Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network
Stringent regulations and deteriorating source water quality could greatly influence the water production capacity of drinking water treatment plants (DWTPs). Using models to predict the performance of DWTPs under stress provides valuable information for decision making and future planning. A hybrid...
Saved in:
| Published in | Water research (Oxford) Vol. 164; p. 114888 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier Ltd
01.11.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0043-1354 1879-2448 1879-2448 |
| DOI | 10.1016/j.watres.2019.114888 |
Cover
| Abstract | Stringent regulations and deteriorating source water quality could greatly influence the water production capacity of drinking water treatment plants (DWTPs). Using models to predict the performance of DWTPs under stress provides valuable information for decision making and future planning. A hybrid statistic model named HANN was established by combining artificial neural network (ANN) with genetic algorithm (GA) aiming at forecasting the overall performance of DWTPs nationwide in China. Monthly data from 45 DWTPs across China was employed. Water quality parameters like temperature and chemical oxygen demand (COD) and operational parameters like electricity consumption and chemical consumption were selected as input variables, while drinking water production was employed as the output. Both preliminary data analysis and principal component analysis (PCA) suggested a clear non-linear relationship between the input and output variables. The structure of the HANN model was optimized by employing the lowest mean squared error (MSE) as the indicator. The resultant HANN model performed well when simulating the training datasets. Its predictive accuracy for the independent test datasets was enhanced when feeding more training datasets and the performance was constantly higher than the independent multi-layered ANN models using the coefficient of determination (R2) as the indicator, indicating the HANN model was capable of capturing complex non-linear relationship and extrapolation. Results from Accuracy test, Garson sensitivity analysis and Analysis of Variance (ANOVA) suggested the quantity of water produced by DWTPs was closely linked to water quality and operational parameters. The scenario analysis showed that the HANN model was capable of predicting water production variation based on the parameter variations, indicating that the HANN model could be a general management tool for decision makers and DWTP managers to make plans in advance of regulatory changes, source water quality variations and market demand.
[Display omitted] |
|---|---|
| AbstractList | Stringent regulations and deteriorating source water quality could greatly influence the water production capacity of drinking water treatment plants (DWTPs).Using models to predict the performance of DWTPs under stress provides valuable information for decision making and future planning. A hybrid statistic model named HANN was established by combining artificial neural network (ANN) with genetic algorithm (GA) aiming at forecasting the overall performance of DWTPs nationwide in China. Monthly data from 45 DWTPs across China was employed. Water quality parameters like temperature and chemical oxygen demand (COD) and operational parameters like electricity consumption and chemical consumption were selected as input variables, while drinking water production was employed as the output. Both preliminary data analysis and principal component analysis (PCA) suggested a clear non-linear relationship between the input and output variables. The structure of the HANN model was optimized by employing the lowest mean squared error (MSE) as the indicator. The resultant HANN model performed well when simulating the training datasets. Its predictive accuracy for the independent test datasets was enhanced when feeding more training datasets and the performance was constantly higher than the independent multi-layered ANN models using the coefficient of determination (R2) as the indicator, indicating the HANN model was capable of capturing complex non-linear relationship and extrapolation. Results from Accuracy test, Garson sensitivity analysis and Analysis of Variance (ANOVA) suggested the quantity of water produced by DWTPs was closely linked to water quality and operational parameters. The scenario analysis showed that the HANN model was capable of predicting water production variation based on the parameter variations, indicating that the HANN model could be a general management tool for decision makers and DWTP managers to make plans in advance of regulatory changes, source water quality variations and market demand. Stringent regulations and deteriorating source water quality could greatly influence the water production capacity of drinking water treatment plants (DWTPs). Using models to predict the performance of DWTPs under stress provides valuable information for decision making and future planning. A hybrid statistic model named HANN was established by combining artificial neural network (ANN) with genetic algorithm (GA) aiming at forecasting the overall performance of DWTPs nationwide in China. Monthly data from 45 DWTPs across China was employed. Water quality parameters like temperature and chemical oxygen demand (COD) and operational parameters like electricity consumption and chemical consumption were selected as input variables, while drinking water production was employed as the output. Both preliminary data analysis and principal component analysis (PCA) suggested a clear non-linear relationship between the input and output variables. The structure of the HANN model was optimized by employing the lowest mean squared error (MSE) as the indicator. The resultant HANN model performed well when simulating the training datasets. Its predictive accuracy for the independent test datasets was enhanced when feeding more training datasets and the performance was constantly higher than the independent multi-layered ANN models using the coefficient of determination (R2) as the indicator, indicating the HANN model was capable of capturing complex non-linear relationship and extrapolation. Results from Accuracy test, Garson sensitivity analysis and Analysis of Variance (ANOVA) suggested the quantity of water produced by DWTPs was closely linked to water quality and operational parameters. The scenario analysis showed that the HANN model was capable of predicting water production variation based on the parameter variations, indicating that the HANN model could be a general management tool for decision makers and DWTP managers to make plans in advance of regulatory changes, source water quality variations and market demand.Stringent regulations and deteriorating source water quality could greatly influence the water production capacity of drinking water treatment plants (DWTPs). Using models to predict the performance of DWTPs under stress provides valuable information for decision making and future planning. A hybrid statistic model named HANN was established by combining artificial neural network (ANN) with genetic algorithm (GA) aiming at forecasting the overall performance of DWTPs nationwide in China. Monthly data from 45 DWTPs across China was employed. Water quality parameters like temperature and chemical oxygen demand (COD) and operational parameters like electricity consumption and chemical consumption were selected as input variables, while drinking water production was employed as the output. Both preliminary data analysis and principal component analysis (PCA) suggested a clear non-linear relationship between the input and output variables. The structure of the HANN model was optimized by employing the lowest mean squared error (MSE) as the indicator. The resultant HANN model performed well when simulating the training datasets. Its predictive accuracy for the independent test datasets was enhanced when feeding more training datasets and the performance was constantly higher than the independent multi-layered ANN models using the coefficient of determination (R2) as the indicator, indicating the HANN model was capable of capturing complex non-linear relationship and extrapolation. Results from Accuracy test, Garson sensitivity analysis and Analysis of Variance (ANOVA) suggested the quantity of water produced by DWTPs was closely linked to water quality and operational parameters. The scenario analysis showed that the HANN model was capable of predicting water production variation based on the parameter variations, indicating that the HANN model could be a general management tool for decision makers and DWTP managers to make plans in advance of regulatory changes, source water quality variations and market demand. Stringent regulations and deteriorating source water quality could greatly influence the water production capacity of drinking water treatment plants (DWTPs). Using models to predict the performance of DWTPs under stress provides valuable information for decision making and future planning. A hybrid statistic model named HANN was established by combining artificial neural network (ANN) with genetic algorithm (GA) aiming at forecasting the overall performance of DWTPs nationwide in China. Monthly data from 45 DWTPs across China was employed. Water quality parameters like temperature and chemical oxygen demand (COD) and operational parameters like electricity consumption and chemical consumption were selected as input variables, while drinking water production was employed as the output. Both preliminary data analysis and principal component analysis (PCA) suggested a clear non-linear relationship between the input and output variables. The structure of the HANN model was optimized by employing the lowest mean squared error (MSE) as the indicator. The resultant HANN model performed well when simulating the training datasets. Its predictive accuracy for the independent test datasets was enhanced when feeding more training datasets and the performance was constantly higher than the independent multi-layered ANN models using the coefficient of determination (R ) as the indicator, indicating the HANN model was capable of capturing complex non-linear relationship and extrapolation. Results from Accuracy test, Garson sensitivity analysis and Analysis of Variance (ANOVA) suggested the quantity of water produced by DWTPs was closely linked to water quality and operational parameters. The scenario analysis showed that the HANN model was capable of predicting water production variation based on the parameter variations, indicating that the HANN model could be a general management tool for decision makers and DWTP managers to make plans in advance of regulatory changes, source water quality variations and market demand. Stringent regulations and deteriorating source water quality could greatly influence the water production capacity of drinking water treatment plants (DWTPs). Using models to predict the performance of DWTPs under stress provides valuable information for decision making and future planning. A hybrid statistic model named HANN was established by combining artificial neural network (ANN) with genetic algorithm (GA) aiming at forecasting the overall performance of DWTPs nationwide in China. Monthly data from 45 DWTPs across China was employed. Water quality parameters like temperature and chemical oxygen demand (COD) and operational parameters like electricity consumption and chemical consumption were selected as input variables, while drinking water production was employed as the output. Both preliminary data analysis and principal component analysis (PCA) suggested a clear non-linear relationship between the input and output variables. The structure of the HANN model was optimized by employing the lowest mean squared error (MSE) as the indicator. The resultant HANN model performed well when simulating the training datasets. Its predictive accuracy for the independent test datasets was enhanced when feeding more training datasets and the performance was constantly higher than the independent multi-layered ANN models using the coefficient of determination (R2) as the indicator, indicating the HANN model was capable of capturing complex non-linear relationship and extrapolation. Results from Accuracy test, Garson sensitivity analysis and Analysis of Variance (ANOVA) suggested the quantity of water produced by DWTPs was closely linked to water quality and operational parameters. The scenario analysis showed that the HANN model was capable of predicting water production variation based on the parameter variations, indicating that the HANN model could be a general management tool for decision makers and DWTP managers to make plans in advance of regulatory changes, source water quality variations and market demand. [Display omitted] |
| ArticleNumber | 114888 |
| Author | Inial, Goulven Zhang, Yanyang Pan, Bingcai Gao, Xiang Smith, Kate Conil, Lenny B. Liu, Shuming |
| Author_xml | – sequence: 1 givenname: Yanyang surname: Zhang fullname: Zhang, Yanyang email: zhangyanyang@nju.edu.cn organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China – sequence: 2 givenname: Xiang surname: Gao fullname: Gao, Xiang organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China – sequence: 3 givenname: Kate surname: Smith fullname: Smith, Kate organization: School of Environment, Tsinghua University, Haidian District, Beijing, 100084, China – sequence: 4 givenname: Goulven surname: Inial fullname: Inial, Goulven organization: Plastic Metal Technology (PMT), Veolia Water Technology, France – sequence: 5 givenname: Shuming orcidid: 0000-0002-4949-4318 surname: Liu fullname: Liu, Shuming organization: School of Environment, Tsinghua University, Haidian District, Beijing, 100084, China – sequence: 6 givenname: Lenny B. surname: Conil fullname: Conil, Lenny B. organization: Veolia Research & Innovation (VeRI), Hong Kong, China – sequence: 7 givenname: Bingcai orcidid: 0000-0003-3626-1539 surname: Pan fullname: Pan, Bingcai organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31377525$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1q3DAUhUVJaSZp36AULbvxVH-27C4KJfQnEOimXQtZup5oYkuOJCfMC_U5a48nFLpoNrqI-53DvfdcoDMfPCD0lpItJbT6sN8-6hwhbRmhzZZSUdf1C7ShtWwKJkR9hjaECF5QXopzdJHSnhDCGG9eoXNOuZQlKzfo97XPsIs6O7_DsyFEfD_p3uUD1t7iMMLSCx47nwMeI1hnjv_QnfAxBjuZE4NtdP7ur9c8oM4D-IzHXvuccHvAO_CQncG634Xo8u2Awd9qb8BiHbPrnHG6xx6meCz5McS71-hlp_sEb071Ev36-uXn1ffi5se366vPN4XhTZmLipZaMNm2tTHzawHAcGlJQwnItraN1JrLRrYCGlpB2VaV7GqgTHJbdYbxS_R-9Z23up8gZTW4ZKCfh4cwJcUEb7ispBTPo6yqS1nKZkHfndCpHcCqMbpBx4N6imEGPq6AiSGlCJ0yLh_vnqN2vaJELZmrvVozV0vmas18Fot_xE_-z8g-rTKY7_ngIKpkHCwxuAgmKxvc_w3-APYNzTY |
| CitedBy_id | crossref_primary_10_3390_w16020314 crossref_primary_10_1080_02626667_2024_2423050 crossref_primary_10_3390_w14060947 crossref_primary_10_1007_s11269_020_02639_9 crossref_primary_10_1016_j_jenvman_2020_111173 crossref_primary_10_1016_j_ejrh_2023_101331 crossref_primary_10_3390_app132011217 crossref_primary_10_1016_j_scitotenv_2020_143015 crossref_primary_10_3390_w17030453 crossref_primary_10_1016_j_gsd_2021_100612 crossref_primary_10_1016_j_jece_2021_105645 crossref_primary_10_24857_rgsa_v18n2_096 crossref_primary_10_1155_2022_8425798 crossref_primary_10_1016_j_watres_2023_121092 crossref_primary_10_1016_j_envres_2021_111846 crossref_primary_10_1007_s10765_024_03434_z crossref_primary_10_1016_j_chemosphere_2021_130599 crossref_primary_10_1016_j_envres_2022_113058 crossref_primary_10_1016_j_jhydrol_2023_130034 crossref_primary_10_1007_s10040_020_02279_8 crossref_primary_10_1016_j_molliq_2020_113653 crossref_primary_10_1016_j_watres_2020_116576 crossref_primary_10_1016_j_jenvman_2023_117416 crossref_primary_10_1080_19392699_2024_2333828 crossref_primary_10_1088_1755_1315_1374_1_012068 crossref_primary_10_1007_s10661_022_10904_0 crossref_primary_10_1007_s11356_024_32415_w crossref_primary_10_1061_JOEEDU_EEENG_7467 crossref_primary_10_1021_acs_iecr_3c03847 crossref_primary_10_1016_j_biortech_2023_129436 crossref_primary_10_1016_j_ecohyd_2024_06_002 crossref_primary_10_1016_j_eswa_2022_119453 crossref_primary_10_3390_su13147830 crossref_primary_10_1002_admt_202300990 crossref_primary_10_1016_j_cej_2024_156025 crossref_primary_10_3390_pr12091824 crossref_primary_10_1080_21681015_2024_2330401 crossref_primary_10_1007_s00330_022_08954_6 crossref_primary_10_1007_s10064_023_03286_1 crossref_primary_10_1016_j_watres_2020_116641 crossref_primary_10_1007_s00343_019_9174_x crossref_primary_10_5004_dwt_2021_26903 crossref_primary_10_1007_s11042_023_14402_4 crossref_primary_10_1007_s00521_021_05876_0 crossref_primary_10_1016_j_jwpe_2023_104087 crossref_primary_10_1016_j_jwpe_2024_104781 crossref_primary_10_1007_s11356_020_11490_9 crossref_primary_10_1016_j_psep_2019_11_014 crossref_primary_10_1007_s11356_021_16471_0 crossref_primary_10_3390_w14071053 crossref_primary_10_1016_j_psep_2021_12_034 crossref_primary_10_1016_j_jwpe_2023_104247 crossref_primary_10_3390_w15061126 crossref_primary_10_1016_j_jksuci_2021_06_003 crossref_primary_10_1139_facets_2022_0223 crossref_primary_10_1016_j_cplett_2020_137479 crossref_primary_10_1021_acsestengg_4c00830 crossref_primary_10_1016_j_jece_2024_114481 crossref_primary_10_3390_w14223766 crossref_primary_10_2166_wst_2024_259 crossref_primary_10_1016_j_jhazmat_2021_126163 crossref_primary_10_1016_j_scitotenv_2021_147083 crossref_primary_10_3390_toxics11080699 crossref_primary_10_1016_j_pce_2021_103052 crossref_primary_10_1016_j_energy_2025_135389 crossref_primary_10_1016_j_chemosphere_2025_144299 crossref_primary_10_1007_s11356_020_10543_3 crossref_primary_10_2965_jwet_21_085 crossref_primary_10_1007_s11269_021_02927_y crossref_primary_10_1016_j_envres_2021_112578 crossref_primary_10_1016_j_jwpe_2023_103935 crossref_primary_10_1016_j_desal_2024_117849 crossref_primary_10_1016_j_jece_2022_108398 crossref_primary_10_1007_s10666_021_09759_5 crossref_primary_10_1088_1755_1315_834_1_012059 crossref_primary_10_3390_ai5040098 crossref_primary_10_1007_s40899_024_01092_5 crossref_primary_10_1007_s11356_020_08023_9 crossref_primary_10_1007_s40808_024_02079_z crossref_primary_10_3390_ijerph17041189 crossref_primary_10_1016_j_eehl_2022_06_001 crossref_primary_10_1016_j_psep_2022_10_005 crossref_primary_10_3389_fenve_2024_1401180 crossref_primary_10_1021_acsestwater_3c00117 crossref_primary_10_1016_j_jhazmat_2020_123612 crossref_primary_10_1016_j_jwpe_2023_104502 crossref_primary_10_1016_j_memsci_2023_122218 crossref_primary_10_1016_j_uclim_2023_101487 crossref_primary_10_1016_j_envres_2021_111370 crossref_primary_10_1016_j_jhydrol_2021_126817 crossref_primary_10_1016_j_jece_2023_111849 crossref_primary_10_1016_j_jwpe_2022_102974 crossref_primary_10_1016_j_jenvman_2024_122386 crossref_primary_10_1016_j_asoc_2023_110801 crossref_primary_10_1016_j_jmrt_2023_07_041 crossref_primary_10_1016_j_jwpe_2024_105662 crossref_primary_10_1007_s13369_024_09238_5 crossref_primary_10_3390_su13147515 crossref_primary_10_1016_j_eswa_2024_124488 crossref_primary_10_1007_s40808_021_01276_4 crossref_primary_10_1016_j_watres_2019_115256 crossref_primary_10_3390_w14172727 crossref_primary_10_3390_membranes13030285 crossref_primary_10_5585_exactaep_2021_16318 crossref_primary_10_1016_j_cscee_2024_100955 crossref_primary_10_1016_j_envres_2025_120946 crossref_primary_10_1016_j_jhydrol_2024_132373 crossref_primary_10_1016_j_wroa_2024_100291 crossref_primary_10_1007_s41207_024_00659_0 crossref_primary_10_1016_j_watres_2021_117666 crossref_primary_10_3390_su151813802 crossref_primary_10_1016_j_desal_2022_116221 crossref_primary_10_3934_mbe_2023417 |
| Cites_doi | 10.1016/j.psep.2019.01.013 10.1016/j.watres.2009.07.023 10.2166/wst.2004.0403 10.3390/ma9080687 10.1002/clen.201000234 10.1205/fbp07074 10.1016/j.cej.2014.03.073 10.1016/j.watres.2008.01.002 10.1016/j.desal.2019.02.005 10.1016/j.cis.2017.04.015 10.1016/j.eswa.2016.04.018 10.1016/j.cherd.2009.12.005 10.1016/j.jhazmat.2010.02.068 10.1021/acs.est.8b01022 10.1016/j.watres.2016.04.038 10.1016/j.cej.2010.11.014 10.1002/j.1551-8833.1990.tb07053.x 10.1007/s10661-011-2091-x 10.1007/s13201-017-0541-5 10.1016/j.envsoft.2010.02.003 10.1139/l00-053 10.1177/030913330102500104 10.1029/2001WR000266 10.1023/A:1021251113462 10.1016/S0001-8686(02)00067-2 10.1016/j.jclepro.2018.01.075 10.1016/j.measurement.2019.02.014 10.1016/j.watres.2017.03.015 10.1080/19443994.2015.1021852 10.1016/j.jhazmat.2010.06.132 10.1016/j.chemosphere.2018.02.111 10.2166/aqua.2008.008 10.5004/dwt.2019.23383 10.1016/S1364-8152(99)00007-9 10.1016/j.jclepro.2015.09.015 10.1016/j.envsoft.2013.12.016 10.1016/j.watres.2019.03.030 10.1139/s02-014 10.1016/j.watres.2011.11.027 10.1080/02626667.2010.529448 10.1061/(ASCE)EE.1943-7870.0000439 10.1016/j.watres.2006.01.046 10.1142/S1469026815500133 10.1016/j.jes.2015.01.007 10.1016/S0376-7388(03)00075-9 10.1021/ie020077r 10.15666/aeer/1504_129142 10.2166/wst.2002.0539 10.1089/ees.2011.0170 10.1016/j.marpolbul.2006.04.003 10.2166/aqua.2008.098 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.watres.2019.114888 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2448 |
| ExternalDocumentID | 31377525 10_1016_j_watres_2019_114888 S0043135419306621 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ ~HD NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c395t-615a427bb8cc7bbdeeec37d0910e7b8d97aa3797b4e916e5b667f8e1273d6fc23 |
| IEDL.DBID | .~1 |
| ISSN | 0043-1354 1879-2448 |
| IngestDate | Sun Sep 28 07:43:20 EDT 2025 Sun Sep 28 10:48:41 EDT 2025 Wed Feb 19 02:36:52 EST 2025 Thu Apr 24 23:10:10 EDT 2025 Wed Oct 01 05:17:47 EDT 2025 Fri Feb 23 02:23:31 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Drinking water treatment Artificial neural network Genetic algorithm Water production |
| Language | English |
| License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c395t-615a427bb8cc7bbdeeec37d0910e7b8d97aa3797b4e916e5b667f8e1273d6fc23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3626-1539 0000-0002-4949-4318 |
| PMID | 31377525 |
| PQID | 2268575794 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2439376774 proquest_miscellaneous_2268575794 pubmed_primary_31377525 crossref_citationtrail_10_1016_j_watres_2019_114888 crossref_primary_10_1016_j_watres_2019_114888 elsevier_sciencedirect_doi_10_1016_j_watres_2019_114888 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Water research (Oxford) |
| PublicationTitleAlternate | Water Res |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Baxter, Shariff, Stanley, Smith, Zhang, Saumer (bib8) 2002; 45 Sincero (bib43) 2003 Strugholtz, Panglisch, Gebhardt, Gimbel (bib45) 2008; 57 Guo, Jeong, Lim, Jo, Kim, Park, Kim, Cho (bib23) 2015; 32 Burchard-Levine, Liu, Vince, Li, Ostfeld (bib11) 2014; 143 Borhani, Saniedanesh, Bagheri, Lim (bib9) 2016; 98 Fan, Hu, Cao, Ruan, Wei (bib19) 2018; 200 Ho, Pepyne (bib27) 2002; 115 He, He (bib25) 2008; 42 Najafzadeh, Zeinolabedini (bib38) 2019; 138 Bagheri, Mirbagheri, Kamarkhani, Bagheri (bib4) 2016; 57 Khataee, Kasiri (bib30) 2011; 39 Ghaedi, Vafaei (bib20) 2017; 245 Newhart, Holloway, Hering, Cath (bib40) 2019; 157 Baxter, Zhang, Stanley, Shariff, Tupas, Stark (bib6) 2001; 28 Kim, Parnichkun (bib31) 2017; 7 Elmolla, Chaudhuri, Eltoukhy (bib17) 2010; 179 Kar (bib29) 2016; 59 Abrahart, Dawson, See, Mount, Shamseldin (bib1) 2010; 55 Chau (bib12) 2006; 52 Koc, Heinemann, Ziegler (bib32) 2007; 85 Chew, Aroua, Hussain (bib13) 2018; 179 Kuo, Wang, Lung (bib33) 2006; 40 Ju, Park, Choi, Lee (bib28) 2019; 143 Al Aani, Bonny, Hasan, Hilal (bib2) 2019; 458 Zhang, Deng, Rusch (bib51) 2012; 46 Bagheri, Akbari, Mirbagheri (bib5) 2019; 123 Smeti, Thanasoulias, Lytras, Tzoumerkas, Golfinopoulos (bib44) 2009; 43 Baxter, Stanley, Zhang, Smith (bib7) 2002; 1 Dawson, Wilby (bib14) 2001; 25 Zhao, Gao, Cao, Yang, Yue, Shon, Kim (bib53) 2011; 166 Naeamikhah, Nasrabadi, Sirdari (bib37) 2017; 15 Zhang, Qiu, Li, Niu, Neyers, Hu, Phanikumar (bib52) 2018; 52 Ye, Wei, Spinney, Tang, Luo, Xiao, Dionysiou (bib48) 2017; 116 Al-Shayji, Liu (bib3) 2002; 41 Dharman, Chandramouli, Lingireddy (bib15) 2012; 29 Heddam, Bermad, Dechemi (bib26) 2012; 184 Fan, Li, Hu, Cao, Wu, Wei, Li, Shi, Ruan (bib18) 2016; 9 Rietveld, van der Helm, van Schagen, van der Aa, van Dijk (bib41) 2008; 57 Marzouk, Elkadi (bib36) 2016; 112 Shetty, Chellam (bib42) 2003; 217 Zhang, Pan (bib50) 2014; 249 Wu, Dandy, Maier (bib47) 2014; 54 Bowden, Maier, Dandy (bib10) 2002; 38 Nandi, Moparthi, Uppaluri, Purkait (bib39) 2010; 88 Maier, Dandy (bib34) 2000; 15 Maier, Jain, Dandy, Sudheer (bib35) 2010; 25 Wilderer (bib46) 2004; 49 Hanson, Cleasby (bib24) 1990; 82 Zhan, Gao, Yue, Liu, Xu, Li (bib49) 2010; 183 Duan, Gregory (bib16) 2003; 100 Gomes, Souza, The Pontes, Fernandes Neto, Araujo (bib21) 2015; 14 Griffiths, Andrews (bib22) 2011; 137 Shetty (10.1016/j.watres.2019.114888_bib42) 2003; 217 Najafzadeh (10.1016/j.watres.2019.114888_bib38) 2019; 138 Chau (10.1016/j.watres.2019.114888_bib12) 2006; 52 Bagheri (10.1016/j.watres.2019.114888_bib4) 2016; 57 Smeti (10.1016/j.watres.2019.114888_bib44) 2009; 43 Al Aani (10.1016/j.watres.2019.114888_bib2) 2019; 458 Fan (10.1016/j.watres.2019.114888_bib18) 2016; 9 Fan (10.1016/j.watres.2019.114888_bib19) 2018; 200 Ho (10.1016/j.watres.2019.114888_bib27) 2002; 115 Al-Shayji (10.1016/j.watres.2019.114888_bib3) 2002; 41 Chew (10.1016/j.watres.2019.114888_bib13) 2018; 179 Kar (10.1016/j.watres.2019.114888_bib29) 2016; 59 Burchard-Levine (10.1016/j.watres.2019.114888_bib11) 2014; 143 Koc (10.1016/j.watres.2019.114888_bib32) 2007; 85 Maier (10.1016/j.watres.2019.114888_bib34) 2000; 15 Bagheri (10.1016/j.watres.2019.114888_bib5) 2019; 123 Marzouk (10.1016/j.watres.2019.114888_bib36) 2016; 112 Strugholtz (10.1016/j.watres.2019.114888_bib45) 2008; 57 Baxter (10.1016/j.watres.2019.114888_bib8) 2002; 45 Baxter (10.1016/j.watres.2019.114888_bib6) 2001; 28 Borhani (10.1016/j.watres.2019.114888_bib9) 2016; 98 Zhang (10.1016/j.watres.2019.114888_bib51) 2012; 46 Dharman (10.1016/j.watres.2019.114888_bib15) 2012; 29 Abrahart (10.1016/j.watres.2019.114888_bib1) 2010; 55 Duan (10.1016/j.watres.2019.114888_bib16) 2003; 100 He (10.1016/j.watres.2019.114888_bib25) 2008; 42 Ju (10.1016/j.watres.2019.114888_bib28) 2019; 143 Kim (10.1016/j.watres.2019.114888_bib31) 2017; 7 Hanson (10.1016/j.watres.2019.114888_bib24) 1990; 82 Heddam (10.1016/j.watres.2019.114888_bib26) 2012; 184 Ye (10.1016/j.watres.2019.114888_bib48) 2017; 116 Maier (10.1016/j.watres.2019.114888_bib35) 2010; 25 Elmolla (10.1016/j.watres.2019.114888_bib17) 2010; 179 Newhart (10.1016/j.watres.2019.114888_bib40) 2019; 157 Zhang (10.1016/j.watres.2019.114888_bib50) 2014; 249 Zhang (10.1016/j.watres.2019.114888_bib52) 2018; 52 Ghaedi (10.1016/j.watres.2019.114888_bib20) 2017; 245 Kuo (10.1016/j.watres.2019.114888_bib33) 2006; 40 Naeamikhah (10.1016/j.watres.2019.114888_bib37) 2017; 15 Zhao (10.1016/j.watres.2019.114888_bib53) 2011; 166 Rietveld (10.1016/j.watres.2019.114888_bib41) 2008; 57 Guo (10.1016/j.watres.2019.114888_bib23) 2015; 32 Wu (10.1016/j.watres.2019.114888_bib47) 2014; 54 Griffiths (10.1016/j.watres.2019.114888_bib22) 2011; 137 Bowden (10.1016/j.watres.2019.114888_bib10) 2002; 38 Khataee (10.1016/j.watres.2019.114888_bib30) 2011; 39 Dawson (10.1016/j.watres.2019.114888_bib14) 2001; 25 Gomes (10.1016/j.watres.2019.114888_bib21) 2015; 14 Wilderer (10.1016/j.watres.2019.114888_bib46) 2004; 49 Zhan (10.1016/j.watres.2019.114888_bib49) 2010; 183 Nandi (10.1016/j.watres.2019.114888_bib39) 2010; 88 Sincero (10.1016/j.watres.2019.114888_bib43) 2003 Baxter (10.1016/j.watres.2019.114888_bib7) 2002; 1 |
| References_xml | – volume: 57 start-page: 133 year: 2008 end-page: 141 ident: bib41 article-title: Integrated simulation of drinking water treatment publication-title: J. Water Supply Res. Technol. - Aqua – volume: 49 start-page: 8 year: 2004 end-page: 16 ident: bib46 article-title: Applying sustainable water management concepts in rural and urban areas: some thoughts about reasons, means and needs publication-title: Water Sci. Technol. – volume: 39 start-page: 742 year: 2011 end-page: 749 ident: bib30 article-title: Modeling of biological water and wastewater treatment processes using artificial neural networks publication-title: Clean. - Soil, Air, Water – volume: 14 year: 2015 ident: bib21 article-title: Coagulant dosage determination in a water treatment plant using dynamic neural network models publication-title: Int. J. Comput. Intell. Appl. – volume: 85 start-page: 336 year: 2007 end-page: 343 ident: bib32 article-title: Optimization of whole milk powder processing variables with neural networks and genetic algorithms publication-title: Food Bioprod. Process. – volume: 143 start-page: 8 year: 2014 end-page: 16 ident: bib11 article-title: A hybrid evolutionary data driven model for river water quality early warning publication-title: J. Environ. Manag. – volume: 138 start-page: 690 year: 2019 end-page: 701 ident: bib38 article-title: Prognostication of waste water treatment plant performance using efficient soft computing models: an environmental evaluation publication-title: Measurement – volume: 100 start-page: 475 year: 2003 end-page: 502 ident: bib16 article-title: Coagulation by hydrolysing metal salts publication-title: Adv. Colloid Interface Sci. – volume: 98 start-page: 344 year: 2016 end-page: 353 ident: bib9 article-title: QSPR prediction of the hydroxyl radical rate constant of water contaminants publication-title: Water Res. – volume: 45 start-page: 9 year: 2002 end-page: 17 ident: bib8 article-title: Model-based advanced process control of coagulation publication-title: Water Sci. Technol. – year: 2003 ident: bib43 article-title: Predicting Mixing Power Using Artificial Neural Network – volume: 55 start-page: 1442 year: 2010 end-page: 1450 ident: bib1 article-title: Discussion of "Evapotranspiration modelling using support vector machines" publication-title: Hydrol. Sci. J- J. Des Sci Hydrologiques – volume: 7 start-page: 3885 year: 2017 end-page: 3902 ident: bib31 article-title: Prediction of settled water turbidity and optimal coagulant dosage in drinking water treatment plant using a hybrid model of k-means clustering and adaptive neuro-fuzzy inference system publication-title: Applied Water Science – volume: 249 start-page: 111 year: 2014 end-page: 120 ident: bib50 article-title: Modeling batch and column phosphate removal by hydrated ferric oxide-based nanocomposite using response surface methodology and artificial neural network publication-title: Chem. Eng. J. – volume: 59 start-page: 20 year: 2016 end-page: 32 ident: bib29 article-title: Bio inspired computing - a review of algorithms and scope of applications publication-title: Expert Syst. Appl. – volume: 43 start-page: 4676 year: 2009 end-page: 4684 ident: bib44 article-title: Treated water quality assurance and description of distribution networks by multivariate chemometrics publication-title: Water Res. – volume: 41 start-page: 6460 year: 2002 end-page: 6474 ident: bib3 article-title: Predictive modeling of large-scale commercial water desalination plants: data-based neural network and model-based process simulation publication-title: Ind. Eng. Chem. Res. – volume: 115 start-page: 549 year: 2002 end-page: 570 ident: bib27 article-title: Simple explanation of the no-free-lunch theorem and its implications publication-title: J. Optim. Theory Appl. – volume: 25 start-page: 891 year: 2010 end-page: 909 ident: bib35 article-title: Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions publication-title: Environ. Model. Softw – volume: 88 start-page: 881 year: 2010 end-page: 892 ident: bib39 article-title: Treatment of oily wastewater using low cost ceramic membrane: comparative assessment of pore blocking and artificial neural network models publication-title: Chem. Eng. Res. Des. – volume: 166 start-page: 544 year: 2011 end-page: 550 ident: bib53 article-title: Comparison of coagulation behavior and floc characteristics of titanium tetrachloride (TiCl4) and polyaluminum chloride (PACl) with surface water treatment publication-title: Chem. Eng. J. – volume: 15 start-page: 129 year: 2017 end-page: 142 ident: bib37 article-title: Role of different parameters in the qualification of generated sludge in the oxylator unit of water treatment plnats, using artificial neural network model (case study) of Jalalieh water treatment plant, Tehran, Iran) publication-title: Appl. Ecol. Environ. Res. – volume: 458 start-page: 84 year: 2019 end-page: 96 ident: bib2 article-title: Can machine language and artificial intelligence revolutionize process automation for water treatment and desalination? publication-title: Desalination – volume: 157 start-page: 498 year: 2019 end-page: 513 ident: bib40 article-title: Data-driven performance analyses of wastewater treatment plants: a review publication-title: Water Res. – volume: 15 start-page: 101 year: 2000 end-page: 124 ident: bib34 article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications publication-title: Environ. Model. Softw – volume: 183 start-page: 279 year: 2010 end-page: 286 ident: bib49 article-title: Removal natural organic matter by coagulation-adsorption and evaluating the serial effect through a chlorine decay model publication-title: J. Hazard Mater. – volume: 46 start-page: 465 year: 2012 end-page: 474 ident: bib51 article-title: Development of predictive models for determining enterococci levels at Gulf Coast beaches publication-title: Water Res. – volume: 123 start-page: 229 year: 2019 end-page: 252 ident: bib5 article-title: Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: a critical review publication-title: Process Saf. Environ. Prot. – volume: 29 start-page: 743 year: 2012 end-page: 750 ident: bib15 article-title: Predicting total organic carbon removal efficiency and coagulation dosage using artificial neural networks publication-title: Environ. Eng. Sci. – volume: 82 start-page: 56 year: 1990 end-page: 73 ident: bib24 article-title: The effects of temperature on turbulent floicculation-fluid-dynamics and chemistry publication-title: J. AWWA (Am. Water Works Assoc.) – volume: 245 start-page: 20 year: 2017 end-page: 39 ident: bib20 article-title: Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: a review publication-title: Adv. Colloid Interface Sci. – volume: 143 start-page: 7 year: 2019 end-page: 16 ident: bib28 article-title: Comparison of statistical methods to predict fouling propensity of microfiltration membranes for drinking water treatment publication-title: Desalination and water treat. – volume: 116 start-page: 106 year: 2017 end-page: 115 ident: bib48 article-title: Chemical structure-based predictive model for the oxidation of trace organic contaminants by sulfate radical publication-title: Water Res. – volume: 184 start-page: 1953 year: 2012 end-page: 1971 ident: bib26 article-title: ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study publication-title: Environ. Monit. Assess. – volume: 112 start-page: 4540 year: 2016 end-page: 4549 ident: bib36 article-title: Estimating water treatment plants costs using factor analysis and artificial neural networks publication-title: J. Clean. Prod. – volume: 137 start-page: 1040 year: 2011 end-page: 1047 ident: bib22 article-title: Application of artificial neural networks for filtration optimization publication-title: J. Environ. Engg- Asce. – volume: 200 start-page: 330 year: 2018 end-page: 343 ident: bib19 article-title: A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence publication-title: Chemosphere – volume: 32 start-page: 90 year: 2015 end-page: 101 ident: bib23 article-title: Prediction of effluent concentration in a wastewater treatment plant using machine learning models publication-title: J. Environ. Sci. – volume: 217 start-page: 69 year: 2003 end-page: 86 ident: bib42 article-title: Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks publication-title: J. Membr. Sci. – volume: 28 start-page: 26 year: 2001 end-page: 35 ident: bib6 article-title: Drinking water quality and treatment: the use of artificial neural networks publication-title: Can. J. Civ. Eng. – volume: 38 year: 2002 ident: bib10 article-title: Optimal division of data for neural network models in water resources applications publication-title: Water Resour. Res. – volume: 25 start-page: 80 year: 2001 end-page: 108 ident: bib14 article-title: Hydrological modelling using artificial neural networks publication-title: Prog. Phys. Geogr. – volume: 1 start-page: 201 year: 2002 end-page: 211 ident: bib7 article-title: Developing artificial neural network models of water treatment processes: a guide for utilities publication-title: J. Environ. Eng. Sci. – volume: 42 start-page: 2563 year: 2008 end-page: 2573 ident: bib25 article-title: Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA publication-title: Water Res. – volume: 179 start-page: 127 year: 2010 end-page: 134 ident: bib17 article-title: The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process publication-title: J. Hazard Mater. – volume: 179 start-page: 63 year: 2018 end-page: 80 ident: bib13 article-title: Advanced process control for ultrafiltration membrane water treatment system publication-title: J. Clean. Prod. – volume: 9 year: 2016 ident: bib18 article-title: Synthesis and characterization of reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites used for Pb(II) removal publication-title: Materials – volume: 40 start-page: 1367 year: 2006 end-page: 1376 ident: bib33 article-title: A hybrid neural-genetic algorithm for reservoir water quality management publication-title: Water Res. – volume: 52 start-page: 726 year: 2006 end-page: 733 ident: bib12 article-title: A review on integration of artificial intelligence into water quality modelling publication-title: Mar. Pollut. Bull. – volume: 54 start-page: 108 year: 2014 end-page: 127 ident: bib47 article-title: Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling publication-title: Environ. Model. Softw – volume: 57 start-page: 8068 year: 2016 end-page: 8089 ident: bib4 article-title: Modeling of effluent quality parameters in a submerged membrane bioreactor with simultaneous upward and downward aeration treating municipal wastewater using hybrid models publication-title: Desalination and water treat. – volume: 52 start-page: 8446 year: 2018 end-page: 8455 ident: bib52 article-title: Real-time nowcasting of microbiological water quality at recreational beaches: a wavelet and artificial neural network-based hybrid modeling approach publication-title: Environ. Sci. Technol. – volume: 57 start-page: 23 year: 2008 end-page: 34 ident: bib45 article-title: Neural networks and genetic algorithms in membrane technology modelling publication-title: J. Water Supply Res. Technol. - Aqua – volume: 123 start-page: 229 year: 2019 ident: 10.1016/j.watres.2019.114888_bib5 article-title: Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: a critical review publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2019.01.013 – volume: 43 start-page: 4676 issue: 18 year: 2009 ident: 10.1016/j.watres.2019.114888_bib44 article-title: Treated water quality assurance and description of distribution networks by multivariate chemometrics publication-title: Water Res. doi: 10.1016/j.watres.2009.07.023 – volume: 49 start-page: 8 issue: 7 year: 2004 ident: 10.1016/j.watres.2019.114888_bib46 article-title: Applying sustainable water management concepts in rural and urban areas: some thoughts about reasons, means and needs publication-title: Water Sci. Technol. doi: 10.2166/wst.2004.0403 – volume: 9 issue: 8 year: 2016 ident: 10.1016/j.watres.2019.114888_bib18 article-title: Synthesis and characterization of reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites used for Pb(II) removal publication-title: Materials doi: 10.3390/ma9080687 – volume: 39 start-page: 742 issue: 8 year: 2011 ident: 10.1016/j.watres.2019.114888_bib30 article-title: Modeling of biological water and wastewater treatment processes using artificial neural networks publication-title: Clean. - Soil, Air, Water doi: 10.1002/clen.201000234 – volume: 85 start-page: 336 issue: C4 year: 2007 ident: 10.1016/j.watres.2019.114888_bib32 article-title: Optimization of whole milk powder processing variables with neural networks and genetic algorithms publication-title: Food Bioprod. Process. doi: 10.1205/fbp07074 – volume: 249 start-page: 111 year: 2014 ident: 10.1016/j.watres.2019.114888_bib50 article-title: Modeling batch and column phosphate removal by hydrated ferric oxide-based nanocomposite using response surface methodology and artificial neural network publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.03.073 – volume: 42 start-page: 2563 issue: 10–11 year: 2008 ident: 10.1016/j.watres.2019.114888_bib25 article-title: Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA publication-title: Water Res. doi: 10.1016/j.watres.2008.01.002 – volume: 458 start-page: 84 year: 2019 ident: 10.1016/j.watres.2019.114888_bib2 article-title: Can machine language and artificial intelligence revolutionize process automation for water treatment and desalination? publication-title: Desalination doi: 10.1016/j.desal.2019.02.005 – volume: 245 start-page: 20 year: 2017 ident: 10.1016/j.watres.2019.114888_bib20 article-title: Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: a review publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2017.04.015 – volume: 59 start-page: 20 year: 2016 ident: 10.1016/j.watres.2019.114888_bib29 article-title: Bio inspired computing - a review of algorithms and scope of applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.04.018 – volume: 88 start-page: 881 issue: 7A year: 2010 ident: 10.1016/j.watres.2019.114888_bib39 article-title: Treatment of oily wastewater using low cost ceramic membrane: comparative assessment of pore blocking and artificial neural network models publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2009.12.005 – volume: 179 start-page: 127 issue: 1–3 year: 2010 ident: 10.1016/j.watres.2019.114888_bib17 article-title: The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2010.02.068 – volume: 52 start-page: 8446 issue: 15 year: 2018 ident: 10.1016/j.watres.2019.114888_bib52 article-title: Real-time nowcasting of microbiological water quality at recreational beaches: a wavelet and artificial neural network-based hybrid modeling approach publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01022 – volume: 98 start-page: 344 year: 2016 ident: 10.1016/j.watres.2019.114888_bib9 article-title: QSPR prediction of the hydroxyl radical rate constant of water contaminants publication-title: Water Res. doi: 10.1016/j.watres.2016.04.038 – volume: 166 start-page: 544 issue: 2 year: 2011 ident: 10.1016/j.watres.2019.114888_bib53 article-title: Comparison of coagulation behavior and floc characteristics of titanium tetrachloride (TiCl4) and polyaluminum chloride (PACl) with surface water treatment publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.11.014 – volume: 82 start-page: 56 issue: 11 year: 1990 ident: 10.1016/j.watres.2019.114888_bib24 article-title: The effects of temperature on turbulent floicculation-fluid-dynamics and chemistry publication-title: J. AWWA (Am. Water Works Assoc.) doi: 10.1002/j.1551-8833.1990.tb07053.x – volume: 184 start-page: 1953 issue: 4 year: 2012 ident: 10.1016/j.watres.2019.114888_bib26 article-title: ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-011-2091-x – volume: 7 start-page: 3885 issue: 7 year: 2017 ident: 10.1016/j.watres.2019.114888_bib31 article-title: Prediction of settled water turbidity and optimal coagulant dosage in drinking water treatment plant using a hybrid model of k-means clustering and adaptive neuro-fuzzy inference system publication-title: Applied Water Science doi: 10.1007/s13201-017-0541-5 – volume: 25 start-page: 891 issue: 8 year: 2010 ident: 10.1016/j.watres.2019.114888_bib35 article-title: Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions publication-title: Environ. Model. Softw doi: 10.1016/j.envsoft.2010.02.003 – volume: 28 start-page: 26 year: 2001 ident: 10.1016/j.watres.2019.114888_bib6 article-title: Drinking water quality and treatment: the use of artificial neural networks publication-title: Can. J. Civ. Eng. doi: 10.1139/l00-053 – volume: 25 start-page: 80 issue: 1 year: 2001 ident: 10.1016/j.watres.2019.114888_bib14 article-title: Hydrological modelling using artificial neural networks publication-title: Prog. Phys. Geogr. doi: 10.1177/030913330102500104 – volume: 38 issue: 2 year: 2002 ident: 10.1016/j.watres.2019.114888_bib10 article-title: Optimal division of data for neural network models in water resources applications publication-title: Water Resour. Res. doi: 10.1029/2001WR000266 – volume: 115 start-page: 549 issue: 3 year: 2002 ident: 10.1016/j.watres.2019.114888_bib27 article-title: Simple explanation of the no-free-lunch theorem and its implications publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1021251113462 – volume: 100 start-page: 475 year: 2003 ident: 10.1016/j.watres.2019.114888_bib16 article-title: Coagulation by hydrolysing metal salts publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(02)00067-2 – volume: 179 start-page: 63 year: 2018 ident: 10.1016/j.watres.2019.114888_bib13 article-title: Advanced process control for ultrafiltration membrane water treatment system publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.01.075 – volume: 138 start-page: 690 year: 2019 ident: 10.1016/j.watres.2019.114888_bib38 article-title: Prognostication of waste water treatment plant performance using efficient soft computing models: an environmental evaluation publication-title: Measurement doi: 10.1016/j.measurement.2019.02.014 – year: 2003 ident: 10.1016/j.watres.2019.114888_bib43 – volume: 116 start-page: 106 year: 2017 ident: 10.1016/j.watres.2019.114888_bib48 article-title: Chemical structure-based predictive model for the oxidation of trace organic contaminants by sulfate radical publication-title: Water Res. doi: 10.1016/j.watres.2017.03.015 – volume: 57 start-page: 8068 issue: 18 year: 2016 ident: 10.1016/j.watres.2019.114888_bib4 article-title: Modeling of effluent quality parameters in a submerged membrane bioreactor with simultaneous upward and downward aeration treating municipal wastewater using hybrid models publication-title: Desalination and water treat. doi: 10.1080/19443994.2015.1021852 – volume: 183 start-page: 279 issue: 1–3 year: 2010 ident: 10.1016/j.watres.2019.114888_bib49 article-title: Removal natural organic matter by coagulation-adsorption and evaluating the serial effect through a chlorine decay model publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2010.06.132 – volume: 200 start-page: 330 year: 2018 ident: 10.1016/j.watres.2019.114888_bib19 article-title: A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.02.111 – volume: 57 start-page: 23 issue: 1 year: 2008 ident: 10.1016/j.watres.2019.114888_bib45 article-title: Neural networks and genetic algorithms in membrane technology modelling publication-title: J. Water Supply Res. Technol. - Aqua doi: 10.2166/aqua.2008.008 – volume: 143 start-page: 7 year: 2019 ident: 10.1016/j.watres.2019.114888_bib28 article-title: Comparison of statistical methods to predict fouling propensity of microfiltration membranes for drinking water treatment publication-title: Desalination and water treat. doi: 10.5004/dwt.2019.23383 – volume: 15 start-page: 101 issue: 1 year: 2000 ident: 10.1016/j.watres.2019.114888_bib34 article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications publication-title: Environ. Model. Softw doi: 10.1016/S1364-8152(99)00007-9 – volume: 112 start-page: 4540 year: 2016 ident: 10.1016/j.watres.2019.114888_bib36 article-title: Estimating water treatment plants costs using factor analysis and artificial neural networks publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.09.015 – volume: 54 start-page: 108 year: 2014 ident: 10.1016/j.watres.2019.114888_bib47 article-title: Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling publication-title: Environ. Model. Softw doi: 10.1016/j.envsoft.2013.12.016 – volume: 157 start-page: 498 year: 2019 ident: 10.1016/j.watres.2019.114888_bib40 article-title: Data-driven performance analyses of wastewater treatment plants: a review publication-title: Water Res. doi: 10.1016/j.watres.2019.03.030 – volume: 1 start-page: 201 year: 2002 ident: 10.1016/j.watres.2019.114888_bib7 article-title: Developing artificial neural network models of water treatment processes: a guide for utilities publication-title: J. Environ. Eng. Sci. doi: 10.1139/s02-014 – volume: 46 start-page: 465 issue: 2 year: 2012 ident: 10.1016/j.watres.2019.114888_bib51 article-title: Development of predictive models for determining enterococci levels at Gulf Coast beaches publication-title: Water Res. doi: 10.1016/j.watres.2011.11.027 – volume: 55 start-page: 1442 issue: 8 year: 2010 ident: 10.1016/j.watres.2019.114888_bib1 article-title: Discussion of "Evapotranspiration modelling using support vector machines" publication-title: Hydrol. Sci. J- J. Des Sci Hydrologiques doi: 10.1080/02626667.2010.529448 – volume: 137 start-page: 1040 issue: 11 year: 2011 ident: 10.1016/j.watres.2019.114888_bib22 article-title: Application of artificial neural networks for filtration optimization publication-title: J. Environ. Engg- Asce. doi: 10.1061/(ASCE)EE.1943-7870.0000439 – volume: 40 start-page: 1367 issue: 7 year: 2006 ident: 10.1016/j.watres.2019.114888_bib33 article-title: A hybrid neural-genetic algorithm for reservoir water quality management publication-title: Water Res. doi: 10.1016/j.watres.2006.01.046 – volume: 14 issue: 3 year: 2015 ident: 10.1016/j.watres.2019.114888_bib21 article-title: Coagulant dosage determination in a water treatment plant using dynamic neural network models publication-title: Int. J. Comput. Intell. Appl. doi: 10.1142/S1469026815500133 – volume: 32 start-page: 90 year: 2015 ident: 10.1016/j.watres.2019.114888_bib23 article-title: Prediction of effluent concentration in a wastewater treatment plant using machine learning models publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2015.01.007 – volume: 217 start-page: 69 issue: 1–2 year: 2003 ident: 10.1016/j.watres.2019.114888_bib42 article-title: Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(03)00075-9 – volume: 41 start-page: 6460 issue: 25 year: 2002 ident: 10.1016/j.watres.2019.114888_bib3 article-title: Predictive modeling of large-scale commercial water desalination plants: data-based neural network and model-based process simulation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie020077r – volume: 15 start-page: 129 issue: 4 year: 2017 ident: 10.1016/j.watres.2019.114888_bib37 article-title: Role of different parameters in the qualification of generated sludge in the oxylator unit of water treatment plnats, using artificial neural network model (case study) of Jalalieh water treatment plant, Tehran, Iran) publication-title: Appl. Ecol. Environ. Res. doi: 10.15666/aeer/1504_129142 – volume: 45 start-page: 9 issue: 4–5 year: 2002 ident: 10.1016/j.watres.2019.114888_bib8 article-title: Model-based advanced process control of coagulation publication-title: Water Sci. Technol. doi: 10.2166/wst.2002.0539 – volume: 29 start-page: 743 issue: 8 year: 2012 ident: 10.1016/j.watres.2019.114888_bib15 article-title: Predicting total organic carbon removal efficiency and coagulation dosage using artificial neural networks publication-title: Environ. Eng. Sci. doi: 10.1089/ees.2011.0170 – volume: 143 start-page: 8 year: 2014 ident: 10.1016/j.watres.2019.114888_bib11 article-title: A hybrid evolutionary data driven model for river water quality early warning publication-title: J. Environ. Manag. – volume: 52 start-page: 726 issue: 7 year: 2006 ident: 10.1016/j.watres.2019.114888_bib12 article-title: A review on integration of artificial intelligence into water quality modelling publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2006.04.003 – volume: 57 start-page: 133 issue: 3 year: 2008 ident: 10.1016/j.watres.2019.114888_bib41 article-title: Integrated simulation of drinking water treatment publication-title: J. Water Supply Res. Technol. - Aqua doi: 10.2166/aqua.2008.098 |
| SSID | ssj0002239 |
| Score | 2.6238563 |
| Snippet | Stringent regulations and deteriorating source water quality could greatly influence the water production capacity of drinking water treatment plants (DWTPs).... Stringent regulations and deteriorating source water quality could greatly influence the water production capacity of drinking water treatment plants... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 114888 |
| SubjectTerms | algorithms analysis of variance Artificial neural network chemical oxygen demand China data collection decision making drinking water Drinking water treatment electric energy consumption Genetic algorithm neural networks planning prediction principal component analysis statistical models supply balance temperature Water production water quality |
| Title | Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network |
| URI | https://dx.doi.org/10.1016/j.watres.2019.114888 https://www.ncbi.nlm.nih.gov/pubmed/31377525 https://www.proquest.com/docview/2268575794 https://www.proquest.com/docview/2439376774 |
| Volume | 164 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2448 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002239 issn: 0043-1354 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2448 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002239 issn: 0043-1354 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2448 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002239 issn: 0043-1354 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2448 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002239 issn: 0043-1354 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2448 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002239 issn: 0043-1354 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG7EvehB3PU1uisteI2PPLonR5GVUdGTgrfQj4qOjEkIGcSLP8ffaVV3Z1xBV_AUOqmQJlXp-kJ_9RVju8pgqBipiSVuolQfikgn0kbU3DgtBYi4pELhi0sxuk7PbrKbOXbc18IQrTKs_X5Nd6t1OLMf3uZ-Mx5TjS8mvyRLEYKQjLmrYE8ldTHYe36jeWD6y_tdZrLuy-ccx-tRUUEGEbxyEs0duv4rH6anz-CnS0Mny2wp4Ed-5Kf4k81B9Yst_qMquMJeToMEBI44Phta7ksnn7iqLK8b8F7n46qredPSVo0b12Uwb7wMrLfhtvX9FcLFGTWdNxMi0XD9xDEKqRiSq8lt3Y67uwcO1Z3jFnB6mV6lgpN2pjs45vkquz75e3U8ikI7hsgkedbhT2am0lhqPTToXG0BwKBbCXCA1EObS6USmUudAmJOyLQQshzCIQIkK0oTJ2tsvqor2GBcSA1KkzS8TRBRHGirELhpLWwO6BozYEnvhcIErXJqmTEpelLafeF9V5DvCu-7AYtmdzVeq-MLe9k7uHgXcwWmky_u3OnjocDPkfZYVAX1FI1iQT1PcZX7j01KKoQCgfeArftgms03IQXILM42vz23LbZAI18v-ZvNd-0U_iBw6vS2-zK22Y-j0_PR5SusYR14 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHAqHqi2vbSl1Ja7hkYe9OSIEWlrgBBI3y48JLFqSKAqquPTn9Hd2xna2rURB4hQlmShWZuL5LH_zDWM72mKoWGmIJW6T3ByIxGTSJdTcOK8EiLSiQuHzCzG5yr9dF9cL7GiohSFaZZz7w5zuZ-t4ZS9-zb12OqUaX0x-WZEjBCEZc1wCLeVFKmkFtvvzD88D8185bDOT-VA_50lePzRVZBDDqyTV3LFvwPJkfvof_vR56OQdexsBJD8MY3zPFqD-wFb-khVcZb9OowYEnnF8N3Q81E4-cl073rQQ3M6ndd_wtqO9Gn_eVNG8DTqwwYa7LjRYiDfn3HTezohFw80jxzCkakiuZzdNN-1v7znUt55cwOlrBpkKTuKZ_uCp52vs6uT48miSxH4Mic3KosdVZqHzVBoztuhd4wDAol8JcYA0Y1dKrTNZSpMDgk4ojBCyGsMBIiQnKptm62yxbmrYZFxIA9qQNrzLEFLsG6cRuRkjXAnoGjti2eAFZaNYOfXMmKmBlXangu8U-U4F341YMn-qDWIdL9jLwcHqn6BTmE9eePLrEA8K_0faZNE1NA9olApqeorT3DM2OckQCkTeI7YRgmk-3owkIIu0-PjqsX1hbyaX52fq7PTi-ye2THdC8eQWW-y7B_iMKKo32_4v-Q0QsB8N |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+water+quality+and+operation+into+prediction+of+water+production+in+drinking+water+treatment+plants+by+genetic+algorithm+enhanced+artificial+neural+network&rft.jtitle=Water+research+%28Oxford%29&rft.au=Zhang%2C+Yanyang&rft.au=Gao%2C+Xiang&rft.au=Smith%2C+Kate&rft.au=Inial%2C+Goulven&rft.date=2019-11-01&rft.pub=Elsevier+Ltd&rft.issn=0043-1354&rft.eissn=1879-2448&rft.volume=164&rft_id=info:doi/10.1016%2Fj.watres.2019.114888&rft.externalDocID=S0043135419306621 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |