TAT-tagging of VIP exerts positive allosteric modulation of the PAC1 receptor and enhances VIP neuroprotective effect in the MPTP mouse model of Parkinson's disease
The cationic Arginine-rich peptide (CARP) TAT had been tagged at the C-terminal end of the vasoactive intestinal peptide (VIP) to construct VIP-TAT in order to improve traversing ability. Interestingly, it was found that TAT may bind the positive allosteric modulation (PAM) site of the N-terminal ex...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1864; no. 8; p. 129626 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2020.129626 |
Cover
Abstract | The cationic Arginine-rich peptide (CARP) TAT had been tagged at the C-terminal end of the vasoactive intestinal peptide (VIP) to construct VIP-TAT in order to improve traversing ability. Interestingly, it was found that TAT may bind the positive allosteric modulation (PAM) site of the N-terminal extracellular domain of neuropeptide receptor PAC1 (PAC1-EC1), imitating the C-terminus part of pituitary adenylate cyclase-activating polypeptide (PACAP) PACAP(28–38) fragment.
To test this hypothesis, we addressed the neuroprotective effects of VIP, VIP-TAT and PACAP38 in Parkinson's Disease (PD) cellular and mouse models. We also analyzed the peptides affinity for PAC1 and their ability to activate it.
VIP-TAT had in vitro and in vivo neuroprotective effects much efficient than VIP in PD cellular and mouse models. The isothermal titration calorimetry (ITC) and competition binding bioassays confirmed that TAT binds PAC1-EC1 at the same site as PACAP(28–38). The cAMP experiments showed TAT-VIP results in a higher activation potency of PAC1 than VIP alone.
The correlation of the peptides cationic properties with their affinity for PAC1 and their ability to activate the receptor, indicated that electrostatic interactions mediate the binding of TAT to the PAM domain of the PAC1-EC1, which induces the conformational changes of PAC1-EC1 required to promote the subsequent structural interaction and activation of the receptor with VIP.
VIP-TAT has some potency for the development of a novel drug targeting neurodegenerative diseases.
•TAT electrostatic interacts with the PAM site of PAC1•TAT enhances the activation on PAC1•TAT improves the CARPs properties of VIP |
---|---|
AbstractList | The cationic Arginine-rich peptide (CARP) TAT had been tagged at the C-terminal end of the vasoactive intestinal peptide (VIP) to construct VIP-TAT in order to improve traversing ability. Interestingly, it was found that TAT may bind the positive allosteric modulation (PAM) site of the N-terminal extracellular domain of neuropeptide receptor PAC1 (PAC1-EC1), imitating the C-terminus part of pituitary adenylate cyclase-activating polypeptide (PACAP) PACAP(28–38) fragment.To test this hypothesis, we addressed the neuroprotective effects of VIP, VIP-TAT and PACAP38 in Parkinson's Disease (PD) cellular and mouse models. We also analyzed the peptides affinity for PAC1 and their ability to activate it.VIP-TAT had in vitro and in vivo neuroprotective effects much efficient than VIP in PD cellular and mouse models. The isothermal titration calorimetry (ITC) and competition binding bioassays confirmed that TAT binds PAC1-EC1 at the same site as PACAP(28–38). The cAMP experiments showed TAT-VIP results in a higher activation potency of PAC1 than VIP alone.The correlation of the peptides cationic properties with their affinity for PAC1 and their ability to activate the receptor, indicated that electrostatic interactions mediate the binding of TAT to the PAM domain of the PAC1-EC1, which induces the conformational changes of PAC1-EC1 required to promote the subsequent structural interaction and activation of the receptor with VIP.VIP-TAT has some potency for the development of a novel drug targeting neurodegenerative diseases. The cationic Arginine-rich peptide (CARP) TAT had been tagged at the C-terminal end of the vasoactive intestinal peptide (VIP) to construct VIP-TAT in order to improve traversing ability. Interestingly, it was found that TAT may bind the positive allosteric modulation (PAM) site of the N-terminal extracellular domain of neuropeptide receptor PAC1 (PAC1-EC1), imitating the C-terminus part of pituitary adenylate cyclase-activating polypeptide (PACAP) PACAP(28-38) fragment. To test this hypothesis, we addressed the neuroprotective effects of VIP, VIP-TAT and PACAP38 in Parkinson's Disease (PD) cellular and mouse models. We also analyzed the peptides affinity for PAC1 and their ability to activate it. VIP-TAT had in vitro and in vivo neuroprotective effects much efficient than VIP in PD cellular and mouse models. The isothermal titration calorimetry (ITC) and competition binding bioassays confirmed that TAT binds PAC1-EC1 at the same site as PACAP(28-38). The cAMP experiments showed TAT-VIP results in a higher activation potency of PAC1 than VIP alone. The correlation of the peptides cationic properties with their affinity for PAC1 and their ability to activate the receptor, indicated that electrostatic interactions mediate the binding of TAT to the PAM domain of the PAC1-EC1, which induces the conformational changes of PAC1-EC1 required to promote the subsequent structural interaction and activation of the receptor with VIP. VIP-TAT has some potency for the development of a novel drug targeting neurodegenerative diseases. The cationic Arginine-rich peptide (CARP) TAT had been tagged at the C-terminal end of the vasoactive intestinal peptide (VIP) to construct VIP-TAT in order to improve traversing ability. Interestingly, it was found that TAT may bind the positive allosteric modulation (PAM) site of the N-terminal extracellular domain of neuropeptide receptor PAC1 (PAC1-EC1), imitating the C-terminus part of pituitary adenylate cyclase-activating polypeptide (PACAP) PACAP(28-38) fragment.BACKGROUNDThe cationic Arginine-rich peptide (CARP) TAT had been tagged at the C-terminal end of the vasoactive intestinal peptide (VIP) to construct VIP-TAT in order to improve traversing ability. Interestingly, it was found that TAT may bind the positive allosteric modulation (PAM) site of the N-terminal extracellular domain of neuropeptide receptor PAC1 (PAC1-EC1), imitating the C-terminus part of pituitary adenylate cyclase-activating polypeptide (PACAP) PACAP(28-38) fragment.To test this hypothesis, we addressed the neuroprotective effects of VIP, VIP-TAT and PACAP38 in Parkinson's Disease (PD) cellular and mouse models. We also analyzed the peptides affinity for PAC1 and their ability to activate it.METHODSTo test this hypothesis, we addressed the neuroprotective effects of VIP, VIP-TAT and PACAP38 in Parkinson's Disease (PD) cellular and mouse models. We also analyzed the peptides affinity for PAC1 and their ability to activate it.VIP-TAT had in vitro and in vivo neuroprotective effects much efficient than VIP in PD cellular and mouse models. The isothermal titration calorimetry (ITC) and competition binding bioassays confirmed that TAT binds PAC1-EC1 at the same site as PACAP(28-38). The cAMP experiments showed TAT-VIP results in a higher activation potency of PAC1 than VIP alone.RESULTSVIP-TAT had in vitro and in vivo neuroprotective effects much efficient than VIP in PD cellular and mouse models. The isothermal titration calorimetry (ITC) and competition binding bioassays confirmed that TAT binds PAC1-EC1 at the same site as PACAP(28-38). The cAMP experiments showed TAT-VIP results in a higher activation potency of PAC1 than VIP alone.The correlation of the peptides cationic properties with their affinity for PAC1 and their ability to activate the receptor, indicated that electrostatic interactions mediate the binding of TAT to the PAM domain of the PAC1-EC1, which induces the conformational changes of PAC1-EC1 required to promote the subsequent structural interaction and activation of the receptor with VIP.CONCLUSIONSThe correlation of the peptides cationic properties with their affinity for PAC1 and their ability to activate the receptor, indicated that electrostatic interactions mediate the binding of TAT to the PAM domain of the PAC1-EC1, which induces the conformational changes of PAC1-EC1 required to promote the subsequent structural interaction and activation of the receptor with VIP.VIP-TAT has some potency for the development of a novel drug targeting neurodegenerative diseases.GENERAL SIGNIFICANCEVIP-TAT has some potency for the development of a novel drug targeting neurodegenerative diseases. The cationic Arginine-rich peptide (CARP) TAT had been tagged at the C-terminal end of the vasoactive intestinal peptide (VIP) to construct VIP-TAT in order to improve traversing ability. Interestingly, it was found that TAT may bind the positive allosteric modulation (PAM) site of the N-terminal extracellular domain of neuropeptide receptor PAC1 (PAC1-EC1), imitating the C-terminus part of pituitary adenylate cyclase-activating polypeptide (PACAP) PACAP(28–38) fragment. To test this hypothesis, we addressed the neuroprotective effects of VIP, VIP-TAT and PACAP38 in Parkinson's Disease (PD) cellular and mouse models. We also analyzed the peptides affinity for PAC1 and their ability to activate it. VIP-TAT had in vitro and in vivo neuroprotective effects much efficient than VIP in PD cellular and mouse models. The isothermal titration calorimetry (ITC) and competition binding bioassays confirmed that TAT binds PAC1-EC1 at the same site as PACAP(28–38). The cAMP experiments showed TAT-VIP results in a higher activation potency of PAC1 than VIP alone. The correlation of the peptides cationic properties with their affinity for PAC1 and their ability to activate the receptor, indicated that electrostatic interactions mediate the binding of TAT to the PAM domain of the PAC1-EC1, which induces the conformational changes of PAC1-EC1 required to promote the subsequent structural interaction and activation of the receptor with VIP. VIP-TAT has some potency for the development of a novel drug targeting neurodegenerative diseases. •TAT electrostatic interacts with the PAM site of PAC1•TAT enhances the activation on PAC1•TAT improves the CARPs properties of VIP |
ArticleNumber | 129626 |
Author | Yu, Rongjie Ouyang, Zehua Li, Junfeng Vaudry, David Lin, Zhuochao Reglodi, Dora Huang, Xiaoling |
Author_xml | – sequence: 1 givenname: Rongjie surname: Yu fullname: Yu, Rongjie email: tyrj@jnu.edu.cn organization: Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China – sequence: 2 givenname: Junfeng surname: Li fullname: Li, Junfeng organization: Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China – sequence: 3 givenname: Zhuochao surname: Lin fullname: Lin, Zhuochao organization: Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China – sequence: 4 givenname: Zehua surname: Ouyang fullname: Ouyang, Zehua organization: Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China – sequence: 5 givenname: Xiaoling surname: Huang fullname: Huang, Xiaoling organization: Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China – sequence: 6 givenname: Dora surname: Reglodi fullname: Reglodi, Dora organization: Department of Anatomy, University of Pecs Medical School, Pecs, Hungary – sequence: 7 givenname: David surname: Vaudry fullname: Vaudry, David organization: Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death, Cell plasticity Team, Rouen, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32335135$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URKeFN0DIO9hk8CWXCQuk0YhCpSKyGNhaJ87J1EPGHmyngvfpg-JM2g0L6o0t6_8_HZ3vgpxZZ5GQ15wtOePl-_2ybWGHdimYSF-iLkX5jCz4qhLZirHyjCyYZHmW87I4Jxch7Fk6RV28IOdSSFlwWSzI_Xa9zSLsdsbuqOvpj-uG4m_0MdCjCyaaO6QwDC5E9EbTg-vGAaJxdgrHW6TNesOpR43H6DwF21G0t2A1hhPL4ujd0buI-sTCvk8vauyp_LXZNok5BpzIOEzQBvxPY4OzbwPtTEAI-JI872EI-OrhviTfrz5tN1-ym2-frzfrm0zLuohZyXUBNWiuAbksq3zV5yvQectYJVvgnQCssZBtrzmrRSfKLgeQ0EmOqwqEvCTvZm4a-NeIIaqDCRqHASymIZXIq6oUvM7rp6NpIlGyvJ6ibx6iY3vATh29OYD_ox4lpMCHOaC9C8Fjr7SJpyVHD2ZQnKnJuNqr2biajKvZeCrn_5Qf-U_UPs41TPu8M-hV0AaTts4kmVF1zvwf8BeNMMfj |
CitedBy_id | crossref_primary_10_3390_brainsci11080994 crossref_primary_10_3724_abbs_2022041 crossref_primary_10_1007_s12031_022_01968_1 crossref_primary_10_1021_acschemneuro_3c00744 crossref_primary_10_3390_ijms23031845 crossref_primary_10_31083_j_jin2101033 crossref_primary_10_1016_j_peptides_2021_170713 crossref_primary_10_1016_j_lfs_2022_120637 crossref_primary_10_3389_fnagi_2023_1184435 crossref_primary_10_1016_j_bbagen_2021_129884 crossref_primary_10_1016_j_bbr_2023_114574 crossref_primary_10_3389_fnagi_2021_646726 crossref_primary_10_1016_j_npep_2023_102356 crossref_primary_10_3390_antiox10030354 |
Cites_doi | 10.1093/abbs/gmz045 10.1016/j.peptides.2008.01.022 10.1016/j.nbd.2018.09.010 10.1111/j.1399-3011.1996.tb00856.x 10.1016/j.bcp.2018.04.024 10.1007/s12031-016-0757-0 10.1038/jcbfm.2015.11 10.1016/j.bbr.2003.09.007 10.1152/ajpcell.00001.2014 10.1016/j.neulet.2010.06.007 10.1007/s12031-011-9618-z 10.3389/fneur.2020.00108 10.1111/j.1432-1033.1992.tb17252.x 10.1242/dmm.027185 10.1074/jbc.M109.043117 10.5483/BMBRep.2014.47.7.086 10.1016/j.peptides.2014.07.018 10.1126/science.285.5433.1569 10.1016/j.febslet.2014.10.029 10.1096/fj.11-203042 10.1042/bj3410271 10.1096/fj.02-0799fje 10.1007/s12640-009-9012-6 10.1016/j.neuro.2018.03.010 10.1007/s12031-018-1229-5 10.1124/pr.109.001370 10.1016/S0161-813X(02)00098-0 10.7326/AITC201809040 10.1016/j.neuropharm.2015.11.032 10.2174/1568026619666190709092647 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2020.129626 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 32335135 10_1016_j_bbagen_2020_129626 S0304416520301380 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-61c5a9ac1cae136748f48ac4b0073ba1d2ae9e53bfc1092d26d4aa3ad31e87a23 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Sun Sep 28 08:39:31 EDT 2025 Wed Oct 01 15:02:11 EDT 2025 Thu Apr 03 07:06:37 EDT 2025 Wed Oct 01 00:42:42 EDT 2025 Thu Apr 24 23:03:19 EDT 2025 Fri Feb 23 02:47:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Parkinson's disease CARP TAT MTT MPP VIP-TAT T-turn TUNEL FBS PAC1 Positive allosteric modulation Pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1) HPLC IOD Vasoactive intestinal peptide (VIP) DOPAC MALDI-TOF PACPA T-total SOD Cationic Argine-rich peptides (CARP) HVA PD Parkinson diseaseNeuroprotection MPTP VIP DA |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-61c5a9ac1cae136748f48ac4b0073ba1d2ae9e53bfc1092d26d4aa3ad31e87a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 32335135 |
PQID | 2395260499 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2477621949 proquest_miscellaneous_2395260499 pubmed_primary_32335135 crossref_citationtrail_10_1016_j_bbagen_2020_129626 crossref_primary_10_1016_j_bbagen_2020_129626 elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129626 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Harmar, Arimura, Gozes, Journot, Laburthe, Pisegna, Rawlings, Robberecht, Said, Sreedharan, Wank, Waschek (bb0025) 1998; 50 Atlasz, Werling, Song, Szabo, Vaczy, Kovari, Tamas, Reglodi, Yu (bb0070) 2019; 68 Yu, Yang, Cui, Zheng, Zeng, Zhang (bb0065) 2014; 60 Tams, Johnsen, Fahrenkrug (bb0160) 1999; 341 Yelkenli, Ulupinar, Korkmaz, Sener, Kus, Filiz, Tuncel (bb0040) 2016; 59 Reglodi, Tamas, Jungling, Vaczy, Rivnyak, Fulop, Szabo, Lubics, Atlasz (bb0055) 2018; 66 Song, Wang, Li, Huang, Yu (bb0080) 2019; 51 Meloni, Brookes, Clark, Cross, Edwards, Anderton, Hopkins, Hoffmann, Knuckey (bb0150) 2015; 35 May, Lutz, MacKenzie, Schutz, Dozark, Braas (bb0095) 2010; 285 Gourlet, Vandermeers, Vandermeers-Piret, De Neef, Robberecht (bb0130) 1996; 48 Homayoun (bb0010) 2018; 169 Dejda, Sokołowska, Nowak (bb0020) 2005; 57 Ribeiro, Lima (bb0015) 2020; 24 Vaudry, Falluel-Morel, Bourgault, Basille, Burel, Wurtz, Fournier, Chow, Hashimoto, Galas, Vaudry (bb0075) 2009; 61 Reglodi, Lubics, Tamas, Szalontay, Lengvari (bb0045) 2004; 151 Poujol de Molliens, Létourneau, Devost, Hébert, Fournier, Chatenet (bb0155) 2018; 154 Meloni, Mastaglia, Knuckey (bb0110) 2020; 25 Langston (bb0005) 2002; 23 Tuncel, Korkmaz, Tekin, Sener, Akyuz, Inal (bb0035) 2012; 46 Lee, Seo (bb0145) 2014; 47 Yu, Zheng, Cui, Zhang, Ye (bb0125) 2016; 103 Vandermeers, Vandenborre, Hou, de Neef, Robberecht, Vandermeers-Piret, Christophe (bb0135) 1992; 208 Delgado, Ganea (bb0030) 2003; 17 Vaslin, Rummel, Clarke (bb0100) 2009; 15 May, Buttolph, Girard, Clason, Parsons (bb0090) 2014; 306 Emery, Eiden (bb0085) 2012; 26 Bourgault, Audry, Botia, Couvineau, Laburthe, Vaudry, Fournier (bb0165) 2008; 29 Maasz, Zrinyi, Reglodi, Petrovics, Rivnyak, Kiss, Jungling, Tamas, Pirger (bb0050) 2017; 10 Tchoumi Neree, Nguyen, Chatenet, Fournier, Bourgault (bb0105) 2014; 588 MacDougall, Anderton, Mastaglia, Knuckey, Meloni (bb0115) 2019; 121 Yu, Li, Wang, Liu, Huang, Ding, Chen (bb0120) 2010; 480 Liao, de Molliens, Schneebeli, Brewer, Song, Chatenet, Braas, May, Li (bb0140) 2019; 19 Schwarze, Ho, Vocero-Akbani, Dowdy (bb0060) 1999; 285 Langston (10.1016/j.bbagen.2020.129626_bb0005) 2002; 23 Reglodi (10.1016/j.bbagen.2020.129626_bb0055) 2018; 66 Maasz (10.1016/j.bbagen.2020.129626_bb0050) 2017; 10 Bourgault (10.1016/j.bbagen.2020.129626_bb0165) 2008; 29 Lee (10.1016/j.bbagen.2020.129626_bb0145) 2014; 47 Tams (10.1016/j.bbagen.2020.129626_bb0160) 1999; 341 Harmar (10.1016/j.bbagen.2020.129626_bb0025) 1998; 50 Meloni (10.1016/j.bbagen.2020.129626_bb0110) 2020; 25 Liao (10.1016/j.bbagen.2020.129626_bb0140) 2019; 19 Reglodi (10.1016/j.bbagen.2020.129626_bb0045) 2004; 151 May (10.1016/j.bbagen.2020.129626_bb0095) 2010; 285 Vaslin (10.1016/j.bbagen.2020.129626_bb0100) 2009; 15 Delgado (10.1016/j.bbagen.2020.129626_bb0030) 2003; 17 Tuncel (10.1016/j.bbagen.2020.129626_bb0035) 2012; 46 Yu (10.1016/j.bbagen.2020.129626_bb0120) 2010; 480 Atlasz (10.1016/j.bbagen.2020.129626_bb0070) 2019; 68 Vandermeers (10.1016/j.bbagen.2020.129626_bb0135) 1992; 208 Emery (10.1016/j.bbagen.2020.129626_bb0085) 2012; 26 Tchoumi Neree (10.1016/j.bbagen.2020.129626_bb0105) 2014; 588 May (10.1016/j.bbagen.2020.129626_bb0090) 2014; 306 Yu (10.1016/j.bbagen.2020.129626_bb0125) 2016; 103 Schwarze (10.1016/j.bbagen.2020.129626_bb0060) 1999; 285 Yu (10.1016/j.bbagen.2020.129626_bb0065) 2014; 60 Vaudry (10.1016/j.bbagen.2020.129626_bb0075) 2009; 61 Ribeiro (10.1016/j.bbagen.2020.129626_bb0015) 2020; 24 Gourlet (10.1016/j.bbagen.2020.129626_bb0130) 1996; 48 Dejda (10.1016/j.bbagen.2020.129626_bb0020) 2005; 57 Song (10.1016/j.bbagen.2020.129626_bb0080) 2019; 51 MacDougall (10.1016/j.bbagen.2020.129626_bb0115) 2019; 121 Meloni (10.1016/j.bbagen.2020.129626_bb0150) 2015; 35 Poujol de Molliens (10.1016/j.bbagen.2020.129626_bb0155) 2018; 154 Homayoun (10.1016/j.bbagen.2020.129626_bb0010) 2018; 169 Yelkenli (10.1016/j.bbagen.2020.129626_bb0040) 2016; 59 |
References_xml | – volume: 26 start-page: 3199 year: 2012 end-page: 3211 ident: bb0085 article-title: Signaling through the neuropeptide GPCR PAC1 induces neuritogenesis via a single linear cAMP- and ERK-dependent pathway using a novel cAMP sensor publication-title: FASEB J. – volume: 285 start-page: 9749 year: 2010 end-page: 9761 ident: bb0095 article-title: Pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1HOP1 receptor activation coordinates multiple neurotrophic signaling pathways: Akt activation through phosphatidylinositol 3-kinase gamma and vesicle endocytosis for neuronal survival publication-title: J. Biol. Chem. – volume: 46 start-page: 51 year: 2012 end-page: 57 ident: bb0035 article-title: Antioxidant and anti-apoptotic activity of vasoactive intestinal peptide (VIP) against 6-hydroxy dopamine toxicity in the rat corpus striatum publication-title: J. Mol. Neurosci. – volume: 35 start-page: 993 year: 2015 end-page: 1004 ident: bb0150 article-title: Poly-arginine and arginine-rich peptides are neuroprotective in stroke models publication-title: J. Cereb. Blood Flow Metab. – volume: 24 start-page: 123 year: 2020 end-page: 129 ident: bb0015 article-title: Implications of VIP and PACAP in Parkinson’s disease: what do we know so far? publication-title: Curr Med Chem – volume: 208 start-page: 815 year: 1992 end-page: 819 ident: bb0135 article-title: Antagonistic properties are shifted back to agonistic properties by further N-terminal shortening of pituitary adenylate-cyclase-activating peptides in human neuroblastoma NB-OK-1 cell membranes publication-title: Eur. J. Biochem. – volume: 154 start-page: 193 year: 2018 end-page: 200 ident: bb0155 article-title: New insights about the peculiar role of the 28-38 C-terminal segment and some selected residues in PACAP for signaling and neuroprotection publication-title: Biochem. Pharmacol. – volume: 50 start-page: 265 year: 1998 end-page: 270 ident: bb0025 article-title: International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide publication-title: Pharmacol. Rev. – volume: 19 start-page: 1399 year: 2019 end-page: 1417 ident: bb0140 article-title: Targeting the PAC1 receptor for neurological and metabolic disorders publication-title: Curr. Top. Med. Chem. – volume: 10 start-page: 127 year: 2017 end-page: 139 ident: bb0050 article-title: Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models publication-title: Dis. Model. Mech. – volume: 285 start-page: 1569 year: 1999 end-page: 1572 ident: bb0060 article-title: In vivo protein transduction: delivery of a biologically active protein into the mouse publication-title: Science – volume: 121 start-page: 17 year: 2019 end-page: 33 ident: bb0115 article-title: Mitochondria and neuroprotection in stroke: cationic arginine-rich peptides (CARPs) as a novel class of mitochondria-targeted neuroprotective therapeutics publication-title: Neurobiol. Dis. – volume: 17 start-page: 944 year: 2003 end-page: 946 ident: bb0030 article-title: Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson’s disease by blocking microglial activation publication-title: FASEB J. – volume: 47 start-page: 369 year: 2014 end-page: 375 ident: bb0145 article-title: Neuroprotective roles of pituitary adenylate cyclase-activating polypeptide in neurodegenerative diseases publication-title: BMB Rep. – volume: 169 start-page: ITC33 year: 2018 end-page: ITC48 ident: bb0010 article-title: Parkinson disease publication-title: Ann. Intern. Med. – volume: 59 start-page: 280 year: 2016 end-page: 289 ident: bb0040 article-title: Modulation of Corpus striatal neurochemistry by astrocytes and vasoactive intestinal peptide (VIP) in parkinsonian rats publication-title: J. Mol. Neurosci. – volume: 103 start-page: 1 year: 2016 end-page: 15 ident: bb0125 article-title: Doxycycline exerted neuroprotective activity by enhancing the activation of neuropeptide GPCR PAC1 publication-title: Neuropharmacology – volume: 341 start-page: 271 year: 1999 end-page: 276 ident: bb0160 article-title: Identification of pituitary adenylate cyclase-activating polypeptide1-38-binding factor in human plasma, as ceruloplasmin publication-title: Biochem. J. – volume: 15 start-page: 123 year: 2009 end-page: 126 ident: bb0100 article-title: Unconjugated TAT carrier peptide protects against excitotoxicity publication-title: Neurotox. Res. – volume: 29 start-page: 919 year: 2008 end-page: 932 ident: bb0165 article-title: Novel stable PACAP analogs with potent activity towards the PAC1 receptor publication-title: Peptides – volume: 25 start-page: 108 year: 2020 end-page: 113 ident: bb0110 article-title: Cationic arginine-rich peptides (CARPs): a novel class of neuroprotective agents with a multimodal mechanism of action publication-title: Front. Neurol. – volume: 588 start-page: 4590 year: 2014 end-page: 4596 ident: bb0105 article-title: Secondary conformational conversion is involved in glycosaminoglycans-mediated cellular uptake of the cationic cell-penetrating peptide PACAP publication-title: FEBS Lett. – volume: 61 start-page: 283 year: 2009 end-page: 357 ident: bb0075 article-title: Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery publication-title: Pharmacol. Rev. – volume: 151 start-page: 303 year: 2004 end-page: 312 ident: bb0045 article-title: Pituitary adenylate cyclase activating polypeptide protects dopaminergic neurons and improves behavioral deficits in a rat model of Parkinson’s disease publication-title: Behav. Brain Res. – volume: 60 start-page: 41 year: 2014 end-page: 50 ident: bb0065 article-title: Novel peptide VIP-TAT with higher affinity for PAC1 inhibited scopolamine induced amnesia publication-title: Peptides – volume: 23 start-page: 443 year: 2002 end-page: 450 ident: bb0005 article-title: Parkinson's disease: current and future challenges publication-title: Neurotoxicology – volume: 66 start-page: 185 year: 2018 end-page: 194 ident: bb0055 article-title: Protective effects of pituitary adenylate cyclase activating polypeptide against neurotoxic agents publication-title: Neurotoxicology – volume: 306 start-page: 1068 year: 2014 end-page: 1079 ident: bb0090 article-title: PACAP-induced ERK activation in HEK cells expressing PAC1 receptors involves both receptor internalization and PKC signaling publication-title: Am J Physiol Cell Physiol – volume: 57 start-page: 307 year: 2005 end-page: 320 ident: bb0020 article-title: Neuroprotective potential of three neuropeptides PACAP publication-title: VIP and PHI, Pharmacol Rep – volume: 480 start-page: 73 year: 2010 end-page: 77 ident: bb0120 article-title: The functional recombinant first extracellular (EC1) domain of PACAP receptor PAC1 normal form (PAC1-EC1(N)) recognizes selective ligands and stimulates the proliferation of PAC1-CHO cells publication-title: Neurosci. Lett. – volume: 51 start-page: 627 year: 2019 end-page: 637 ident: bb0080 article-title: The allosteric modulation effects of doxycycline, minocycline, and their derivatives on the neuropeptide receptor PAC1-R publication-title: Acta Biochim. Biophys. Sin. Shanghai – volume: 48 start-page: 391 year: 1996 end-page: 396 ident: bb0130 article-title: Addition of the (28-38) peptide sequence of PACAP to the VIP sequence modifies peptide selectivity and efficacy publication-title: Int. J. Pept. Protein Res. – volume: 68 start-page: 397 year: 2019 end-page: 407 ident: bb0070 article-title: Retinoprotective effects of TAT-bound vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide publication-title: J. Mol. Neurosci. – volume: 51 start-page: 627 year: 2019 ident: 10.1016/j.bbagen.2020.129626_bb0080 article-title: The allosteric modulation effects of doxycycline, minocycline, and their derivatives on the neuropeptide receptor PAC1-R publication-title: Acta Biochim. Biophys. Sin. Shanghai doi: 10.1093/abbs/gmz045 – volume: 29 start-page: 919 year: 2008 ident: 10.1016/j.bbagen.2020.129626_bb0165 article-title: Novel stable PACAP analogs with potent activity towards the PAC1 receptor publication-title: Peptides doi: 10.1016/j.peptides.2008.01.022 – volume: 121 start-page: 17 year: 2019 ident: 10.1016/j.bbagen.2020.129626_bb0115 article-title: Mitochondria and neuroprotection in stroke: cationic arginine-rich peptides (CARPs) as a novel class of mitochondria-targeted neuroprotective therapeutics publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2018.09.010 – volume: 48 start-page: 391 year: 1996 ident: 10.1016/j.bbagen.2020.129626_bb0130 article-title: Addition of the (28-38) peptide sequence of PACAP to the VIP sequence modifies peptide selectivity and efficacy publication-title: Int. J. Pept. Protein Res. doi: 10.1111/j.1399-3011.1996.tb00856.x – volume: 154 start-page: 193 year: 2018 ident: 10.1016/j.bbagen.2020.129626_bb0155 article-title: New insights about the peculiar role of the 28-38 C-terminal segment and some selected residues in PACAP for signaling and neuroprotection publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2018.04.024 – volume: 59 start-page: 280 year: 2016 ident: 10.1016/j.bbagen.2020.129626_bb0040 article-title: Modulation of Corpus striatal neurochemistry by astrocytes and vasoactive intestinal peptide (VIP) in parkinsonian rats publication-title: J. Mol. Neurosci. doi: 10.1007/s12031-016-0757-0 – volume: 57 start-page: 307 year: 2005 ident: 10.1016/j.bbagen.2020.129626_bb0020 article-title: Neuroprotective potential of three neuropeptides PACAP publication-title: VIP and PHI, Pharmacol Rep – volume: 35 start-page: 993 year: 2015 ident: 10.1016/j.bbagen.2020.129626_bb0150 article-title: Poly-arginine and arginine-rich peptides are neuroprotective in stroke models publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2015.11 – volume: 151 start-page: 303 year: 2004 ident: 10.1016/j.bbagen.2020.129626_bb0045 article-title: Pituitary adenylate cyclase activating polypeptide protects dopaminergic neurons and improves behavioral deficits in a rat model of Parkinson’s disease publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2003.09.007 – volume: 306 start-page: 1068 year: 2014 ident: 10.1016/j.bbagen.2020.129626_bb0090 article-title: PACAP-induced ERK activation in HEK cells expressing PAC1 receptors involves both receptor internalization and PKC signaling publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00001.2014 – volume: 480 start-page: 73 year: 2010 ident: 10.1016/j.bbagen.2020.129626_bb0120 article-title: The functional recombinant first extracellular (EC1) domain of PACAP receptor PAC1 normal form (PAC1-EC1(N)) recognizes selective ligands and stimulates the proliferation of PAC1-CHO cells publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2010.06.007 – volume: 46 start-page: 51 year: 2012 ident: 10.1016/j.bbagen.2020.129626_bb0035 article-title: Antioxidant and anti-apoptotic activity of vasoactive intestinal peptide (VIP) against 6-hydroxy dopamine toxicity in the rat corpus striatum publication-title: J. Mol. Neurosci. doi: 10.1007/s12031-011-9618-z – volume: 25 start-page: 108 year: 2020 ident: 10.1016/j.bbagen.2020.129626_bb0110 article-title: Cationic arginine-rich peptides (CARPs): a novel class of neuroprotective agents with a multimodal mechanism of action publication-title: Front. Neurol. doi: 10.3389/fneur.2020.00108 – volume: 208 start-page: 815 year: 1992 ident: 10.1016/j.bbagen.2020.129626_bb0135 article-title: Antagonistic properties are shifted back to agonistic properties by further N-terminal shortening of pituitary adenylate-cyclase-activating peptides in human neuroblastoma NB-OK-1 cell membranes publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1992.tb17252.x – volume: 10 start-page: 127 year: 2017 ident: 10.1016/j.bbagen.2020.129626_bb0050 article-title: Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models publication-title: Dis. Model. Mech. doi: 10.1242/dmm.027185 – volume: 285 start-page: 9749 year: 2010 ident: 10.1016/j.bbagen.2020.129626_bb0095 article-title: Pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1HOP1 receptor activation coordinates multiple neurotrophic signaling pathways: Akt activation through phosphatidylinositol 3-kinase gamma and vesicle endocytosis for neuronal survival publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.043117 – volume: 47 start-page: 369 year: 2014 ident: 10.1016/j.bbagen.2020.129626_bb0145 article-title: Neuroprotective roles of pituitary adenylate cyclase-activating polypeptide in neurodegenerative diseases publication-title: BMB Rep. doi: 10.5483/BMBRep.2014.47.7.086 – volume: 60 start-page: 41 year: 2014 ident: 10.1016/j.bbagen.2020.129626_bb0065 article-title: Novel peptide VIP-TAT with higher affinity for PAC1 inhibited scopolamine induced amnesia publication-title: Peptides doi: 10.1016/j.peptides.2014.07.018 – volume: 285 start-page: 1569 year: 1999 ident: 10.1016/j.bbagen.2020.129626_bb0060 article-title: In vivo protein transduction: delivery of a biologically active protein into the mouse publication-title: Science doi: 10.1126/science.285.5433.1569 – volume: 588 start-page: 4590 year: 2014 ident: 10.1016/j.bbagen.2020.129626_bb0105 article-title: Secondary conformational conversion is involved in glycosaminoglycans-mediated cellular uptake of the cationic cell-penetrating peptide PACAP publication-title: FEBS Lett. doi: 10.1016/j.febslet.2014.10.029 – volume: 50 start-page: 265 year: 1998 ident: 10.1016/j.bbagen.2020.129626_bb0025 article-title: International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide publication-title: Pharmacol. Rev. – volume: 26 start-page: 3199 year: 2012 ident: 10.1016/j.bbagen.2020.129626_bb0085 article-title: Signaling through the neuropeptide GPCR PAC1 induces neuritogenesis via a single linear cAMP- and ERK-dependent pathway using a novel cAMP sensor publication-title: FASEB J. doi: 10.1096/fj.11-203042 – volume: 341 start-page: 271 year: 1999 ident: 10.1016/j.bbagen.2020.129626_bb0160 article-title: Identification of pituitary adenylate cyclase-activating polypeptide1-38-binding factor in human plasma, as ceruloplasmin publication-title: Biochem. J. doi: 10.1042/bj3410271 – volume: 24 start-page: 123 year: 2020 ident: 10.1016/j.bbagen.2020.129626_bb0015 article-title: Implications of VIP and PACAP in Parkinson’s disease: what do we know so far? publication-title: Curr Med Chem – volume: 17 start-page: 944 year: 2003 ident: 10.1016/j.bbagen.2020.129626_bb0030 article-title: Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson’s disease by blocking microglial activation publication-title: FASEB J. doi: 10.1096/fj.02-0799fje – volume: 15 start-page: 123 year: 2009 ident: 10.1016/j.bbagen.2020.129626_bb0100 article-title: Unconjugated TAT carrier peptide protects against excitotoxicity publication-title: Neurotox. Res. doi: 10.1007/s12640-009-9012-6 – volume: 66 start-page: 185 year: 2018 ident: 10.1016/j.bbagen.2020.129626_bb0055 article-title: Protective effects of pituitary adenylate cyclase activating polypeptide against neurotoxic agents publication-title: Neurotoxicology doi: 10.1016/j.neuro.2018.03.010 – volume: 68 start-page: 397 year: 2019 ident: 10.1016/j.bbagen.2020.129626_bb0070 article-title: Retinoprotective effects of TAT-bound vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide publication-title: J. Mol. Neurosci. doi: 10.1007/s12031-018-1229-5 – volume: 61 start-page: 283 year: 2009 ident: 10.1016/j.bbagen.2020.129626_bb0075 article-title: Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery publication-title: Pharmacol. Rev. doi: 10.1124/pr.109.001370 – volume: 23 start-page: 443 year: 2002 ident: 10.1016/j.bbagen.2020.129626_bb0005 article-title: Parkinson's disease: current and future challenges publication-title: Neurotoxicology doi: 10.1016/S0161-813X(02)00098-0 – volume: 169 start-page: ITC33 year: 2018 ident: 10.1016/j.bbagen.2020.129626_bb0010 article-title: Parkinson disease publication-title: Ann. Intern. Med. doi: 10.7326/AITC201809040 – volume: 103 start-page: 1 year: 2016 ident: 10.1016/j.bbagen.2020.129626_bb0125 article-title: Doxycycline exerted neuroprotective activity by enhancing the activation of neuropeptide GPCR PAC1 publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2015.11.032 – volume: 19 start-page: 1399 year: 2019 ident: 10.1016/j.bbagen.2020.129626_bb0140 article-title: Targeting the PAC1 receptor for neurological and metabolic disorders publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026619666190709092647 |
SSID | ssj0000595 |
Score | 2.4001749 |
Snippet | The cationic Arginine-rich peptide (CARP) TAT had been tagged at the C-terminal end of the vasoactive intestinal peptide (VIP) to construct VIP-TAT in order to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129626 |
SubjectTerms | 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine - pharmacology Allosteric Regulation - drug effects animal models Animals bioassays calorimetry Cationic Argine-rich peptides (CARP) Cell Survival - drug effects Cell-Penetrating Peptides - pharmacology cyclic AMP Disease Models, Animal drugs electrostatic interactions Mice neuropeptide receptors Neuroprotective Agents - pharmacology neuroprotective effect Parkinson disease Parkinson Disease - drug therapy Parkinson Disease - metabolism Parkinson Disease - pathology Parkinson diseaseNeuroprotection Parkinson's disease Pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1) polypeptides Positive allosteric modulation Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I - metabolism TAT titration Tumor Cells, Cultured vasoactive intestinal peptide Vasoactive intestinal peptide (VIP) Vasoactive Intestinal Peptide - pharmacology |
Title | TAT-tagging of VIP exerts positive allosteric modulation of the PAC1 receptor and enhances VIP neuroprotective effect in the MPTP mouse model of Parkinson's disease |
URI | https://dx.doi.org/10.1016/j.bbagen.2020.129626 https://www.ncbi.nlm.nih.gov/pubmed/32335135 https://www.proquest.com/docview/2395260499 https://www.proquest.com/docview/2477621949 |
Volume | 1864 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Complete Freedom Collection customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: ACRLP dateStart: 19950118 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: AIKHN dateStart: 19950118 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: AKRWK dateStart: 19640113 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1faxQxEA-lIvpSav1XW0sEwad4l01yl308jpar0nLgVfoWZrNZe6J7R28VfPHT-EGdSbIVQS34uLuTIWRmMzOZyW8Ye2nQSFv8JnwDVpCPLqCph8J7462xTdVE2MWz89HsQr-5NJdbbNrfhaGyyrz3pz097tb5zSCv5mC9XA7eUVIP3QlTkFevLMXthP6FOv36-68yD3QfTMokaEHU_fW5WONVVfjTEgpqQTAL5YggFv5snv7mfkYzdLLLdrL_yCdpig_YVmj32N3UUfLbHrs37Ru4PWQ_FpOF6ICOlD_wVcPfn845dVjqNjyVan0NnNLuBJWw9Pzzqs6tvIgY_UI-n0wlx9UJawzMObQ1D-0Vackm8opQmBnngXil0hC-bOPgs_lizulcIfDYbYeY0hXreNvs1YbnzNAjdnFyvJjORG7KILwqTYehpjdQgpceAsG9adtoC15XlPOrQNYFhDIYVTVeDsuiLka1BlBQKxnsGAr1mG23qzY8ZTxU6N5ZqXQhkYcdlWGokTUMPYAZS73PVC8L5zNiOTXO-OT60rSPLknQkQRdkuA-Ezej1gmx4xb6cS9m95vmOTQqt4x80WuFQ9FSpgXagAvrClwqDBQxmvwHjR6jIZKlRponSaVu5qsKpYxU5tl_z-2A3aenVKp4yLa76y_hObpPXXUU_48jdmdy-nZ2_hNOkRo_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dixMxEA9HDzlfRM-v8zOC4FNo89VmH0vxaL1rKbgn9xay2axWdFvsKvj_-Ic6k2RPBPXA181kCJlkPnYmvyHkpQYjbWCM-cYZhj46c009Yt5rb7RpqibCLi5X4_mFenOpLw_IrH8Lg2WVWfcnnR61df4yzLs53G02w7eY1AN3Qgv06qWBuP1QadDJA3I4XZzNV78Uso7NV5Ce4YT-BV0s86oquLcIhCoQaaEYI8rCny3U3zzQaIlOb5Nb2YWk07TKO-QgtMfkRmoq-f2YHM36Hm53yY9yWrLO4V_l93Tb0HeLNcUmS92epmqtb4Fi5h3REjaeft7WuZsXEoNrSNfTGaewQWEHsTl1bU1D-wEPyj7yimiYGeoBeaXqELpp4-TlulxT_LUQaGy4g0zxlXV8cPZqT3Ny6B65OH1dzuYs92VgXha6g2jTa1c4z70LiPimTKOM86rCtF_leC1cKIKWVeP5qBC1GNfKOelqyYOZOCHvk0G7bcNDQkMFHp7hUgkOPMy4CCMFrN3IO6cnXJ0Q2cvC-gxajr0zPtm-Ou2jTRK0KEGbJHhC2NWsXQLtuIZ-0ovZ_nb4LNiVa2a-6E-FBdFissW1ATbWCtgqiBUhoPwHjZqALeKFApoH6UhdrVcKKTWX-tF_r-05OZqXy3N7vlidPSY3cSRVLj4hg-7L1_AUvKmuepZvy0_WMxzq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TAT-tagging+of+VIP+exerts+positive+allosteric+modulation+of+the+PAC1+receptor+and+enhances+VIP+neuroprotective+effect+in+the+MPTP+mouse+model+of+Parkinson%27s+disease&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Yu%2C+Rongjie&rft.au=Li%2C+Junfeng&rft.au=Lin%2C+Zhuochao&rft.au=Ouyang%2C+Zehua&rft.date=2020-08-01&rft.eissn=1872-8006&rft.volume=1864&rft.issue=8&rft.spage=129626&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129626&rft_id=info%3Apmid%2F32335135&rft.externalDocID=32335135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |