QM/MM computations reveal details of the acetyl-CoA synthase catalytic center
The “open” (Aopen) and “closed” (Aclosed) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum mechanical (QM)/molecular mechanical (MM) approach. Geometry optimizations of the oxidized, one- and two-electron reduced Aopen state ha...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1864; no. 7; p. 129579 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2020.129579 |
Cover
Abstract | The “open” (Aopen) and “closed” (Aclosed) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum mechanical (QM)/molecular mechanical (MM) approach. Geometry optimizations of the oxidized, one- and two-electron reduced Aopen state have been carried out for the fully solvated ACS enzyme, and the CO ligand has been modeled in the reduced models. Using a combination of both αopen and αclosed protein scaffolds and the positions of metal atoms in these structures, we have been able to piece together critical parts of the catalytic cycle of ACS. We have replaced the unidentified exogenous ligand in the crystal structure with CO using both a square planar and tetrahedral proximal Ni atom. A one-electron reduced A-cluster that is characterized by a proximal Ni atom in a tetrahedral coordination pattern observed in both the Aopen (lower occupancy proximal Ni) and Aclosed (proximal Zn atom) geometries with three cysteine thiolates and a modeled CO ligand demonstrates excellent agreement with the crystal structure atomic positions, particularly with the displacement of the side chain ring of Phe512 which appears to serve as a structural gate for ligand binding. The QM/MM optimized geometry of the A-cluster of ACS with an uncoordinated, oxidized proximal nickel atom in a square planar geometry demonstrates poor agreement with the atomic coordinates taken from the crystal structure. Based on these calculations, we conclude that the square planar proximal nickel coordination that has been captured in the Aopen structure does not correspond to the ligand-free, oxidized [Fe4S4]2+ − Nip2+ − Nid2+ state. Overall, these computations shed further light on the mechanistic details of protein conformational changes and electronic transitions involved in the ACS catalytic cycle.
•QM/MM computations reveal atomic details of Aopen and Aclosed catalytic centers in acetyl-CoA synthase (ACS)•Geometry of one-electron reduced A-cluster with CO ligand and tetrahedral proximal Ni atom agrees with the crystal structure•Rotation of the side chain ring of Phe512 appears to serve as a structural gate for ligand binding•Aopen with square planar proximal nickel does not correspond to the ligand-free, oxidized [Fe4S4]2+--Nip2+--Nid2+ state |
---|---|
AbstractList | The “open” (Aₒₚₑₙ) and “closed” (Acₗₒₛₑd) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum mechanical (QM)/molecular mechanical (MM) approach. Geometry optimizations of the oxidized, one- and two-electron reduced Aₒₚₑₙ state have been carried out for the fully solvated ACS enzyme, and the CO ligand has been modeled in the reduced models. Using a combination of both αₒₚₑₙ and αcₗₒₛₑd protein scaffolds and the positions of metal atoms in these structures, we have been able to piece together critical parts of the catalytic cycle of ACS. We have replaced the unidentified exogenous ligand in the crystal structure with CO using both a square planar and tetrahedral proximal Ni atom. A one-electron reduced A-cluster that is characterized by a proximal Ni atom in a tetrahedral coordination pattern observed in both the Aₒₚₑₙ (lower occupancy proximal Ni) and Acₗₒₛₑd (proximal Zn atom) geometries with three cysteine thiolates and a modeled CO ligand demonstrates excellent agreement with the crystal structure atomic positions, particularly with the displacement of the side chain ring of Phe512 which appears to serve as a structural gate for ligand binding. The QM/MM optimized geometry of the A-cluster of ACS with an uncoordinated, oxidized proximal nickel atom in a square planar geometry demonstrates poor agreement with the atomic coordinates taken from the crystal structure. Based on these calculations, we conclude that the square planar proximal nickel coordination that has been captured in the Aₒₚₑₙ structure does not correspond to the ligand-free, oxidized [Fe₄S₄]²⁺ − Niₚ²⁺ − Nid²⁺ state. Overall, these computations shed further light on the mechanistic details of protein conformational changes and electronic transitions involved in the ACS catalytic cycle. The "open" (A ) and "closed" (A ) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum mechanical (QM)/molecular mechanical (MM) approach. Geometry optimizations of the oxidized, one- and two-electron reduced A state have been carried out for the fully solvated ACS enzyme, and the CO ligand has been modeled in the reduced models. Using a combination of both α and α protein scaffolds and the positions of metal atoms in these structures, we have been able to piece together critical parts of the catalytic cycle of ACS. We have replaced the unidentified exogenous ligand in the crystal structure with CO using both a square planar and tetrahedral proximal Ni atom. A one-electron reduced A-cluster that is characterized by a proximal Ni atom in a tetrahedral coordination pattern observed in both the A (lower occupancy proximal Ni) and A (proximal Zn atom) geometries with three cysteine thiolates and a modeled CO ligand demonstrates excellent agreement with the crystal structure atomic positions, particularly with the displacement of the side chain ring of Phe512 which appears to serve as a structural gate for ligand binding. The QM/MM optimized geometry of the A-cluster of ACS with an uncoordinated, oxidized proximal nickel atom in a square planar geometry demonstrates poor agreement with the atomic coordinates taken from the crystal structure. Based on these calculations, we conclude that the square planar proximal nickel coordination that has been captured in the A structure does not correspond to the ligand-free, oxidized [Fe S ] - Ni - Ni state. Overall, these computations shed further light on the mechanistic details of protein conformational changes and electronic transitions involved in the ACS catalytic cycle. The “open” (Aopen) and “closed” (Aclosed) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum mechanical (QM)/molecular mechanical (MM) approach. Geometry optimizations of the oxidized, one- and two-electron reduced Aopen state have been carried out for the fully solvated ACS enzyme, and the CO ligand has been modeled in the reduced models. Using a combination of both αopen and αclosed protein scaffolds and the positions of metal atoms in these structures, we have been able to piece together critical parts of the catalytic cycle of ACS. We have replaced the unidentified exogenous ligand in the crystal structure with CO using both a square planar and tetrahedral proximal Ni atom. A one-electron reduced A-cluster that is characterized by a proximal Ni atom in a tetrahedral coordination pattern observed in both the Aopen (lower occupancy proximal Ni) and Aclosed (proximal Zn atom) geometries with three cysteine thiolates and a modeled CO ligand demonstrates excellent agreement with the crystal structure atomic positions, particularly with the displacement of the side chain ring of Phe512 which appears to serve as a structural gate for ligand binding. The QM/MM optimized geometry of the A-cluster of ACS with an uncoordinated, oxidized proximal nickel atom in a square planar geometry demonstrates poor agreement with the atomic coordinates taken from the crystal structure. Based on these calculations, we conclude that the square planar proximal nickel coordination that has been captured in the Aopen structure does not correspond to the ligand-free, oxidized [Fe4S4]2+ − Nip2+ − Nid2+ state. Overall, these computations shed further light on the mechanistic details of protein conformational changes and electronic transitions involved in the ACS catalytic cycle. •QM/MM computations reveal atomic details of Aopen and Aclosed catalytic centers in acetyl-CoA synthase (ACS)•Geometry of one-electron reduced A-cluster with CO ligand and tetrahedral proximal Ni atom agrees with the crystal structure•Rotation of the side chain ring of Phe512 appears to serve as a structural gate for ligand binding•Aopen with square planar proximal nickel does not correspond to the ligand-free, oxidized [Fe4S4]2+--Nip2+--Nid2+ state The "open" (Aopen) and "closed" (Aclosed) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum mechanical (QM)/molecular mechanical (MM) approach. Geometry optimizations of the oxidized, one- and two-electron reduced Aopen state have been carried out for the fully solvated ACS enzyme, and the CO ligand has been modeled in the reduced models. Using a combination of both αopen and αclosed protein scaffolds and the positions of metal atoms in these structures, we have been able to piece together critical parts of the catalytic cycle of ACS. We have replaced the unidentified exogenous ligand in the crystal structure with CO using both a square planar and tetrahedral proximal Ni atom. A one-electron reduced A-cluster that is characterized by a proximal Ni atom in a tetrahedral coordination pattern observed in both the Aopen (lower occupancy proximal Ni) and Aclosed (proximal Zn atom) geometries with three cysteine thiolates and a modeled CO ligand demonstrates excellent agreement with the crystal structure atomic positions, particularly with the displacement of the side chain ring of Phe512 which appears to serve as a structural gate for ligand binding. The QM/MM optimized geometry of the A-cluster of ACS with an uncoordinated, oxidized proximal nickel atom in a square planar geometry demonstrates poor agreement with the atomic coordinates taken from the crystal structure. Based on these calculations, we conclude that the square planar proximal nickel coordination that has been captured in the Aopen structure does not correspond to the ligand-free, oxidized [Fe4S4]2+ - Nip2+ - Nid2+ state. Overall, these computations shed further light on the mechanistic details of protein conformational changes and electronic transitions involved in the ACS catalytic cycle.The "open" (Aopen) and "closed" (Aclosed) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum mechanical (QM)/molecular mechanical (MM) approach. Geometry optimizations of the oxidized, one- and two-electron reduced Aopen state have been carried out for the fully solvated ACS enzyme, and the CO ligand has been modeled in the reduced models. Using a combination of both αopen and αclosed protein scaffolds and the positions of metal atoms in these structures, we have been able to piece together critical parts of the catalytic cycle of ACS. We have replaced the unidentified exogenous ligand in the crystal structure with CO using both a square planar and tetrahedral proximal Ni atom. A one-electron reduced A-cluster that is characterized by a proximal Ni atom in a tetrahedral coordination pattern observed in both the Aopen (lower occupancy proximal Ni) and Aclosed (proximal Zn atom) geometries with three cysteine thiolates and a modeled CO ligand demonstrates excellent agreement with the crystal structure atomic positions, particularly with the displacement of the side chain ring of Phe512 which appears to serve as a structural gate for ligand binding. The QM/MM optimized geometry of the A-cluster of ACS with an uncoordinated, oxidized proximal nickel atom in a square planar geometry demonstrates poor agreement with the atomic coordinates taken from the crystal structure. Based on these calculations, we conclude that the square planar proximal nickel coordination that has been captured in the Aopen structure does not correspond to the ligand-free, oxidized [Fe4S4]2+ - Nip2+ - Nid2+ state. Overall, these computations shed further light on the mechanistic details of protein conformational changes and electronic transitions involved in the ACS catalytic cycle. |
ArticleNumber | 129579 |
Author | Elghobashi-Meinhardt, Nadia Mroginski, Maria-Andrea Tombolelli, Daria |
Author_xml | – sequence: 1 givenname: Nadia surname: Elghobashi-Meinhardt fullname: Elghobashi-Meinhardt, Nadia email: n.elghobashi-meinhardt@campus.tu-berlin.de – sequence: 2 givenname: Daria surname: Tombolelli fullname: Tombolelli, Daria – sequence: 3 givenname: Maria-Andrea surname: Mroginski fullname: Mroginski, Maria-Andrea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32135171$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1LJDEQhsOirKO7_2CRHL30WPnqTHsQZPBjwUEWvId0urJm6OmMSUaYf29L6x48rHUpKJ63Du9zTA6GOCAhvxjMGbD6fD1vW_sXhzkHPp54o3TzjczYQvNqAVAfkBkIkJVktToixzmvYRzVqO_kSHAmFNNsRlZ_VuerFXVxs90VW0IcMk34granHRYb-kyjp-UJqXVY9n21jFc074fyZDNSZ4vt9yU46nAomH6QQ2_7jD_f9wl5vLl-XN5V9w-3v5dX95UTjSpV7WvdMC08cg9M1r5zWjDhAZXlgrXKdp1tvWwBOiFcIwAscMtQLlBwECfkbHq7TfF5h7mYTcgO-94OGHfZcKl1zTmXzdeo0FIo3izqET19R3ftBjuzTWFj0958lDUCcgJcijkn9P8QBubNiVmbyYl5c2ImJ2Ps4lPMhanqksaCvwpfTmEc63wJmEx2AQeHXUjoiuli-P-DV6cVp60 |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_0c02139 crossref_primary_10_3390_catal12020195 crossref_primary_10_1016_j_jinorgbio_2022_112098 crossref_primary_10_59761_RCR5094 crossref_primary_10_1016_j_bbagen_2021_129888 |
Cites_doi | 10.1007/s00775-004-0565-9 10.1126/science.1075843 10.1021/ja403110s 10.1096/fasebj.5.2.1900793 10.1021/ja981165z 10.1016/0009-2614(89)85118-8 10.1074/jbc.M210484200 10.1021/bi00216a018 10.1002/jcc.540040211 10.1073/pnas.181342398 10.1021/ja00051a040 10.1021/acs.jpcb.9b00617 10.1146/annurev.mi.40.100186.002215 10.1021/ja038083h 10.1016/S0021-9258(19)39676-0 10.1063/1.440939 10.1021/ja963597k 10.1073/pnas.0304262101 10.1038/nsb912 10.1021/ja0352855 10.1021/bi9003952 10.1016/0009-2614(95)00621-A 10.1021/bi00166a023 10.1021/jp973084f 10.1021/acs.jctc.5b00123 10.1002/prot.21820 10.1021/bi036194n 10.1021/bi011687i 10.1038/nature10505 10.1021/jp402616e 10.1016/S0006-3495(01)76091-2 10.1021/ja037893q 10.1016/S0166-1280(03)00285-9 10.1021/ja0439221 |
ContentType | Journal Article |
Copyright | 2020 Copyright © 2020. Published by Elsevier B.V. |
Copyright_xml | – notice: 2020 – notice: Copyright © 2020. Published by Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2020.129579 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 32135171 10_1016_j_bbagen_2020_129579 S0304416520300842 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 ACLOT EFKBS ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-6f679173fe2f0146fdc7313f0e5a231b5addabf4b00d33c9300a02a1e48e3203 |
IEDL.DBID | AIKHN |
ISSN | 0304-4165 1872-8006 |
IngestDate | Thu Sep 04 19:30:43 EDT 2025 Sun Sep 28 04:18:08 EDT 2025 Wed Feb 19 02:26:38 EST 2025 Tue Jul 01 00:22:13 EDT 2025 Thu Apr 24 23:07:34 EDT 2025 Fri Feb 23 02:48:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Aacetyl coenzymeA synthase (ACS) CODH/ACS catalysis QM/MM computations |
Language | English |
License | Copyright © 2020. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-6f679173fe2f0146fdc7313f0e5a231b5addabf4b00d33c9300a02a1e48e3203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 32135171 |
PQID | 2374352986 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2477622249 proquest_miscellaneous_2374352986 pubmed_primary_32135171 crossref_primary_10_1016_j_bbagen_2020_129579 crossref_citationtrail_10_1016_j_bbagen_2020_129579 elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129579 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Svetlitchny, Dobbek, Meyer-Klauke, Meins, Thiele, Römer, Huber, Meyer (bb0080) 2004; 101 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, GaussianËœ16 Revision C.01Gaussian Inc. Wallingford CT. Volbeda, Darnault, Tan, Lindahl, Fontecilla-Camps (bb0035) 2009; 48 Rabenstein, Knapp (bb0130) 2001; 80 Fan, Gorst, Ragsdale, Hoffman (bb0110) 1991; 30 Meyer, Knapp (bb0135) 2015; 11 Sherwood, de Vries, Guest, Schreckenbach, Catlow, French, Sokol, Bromley, Thiel, Turner, Billeter, Terstegen, Thiel, Kendrick, Rogers, Casci, King, Karlsen, Sjøvoll, Fahmi, Schäfer, Lennartz (bb0180) 2003; 632 Chmielowska, Lodowski, Jaworska (bb0075) 2013; 117 Webster, Darensbough, Lindahl, Hall (bb0055) 2004; 126 Russell, Støalhandske, Xia, Scott, Lindahl (bb0050) 1998; 120 Darnault, Volbeda, Kim, Legrand, Vernéde, Lindahl, Fontecilla-Camps (bb0015) 2003; 10 Shin, Lindahl (bb0040) 1992; 31 Seravalli, Kumar, Ragsdale (bb0090) 2002; 41 Ljungdahl (bb0005) 1986; 40 Wang, Bruschi, DeGioia, Blumberger (bb0030) 2013; 135 Kieseritzky, Knapp (bb0125) 2008; 71 Baker, Sept, Joseph, Holst, McCammon (bb0140) 2001; 98 Gencic, Grahame (bb0065) 2003; 278 Tombolelli, Mroginski (bb0165) 2019; 123 Noodleman (bb0160) 1981; 74 Amara, Volbeda, Fontecilla-Camps, Field (bb0095) 2005; 127 Volbeda, Fontecilla-Camps (bb0025) 2004; 9 Brooks, Bruccoleri, Olafson, States, Swaminathan, Karplus (bb0115) 1983; 4 Bramlett, Tan, Lindahl (bb0060) 2003; 125 Fritsch, Scheerer, Frielingsdorf, Kroschinsky, Friedrich, Lenz, Spahn (bb0145) 2011; 479 Wood (bb0010) 1991; 5 Eichkorn, Treutler, Öhm, Häser, Ahlrichs (bb0170) 1995; 240 Schenker, Brunold (bb0100) 2003; 125 Lindahl, Ragsdale, Münck (bb0105) 1990; 265 Barondeau, Lindahl (bb0045) 1997; 119 Metz, Kästner, Sokol, Keal, Sherwood (bb0185) 2014; 4 Seravalli, Xiao, Gu, Cramer, Antholine, Krymov, Gerfen, Ragsdale (bb0070) 2004; 43 Ahlrichs, Bär, Häser, Horn, Kölmer (bb0175) 1989; 162 Doukov, Iverson, Seravalli, Ragsdale, Drennan (bb0020) 2002; 298 Gorst, Ragsdale (bb0085) 1991; 266 MacKerell, Bashford, M., Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, Joseph-McCarthy, Kuchnir, Kuczera, Lau, Mattos, Michnick, Ngo, Nguyen, Prodhom, Reiher, III, Schlenkrich, Smith, Stote, Straub, Watanabe, Wiórkiewicz-Kuczera, Yin, Karplus (bb0120) 1998; 102 Rappé, Casewit, Colwell, Goddard (bb0155) 1992; 114 MacKerell (10.1016/j.bbagen.2020.129579_bb0120) 1998; 102 Darnault (10.1016/j.bbagen.2020.129579_bb0015) 2003; 10 Seravalli (10.1016/j.bbagen.2020.129579_bb0070) 2004; 43 Amara (10.1016/j.bbagen.2020.129579_bb0095) 2005; 127 Eichkorn (10.1016/j.bbagen.2020.129579_bb0170) 1995; 240 Fritsch (10.1016/j.bbagen.2020.129579_bb0145) 2011; 479 10.1016/j.bbagen.2020.129579_bb0150 Gorst (10.1016/j.bbagen.2020.129579_bb0085) 1991; 266 Meyer (10.1016/j.bbagen.2020.129579_bb0135) 2015; 11 Doukov (10.1016/j.bbagen.2020.129579_bb0020) 2002; 298 Baker (10.1016/j.bbagen.2020.129579_bb0140) 2001; 98 Barondeau (10.1016/j.bbagen.2020.129579_bb0045) 1997; 119 Metz (10.1016/j.bbagen.2020.129579_bb0185) 2014; 4 Shin (10.1016/j.bbagen.2020.129579_bb0040) 1992; 31 Schenker (10.1016/j.bbagen.2020.129579_bb0100) 2003; 125 Brooks (10.1016/j.bbagen.2020.129579_bb0115) 1983; 4 Russell (10.1016/j.bbagen.2020.129579_bb0050) 1998; 120 Chmielowska (10.1016/j.bbagen.2020.129579_bb0075) 2013; 117 Wang (10.1016/j.bbagen.2020.129579_bb0030) 2013; 135 Fan (10.1016/j.bbagen.2020.129579_bb0110) 1991; 30 Webster (10.1016/j.bbagen.2020.129579_bb0055) 2004; 126 Gencic (10.1016/j.bbagen.2020.129579_bb0065) 2003; 278 Volbeda (10.1016/j.bbagen.2020.129579_bb0035) 2009; 48 Kieseritzky (10.1016/j.bbagen.2020.129579_bb0125) 2008; 71 Noodleman (10.1016/j.bbagen.2020.129579_bb0160) 1981; 74 Bramlett (10.1016/j.bbagen.2020.129579_bb0060) 2003; 125 Rabenstein (10.1016/j.bbagen.2020.129579_bb0130) 2001; 80 Ljungdahl (10.1016/j.bbagen.2020.129579_bb0005) 1986; 40 Rappé (10.1016/j.bbagen.2020.129579_bb0155) 1992; 114 Ahlrichs (10.1016/j.bbagen.2020.129579_bb0175) 1989; 162 Sherwood (10.1016/j.bbagen.2020.129579_bb0180) 2003; 632 Volbeda (10.1016/j.bbagen.2020.129579_bb0025) 2004; 9 Wood (10.1016/j.bbagen.2020.129579_bb0010) 1991; 5 Seravalli (10.1016/j.bbagen.2020.129579_bb0090) 2002; 41 Svetlitchny (10.1016/j.bbagen.2020.129579_bb0080) 2004; 101 Tombolelli (10.1016/j.bbagen.2020.129579_bb0165) 2019; 123 Lindahl (10.1016/j.bbagen.2020.129579_bb0105) 1990; 265 |
References_xml | – volume: 4 start-page: 101 year: 2014 end-page: 110 ident: bb0185 article-title: ChemShell–a modular software package for QM/MM simulations publication-title: Wiley Interdisc. Rev.: Comp. Mol. Sci. – volume: 98 start-page: 10037 year: 2001 end-page: 10041 ident: bb0140 article-title: Electrostatics of nanosystems: application to microtubules and the ribosome publication-title: Proc. Natl. Acad. Sci. – reference: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, GaussianËœ16 Revision C.01Gaussian Inc. Wallingford CT. – volume: 40 start-page: 415 year: 1986 end-page: 450 ident: bb0005 article-title: The autotrophic pathway of acetate synthesis in acetogenic bacteria publication-title: Annu. Rev. Microbiol. – volume: 9 start-page: 525 year: 2004 end-page: 532 ident: bb0025 article-title: Crystallographic evidence for a CO/CO publication-title: J. Biol. Inorg. Chem. – volume: 125 start-page: 9316 year: 2003 end-page: 9317 ident: bb0060 article-title: Inactivation of acetyl-CoA synthase/carbon monoxide dehydrogenase by copper publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 3944 year: 2004 end-page: 3955 ident: bb0070 article-title: Evidence that NiNi acetyl-CoA synthase is active and that the CuNi enzyme is not publication-title: Biochem – volume: 10 start-page: 271 year: 2003 end-page: 278 ident: bb0015 article-title: Ni-Zn-[Fe publication-title: Nat. Struct. Biol. – volume: 80 start-page: 1141 year: 2001 end-page: 1150 ident: bb0130 article-title: Calculated ph-dependent population and protonation of carbon-monoxy-myoglobin conformers publication-title: Biophys. J. – volume: 135 start-page: 9493 year: 2013 end-page: 9502 ident: bb0030 article-title: Uncovering a dynamically formed substrate access tunnel in carbon monoxide dehydrogenase/acetyl-CoA synthase publication-title: J. Am. Chem. Soc. – volume: 266 start-page: 20687 year: 1991 end-page: 20693 ident: bb0085 article-title: Characterization of the NiFeCO complex of carbon monoxise dehydrogenase as a catalytically competent intermediate in the pathway of acetyl-coenzyme a synthesis publication-title: Biochem – volume: 119 start-page: 3959 year: 1997 end-page: 3970 ident: bb0045 article-title: Methylation of carbon monoxide dehydrogenase from publication-title: J. Am. Chem. Soc. – volume: 479 start-page: 249 year: 2011 end-page: 252 ident: bb0145 article-title: The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-Sulphur Centre publication-title: Nature – volume: 31 start-page: 12870 year: 1992 end-page: 12875 ident: bb0040 article-title: Function and CO binding properties of the NiFe complex in carbon monoxide dehydrogenase from publication-title: Biochemistry – volume: 4 start-page: 187 year: 1983 end-page: 217 ident: bb0115 article-title: Charmm: a program for macromolecular energy, minimization, and dynamics calculations publication-title: J. Comput. Chem. – volume: 162 start-page: 165 year: 1989 end-page: 169 ident: bb0175 article-title: Electronic structure calculations on work-station computers: the computer system turbomole publication-title: Chem. Phys. Lett. – volume: 632 start-page: 1 year: 2003 end-page: 28 ident: bb0180 article-title: QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis publication-title: J. Mol. Struct. – volume: 30 start-page: 431 year: 1991 end-page: 435 ident: bb0110 article-title: Characterization of the Ni-Fe-C complex formed by reaction of carbon monoxide with the carbon monoxide dehydrogenase from Clostridium thermoaceticum by Q-band ENDOR publication-title: Biochem – volume: 125 start-page: 13962 year: 2003 end-page: 13963 ident: bb0100 article-title: Computational studies on the a cluster of acetyl-coenzyme a synthase: geometric and electro- nic properties of the NiFeC species and mechanistic implications publication-title: J. Am. Chem. Soc. – volume: 298 start-page: 567 year: 2002 end-page: 572 ident: bb0020 article-title: A Ni-Fe-Cu center in a bifuctional carbon monoxide dehydrogenase/acetyl-CoA synthase publication-title: Science – volume: 117 start-page: 12484 year: 2013 end-page: 12496 ident: bb0075 article-title: Redox potentials and protonation of the a-cluster from acetyl-coa synthase. A density functional theory study publication-title: J. Phys. Chem. A – volume: 120 start-page: 7502 year: 1998 end-page: 7510 ident: bb0050 article-title: Spectroscopic, redox, and structural characterization of the Ni-labile and nonlabile forms of the acetyl-CoA synthase active site of carbon monoxide dehydrogenase publication-title: J. Am. Chem. Soc. – volume: 102 start-page: 3586 year: 1998 end-page: 3616 ident: bb0120 article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins publication-title: J. Phys. Chem. B – volume: 5 start-page: 156 year: 1991 end-page: 163 ident: bb0010 article-title: Life with CO or CO publication-title: FASEB J. – volume: 240 start-page: 283 year: 1995 end-page: 290 ident: bb0170 article-title: Auxiliary basis sets to approximate coulomb potentials publication-title: Chem. Phys. Lett. – volume: 265 start-page: 3880 year: 1990 end-page: 3888 ident: bb0105 article-title: Mössbauer study of CO dehydrogenase from publication-title: J. Biol. Chem. – volume: 41 start-page: 1807 year: 2002 end-page: 1819 ident: bb0090 article-title: Rapid kinetic studies of acetyl-CoA synthesis: evidence supporting the catalytic intermediacy of a paramagnetic NiFeC species in the autotrophic Wood−Ljungdahl pathway publication-title: Biochem – volume: 48 start-page: 7916 year: 2009 end-page: 7926 ident: bb0035 article-title: Novel domain arrangement in the crystal structure of a truncated acetyl-CoA synthase from publication-title: Biochemistry – volume: 126 start-page: 3410 year: 2004 end-page: 3411 ident: bb0055 article-title: Structures and energetics of models for the active site of acetyl-coenzyme a synthase: rolse of distale and proximal metals in catalysis publication-title: J. Am. Chem. Soc. – volume: 278 start-page: 6101 year: 2003 end-page: 6110 ident: bb0065 article-title: Nickel in subunit publication-title: J. Biol. Chem. – volume: 101 start-page: 446 year: 2004 end-page: 451 ident: bb0080 article-title: A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from publication-title: Proc. Natl. Acad. Sci. – volume: 127 start-page: 2776 year: 2005 end-page: 2784 ident: bb0095 article-title: A quantum chemical study of the reaction mechanism of acetyl-coenzyme a synthase publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 2827 year: 2015 end-page: 2840 ident: bb0135 article-title: Pk(a) values in proteins determined by electrostatics applied to molecular dynamics trajectories publication-title: J. Chem. Theory Comput. – volume: 71 start-page: 1335 year: 2008 end-page: 1348 ident: bb0125 article-title: Optimizing pka computation in proteins wtih ph adapted conformations publication-title: Proteins – volume: 74 start-page: 5737 year: 1981 end-page: 5743 ident: bb0160 article-title: Valence bond description of antiferromagnetic coupling in transition metal dimers publication-title: J. Phys. Chem. – volume: 123 start-page: 3409 year: 2019 end-page: 3420 ident: bb0165 article-title: Proton transfer pathways between active sites and proximal clusters in the membrane-bound [NiFe] hydrogenase publication-title: J. Phys. Chem. – volume: 114 start-page: 10024 year: 1992 end-page: 10035 ident: bb0155 article-title: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 525 year: 2004 ident: 10.1016/j.bbagen.2020.129579_bb0025 article-title: Crystallographic evidence for a CO/CO2 tunnel gating mechanism in the bifunctional carbon monoxide dehydrogenase/acetyl coenzyme A synthase from Moorella thermoacetica publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-004-0565-9 – volume: 298 start-page: 567 year: 2002 ident: 10.1016/j.bbagen.2020.129579_bb0020 article-title: A Ni-Fe-Cu center in a bifuctional carbon monoxide dehydrogenase/acetyl-CoA synthase publication-title: Science doi: 10.1126/science.1075843 – volume: 135 start-page: 9493 year: 2013 ident: 10.1016/j.bbagen.2020.129579_bb0030 article-title: Uncovering a dynamically formed substrate access tunnel in carbon monoxide dehydrogenase/acetyl-CoA synthase publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403110s – volume: 5 start-page: 156 year: 1991 ident: 10.1016/j.bbagen.2020.129579_bb0010 article-title: Life with CO or CO2 and H2 as a source of carbon and energy publication-title: FASEB J. doi: 10.1096/fasebj.5.2.1900793 – volume: 120 start-page: 7502 year: 1998 ident: 10.1016/j.bbagen.2020.129579_bb0050 article-title: Spectroscopic, redox, and structural characterization of the Ni-labile and nonlabile forms of the acetyl-CoA synthase active site of carbon monoxide dehydrogenase publication-title: J. Am. Chem. Soc. doi: 10.1021/ja981165z – volume: 162 start-page: 165 year: 1989 ident: 10.1016/j.bbagen.2020.129579_bb0175 article-title: Electronic structure calculations on work-station computers: the computer system turbomole publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(89)85118-8 – volume: 266 start-page: 20687 year: 1991 ident: 10.1016/j.bbagen.2020.129579_bb0085 article-title: Characterization of the NiFeCO complex of carbon monoxise dehydrogenase as a catalytically competent intermediate in the pathway of acetyl-coenzyme a synthesis publication-title: Biochem – volume: 278 start-page: 6101 year: 2003 ident: 10.1016/j.bbagen.2020.129579_bb0065 article-title: Nickel in subunit β of the acetyl-CoA decarbonylase/synthase multienzyme complex in methanogens publication-title: J. Biol. Chem. doi: 10.1074/jbc.M210484200 – volume: 30 start-page: 431 year: 1991 ident: 10.1016/j.bbagen.2020.129579_bb0110 article-title: Characterization of the Ni-Fe-C complex formed by reaction of carbon monoxide with the carbon monoxide dehydrogenase from Clostridium thermoaceticum by Q-band ENDOR publication-title: Biochem doi: 10.1021/bi00216a018 – volume: 4 start-page: 187 year: 1983 ident: 10.1016/j.bbagen.2020.129579_bb0115 article-title: Charmm: a program for macromolecular energy, minimization, and dynamics calculations publication-title: J. Comput. Chem. doi: 10.1002/jcc.540040211 – volume: 98 start-page: 10037 year: 2001 ident: 10.1016/j.bbagen.2020.129579_bb0140 article-title: Electrostatics of nanosystems: application to microtubules and the ribosome publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.181342398 – volume: 114 start-page: 10024 year: 1992 ident: 10.1016/j.bbagen.2020.129579_bb0155 article-title: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00051a040 – volume: 4 start-page: 101 year: 2014 ident: 10.1016/j.bbagen.2020.129579_bb0185 article-title: ChemShell–a modular software package for QM/MM simulations publication-title: Wiley Interdisc. Rev.: Comp. Mol. Sci. – volume: 123 start-page: 3409 year: 2019 ident: 10.1016/j.bbagen.2020.129579_bb0165 article-title: Proton transfer pathways between active sites and proximal clusters in the membrane-bound [NiFe] hydrogenase publication-title: J. Phys. Chem. doi: 10.1021/acs.jpcb.9b00617 – volume: 40 start-page: 415 year: 1986 ident: 10.1016/j.bbagen.2020.129579_bb0005 article-title: The autotrophic pathway of acetate synthesis in acetogenic bacteria publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.mi.40.100186.002215 – volume: 126 start-page: 3410 year: 2004 ident: 10.1016/j.bbagen.2020.129579_bb0055 article-title: Structures and energetics of models for the active site of acetyl-coenzyme a synthase: rolse of distale and proximal metals in catalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja038083h – volume: 265 start-page: 3880 year: 1990 ident: 10.1016/j.bbagen.2020.129579_bb0105 article-title: Mössbauer study of CO dehydrogenase from Clostridium thermoaceticum publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)39676-0 – volume: 74 start-page: 5737 year: 1981 ident: 10.1016/j.bbagen.2020.129579_bb0160 article-title: Valence bond description of antiferromagnetic coupling in transition metal dimers publication-title: J. Phys. Chem. doi: 10.1063/1.440939 – volume: 119 start-page: 3959 year: 1997 ident: 10.1016/j.bbagen.2020.129579_bb0045 article-title: Methylation of carbon monoxide dehydrogenase from Clostridium thermoaceticum and the mechanism of acetyl-CoA synthesis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja963597k – volume: 101 start-page: 446 year: 2004 ident: 10.1016/j.bbagen.2020.129579_bb0080 article-title: A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0304262101 – volume: 10 start-page: 271 issue: 4 year: 2003 ident: 10.1016/j.bbagen.2020.129579_bb0015 article-title: Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in the closed and open α subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase publication-title: Nat. Struct. Biol. doi: 10.1038/nsb912 – volume: 125 start-page: 9316 year: 2003 ident: 10.1016/j.bbagen.2020.129579_bb0060 article-title: Inactivation of acetyl-CoA synthase/carbon monoxide dehydrogenase by copper publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0352855 – volume: 48 start-page: 7916 year: 2009 ident: 10.1016/j.bbagen.2020.129579_bb0035 article-title: Novel domain arrangement in the crystal structure of a truncated acetyl-CoA synthase from Moorella thermoacetica publication-title: Biochemistry doi: 10.1021/bi9003952 – volume: 240 start-page: 283 year: 1995 ident: 10.1016/j.bbagen.2020.129579_bb0170 article-title: Auxiliary basis sets to approximate coulomb potentials publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(95)00621-A – volume: 31 start-page: 12870 year: 1992 ident: 10.1016/j.bbagen.2020.129579_bb0040 article-title: Function and CO binding properties of the NiFe complex in carbon monoxide dehydrogenase from Clostridium thermoaceticum publication-title: Biochemistry doi: 10.1021/bi00166a023 – ident: 10.1016/j.bbagen.2020.129579_bb0150 – volume: 102 start-page: 3586 year: 1998 ident: 10.1016/j.bbagen.2020.129579_bb0120 article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins publication-title: J. Phys. Chem. B doi: 10.1021/jp973084f – volume: 11 start-page: 2827 year: 2015 ident: 10.1016/j.bbagen.2020.129579_bb0135 article-title: Pk(a) values in proteins determined by electrostatics applied to molecular dynamics trajectories publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00123 – volume: 71 start-page: 1335 year: 2008 ident: 10.1016/j.bbagen.2020.129579_bb0125 article-title: Optimizing pka computation in proteins wtih ph adapted conformations publication-title: Proteins doi: 10.1002/prot.21820 – volume: 43 start-page: 3944 year: 2004 ident: 10.1016/j.bbagen.2020.129579_bb0070 article-title: Evidence that NiNi acetyl-CoA synthase is active and that the CuNi enzyme is not publication-title: Biochem doi: 10.1021/bi036194n – volume: 41 start-page: 1807 year: 2002 ident: 10.1016/j.bbagen.2020.129579_bb0090 article-title: Rapid kinetic studies of acetyl-CoA synthesis: evidence supporting the catalytic intermediacy of a paramagnetic NiFeC species in the autotrophic Wood−Ljungdahl pathway publication-title: Biochem doi: 10.1021/bi011687i – volume: 479 start-page: 249 year: 2011 ident: 10.1016/j.bbagen.2020.129579_bb0145 article-title: The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-Sulphur Centre publication-title: Nature doi: 10.1038/nature10505 – volume: 117 start-page: 12484 year: 2013 ident: 10.1016/j.bbagen.2020.129579_bb0075 article-title: Redox potentials and protonation of the a-cluster from acetyl-coa synthase. A density functional theory study publication-title: J. Phys. Chem. A doi: 10.1021/jp402616e – volume: 80 start-page: 1141 year: 2001 ident: 10.1016/j.bbagen.2020.129579_bb0130 article-title: Calculated ph-dependent population and protonation of carbon-monoxy-myoglobin conformers publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)76091-2 – volume: 125 start-page: 13962 year: 2003 ident: 10.1016/j.bbagen.2020.129579_bb0100 article-title: Computational studies on the a cluster of acetyl-coenzyme a synthase: geometric and electro- nic properties of the NiFeC species and mechanistic implications publication-title: J. Am. Chem. Soc. doi: 10.1021/ja037893q – volume: 632 start-page: 1 year: 2003 ident: 10.1016/j.bbagen.2020.129579_bb0180 article-title: QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis publication-title: J. Mol. Struct. doi: 10.1016/S0166-1280(03)00285-9 – volume: 127 start-page: 2776 year: 2005 ident: 10.1016/j.bbagen.2020.129579_bb0095 article-title: A quantum chemical study of the reaction mechanism of acetyl-coenzyme a synthase publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0439221 |
SSID | ssj0000595 |
Score | 2.355715 |
Snippet | The “open” (Aopen) and “closed” (Aclosed) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined... The "open" (A ) and "closed" (A ) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum... The "open" (Aopen) and "closed" (Aclosed) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined... The “open” (Aₒₚₑₙ) and “closed” (Acₗₒₛₑd) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129579 |
SubjectTerms | Aacetyl coenzymeA synthase (ACS) Acetyl Coenzyme A Aldehyde Oxidoreductases - chemistry Aldehyde Oxidoreductases - metabolism catalytic activity CODH/ACS catalysis crystal structure cysteine Electron Spin Resonance Spectroscopy enzymes geometry Ligands Moorella thermoacetica Multienzyme Complexes - chemistry nickel Nickel - chemistry oxidation QM/MM computations quantum mechanics scaffolding proteins sulfides zinc |
Title | QM/MM computations reveal details of the acetyl-CoA synthase catalytic center |
URI | https://dx.doi.org/10.1016/j.bbagen.2020.129579 https://www.ncbi.nlm.nih.gov/pubmed/32135171 https://www.proquest.com/docview/2374352986 https://www.proquest.com/docview/2477622249 |
Volume | 1864 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7WFdGL-H5LBK9x2yRt2uOyKKvSBVHBW-gjQWXpLrv1sBd_u5OmVTyo4K0tmTbMpDPfZCYzAOe68LRfGHRLQimp4J6hEZpZmgotgij1ZVGfck1G4fBR3DwFTx0YtGdhbFplo_udTq-1dfOk13CzN3156d3boB7CiYDhhRcJ1MPLDK191IXl_vXtcPSlkIO6-YodTy1Be4KuTvPKMvxvbSFUZist2KDVTxbqJwRaW6KrDVhvICTpu1luQkeXW7DimkoutmB10PZw24bkLuklCcnr1g1ub47Ymk1I7nJH52RiCGJAkua6WozpYNIn80VZPaNxI_XWzgK_QmwKp57twMPV5cNgSJsGCjTncVDR0IQS3TFuNDO2SIwpcsl9bjwdpIjrsgCVW5oZgb9ewXkeIx9Tj6W-FpHmyNZd6JaTUu8DiaOCoR9deFzHQhqWhSzzbcgtFFqjG3cAvOWZypvi4rbHxVi1WWSvynFaWU4rx-kDoJ9UU1dc44_xshWH-rZIFOr_PyjPWukpFIENiqSlnrzNFeOIoQIWR-EvY4REm4FgB9-z50T_OV_ObI9D6R_-e25HsGbvXA7wMXSr2Zs-QaRTZaewdPHunzbr-QPr8vmI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9CymhfypZuXT-2qbBXEVuSLfsxhJV0iQOjKfRN-ENiHcUpjfuQ_753lt3Sh7awN2PrbHEn3_1Od7oD-GmrwIaVQ7ck1porGTieoJnlubIqSvJQV-0p12wZz67U7-voegDT_iwMpVV2ut_r9FZbd3fGHTfHdzc340sK6iGciAReBIlCPbyjqKn1EHYmF_PZ8lkhR23zFRrPiaA_QdemeRUF_rdUCFVQpQUKWr1moV5DoK0lOv8I-x2EZBM_y08wsPUIPvimktsR7E77Hm4HkP3JxlnGyrZ1g9-bY1SzCcl97uiGrR1DDMjy0jbbWz5dT9hmWzd_0bixdmtni19hlMJp7z_D6vzXajrjXQMFXso0anjsYo3umHRWOCoS46pSy1C6wEY54roiQuWWF07hr1dJWabIxzwQeWhVYiWy9QsM63VtvwJLk0qgH10F0qZKO1HEoggp5BYra9GNOwLZ88yUXXFx6nFxa_ossn_Gc9oQp43n9BHwJ6o7X1zjnfG6F4d5sUgM6v93KM966RkUAQVF8tquHzZGSMRQkUiT-I0xSqPNQLCD7zn0on-arxTU41CHx_89tx-wO1tlC7O4WM5PYI-e-HzgUxg29w_2G6KepvjerepHzUj7bg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QM%2FMM+computations+reveal+details+of+the+acetyl-CoA+synthase+catalytic+center&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Elghobashi-Meinhardt%2C+Nadia&rft.au=Tombolelli%2C+Daria&rft.au=Mroginski%2C+Maria-Andrea&rft.date=2020-07-01&rft.issn=0304-4165&rft.volume=1864&rft.issue=7+p.129579-&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129579&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |