10.1016/j.cmpb.2011.10.001 10.1109/42.932750 10.1109/ICONIP.2002.1201981 10.1016/j.compbiomed.2019.103579 10.2307/1932409 10.1016/j.neuroimage.2011.04.014 10.7785/tcrt.2012.500214 10.1109/83.725367 10.1016/j.asoc.2019.105685 10.3233/IDA-130580 10.1016/j.neuroimage.2005.07.042 10.1093/brain/118.6.1593 10.1016/j.inffus.2003.10.001 10.1016/j.procs.2018.05.057 10.1109/36.752194 10.1080/00031305.1978.10479237 10.1007/BF00994018 10.1006/nimg.2000.0734 10.1016/j.cmpb.2005.06.012 10.1016/j.nicl.2012.10.003 10.1007/s00234-012-1091-z 10.1016/j.cognition.2003.11.002 10.1002/(SICI)1097-0193(200004)9:4<192::AID-HBM2>3.0.CO;2-Y 10.1007/s10439-005-9009-0  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021  | 
    
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021  | 
    
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8C1 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.3390/ijerph18158059 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Public Health | 
    
| EISSN | 1660-4601 | 
    
| ExternalDocumentID | 10.3390/ijerph18158059 PMC8345794 10_3390_ijerph18158059  | 
    
| GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 7XC 88E 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 A8Z AADQD AAFWJ AAHBH AAYXX ABGAM ABUWG ACGFO ACGOD ACIWK ADBBV AENEX AFKRA AFRAH AFZYC AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 DIK DU5 E3Z EBD EBS EJD EMB EMOBN ESTFP F5P FYUFA GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO Q2X RNS RPM SV3 TR2 UKHRP XSB 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM ADRAZ ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c395t-9f1e5cee243e20ba0321455bb0dc1471ac7c478eea5657e999b27193a378b6ef3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1660-4601 1661-7827  | 
    
| IngestDate | Sun Oct 26 03:53:01 EDT 2025 Tue Sep 30 16:53:47 EDT 2025 Fri Sep 05 08:27:26 EDT 2025 Tue Oct 07 06:33:21 EDT 2025 Thu Oct 16 04:34:10 EDT 2025 Thu Apr 24 22:56:12 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 15 | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c395t-9f1e5cee243e20ba0321455bb0dc1471ac7c478eea5657e999b27193a378b6ef3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-2689-8552 0000-0002-7566-1626 0000-0002-3979-4077  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijerph18158059 | 
    
| PMID | 34360349 | 
    
| PQID | 2558806828 | 
    
| PQPubID | 54923 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_ijerph18158059 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8345794 proquest_miscellaneous_2559430259 proquest_journals_2558806828 crossref_citationtrail_10_3390_ijerph18158059 crossref_primary_10_3390_ijerph18158059  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20210729 | 
    
| PublicationDateYYYYMMDD | 2021-07-29 | 
    
| PublicationDate_xml | – month: 7 year: 2021 text: 20210729 day: 29  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | International journal of environmental research and public health | 
    
| PublicationYear | 2021 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | Martis (ref_65) 2013; 8 Karthik (ref_87) 2019; 84 Hall (ref_34) 2001; 21 Sarmento (ref_80) 2019; 13 Debs (ref_85) 2020; 116 Kannathal (ref_60) 2005; 80 Acharya (ref_69) 2016; 79 Colliot (ref_32) 2006; 32 Hojjatoleslami (ref_35) 2001; 20 Matthis (ref_22) 2013; 55 Anbeek (ref_29) 2004; 8 ref_54 Vogt (ref_13) 2012; 43 Zaidi (ref_12) 2012; 43 ref_51 Lettau (ref_23) 2013; 40 Noronha (ref_66) 2014; 10 Newcombe (ref_25) 2013; 260 Rekik (ref_42) 2012; 1 Lopez (ref_2) 2006; 367 Colliot (ref_31) 2006; 29 Faust (ref_84) 2012; 5 Dirnagl (ref_5) 1999; 22 Stamatakis (ref_38) 2005; 94 He (ref_44) 2009; 21 Prastawa (ref_36) 2004; 8 Last (ref_73) 2001; 22 Galloway (ref_63) 1974; 75 Chen (ref_83) 2017; 15 Seghier (ref_15) 2008; 41 Akdemir (ref_57) 2018; 132 Bates (ref_8) 2003; 6 Acharya (ref_88) 2019; 58 Soh (ref_59) 1999; 37 Bonita (ref_1) 1992; 339 Vupputuri (ref_89) 2020; 116 Baygin (ref_91) 2021; 134 Tang (ref_62) 1998; 7 Latchaw (ref_7) 2009; 40 Feigin (ref_4) 2003; 2 Wu (ref_39) 2006; 32 Acharya (ref_55) 2012; 107 Verikas (ref_58) 2018; 12 Cortes (ref_75) 1995; 20 Fiez (ref_10) 2000; 9 Acharya (ref_56) 2011; 10 Dice (ref_79) 1945; 26 Lindgren (ref_11) 1994; 25 Baliyan (ref_21) 2016; 8 Wilke (ref_16) 2011; 56 ref_76 Susan (ref_50) 2020; 3 Filippi (ref_19) 1995; 118 Acharya (ref_68) 2015; 75 Mitra (ref_86) 2014; 98 Faust (ref_90) 2018; 161 Mishra (ref_52) 2014; 4 Raghavendra (ref_70) 2018; 95 Ashton (ref_18) 2003; 17 Lansberg (ref_20) 2000; 54 Ye (ref_78) 2014; 6 Dronkers (ref_9) 2004; 92 Domenech (ref_26) 2012; 34 Swapna (ref_67) 2013; 17 Berrar (ref_74) 2019; 1 Sajja (ref_37) 2006; 34 Assi (ref_71) 2018; 8 ref_82 Smith (ref_3) 2011; 124 Rangaraju (ref_14) 2013; 70 Datta (ref_33) 2006; 29 ref_81 Chang (ref_77) 2010; 11 Hoaglin (ref_72) 1978; 32 ref_47 Haralick (ref_53) 1973; SMC-3 ref_46 ref_45 Gitelman (ref_27) 2001; 13 ref_43 ref_41 Mehta (ref_28) 2003; 20 Xie (ref_40) 2005; 56 (ref_6) 2007; 357 Lutsep (ref_24) 1997; 41 Mohanty (ref_61) 2011; 1 Meyers (ref_17) 2011; 123 Kubat (ref_48) 1997; 97 ref_49 Capelle (ref_30) 2004; 5 Xu (ref_64) 2004; 27  | 
    
| References_xml | – volume: 8 start-page: 193 year: 2013 ident: ref_65 article-title: Cardiac decision making using higher order spectra publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2012.08.004 – volume: 43 start-page: 3238 year: 2012 ident: ref_12 article-title: Final infarct volume is a stronger predictor of outcome than recanalization in patients with proximal middle cerebral artery occlusion treated with endovascular therapy publication-title: Stroke doi: 10.1161/STROKEAHA.112.671594 – volume: 8 start-page: 785 year: 2016 ident: ref_21 article-title: Diffusion weighted imaging: Technique and applications publication-title: World J. Radiol. doi: 10.4329/wjr.v8.i9.785 – ident: ref_49 – volume: 41 start-page: 574 year: 1997 ident: ref_24 article-title: Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischemic stroke publication-title: Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. – ident: ref_45 doi: 10.1016/B978-1-55860-335-6.50034-9 – volume: 8 start-page: 1 year: 2018 ident: ref_71 article-title: Bispectrum features and multilayer perceptron classifier to enhance seizure prediction publication-title: Sci. Rep. – volume: 41 start-page: 1253 year: 2008 ident: ref_15 article-title: Lesion identification using unified segmentation-normalisation models and fuzzy clustering publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.03.028 – ident: ref_51 – volume: 34 start-page: 376 year: 2012 ident: ref_26 article-title: Hyperintensity of distal vessels on FLAIR is associated with slow progression of the infarction in acute ischemic stroke publication-title: Cerebrovasc. Dis. doi: 10.1159/000343658 – volume: 15 start-page: 633 year: 2017 ident: ref_83 article-title: Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2017.06.016 – volume: 56 start-page: 12 year: 2005 ident: ref_40 article-title: Semi-automated brain tumor and edema segmentation using MRI publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2005.03.028 – volume: 75 start-page: 18555 year: 1974 ident: ref_63 article-title: Texture analysis using grey level run lengths publication-title: NASA STI/Recon Tech. Rep. N – volume: 32 start-page: 1205 year: 2006 ident: ref_39 article-title: Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.04.211 – ident: ref_46 doi: 10.1145/312129.312220 – volume: 22 start-page: 391 year: 1999 ident: ref_5 article-title: Pathobiology of ischaemic stroke: An integrated view publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(99)01401-0 – volume: 43 start-page: 1266 year: 2012 ident: ref_13 article-title: Initial lesion volume is an independent predictor of clinical stroke outcome at day 90: An analysis of the Virtual International Stroke Trials Archive (VISTA) database publication-title: Stroke doi: 10.1161/STROKEAHA.111.646570 – volume: 1 start-page: 542 year: 2019 ident: ref_74 article-title: Cross-validation publication-title: Encycl. Bioinform. Comput. Biol. – volume: 3 start-page: e12298 year: 2020 ident: ref_50 article-title: The balancing trick: Optimized sampling of imbalanced datasets—A brief survey of the recent State of the Art publication-title: Eng. Rep. doi: 10.1002/eng2.12298 – volume: 79 start-page: 250 year: 2016 ident: ref_69 article-title: Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.10.022 – volume: 10 start-page: 174 year: 2014 ident: ref_66 article-title: Automated classification of glaucoma stages using higher order cumulant features publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.11.006 – volume: 4 start-page: 47 year: 2014 ident: ref_52 article-title: MRI and CT image fusion based on wavelet transform publication-title: Int. J. Inf. Comput. Technol. – volume: 124 start-page: 278 year: 2011 ident: ref_3 article-title: Reducing the global burden of ischemic heart disease and stroke: A challenge for the cardiovascular community and the United Nations publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.111.040170 – volume: 20 start-page: 1438 year: 2003 ident: ref_28 article-title: Evaluation of voxel-based morphometry for focal lesion detection in individuals publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00377-X – volume: 25 start-page: 1371 year: 1994 ident: ref_11 article-title: Comparison of clinical and neuroradiological findings in first-ever stroke. A population-based study publication-title: Stroke doi: 10.1161/01.STR.25.7.1371 – volume: 357 start-page: 572 year: 2007 ident: ref_6 article-title: Acute ischemic stroke publication-title: N. Engl. J. Med. doi: 10.1056/NEJMcp072057 – ident: ref_47 doi: 10.1109/ICCSCE50387.2020.9204948 – ident: ref_43 doi: 10.1016/B978-0-12-336156-1.50061-6 – volume: 32 start-page: 1621 year: 2006 ident: ref_32 article-title: Segmentation of focal cortical dysplasia lesions on MRI using level set evolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.04.225 – volume: 8 start-page: 275 year: 2004 ident: ref_36 article-title: A brain tumor segmentation framework based on outlier detection publication-title: Med. Image Anal. doi: 10.1016/j.media.2004.06.007 – volume: 22 start-page: 799 year: 2001 ident: ref_73 article-title: Information-theoretic algorithm for feature selection publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(01)00019-8 – volume: 2 start-page: 43 year: 2003 ident: ref_4 article-title: Stroke epidemiology: A review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(03)00266-7 – volume: 161 start-page: 1 year: 2018 ident: ref_90 article-title: Deep learning for healthcare applications based on physiological signals: A review publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.04.005 – volume: 54 start-page: 1557 year: 2000 ident: ref_20 article-title: Comparison of diffusion-weighted MRI and CT in acute stroke publication-title: Neurology doi: 10.1212/WNL.54.8.1557 – ident: ref_82 doi: 10.1109/ICIP.2006.312369 – ident: ref_41 doi: 10.1109/IEMBS.2005.1615965 – volume: 13 start-page: 130 year: 2019 ident: ref_80 article-title: Automatic neuroimage processing and analysis in stroke—A systematic review publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2019.2934500 – volume: 70 start-page: 831 year: 2013 ident: ref_14 article-title: Comparison of final infarct volumes in patients who received endovascular therapy or intravenous thrombolysis for acute intracranial large-vessel occlusions publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2013.413 – volume: 95 start-page: 55 year: 2018 ident: ref_70 article-title: Optimized multi-level elongated quinary patterns for the assessment of thyroid nodules in ultrasound images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.02.002 – volume: 40 start-page: 3646 year: 2009 ident: ref_7 article-title: Recommendations for imaging of acute ischemic stroke: A scientific statement from the American Heart Association publication-title: Stroke doi: 10.1161/STROKEAHA.108.192616 – volume: 27 start-page: 452 year: 2004 ident: ref_64 article-title: Run-length encoding for volumetric texture publication-title: Heart – volume: 8 start-page: 205 year: 2004 ident: ref_29 article-title: Automatic segmentation of different-sized white matter lesions by voxel probability estimation publication-title: Med. Image Anal. doi: 10.1016/j.media.2004.06.019 – volume: 29 start-page: 162 year: 2006 ident: ref_31 article-title: Individual voxel-based analysis of gray matter in focal cortical dysplasia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.07.021 – volume: 21 start-page: 1263 year: 2009 ident: ref_44 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.239 – volume: 98 start-page: 324 year: 2014 ident: ref_86 article-title: Lesion segmentation from multimodal MRI using random forest following ischemic stroke publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.04.056 – volume: 260 start-page: 335 year: 2013 ident: ref_25 article-title: Diffusion imaging in neurological disease publication-title: J. Neurol. doi: 10.1007/s00415-012-6769-y – volume: 339 start-page: 342 year: 1992 ident: ref_1 article-title: Epidemiology of stroke publication-title: Lancet doi: 10.1016/0140-6736(92)91658-U – ident: ref_76 – volume: 40 start-page: 149 year: 2013 ident: ref_23 article-title: 3-T high-b-value diffusion-weighted MR imaging in hyperacute ischemic stroke publication-title: J. Neuroradiol. doi: 10.1016/j.neurad.2012.08.007 – volume: 123 start-page: 2591 year: 2011 ident: ref_17 article-title: Current status of endovascular stroke treatment publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.110.971564 – volume: 97 start-page: 179 year: 1997 ident: ref_48 article-title: Addressing the curse of imbalanced training sets: One-sided selection publication-title: ICML Citeseer – volume: 116 start-page: 103536 year: 2020 ident: ref_89 article-title: Ischemic stroke segmentation in multi-sequence MRI by symmetry determined superpixel based hierarchical clustering publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103536 – volume: SMC-3 start-page: 610 year: 1973 ident: ref_53 article-title: Textural features for image classification publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1973.4309314 – volume: 6 start-page: 448 year: 2003 ident: ref_8 article-title: Voxel-based lesion–symptom mapping publication-title: Nat. Neurosci. doi: 10.1038/nn1050 – volume: 75 start-page: 66 year: 2015 ident: ref_68 article-title: Ultrasound-based tissue characterization and classification of fatty liver disease: A screening and diagnostic paradigm publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2014.11.021 – volume: 12 start-page: 1107 year: 2018 ident: ref_58 article-title: Automatic benthic imagery recognition using a hierarchical two-stage approach publication-title: Signal Image Video Process. doi: 10.1007/s11760-018-1262-4 – volume: 21 start-page: 43 year: 2001 ident: ref_34 article-title: Automatic segmentation of non-enhancing brain tumors in magnetic resonance images publication-title: Artif. Intell. Med. doi: 10.1016/S0933-3657(00)00073-7 – volume: 367 start-page: 1747 year: 2006 ident: ref_2 article-title: Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data publication-title: Lancet doi: 10.1016/S0140-6736(06)68770-9 – volume: 1 start-page: 687 year: 2011 ident: ref_61 article-title: Classifying benign and malignant mass using GLCM and GLRLM based texture features from mammogram publication-title: Int. J. Eng. Res. Appl. – volume: 58 start-page: 134 year: 2019 ident: ref_88 article-title: Automatic detection of ischemic stroke using higher order spectra features in brain MRI images publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2019.05.005 – volume: 17 start-page: 300 year: 2003 ident: ref_18 article-title: Accuracy and reproducibility of manual and semiautomated quantification of MS lesions by MRI publication-title: J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. – volume: 5 start-page: 15 year: 2012 ident: ref_84 article-title: Formal design methods for reliable computer-aided diagnosis: A review publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2012.2184750 – volume: 134 start-page: 104548 year: 2021 ident: ref_91 article-title: Automated ASD detection using hybrid deep lightweight features extracted from EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104548 – volume: 94 start-page: 167 year: 2005 ident: ref_38 article-title: Identifying lesions on structural brain images—Validation of the method and application to neuropsychological patients publication-title: Brain Lang. doi: 10.1016/j.bandl.2004.12.010 – volume: 107 start-page: 233 year: 2012 ident: ref_55 article-title: ThyroScreen system: High resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2011.10.001 – volume: 20 start-page: 666 year: 2001 ident: ref_35 article-title: Segmentation of large brain lesions publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.932750 – ident: ref_81 doi: 10.1109/ICONIP.2002.1201981 – volume: 116 start-page: 103579 year: 2020 ident: ref_85 article-title: Simulated perfusion MRI data to boost training of convolutional neural networks for lesion fate prediction in acute stroke publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103579 – ident: ref_54 – volume: 26 start-page: 297 year: 1945 ident: ref_79 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – volume: 56 start-page: 2038 year: 2011 ident: ref_16 article-title: Manual, semi-automated, and automated delineation of chronic brain lesions: A comparison of methods publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.04.014 – volume: 10 start-page: 371 year: 2011 ident: ref_56 article-title: Cost-effective and non-invasive automated benign & malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: A class of ThyroScan™ algorithms publication-title: Technol. Cancer Res. Treat. doi: 10.7785/tcrt.2012.500214 – volume: 7 start-page: 1602 year: 1998 ident: ref_62 article-title: Texture information in run-length matrices publication-title: IEEE Trans. Image Process. doi: 10.1109/83.725367 – volume: 11 start-page: 1471 year: 2010 ident: ref_77 article-title: Training and Testing Low-degree Polynomial Data Mappings via Linear SVM publication-title: J. Mach. Learn. Res. – volume: 6 start-page: 9 year: 2014 ident: ref_78 article-title: Dice similarity measure between single valued neutrosophic multisets and its application in medical diagnosis publication-title: Neutrosophic Sets Syst. – volume: 84 start-page: 105685 year: 2019 ident: ref_87 article-title: A deep supervised approach for ischemic lesion segmentation from multimodal MRI using fully convolutional network publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105685 – volume: 17 start-page: 309 year: 2013 ident: ref_67 article-title: Automated detection of diabetes using higher order spectral features extracted from heart rate signals publication-title: Intell. Data Anal. doi: 10.3233/IDA-130580 – volume: 29 start-page: 467 year: 2006 ident: ref_33 article-title: Segmentation and quantification of black holes in multiple sclerosis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.07.042 – volume: 118 start-page: 1593 year: 1995 ident: ref_19 article-title: Intra-and inter-observer agreement of brain MRI lesion volume measurements in multiple sclerosis: A comparison of techniques publication-title: Brain doi: 10.1093/brain/118.6.1593 – volume: 5 start-page: 203 year: 2004 ident: ref_30 article-title: Evidential segmentation scheme of multi-echo MR images for the detection of brain tumors using neighborhood information publication-title: Inf. Fusion doi: 10.1016/j.inffus.2003.10.001 – volume: 132 start-page: 40 year: 2018 ident: ref_57 article-title: Application of feature extraction and classification methods for histopathological image using GLCM, LBP, LBGLCM, GLRLM and SFTA publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.05.057 – volume: 37 start-page: 780 year: 1999 ident: ref_59 article-title: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.752194 – volume: 32 start-page: 17 year: 1978 ident: ref_72 article-title: The hat matrix in regression and ANOVA publication-title: Am. Stat. doi: 10.1080/00031305.1978.10479237 – volume: 20 start-page: 273 year: 1995 ident: ref_75 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 13 start-page: 623 year: 2001 ident: ref_27 article-title: Voxel-based morphometry of herpes simplex encephalitis publication-title: Neuroimage doi: 10.1006/nimg.2000.0734 – volume: 80 start-page: 187 year: 2005 ident: ref_60 article-title: Entropies for detection of epilepsy in EEG publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2005.06.012 – volume: 1 start-page: 164 year: 2012 ident: ref_42 article-title: Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2012.10.003 – volume: 55 start-page: 157 year: 2013 ident: ref_22 article-title: The incidence and clinical predictors of acute infarction in patients with transient ischemic attack using MRI including DWI publication-title: Neuroradiology doi: 10.1007/s00234-012-1091-z – volume: 92 start-page: 145 year: 2004 ident: ref_9 article-title: Lesion analysis of the brain areas involved in language comprehension publication-title: Cognition doi: 10.1016/j.cognition.2003.11.002 – volume: 9 start-page: 192 year: 2000 ident: ref_10 article-title: Lesion segmentation and manual warping to a reference brain: Intra-and interobserver reliability publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(200004)9:4<192::AID-HBM2>3.0.CO;2-Y – volume: 34 start-page: 142 year: 2006 ident: ref_37 article-title: Unified approach for multiple sclerosis lesion segmentation on brain MRI publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-005-9009-0  | 
    
| SSID | ssj0038469 | 
    
| Score | 2.3015726 | 
    
| Snippet | This paper presents a scientific foundation for automated stroke severity classification. We have constructed and assessed a system which extracts... | 
    
| SourceID | unpaywall pubmedcentral proquest crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 8059 | 
    
| SubjectTerms | Algorithms Automation Brain research Classification Hypotheses Magnetic resonance imaging Stroke Support vector machines Variance analysis Wavelet transforms  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEF_q9UFBip94WmUEQV-WZvO1l4ciVe5ohTulH9C3sF-h1TM57xJa_eud2STXnqC-BbJckpvZmd_Ozv5-jL0JCmEL5zKeZYXjmK9TriXVrYQShS4yYbx0wnSWHp7Fn86T8y0268_CUFtlHxN9oLaVoRr5HkJfdLUUFwjvFz84qUbR7movoaE6aQW77ynG7rDtkJixBmz7w3j25biPzRFmWwLEArMSx9woWxrHCBf-e5dfHX4ZJrxk5JlLb6epG-z5Z-fk3aZcqJ9Xaj6_lZYmD9hOhyfhoHWAh2zLlY_Y_bYYB-0Zo8fs16ShohhUBbR9HfCZGDeBxOfxAaBKC6cYpZulg_F1vWwPO8DUq0uvAHEtHDR1heDWWTipl9U3BycOJwFCePCymtRw5G0MVNiF6fERHH3HULV6ws4m49OPh7wTXeAmypKaZ4VwCWbOMI5cGGgVRJ7LXOvAGoGZTBlpYjlyTtGGqUN8qUOJKFBFcqRTV0RP2aCsSveMgY5NEts4TQONlyZTxtowsjYNpE6FKIaM9_9xbjpGchLGmOe4MiGb5Js2GbK36_GLlovjryN3e5Pl3Zxc5TceNGSv17dxNtEWiSpd1fgxxEcf0k_IDVOvn0h83Jt3yssLz8s9iuIEw9uQvVs7xX_e8_m_3_MFuxdSC00geZjtskG9bNxLxEC1ftU59m9ClAqr priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA-696Agfourp4wg6EuuTT_S5kkWueVO2FO8WzifSj5xvbVddls_7q930nbX3QNR8K2QpE2aycxvkslvCHkZOmactYIK4SxFe82pyvy-FZPMKSeYblMnTE740TR5d56eb93i92GV6IrPWiXNOA9pgi5DwPKApUGOWCBYGPfmW7-XxHiEi1mksbhO9niKaHxA9qYnH0afvJ-1bt09M4rGMOt4G2P09IPZF4tDQQuX5i1V6bZd-g02r4ZK3mjKhfz5Xc7nW3ZofIfI9Qi68JOLg6ZWB_ryCrnj_wzxLrndg1QYdVJ1j1yz5X1yq9vhg-7i0gNyOW58U6gcdMEi8N7TeILPaI-DAFkaOEPV3ywtHP6ol90NCpi0KatXgGAZRk1dIWK2Bk7rZXVh4dRih9AvgDZXp49iagUH_G4xTD4ew_FX1H-rh2Q6Pjx7e0T7TA5UxyKtqXDMpmiOoyS2UahkGLcE6UqFRjM0j1JnOslya6U_hbUIWlWUIbSUcZYrbl38iAzKqrSPCahEp4lJ8LcpfNRCamOi2BgeZooz5oaEruex0D3Nuc-2MS_Q3fHzXuzO-5C82tRfdAQff6y5vxaLol_oqwI9MtSAHP3WIXmxKcYl6s9dZGmrpq3jSe4j_4psR5w2X_Qk37sl5exzS_adx0mKOnNIXm8E7y_9fPLvVZ-Sm5GP0QkzGol9MqiXjX2GIKtWz_t19AtCKiRi priority: 102 providerName: Unpaywall  | 
    
| Title | Fusion of Higher Order Spectra and Texture Extraction Methods for Automated Stroke Severity Classification with MRI Images | 
    
| URI | https://www.proquest.com/docview/2558806828 https://www.proquest.com/docview/2559430259 https://pubmed.ncbi.nlm.nih.gov/PMC8345794 https://www.mdpi.com/1660-4601/18/15/8059/pdf?version=1627629539  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 18 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: HH5 dateStart: 20040101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: KQ8 dateStart: 20040101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: A8Z dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: DIK dateStart: 20040101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: GX1 dateStart: 20040101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: 8C1 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1660-4601 dateEnd: 20250731 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: M48 dateStart: 20050501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfY9gDSNPEpysZ0SEjwYojz5eQBoTK125Bapm2VylNkJ7bY1iUjTcTGX89d0mYUDcFLlNhO7Pjsu9_Z5zvGXjtWZNaYmMexNRzldci1pHUroYTVNhZpEzphNA4PJv7naTC9tX9adOD8TtWO4klNytm76-83H3HCfyCNE1X292fnBtuEoiqIECyssQ2UUjGFcRj53Y6Ch3KWoLAIQ4f7qIW0DhzveH9VQN2izj9tJu_X-ZW6-aFms98E0vAh21ogSei3pH_E7pn8Mdtsl-GgPV30hP0c1rQcBoWF1qIDvpCvTaCw81gBqDyDU-TPdWlgcF2V7TEHGDVxpeeAiBb6dVUgrDUZnFRlcWHgxODwR_AOTUBNMjVqqAu0pAuj40M4vEQmNX_KJsPB6d4BX4Rb4KkXBxWPrTABykzX94zraOV4jRdzrZ0sFSjDVCpTX0bGKNoqNYgstSsR_ylPRjo01nvG1vMiN88ZaD8N_MzHvtZ4m8YqzTLXy7LQkToUwvYYX_Zxki58kVNIjFmCOgnRJFmlSY-96cpftV44_lpyZ0myZDmYElSbkE2FqFz22KsuG-cRbY6o3BR1U4Y80bv0CblC6q5G8sS9mpOffWs8ckeeHyBj67G33aD4Rztf_PcfbbMHLtnROJK78Q5br8ravEQgVOldtianEq_RnqDrcH-XbXwajI-O8Wl_Smk4AzBtMj7qf_0FbU4R6w | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeBgSQnxqhQGHBIIXa3GcxM0DQhOsatk6JNZJfQv-ihiUpLSJxvij-Bs5O022IgFPe4tky458X787n-8IeR7kzOTWpjRNc0vRXidUCRe3YpLlKk-Z9q0TxkfJ8CR6P42nG-RX-xbGpVW2OtEralNqFyPfReiLrJagg_Bm_p26rlHudrVtodGwxYE9P0OXbfl69A7p-yIMB_uTt0O66ipANU_jiqY5szGahjDiNgyUDLgv1q1UYDRDVS210JHoWyvdjaBFAKVCgTBHctFXic05rnuNXI846hKUHzHtHDyOttzBbYY2j6LlFU2RSM7TYPf0i8VzQ3Ma931d1MtG8ALZ_pmXuVUXc3l-JmezS0ZvcJvcWqFV2GvY6w7ZsMVdcrMJ9UHzguke-TmoXcgNyhyarBH44Op5gmttjxuALAxM0AbUCwv7P6pF85QCxr539RIQNcNeXZUIna2B42pRfrVwbFHE0EEA37TTpTN5DgIXNobxxxGMvqEiXN4nJ1dy-A_IZlEWdpuAinQcmShJAoWfOpXamJAbkwRCJYzlPULbM870qt65a7sxy9DvcTTJ1mnSIy-7-fOm0sdfZ-60JMtWEr_MLvizR551wyir7gJGFras_RxX7T50S4g1Unc7umrf6yPF6Wdf9bvPoxiVZ4-86pjiP__58N__-ZRsDSfjw-xwdHTwiNwIXbJOIGiY7pDNalHbx4i2KvXEsziQT1ctU78B4h1Azg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA61ggpFvOK2VY-g6EvYuWfnQaTYLl3rVrEt7NuYK21dZ7a7M9T60_x1nmQu7QrqU98GEpIh535y8h1CXnrGV0brlKap0RTtdUIFs3krn_tGmNSXrnXCeD_ZPYo-TOLJCvnVvoWxZZWtTnSKWhXS5sj76PoiqyUYIPRNUxbxeXv4bnZGbQcpe9PattOoWWRPX5xj-LZ4O9pGWr8KguHO4ftd2nQYoDJM45KmxtcxmokgCnXgCe6FDrhbCE9JH9U2l0xGbKA1t7eDGp0pETB0eXjIBiLRJsR1b5CbLMTVUJbYpAv2QrTr1vX20f5RtMKsBozEiV7_5FTjGaJpjQcOI_WqQbz0cv-s0bxd5TN-cc6n0ysGcHiP3G08V9iqWe0-WdH5A7JWp_2gfs30kPwcVjb9BoWBuoIEPllsT7Bt7nED4LmCQzzUaq5h50c5r59VwNj1sV4AetCwVZUFutFawUE5L75pONAobhgsgGvgaUubHDeBTSHD-MsIRt9RKS4ekaNrOfzHZDUvcv2EgIhkHKkoSTyBnzLlUqkgVCrxmEh83_QIbc84kw32uW3BMc0wBrI0yZZp0iOvu_mzGvXjrzM3W5JljfQvskte7ZEX3TDKrb2M4bkuKjfHIt8Hdgm2ROpuR4v8vTySnxw7BPBBGMWoSHvkTccU__nP9X__53NyC6Up-zja39sgdwJbt-MxGqSbZLWcV_opOl6leOY4HMjX6xap37S9RRE | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA-696Agfourp4wg6EuuTT_S5kkWueVO2FO8WzifSj5xvbVddls_7q930nbX3QNR8K2QpE2aycxvkslvCHkZOmactYIK4SxFe82pyvy-FZPMKSeYblMnTE740TR5d56eb93i92GV6IrPWiXNOA9pgi5DwPKApUGOWCBYGPfmW7-XxHiEi1mksbhO9niKaHxA9qYnH0afvJ-1bt09M4rGMOt4G2P09IPZF4tDQQuX5i1V6bZd-g02r4ZK3mjKhfz5Xc7nW3ZofIfI9Qi68JOLg6ZWB_ryCrnj_wzxLrndg1QYdVJ1j1yz5X1yq9vhg-7i0gNyOW58U6gcdMEi8N7TeILPaI-DAFkaOEPV3ywtHP6ol90NCpi0KatXgGAZRk1dIWK2Bk7rZXVh4dRih9AvgDZXp49iagUH_G4xTD4ew_FX1H-rh2Q6Pjx7e0T7TA5UxyKtqXDMpmiOoyS2UahkGLcE6UqFRjM0j1JnOslya6U_hbUIWlWUIbSUcZYrbl38iAzKqrSPCahEp4lJ8LcpfNRCamOi2BgeZooz5oaEruex0D3Nuc-2MS_Q3fHzXuzO-5C82tRfdAQff6y5vxaLol_oqwI9MtSAHP3WIXmxKcYl6s9dZGmrpq3jSe4j_4psR5w2X_Qk37sl5exzS_adx0mKOnNIXm8E7y_9fPLvVZ-Sm5GP0QkzGol9MqiXjX2GIKtWz_t19AtCKiRi | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+Higher+Order+Spectra+and+Texture+Extraction+Methods+for+Automated+Stroke+Severity+Classification+with+MRI+Images&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.au=Faust%2C+Oliver&rft.au=En+Wei+Koh%2C+Joel&rft.au=Jahmunah%2C+Vicnesh&rft.au=Sabut%2C+Sukant&rft.date=2021-07-29&rft.issn=1660-4601&rft.eissn=1660-4601&rft.volume=18&rft.issue=15&rft.spage=8059&rft_id=info:doi/10.3390%2Fijerph18158059&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijerph18158059 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon |