QM/MM computations reveal details of the acetyl-CoA synthase catalytic center

The “open” (Aopen) and “closed” (Aclosed) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum mechanical (QM)/molecular mechanical (MM) approach. Geometry optimizations of the oxidized, one- and two-electron reduced Aopen state ha...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1864; no. 7; p. 129579
Main Authors Elghobashi-Meinhardt, Nadia, Tombolelli, Daria, Mroginski, Maria-Andrea
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2020
Subjects
Online AccessGet full text
ISSN0304-4165
1872-8006
1872-8006
DOI10.1016/j.bbagen.2020.129579

Cover

Abstract The “open” (Aopen) and “closed” (Aclosed) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum mechanical (QM)/molecular mechanical (MM) approach. Geometry optimizations of the oxidized, one- and two-electron reduced Aopen state have been carried out for the fully solvated ACS enzyme, and the CO ligand has been modeled in the reduced models. Using a combination of both αopen and αclosed protein scaffolds and the positions of metal atoms in these structures, we have been able to piece together critical parts of the catalytic cycle of ACS. We have replaced the unidentified exogenous ligand in the crystal structure with CO using both a square planar and tetrahedral proximal Ni atom. A one-electron reduced A-cluster that is characterized by a proximal Ni atom in a tetrahedral coordination pattern observed in both the Aopen (lower occupancy proximal Ni) and Aclosed (proximal Zn atom) geometries with three cysteine thiolates and a modeled CO ligand demonstrates excellent agreement with the crystal structure atomic positions, particularly with the displacement of the side chain ring of Phe512 which appears to serve as a structural gate for ligand binding. The QM/MM optimized geometry of the A-cluster of ACS with an uncoordinated, oxidized proximal nickel atom in a square planar geometry demonstrates poor agreement with the atomic coordinates taken from the crystal structure. Based on these calculations, we conclude that the square planar proximal nickel coordination that has been captured in the Aopen structure does not correspond to the ligand-free, oxidized [Fe4S4]2+ − Nip2+ − Nid2+ state. Overall, these computations shed further light on the mechanistic details of protein conformational changes and electronic transitions involved in the ACS catalytic cycle. •QM/MM computations reveal atomic details of Aopen and Aclosed catalytic centers in acetyl-CoA synthase (ACS)•Geometry of one-electron reduced A-cluster with CO ligand and tetrahedral proximal Ni atom agrees with the crystal structure•Rotation of the side chain ring of Phe512 appears to serve as a structural gate for ligand binding•Aopen with square planar proximal nickel does not correspond to the ligand-free, oxidized [Fe4S4]2+--Nip2+--Nid2+ state
AbstractList The “open” (Aₒₚₑₙ) and “closed” (Acₗₒₛₑd) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum mechanical (QM)/molecular mechanical (MM) approach. Geometry optimizations of the oxidized, one- and two-electron reduced Aₒₚₑₙ state have been carried out for the fully solvated ACS enzyme, and the CO ligand has been modeled in the reduced models. Using a combination of both αₒₚₑₙ and αcₗₒₛₑd protein scaffolds and the positions of metal atoms in these structures, we have been able to piece together critical parts of the catalytic cycle of ACS. We have replaced the unidentified exogenous ligand in the crystal structure with CO using both a square planar and tetrahedral proximal Ni atom. A one-electron reduced A-cluster that is characterized by a proximal Ni atom in a tetrahedral coordination pattern observed in both the Aₒₚₑₙ (lower occupancy proximal Ni) and Acₗₒₛₑd (proximal Zn atom) geometries with three cysteine thiolates and a modeled CO ligand demonstrates excellent agreement with the crystal structure atomic positions, particularly with the displacement of the side chain ring of Phe512 which appears to serve as a structural gate for ligand binding. The QM/MM optimized geometry of the A-cluster of ACS with an uncoordinated, oxidized proximal nickel atom in a square planar geometry demonstrates poor agreement with the atomic coordinates taken from the crystal structure. Based on these calculations, we conclude that the square planar proximal nickel coordination that has been captured in the Aₒₚₑₙ structure does not correspond to the ligand-free, oxidized [Fe₄S₄]²⁺ − Niₚ²⁺ − Nid²⁺ state. Overall, these computations shed further light on the mechanistic details of protein conformational changes and electronic transitions involved in the ACS catalytic cycle.
The "open" (A ) and "closed" (A ) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum mechanical (QM)/molecular mechanical (MM) approach. Geometry optimizations of the oxidized, one- and two-electron reduced A state have been carried out for the fully solvated ACS enzyme, and the CO ligand has been modeled in the reduced models. Using a combination of both α and α protein scaffolds and the positions of metal atoms in these structures, we have been able to piece together critical parts of the catalytic cycle of ACS. We have replaced the unidentified exogenous ligand in the crystal structure with CO using both a square planar and tetrahedral proximal Ni atom. A one-electron reduced A-cluster that is characterized by a proximal Ni atom in a tetrahedral coordination pattern observed in both the A (lower occupancy proximal Ni) and A (proximal Zn atom) geometries with three cysteine thiolates and a modeled CO ligand demonstrates excellent agreement with the crystal structure atomic positions, particularly with the displacement of the side chain ring of Phe512 which appears to serve as a structural gate for ligand binding. The QM/MM optimized geometry of the A-cluster of ACS with an uncoordinated, oxidized proximal nickel atom in a square planar geometry demonstrates poor agreement with the atomic coordinates taken from the crystal structure. Based on these calculations, we conclude that the square planar proximal nickel coordination that has been captured in the A structure does not correspond to the ligand-free, oxidized [Fe S ]  - Ni  - Ni state. Overall, these computations shed further light on the mechanistic details of protein conformational changes and electronic transitions involved in the ACS catalytic cycle.
The “open” (Aopen) and “closed” (Aclosed) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum mechanical (QM)/molecular mechanical (MM) approach. Geometry optimizations of the oxidized, one- and two-electron reduced Aopen state have been carried out for the fully solvated ACS enzyme, and the CO ligand has been modeled in the reduced models. Using a combination of both αopen and αclosed protein scaffolds and the positions of metal atoms in these structures, we have been able to piece together critical parts of the catalytic cycle of ACS. We have replaced the unidentified exogenous ligand in the crystal structure with CO using both a square planar and tetrahedral proximal Ni atom. A one-electron reduced A-cluster that is characterized by a proximal Ni atom in a tetrahedral coordination pattern observed in both the Aopen (lower occupancy proximal Ni) and Aclosed (proximal Zn atom) geometries with three cysteine thiolates and a modeled CO ligand demonstrates excellent agreement with the crystal structure atomic positions, particularly with the displacement of the side chain ring of Phe512 which appears to serve as a structural gate for ligand binding. The QM/MM optimized geometry of the A-cluster of ACS with an uncoordinated, oxidized proximal nickel atom in a square planar geometry demonstrates poor agreement with the atomic coordinates taken from the crystal structure. Based on these calculations, we conclude that the square planar proximal nickel coordination that has been captured in the Aopen structure does not correspond to the ligand-free, oxidized [Fe4S4]2+ − Nip2+ − Nid2+ state. Overall, these computations shed further light on the mechanistic details of protein conformational changes and electronic transitions involved in the ACS catalytic cycle. •QM/MM computations reveal atomic details of Aopen and Aclosed catalytic centers in acetyl-CoA synthase (ACS)•Geometry of one-electron reduced A-cluster with CO ligand and tetrahedral proximal Ni atom agrees with the crystal structure•Rotation of the side chain ring of Phe512 appears to serve as a structural gate for ligand binding•Aopen with square planar proximal nickel does not correspond to the ligand-free, oxidized [Fe4S4]2+--Nip2+--Nid2+ state
The "open" (Aopen) and "closed" (Aclosed) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum mechanical (QM)/molecular mechanical (MM) approach. Geometry optimizations of the oxidized, one- and two-electron reduced Aopen state have been carried out for the fully solvated ACS enzyme, and the CO ligand has been modeled in the reduced models. Using a combination of both αopen and αclosed protein scaffolds and the positions of metal atoms in these structures, we have been able to piece together critical parts of the catalytic cycle of ACS. We have replaced the unidentified exogenous ligand in the crystal structure with CO using both a square planar and tetrahedral proximal Ni atom. A one-electron reduced A-cluster that is characterized by a proximal Ni atom in a tetrahedral coordination pattern observed in both the Aopen (lower occupancy proximal Ni) and Aclosed (proximal Zn atom) geometries with three cysteine thiolates and a modeled CO ligand demonstrates excellent agreement with the crystal structure atomic positions, particularly with the displacement of the side chain ring of Phe512 which appears to serve as a structural gate for ligand binding. The QM/MM optimized geometry of the A-cluster of ACS with an uncoordinated, oxidized proximal nickel atom in a square planar geometry demonstrates poor agreement with the atomic coordinates taken from the crystal structure. Based on these calculations, we conclude that the square planar proximal nickel coordination that has been captured in the Aopen structure does not correspond to the ligand-free, oxidized [Fe4S4]2+ - Nip2+ - Nid2+ state. Overall, these computations shed further light on the mechanistic details of protein conformational changes and electronic transitions involved in the ACS catalytic cycle.The "open" (Aopen) and "closed" (Aclosed) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum mechanical (QM)/molecular mechanical (MM) approach. Geometry optimizations of the oxidized, one- and two-electron reduced Aopen state have been carried out for the fully solvated ACS enzyme, and the CO ligand has been modeled in the reduced models. Using a combination of both αopen and αclosed protein scaffolds and the positions of metal atoms in these structures, we have been able to piece together critical parts of the catalytic cycle of ACS. We have replaced the unidentified exogenous ligand in the crystal structure with CO using both a square planar and tetrahedral proximal Ni atom. A one-electron reduced A-cluster that is characterized by a proximal Ni atom in a tetrahedral coordination pattern observed in both the Aopen (lower occupancy proximal Ni) and Aclosed (proximal Zn atom) geometries with three cysteine thiolates and a modeled CO ligand demonstrates excellent agreement with the crystal structure atomic positions, particularly with the displacement of the side chain ring of Phe512 which appears to serve as a structural gate for ligand binding. The QM/MM optimized geometry of the A-cluster of ACS with an uncoordinated, oxidized proximal nickel atom in a square planar geometry demonstrates poor agreement with the atomic coordinates taken from the crystal structure. Based on these calculations, we conclude that the square planar proximal nickel coordination that has been captured in the Aopen structure does not correspond to the ligand-free, oxidized [Fe4S4]2+ - Nip2+ - Nid2+ state. Overall, these computations shed further light on the mechanistic details of protein conformational changes and electronic transitions involved in the ACS catalytic cycle.
ArticleNumber 129579
Author Elghobashi-Meinhardt, Nadia
Mroginski, Maria-Andrea
Tombolelli, Daria
Author_xml – sequence: 1
  givenname: Nadia
  surname: Elghobashi-Meinhardt
  fullname: Elghobashi-Meinhardt, Nadia
  email: n.elghobashi-meinhardt@campus.tu-berlin.de
– sequence: 2
  givenname: Daria
  surname: Tombolelli
  fullname: Tombolelli, Daria
– sequence: 3
  givenname: Maria-Andrea
  surname: Mroginski
  fullname: Mroginski, Maria-Andrea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32135171$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LJDEQhsOirKO7_2CRHL30WPnqTHsQZPBjwUEWvId0urJm6OmMSUaYf29L6x48rHUpKJ63Du9zTA6GOCAhvxjMGbD6fD1vW_sXhzkHPp54o3TzjczYQvNqAVAfkBkIkJVktToixzmvYRzVqO_kSHAmFNNsRlZ_VuerFXVxs90VW0IcMk34granHRYb-kyjp-UJqXVY9n21jFc074fyZDNSZ4vt9yU46nAomH6QQ2_7jD_f9wl5vLl-XN5V9w-3v5dX95UTjSpV7WvdMC08cg9M1r5zWjDhAZXlgrXKdp1tvWwBOiFcIwAscMtQLlBwECfkbHq7TfF5h7mYTcgO-94OGHfZcKl1zTmXzdeo0FIo3izqET19R3ftBjuzTWFj0958lDUCcgJcijkn9P8QBubNiVmbyYl5c2ImJ2Ps4lPMhanqksaCvwpfTmEc63wJmEx2AQeHXUjoiuli-P-DV6cVp60
CitedBy_id crossref_primary_10_1021_acs_inorgchem_0c02139
crossref_primary_10_3390_catal12020195
crossref_primary_10_1016_j_jinorgbio_2022_112098
crossref_primary_10_59761_RCR5094
crossref_primary_10_1016_j_bbagen_2021_129888
Cites_doi 10.1007/s00775-004-0565-9
10.1126/science.1075843
10.1021/ja403110s
10.1096/fasebj.5.2.1900793
10.1021/ja981165z
10.1016/0009-2614(89)85118-8
10.1074/jbc.M210484200
10.1021/bi00216a018
10.1002/jcc.540040211
10.1073/pnas.181342398
10.1021/ja00051a040
10.1021/acs.jpcb.9b00617
10.1146/annurev.mi.40.100186.002215
10.1021/ja038083h
10.1016/S0021-9258(19)39676-0
10.1063/1.440939
10.1021/ja963597k
10.1073/pnas.0304262101
10.1038/nsb912
10.1021/ja0352855
10.1021/bi9003952
10.1016/0009-2614(95)00621-A
10.1021/bi00166a023
10.1021/jp973084f
10.1021/acs.jctc.5b00123
10.1002/prot.21820
10.1021/bi036194n
10.1021/bi011687i
10.1038/nature10505
10.1021/jp402616e
10.1016/S0006-3495(01)76091-2
10.1021/ja037893q
10.1016/S0166-1280(03)00285-9
10.1021/ja0439221
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier B.V.
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2020.129579
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 32135171
10_1016_j_bbagen_2020_129579
S0304416520300842
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c395t-6f679173fe2f0146fdc7313f0e5a231b5addabf4b00d33c9300a02a1e48e3203
IEDL.DBID AIKHN
ISSN 0304-4165
1872-8006
IngestDate Thu Sep 04 19:30:43 EDT 2025
Sun Sep 28 04:18:08 EDT 2025
Wed Feb 19 02:26:38 EST 2025
Tue Jul 01 00:22:13 EDT 2025
Thu Apr 24 23:07:34 EDT 2025
Fri Feb 23 02:48:10 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Aacetyl coenzymeA synthase (ACS)
CODH/ACS catalysis
QM/MM computations
Language English
License Copyright © 2020. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-6f679173fe2f0146fdc7313f0e5a231b5addabf4b00d33c9300a02a1e48e3203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32135171
PQID 2374352986
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2477622249
proquest_miscellaneous_2374352986
pubmed_primary_32135171
crossref_primary_10_1016_j_bbagen_2020_129579
crossref_citationtrail_10_1016_j_bbagen_2020_129579
elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129579
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Svetlitchny, Dobbek, Meyer-Klauke, Meins, Thiele, Römer, Huber, Meyer (bb0080) 2004; 101
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian˜16 Revision C.01Gaussian Inc. Wallingford CT.
Volbeda, Darnault, Tan, Lindahl, Fontecilla-Camps (bb0035) 2009; 48
Rabenstein, Knapp (bb0130) 2001; 80
Fan, Gorst, Ragsdale, Hoffman (bb0110) 1991; 30
Meyer, Knapp (bb0135) 2015; 11
Sherwood, de Vries, Guest, Schreckenbach, Catlow, French, Sokol, Bromley, Thiel, Turner, Billeter, Terstegen, Thiel, Kendrick, Rogers, Casci, King, Karlsen, Sjøvoll, Fahmi, Schäfer, Lennartz (bb0180) 2003; 632
Chmielowska, Lodowski, Jaworska (bb0075) 2013; 117
Webster, Darensbough, Lindahl, Hall (bb0055) 2004; 126
Russell, Støalhandske, Xia, Scott, Lindahl (bb0050) 1998; 120
Darnault, Volbeda, Kim, Legrand, Vernéde, Lindahl, Fontecilla-Camps (bb0015) 2003; 10
Shin, Lindahl (bb0040) 1992; 31
Seravalli, Kumar, Ragsdale (bb0090) 2002; 41
Ljungdahl (bb0005) 1986; 40
Wang, Bruschi, DeGioia, Blumberger (bb0030) 2013; 135
Kieseritzky, Knapp (bb0125) 2008; 71
Baker, Sept, Joseph, Holst, McCammon (bb0140) 2001; 98
Gencic, Grahame (bb0065) 2003; 278
Tombolelli, Mroginski (bb0165) 2019; 123
Noodleman (bb0160) 1981; 74
Amara, Volbeda, Fontecilla-Camps, Field (bb0095) 2005; 127
Volbeda, Fontecilla-Camps (bb0025) 2004; 9
Brooks, Bruccoleri, Olafson, States, Swaminathan, Karplus (bb0115) 1983; 4
Bramlett, Tan, Lindahl (bb0060) 2003; 125
Fritsch, Scheerer, Frielingsdorf, Kroschinsky, Friedrich, Lenz, Spahn (bb0145) 2011; 479
Wood (bb0010) 1991; 5
Eichkorn, Treutler, Öhm, Häser, Ahlrichs (bb0170) 1995; 240
Schenker, Brunold (bb0100) 2003; 125
Lindahl, Ragsdale, Münck (bb0105) 1990; 265
Barondeau, Lindahl (bb0045) 1997; 119
Metz, Kästner, Sokol, Keal, Sherwood (bb0185) 2014; 4
Seravalli, Xiao, Gu, Cramer, Antholine, Krymov, Gerfen, Ragsdale (bb0070) 2004; 43
Ahlrichs, Bär, Häser, Horn, Kölmer (bb0175) 1989; 162
Doukov, Iverson, Seravalli, Ragsdale, Drennan (bb0020) 2002; 298
Gorst, Ragsdale (bb0085) 1991; 266
MacKerell, Bashford, M., Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, Joseph-McCarthy, Kuchnir, Kuczera, Lau, Mattos, Michnick, Ngo, Nguyen, Prodhom, Reiher, III, Schlenkrich, Smith, Stote, Straub, Watanabe, Wiórkiewicz-Kuczera, Yin, Karplus (bb0120) 1998; 102
Rappé, Casewit, Colwell, Goddard (bb0155) 1992; 114
MacKerell (10.1016/j.bbagen.2020.129579_bb0120) 1998; 102
Darnault (10.1016/j.bbagen.2020.129579_bb0015) 2003; 10
Seravalli (10.1016/j.bbagen.2020.129579_bb0070) 2004; 43
Amara (10.1016/j.bbagen.2020.129579_bb0095) 2005; 127
Eichkorn (10.1016/j.bbagen.2020.129579_bb0170) 1995; 240
Fritsch (10.1016/j.bbagen.2020.129579_bb0145) 2011; 479
10.1016/j.bbagen.2020.129579_bb0150
Gorst (10.1016/j.bbagen.2020.129579_bb0085) 1991; 266
Meyer (10.1016/j.bbagen.2020.129579_bb0135) 2015; 11
Doukov (10.1016/j.bbagen.2020.129579_bb0020) 2002; 298
Baker (10.1016/j.bbagen.2020.129579_bb0140) 2001; 98
Barondeau (10.1016/j.bbagen.2020.129579_bb0045) 1997; 119
Metz (10.1016/j.bbagen.2020.129579_bb0185) 2014; 4
Shin (10.1016/j.bbagen.2020.129579_bb0040) 1992; 31
Schenker (10.1016/j.bbagen.2020.129579_bb0100) 2003; 125
Brooks (10.1016/j.bbagen.2020.129579_bb0115) 1983; 4
Russell (10.1016/j.bbagen.2020.129579_bb0050) 1998; 120
Chmielowska (10.1016/j.bbagen.2020.129579_bb0075) 2013; 117
Wang (10.1016/j.bbagen.2020.129579_bb0030) 2013; 135
Fan (10.1016/j.bbagen.2020.129579_bb0110) 1991; 30
Webster (10.1016/j.bbagen.2020.129579_bb0055) 2004; 126
Gencic (10.1016/j.bbagen.2020.129579_bb0065) 2003; 278
Volbeda (10.1016/j.bbagen.2020.129579_bb0035) 2009; 48
Kieseritzky (10.1016/j.bbagen.2020.129579_bb0125) 2008; 71
Noodleman (10.1016/j.bbagen.2020.129579_bb0160) 1981; 74
Bramlett (10.1016/j.bbagen.2020.129579_bb0060) 2003; 125
Rabenstein (10.1016/j.bbagen.2020.129579_bb0130) 2001; 80
Ljungdahl (10.1016/j.bbagen.2020.129579_bb0005) 1986; 40
Rappé (10.1016/j.bbagen.2020.129579_bb0155) 1992; 114
Ahlrichs (10.1016/j.bbagen.2020.129579_bb0175) 1989; 162
Sherwood (10.1016/j.bbagen.2020.129579_bb0180) 2003; 632
Volbeda (10.1016/j.bbagen.2020.129579_bb0025) 2004; 9
Wood (10.1016/j.bbagen.2020.129579_bb0010) 1991; 5
Seravalli (10.1016/j.bbagen.2020.129579_bb0090) 2002; 41
Svetlitchny (10.1016/j.bbagen.2020.129579_bb0080) 2004; 101
Tombolelli (10.1016/j.bbagen.2020.129579_bb0165) 2019; 123
Lindahl (10.1016/j.bbagen.2020.129579_bb0105) 1990; 265
References_xml – volume: 4
  start-page: 101
  year: 2014
  end-page: 110
  ident: bb0185
  article-title: ChemShell–a modular software package for QM/MM simulations
  publication-title: Wiley Interdisc. Rev.: Comp. Mol. Sci.
– volume: 98
  start-page: 10037
  year: 2001
  end-page: 10041
  ident: bb0140
  article-title: Electrostatics of nanosystems: application to microtubules and the ribosome
  publication-title: Proc. Natl. Acad. Sci.
– reference: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, GaussianËœ16 Revision C.01Gaussian Inc. Wallingford CT.
– volume: 40
  start-page: 415
  year: 1986
  end-page: 450
  ident: bb0005
  article-title: The autotrophic pathway of acetate synthesis in acetogenic bacteria
  publication-title: Annu. Rev. Microbiol.
– volume: 9
  start-page: 525
  year: 2004
  end-page: 532
  ident: bb0025
  article-title: Crystallographic evidence for a CO/CO
  publication-title: J. Biol. Inorg. Chem.
– volume: 125
  start-page: 9316
  year: 2003
  end-page: 9317
  ident: bb0060
  article-title: Inactivation of acetyl-CoA synthase/carbon monoxide dehydrogenase by copper
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 3944
  year: 2004
  end-page: 3955
  ident: bb0070
  article-title: Evidence that NiNi acetyl-CoA synthase is active and that the CuNi enzyme is not
  publication-title: Biochem
– volume: 10
  start-page: 271
  year: 2003
  end-page: 278
  ident: bb0015
  article-title: Ni-Zn-[Fe
  publication-title: Nat. Struct. Biol.
– volume: 80
  start-page: 1141
  year: 2001
  end-page: 1150
  ident: bb0130
  article-title: Calculated ph-dependent population and protonation of carbon-monoxy-myoglobin conformers
  publication-title: Biophys. J.
– volume: 135
  start-page: 9493
  year: 2013
  end-page: 9502
  ident: bb0030
  article-title: Uncovering a dynamically formed substrate access tunnel in carbon monoxide dehydrogenase/acetyl-CoA synthase
  publication-title: J. Am. Chem. Soc.
– volume: 266
  start-page: 20687
  year: 1991
  end-page: 20693
  ident: bb0085
  article-title: Characterization of the NiFeCO complex of carbon monoxise dehydrogenase as a catalytically competent intermediate in the pathway of acetyl-coenzyme a synthesis
  publication-title: Biochem
– volume: 119
  start-page: 3959
  year: 1997
  end-page: 3970
  ident: bb0045
  article-title: Methylation of carbon monoxide dehydrogenase from
  publication-title: J. Am. Chem. Soc.
– volume: 479
  start-page: 249
  year: 2011
  end-page: 252
  ident: bb0145
  article-title: The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-Sulphur Centre
  publication-title: Nature
– volume: 31
  start-page: 12870
  year: 1992
  end-page: 12875
  ident: bb0040
  article-title: Function and CO binding properties of the NiFe complex in carbon monoxide dehydrogenase from
  publication-title: Biochemistry
– volume: 4
  start-page: 187
  year: 1983
  end-page: 217
  ident: bb0115
  article-title: Charmm: a program for macromolecular energy, minimization, and dynamics calculations
  publication-title: J. Comput. Chem.
– volume: 162
  start-page: 165
  year: 1989
  end-page: 169
  ident: bb0175
  article-title: Electronic structure calculations on work-station computers: the computer system turbomole
  publication-title: Chem. Phys. Lett.
– volume: 632
  start-page: 1
  year: 2003
  end-page: 28
  ident: bb0180
  article-title: QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis
  publication-title: J. Mol. Struct.
– volume: 30
  start-page: 431
  year: 1991
  end-page: 435
  ident: bb0110
  article-title: Characterization of the Ni-Fe-C complex formed by reaction of carbon monoxide with the carbon monoxide dehydrogenase from Clostridium thermoaceticum by Q-band ENDOR
  publication-title: Biochem
– volume: 125
  start-page: 13962
  year: 2003
  end-page: 13963
  ident: bb0100
  article-title: Computational studies on the a cluster of acetyl-coenzyme a synthase: geometric and electro- nic properties of the NiFeC species and mechanistic implications
  publication-title: J. Am. Chem. Soc.
– volume: 298
  start-page: 567
  year: 2002
  end-page: 572
  ident: bb0020
  article-title: A Ni-Fe-Cu center in a bifuctional carbon monoxide dehydrogenase/acetyl-CoA synthase
  publication-title: Science
– volume: 117
  start-page: 12484
  year: 2013
  end-page: 12496
  ident: bb0075
  article-title: Redox potentials and protonation of the a-cluster from acetyl-coa synthase. A density functional theory study
  publication-title: J. Phys. Chem. A
– volume: 120
  start-page: 7502
  year: 1998
  end-page: 7510
  ident: bb0050
  article-title: Spectroscopic, redox, and structural characterization of the Ni-labile and nonlabile forms of the acetyl-CoA synthase active site of carbon monoxide dehydrogenase
  publication-title: J. Am. Chem. Soc.
– volume: 102
  start-page: 3586
  year: 1998
  end-page: 3616
  ident: bb0120
  article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins
  publication-title: J. Phys. Chem. B
– volume: 5
  start-page: 156
  year: 1991
  end-page: 163
  ident: bb0010
  article-title: Life with CO or CO
  publication-title: FASEB J.
– volume: 240
  start-page: 283
  year: 1995
  end-page: 290
  ident: bb0170
  article-title: Auxiliary basis sets to approximate coulomb potentials
  publication-title: Chem. Phys. Lett.
– volume: 265
  start-page: 3880
  year: 1990
  end-page: 3888
  ident: bb0105
  article-title: Mössbauer study of CO dehydrogenase from
  publication-title: J. Biol. Chem.
– volume: 41
  start-page: 1807
  year: 2002
  end-page: 1819
  ident: bb0090
  article-title: Rapid kinetic studies of acetyl-CoA synthesis: evidence supporting the catalytic intermediacy of a paramagnetic NiFeC species in the autotrophic Wood−Ljungdahl pathway
  publication-title: Biochem
– volume: 48
  start-page: 7916
  year: 2009
  end-page: 7926
  ident: bb0035
  article-title: Novel domain arrangement in the crystal structure of a truncated acetyl-CoA synthase from
  publication-title: Biochemistry
– volume: 126
  start-page: 3410
  year: 2004
  end-page: 3411
  ident: bb0055
  article-title: Structures and energetics of models for the active site of acetyl-coenzyme a synthase: rolse of distale and proximal metals in catalysis
  publication-title: J. Am. Chem. Soc.
– volume: 278
  start-page: 6101
  year: 2003
  end-page: 6110
  ident: bb0065
  article-title: Nickel in subunit
  publication-title: J. Biol. Chem.
– volume: 101
  start-page: 446
  year: 2004
  end-page: 451
  ident: bb0080
  article-title: A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from
  publication-title: Proc. Natl. Acad. Sci.
– volume: 127
  start-page: 2776
  year: 2005
  end-page: 2784
  ident: bb0095
  article-title: A quantum chemical study of the reaction mechanism of acetyl-coenzyme a synthase
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 2827
  year: 2015
  end-page: 2840
  ident: bb0135
  article-title: Pk(a) values in proteins determined by electrostatics applied to molecular dynamics trajectories
  publication-title: J. Chem. Theory Comput.
– volume: 71
  start-page: 1335
  year: 2008
  end-page: 1348
  ident: bb0125
  article-title: Optimizing pka computation in proteins wtih ph adapted conformations
  publication-title: Proteins
– volume: 74
  start-page: 5737
  year: 1981
  end-page: 5743
  ident: bb0160
  article-title: Valence bond description of antiferromagnetic coupling in transition metal dimers
  publication-title: J. Phys. Chem.
– volume: 123
  start-page: 3409
  year: 2019
  end-page: 3420
  ident: bb0165
  article-title: Proton transfer pathways between active sites and proximal clusters in the membrane-bound [NiFe] hydrogenase
  publication-title: J. Phys. Chem.
– volume: 114
  start-page: 10024
  year: 1992
  end-page: 10035
  ident: bb0155
  article-title: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 525
  year: 2004
  ident: 10.1016/j.bbagen.2020.129579_bb0025
  article-title: Crystallographic evidence for a CO/CO2 tunnel gating mechanism in the bifunctional carbon monoxide dehydrogenase/acetyl coenzyme A synthase from Moorella thermoacetica
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-004-0565-9
– volume: 298
  start-page: 567
  year: 2002
  ident: 10.1016/j.bbagen.2020.129579_bb0020
  article-title: A Ni-Fe-Cu center in a bifuctional carbon monoxide dehydrogenase/acetyl-CoA synthase
  publication-title: Science
  doi: 10.1126/science.1075843
– volume: 135
  start-page: 9493
  year: 2013
  ident: 10.1016/j.bbagen.2020.129579_bb0030
  article-title: Uncovering a dynamically formed substrate access tunnel in carbon monoxide dehydrogenase/acetyl-CoA synthase
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403110s
– volume: 5
  start-page: 156
  year: 1991
  ident: 10.1016/j.bbagen.2020.129579_bb0010
  article-title: Life with CO or CO2 and H2 as a source of carbon and energy
  publication-title: FASEB J.
  doi: 10.1096/fasebj.5.2.1900793
– volume: 120
  start-page: 7502
  year: 1998
  ident: 10.1016/j.bbagen.2020.129579_bb0050
  article-title: Spectroscopic, redox, and structural characterization of the Ni-labile and nonlabile forms of the acetyl-CoA synthase active site of carbon monoxide dehydrogenase
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja981165z
– volume: 162
  start-page: 165
  year: 1989
  ident: 10.1016/j.bbagen.2020.129579_bb0175
  article-title: Electronic structure calculations on work-station computers: the computer system turbomole
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(89)85118-8
– volume: 266
  start-page: 20687
  year: 1991
  ident: 10.1016/j.bbagen.2020.129579_bb0085
  article-title: Characterization of the NiFeCO complex of carbon monoxise dehydrogenase as a catalytically competent intermediate in the pathway of acetyl-coenzyme a synthesis
  publication-title: Biochem
– volume: 278
  start-page: 6101
  year: 2003
  ident: 10.1016/j.bbagen.2020.129579_bb0065
  article-title: Nickel in subunit β of the acetyl-CoA decarbonylase/synthase multienzyme complex in methanogens
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M210484200
– volume: 30
  start-page: 431
  year: 1991
  ident: 10.1016/j.bbagen.2020.129579_bb0110
  article-title: Characterization of the Ni-Fe-C complex formed by reaction of carbon monoxide with the carbon monoxide dehydrogenase from Clostridium thermoaceticum by Q-band ENDOR
  publication-title: Biochem
  doi: 10.1021/bi00216a018
– volume: 4
  start-page: 187
  year: 1983
  ident: 10.1016/j.bbagen.2020.129579_bb0115
  article-title: Charmm: a program for macromolecular energy, minimization, and dynamics calculations
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540040211
– volume: 98
  start-page: 10037
  year: 2001
  ident: 10.1016/j.bbagen.2020.129579_bb0140
  article-title: Electrostatics of nanosystems: application to microtubules and the ribosome
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.181342398
– volume: 114
  start-page: 10024
  year: 1992
  ident: 10.1016/j.bbagen.2020.129579_bb0155
  article-title: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00051a040
– volume: 4
  start-page: 101
  year: 2014
  ident: 10.1016/j.bbagen.2020.129579_bb0185
  article-title: ChemShell–a modular software package for QM/MM simulations
  publication-title: Wiley Interdisc. Rev.: Comp. Mol. Sci.
– volume: 123
  start-page: 3409
  year: 2019
  ident: 10.1016/j.bbagen.2020.129579_bb0165
  article-title: Proton transfer pathways between active sites and proximal clusters in the membrane-bound [NiFe] hydrogenase
  publication-title: J. Phys. Chem.
  doi: 10.1021/acs.jpcb.9b00617
– volume: 40
  start-page: 415
  year: 1986
  ident: 10.1016/j.bbagen.2020.129579_bb0005
  article-title: The autotrophic pathway of acetate synthesis in acetogenic bacteria
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.mi.40.100186.002215
– volume: 126
  start-page: 3410
  year: 2004
  ident: 10.1016/j.bbagen.2020.129579_bb0055
  article-title: Structures and energetics of models for the active site of acetyl-coenzyme a synthase: rolse of distale and proximal metals in catalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja038083h
– volume: 265
  start-page: 3880
  year: 1990
  ident: 10.1016/j.bbagen.2020.129579_bb0105
  article-title: Mössbauer study of CO dehydrogenase from Clostridium thermoaceticum
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)39676-0
– volume: 74
  start-page: 5737
  year: 1981
  ident: 10.1016/j.bbagen.2020.129579_bb0160
  article-title: Valence bond description of antiferromagnetic coupling in transition metal dimers
  publication-title: J. Phys. Chem.
  doi: 10.1063/1.440939
– volume: 119
  start-page: 3959
  year: 1997
  ident: 10.1016/j.bbagen.2020.129579_bb0045
  article-title: Methylation of carbon monoxide dehydrogenase from Clostridium thermoaceticum and the mechanism of acetyl-CoA synthesis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja963597k
– volume: 101
  start-page: 446
  year: 2004
  ident: 10.1016/j.bbagen.2020.129579_bb0080
  article-title: A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0304262101
– volume: 10
  start-page: 271
  issue: 4
  year: 2003
  ident: 10.1016/j.bbagen.2020.129579_bb0015
  article-title: Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in the closed and open α subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb912
– volume: 125
  start-page: 9316
  year: 2003
  ident: 10.1016/j.bbagen.2020.129579_bb0060
  article-title: Inactivation of acetyl-CoA synthase/carbon monoxide dehydrogenase by copper
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0352855
– volume: 48
  start-page: 7916
  year: 2009
  ident: 10.1016/j.bbagen.2020.129579_bb0035
  article-title: Novel domain arrangement in the crystal structure of a truncated acetyl-CoA synthase from Moorella thermoacetica
  publication-title: Biochemistry
  doi: 10.1021/bi9003952
– volume: 240
  start-page: 283
  year: 1995
  ident: 10.1016/j.bbagen.2020.129579_bb0170
  article-title: Auxiliary basis sets to approximate coulomb potentials
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(95)00621-A
– volume: 31
  start-page: 12870
  year: 1992
  ident: 10.1016/j.bbagen.2020.129579_bb0040
  article-title: Function and CO binding properties of the NiFe complex in carbon monoxide dehydrogenase from Clostridium thermoaceticum
  publication-title: Biochemistry
  doi: 10.1021/bi00166a023
– ident: 10.1016/j.bbagen.2020.129579_bb0150
– volume: 102
  start-page: 3586
  year: 1998
  ident: 10.1016/j.bbagen.2020.129579_bb0120
  article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp973084f
– volume: 11
  start-page: 2827
  year: 2015
  ident: 10.1016/j.bbagen.2020.129579_bb0135
  article-title: Pk(a) values in proteins determined by electrostatics applied to molecular dynamics trajectories
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00123
– volume: 71
  start-page: 1335
  year: 2008
  ident: 10.1016/j.bbagen.2020.129579_bb0125
  article-title: Optimizing pka computation in proteins wtih ph adapted conformations
  publication-title: Proteins
  doi: 10.1002/prot.21820
– volume: 43
  start-page: 3944
  year: 2004
  ident: 10.1016/j.bbagen.2020.129579_bb0070
  article-title: Evidence that NiNi acetyl-CoA synthase is active and that the CuNi enzyme is not
  publication-title: Biochem
  doi: 10.1021/bi036194n
– volume: 41
  start-page: 1807
  year: 2002
  ident: 10.1016/j.bbagen.2020.129579_bb0090
  article-title: Rapid kinetic studies of acetyl-CoA synthesis: evidence supporting the catalytic intermediacy of a paramagnetic NiFeC species in the autotrophic Wood−Ljungdahl pathway
  publication-title: Biochem
  doi: 10.1021/bi011687i
– volume: 479
  start-page: 249
  year: 2011
  ident: 10.1016/j.bbagen.2020.129579_bb0145
  article-title: The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-Sulphur Centre
  publication-title: Nature
  doi: 10.1038/nature10505
– volume: 117
  start-page: 12484
  year: 2013
  ident: 10.1016/j.bbagen.2020.129579_bb0075
  article-title: Redox potentials and protonation of the a-cluster from acetyl-coa synthase. A density functional theory study
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp402616e
– volume: 80
  start-page: 1141
  year: 2001
  ident: 10.1016/j.bbagen.2020.129579_bb0130
  article-title: Calculated ph-dependent population and protonation of carbon-monoxy-myoglobin conformers
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)76091-2
– volume: 125
  start-page: 13962
  year: 2003
  ident: 10.1016/j.bbagen.2020.129579_bb0100
  article-title: Computational studies on the a cluster of acetyl-coenzyme a synthase: geometric and electro- nic properties of the NiFeC species and mechanistic implications
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja037893q
– volume: 632
  start-page: 1
  year: 2003
  ident: 10.1016/j.bbagen.2020.129579_bb0180
  article-title: QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis
  publication-title: J. Mol. Struct.
  doi: 10.1016/S0166-1280(03)00285-9
– volume: 127
  start-page: 2776
  year: 2005
  ident: 10.1016/j.bbagen.2020.129579_bb0095
  article-title: A quantum chemical study of the reaction mechanism of acetyl-coenzyme a synthase
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0439221
SSID ssj0000595
Score 2.355715
Snippet The “open” (Aopen) and “closed” (Aclosed) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined...
The "open" (A ) and "closed" (A ) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum...
The "open" (Aopen) and "closed" (Aclosed) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined...
The “open” (Aₒₚₑₙ) and “closed” (Acₗₒₛₑd) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129579
SubjectTerms Aacetyl coenzymeA synthase (ACS)
Acetyl Coenzyme A
Aldehyde Oxidoreductases - chemistry
Aldehyde Oxidoreductases - metabolism
catalytic activity
CODH/ACS catalysis
crystal structure
cysteine
Electron Spin Resonance Spectroscopy
enzymes
geometry
Ligands
Moorella thermoacetica
Multienzyme Complexes - chemistry
nickel
Nickel - chemistry
oxidation
QM/MM computations
quantum mechanics
scaffolding proteins
sulfides
zinc
Title QM/MM computations reveal details of the acetyl-CoA synthase catalytic center
URI https://dx.doi.org/10.1016/j.bbagen.2020.129579
https://www.ncbi.nlm.nih.gov/pubmed/32135171
https://www.proquest.com/docview/2374352986
https://www.proquest.com/docview/2477622249
Volume 1864
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7WFdGL-H5LBK9x2yRt2uOyKKvSBVHBW-gjQWXpLrv1sBd_u5OmVTyo4K0tmTbMpDPfZCYzAOe68LRfGHRLQimp4J6hEZpZmgotgij1ZVGfck1G4fBR3DwFTx0YtGdhbFplo_udTq-1dfOk13CzN3156d3boB7CiYDhhRcJ1MPLDK191IXl_vXtcPSlkIO6-YodTy1Be4KuTvPKMvxvbSFUZist2KDVTxbqJwRaW6KrDVhvICTpu1luQkeXW7DimkoutmB10PZw24bkLuklCcnr1g1ub47Ymk1I7nJH52RiCGJAkua6WozpYNIn80VZPaNxI_XWzgK_QmwKp57twMPV5cNgSJsGCjTncVDR0IQS3TFuNDO2SIwpcsl9bjwdpIjrsgCVW5oZgb9ewXkeIx9Tj6W-FpHmyNZd6JaTUu8DiaOCoR9deFzHQhqWhSzzbcgtFFqjG3cAvOWZypvi4rbHxVi1WWSvynFaWU4rx-kDoJ9UU1dc44_xshWH-rZIFOr_PyjPWukpFIENiqSlnrzNFeOIoQIWR-EvY4REm4FgB9-z50T_OV_ObI9D6R_-e25HsGbvXA7wMXSr2Zs-QaRTZaewdPHunzbr-QPr8vmI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9CymhfypZuXT-2qbBXEVuSLfsxhJV0iQOjKfRN-ENiHcUpjfuQ_753lt3Sh7awN2PrbHEn3_1Od7oD-GmrwIaVQ7ck1porGTieoJnlubIqSvJQV-0p12wZz67U7-voegDT_iwMpVV2ut_r9FZbd3fGHTfHdzc340sK6iGciAReBIlCPbyjqKn1EHYmF_PZ8lkhR23zFRrPiaA_QdemeRUF_rdUCFVQpQUKWr1moV5DoK0lOv8I-x2EZBM_y08wsPUIPvimktsR7E77Hm4HkP3JxlnGyrZ1g9-bY1SzCcl97uiGrR1DDMjy0jbbWz5dT9hmWzd_0bixdmtni19hlMJp7z_D6vzXajrjXQMFXso0anjsYo3umHRWOCoS46pSy1C6wEY54roiQuWWF07hr1dJWabIxzwQeWhVYiWy9QsM63VtvwJLk0qgH10F0qZKO1HEoggp5BYra9GNOwLZ88yUXXFx6nFxa_ossn_Gc9oQp43n9BHwJ6o7X1zjnfG6F4d5sUgM6v93KM966RkUAQVF8tquHzZGSMRQkUiT-I0xSqPNQLCD7zn0on-arxTU41CHx_89tx-wO1tlC7O4WM5PYI-e-HzgUxg29w_2G6KepvjerepHzUj7bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QM%2FMM+computations+reveal+details+of+the+acetyl-CoA+synthase+catalytic+center&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Elghobashi-Meinhardt%2C+Nadia&rft.au=Tombolelli%2C+Daria&rft.au=Mroginski%2C+Maria-Andrea&rft.date=2020-07-01&rft.issn=0304-4165&rft.volume=1864&rft.issue=7+p.129579-&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129579&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon