Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network

Stringent regulations and deteriorating source water quality could greatly influence the water production capacity of drinking water treatment plants (DWTPs). Using models to predict the performance of DWTPs under stress provides valuable information for decision making and future planning. A hybrid...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 164; p. 114888
Main Authors Zhang, Yanyang, Gao, Xiang, Smith, Kate, Inial, Goulven, Liu, Shuming, Conil, Lenny B., Pan, Bingcai
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.11.2019
Subjects
Online AccessGet full text
ISSN0043-1354
1879-2448
1879-2448
DOI10.1016/j.watres.2019.114888

Cover

Abstract Stringent regulations and deteriorating source water quality could greatly influence the water production capacity of drinking water treatment plants (DWTPs). Using models to predict the performance of DWTPs under stress provides valuable information for decision making and future planning. A hybrid statistic model named HANN was established by combining artificial neural network (ANN) with genetic algorithm (GA) aiming at forecasting the overall performance of DWTPs nationwide in China. Monthly data from 45 DWTPs across China was employed. Water quality parameters like temperature and chemical oxygen demand (COD) and operational parameters like electricity consumption and chemical consumption were selected as input variables, while drinking water production was employed as the output. Both preliminary data analysis and principal component analysis (PCA) suggested a clear non-linear relationship between the input and output variables. The structure of the HANN model was optimized by employing the lowest mean squared error (MSE) as the indicator. The resultant HANN model performed well when simulating the training datasets. Its predictive accuracy for the independent test datasets was enhanced when feeding more training datasets and the performance was constantly higher than the independent multi-layered ANN models using the coefficient of determination (R2) as the indicator, indicating the HANN model was capable of capturing complex non-linear relationship and extrapolation. Results from Accuracy test, Garson sensitivity analysis and Analysis of Variance (ANOVA) suggested the quantity of water produced by DWTPs was closely linked to water quality and operational parameters. The scenario analysis showed that the HANN model was capable of predicting water production variation based on the parameter variations, indicating that the HANN model could be a general management tool for decision makers and DWTP managers to make plans in advance of regulatory changes, source water quality variations and market demand. [Display omitted]
AbstractList Stringent regulations and deteriorating source water quality could greatly influence the water production capacity of drinking water treatment plants (DWTPs).Using models to predict the performance of DWTPs under stress provides valuable information for decision making and future planning. A hybrid statistic model named HANN was established by combining artificial neural network (ANN) with genetic algorithm (GA) aiming at forecasting the overall performance of DWTPs nationwide in China. Monthly data from 45 DWTPs across China was employed. Water quality parameters like temperature and chemical oxygen demand (COD) and operational parameters like electricity consumption and chemical consumption were selected as input variables, while drinking water production was employed as the output. Both preliminary data analysis and principal component analysis (PCA) suggested a clear non-linear relationship between the input and output variables. The structure of the HANN model was optimized by employing the lowest mean squared error (MSE) as the indicator. The resultant HANN model performed well when simulating the training datasets. Its predictive accuracy for the independent test datasets was enhanced when feeding more training datasets and the performance was constantly higher than the independent multi-layered ANN models using the coefficient of determination (R2) as the indicator, indicating the HANN model was capable of capturing complex non-linear relationship and extrapolation. Results from Accuracy test, Garson sensitivity analysis and Analysis of Variance (ANOVA) suggested the quantity of water produced by DWTPs was closely linked to water quality and operational parameters. The scenario analysis showed that the HANN model was capable of predicting water production variation based on the parameter variations, indicating that the HANN model could be a general management tool for decision makers and DWTP managers to make plans in advance of regulatory changes, source water quality variations and market demand.
Stringent regulations and deteriorating source water quality could greatly influence the water production capacity of drinking water treatment plants (DWTPs). Using models to predict the performance of DWTPs under stress provides valuable information for decision making and future planning. A hybrid statistic model named HANN was established by combining artificial neural network (ANN) with genetic algorithm (GA) aiming at forecasting the overall performance of DWTPs nationwide in China. Monthly data from 45 DWTPs across China was employed. Water quality parameters like temperature and chemical oxygen demand (COD) and operational parameters like electricity consumption and chemical consumption were selected as input variables, while drinking water production was employed as the output. Both preliminary data analysis and principal component analysis (PCA) suggested a clear non-linear relationship between the input and output variables. The structure of the HANN model was optimized by employing the lowest mean squared error (MSE) as the indicator. The resultant HANN model performed well when simulating the training datasets. Its predictive accuracy for the independent test datasets was enhanced when feeding more training datasets and the performance was constantly higher than the independent multi-layered ANN models using the coefficient of determination (R2) as the indicator, indicating the HANN model was capable of capturing complex non-linear relationship and extrapolation. Results from Accuracy test, Garson sensitivity analysis and Analysis of Variance (ANOVA) suggested the quantity of water produced by DWTPs was closely linked to water quality and operational parameters. The scenario analysis showed that the HANN model was capable of predicting water production variation based on the parameter variations, indicating that the HANN model could be a general management tool for decision makers and DWTP managers to make plans in advance of regulatory changes, source water quality variations and market demand.Stringent regulations and deteriorating source water quality could greatly influence the water production capacity of drinking water treatment plants (DWTPs). Using models to predict the performance of DWTPs under stress provides valuable information for decision making and future planning. A hybrid statistic model named HANN was established by combining artificial neural network (ANN) with genetic algorithm (GA) aiming at forecasting the overall performance of DWTPs nationwide in China. Monthly data from 45 DWTPs across China was employed. Water quality parameters like temperature and chemical oxygen demand (COD) and operational parameters like electricity consumption and chemical consumption were selected as input variables, while drinking water production was employed as the output. Both preliminary data analysis and principal component analysis (PCA) suggested a clear non-linear relationship between the input and output variables. The structure of the HANN model was optimized by employing the lowest mean squared error (MSE) as the indicator. The resultant HANN model performed well when simulating the training datasets. Its predictive accuracy for the independent test datasets was enhanced when feeding more training datasets and the performance was constantly higher than the independent multi-layered ANN models using the coefficient of determination (R2) as the indicator, indicating the HANN model was capable of capturing complex non-linear relationship and extrapolation. Results from Accuracy test, Garson sensitivity analysis and Analysis of Variance (ANOVA) suggested the quantity of water produced by DWTPs was closely linked to water quality and operational parameters. The scenario analysis showed that the HANN model was capable of predicting water production variation based on the parameter variations, indicating that the HANN model could be a general management tool for decision makers and DWTP managers to make plans in advance of regulatory changes, source water quality variations and market demand.
Stringent regulations and deteriorating source water quality could greatly influence the water production capacity of drinking water treatment plants (DWTPs). Using models to predict the performance of DWTPs under stress provides valuable information for decision making and future planning. A hybrid statistic model named HANN was established by combining artificial neural network (ANN) with genetic algorithm (GA) aiming at forecasting the overall performance of DWTPs nationwide in China. Monthly data from 45 DWTPs across China was employed. Water quality parameters like temperature and chemical oxygen demand (COD) and operational parameters like electricity consumption and chemical consumption were selected as input variables, while drinking water production was employed as the output. Both preliminary data analysis and principal component analysis (PCA) suggested a clear non-linear relationship between the input and output variables. The structure of the HANN model was optimized by employing the lowest mean squared error (MSE) as the indicator. The resultant HANN model performed well when simulating the training datasets. Its predictive accuracy for the independent test datasets was enhanced when feeding more training datasets and the performance was constantly higher than the independent multi-layered ANN models using the coefficient of determination (R ) as the indicator, indicating the HANN model was capable of capturing complex non-linear relationship and extrapolation. Results from Accuracy test, Garson sensitivity analysis and Analysis of Variance (ANOVA) suggested the quantity of water produced by DWTPs was closely linked to water quality and operational parameters. The scenario analysis showed that the HANN model was capable of predicting water production variation based on the parameter variations, indicating that the HANN model could be a general management tool for decision makers and DWTP managers to make plans in advance of regulatory changes, source water quality variations and market demand.
Stringent regulations and deteriorating source water quality could greatly influence the water production capacity of drinking water treatment plants (DWTPs). Using models to predict the performance of DWTPs under stress provides valuable information for decision making and future planning. A hybrid statistic model named HANN was established by combining artificial neural network (ANN) with genetic algorithm (GA) aiming at forecasting the overall performance of DWTPs nationwide in China. Monthly data from 45 DWTPs across China was employed. Water quality parameters like temperature and chemical oxygen demand (COD) and operational parameters like electricity consumption and chemical consumption were selected as input variables, while drinking water production was employed as the output. Both preliminary data analysis and principal component analysis (PCA) suggested a clear non-linear relationship between the input and output variables. The structure of the HANN model was optimized by employing the lowest mean squared error (MSE) as the indicator. The resultant HANN model performed well when simulating the training datasets. Its predictive accuracy for the independent test datasets was enhanced when feeding more training datasets and the performance was constantly higher than the independent multi-layered ANN models using the coefficient of determination (R2) as the indicator, indicating the HANN model was capable of capturing complex non-linear relationship and extrapolation. Results from Accuracy test, Garson sensitivity analysis and Analysis of Variance (ANOVA) suggested the quantity of water produced by DWTPs was closely linked to water quality and operational parameters. The scenario analysis showed that the HANN model was capable of predicting water production variation based on the parameter variations, indicating that the HANN model could be a general management tool for decision makers and DWTP managers to make plans in advance of regulatory changes, source water quality variations and market demand. [Display omitted]
ArticleNumber 114888
Author Inial, Goulven
Zhang, Yanyang
Pan, Bingcai
Gao, Xiang
Smith, Kate
Conil, Lenny B.
Liu, Shuming
Author_xml – sequence: 1
  givenname: Yanyang
  surname: Zhang
  fullname: Zhang, Yanyang
  email: zhangyanyang@nju.edu.cn
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
– sequence: 2
  givenname: Xiang
  surname: Gao
  fullname: Gao, Xiang
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
– sequence: 3
  givenname: Kate
  surname: Smith
  fullname: Smith, Kate
  organization: School of Environment, Tsinghua University, Haidian District, Beijing, 100084, China
– sequence: 4
  givenname: Goulven
  surname: Inial
  fullname: Inial, Goulven
  organization: Plastic Metal Technology (PMT), Veolia Water Technology, France
– sequence: 5
  givenname: Shuming
  orcidid: 0000-0002-4949-4318
  surname: Liu
  fullname: Liu, Shuming
  organization: School of Environment, Tsinghua University, Haidian District, Beijing, 100084, China
– sequence: 6
  givenname: Lenny B.
  surname: Conil
  fullname: Conil, Lenny B.
  organization: Veolia Research & Innovation (VeRI), Hong Kong, China
– sequence: 7
  givenname: Bingcai
  orcidid: 0000-0003-3626-1539
  surname: Pan
  fullname: Pan, Bingcai
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31377525$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1q3DAUhUVJaSZp36AULbvxVH-27C4KJfQnEOimXQtZup5oYkuOJCfMC_U5a48nFLpoNrqI-53DvfdcoDMfPCD0lpItJbT6sN8-6hwhbRmhzZZSUdf1C7ShtWwKJkR9hjaECF5QXopzdJHSnhDCGG9eoXNOuZQlKzfo97XPsIs6O7_DsyFEfD_p3uUD1t7iMMLSCx47nwMeI1hnjv_QnfAxBjuZE4NtdP7ur9c8oM4D-IzHXvuccHvAO_CQncG634Xo8u2Awd9qb8BiHbPrnHG6xx6meCz5McS71-hlp_sEb071Ev36-uXn1ffi5se366vPN4XhTZmLipZaMNm2tTHzawHAcGlJQwnItraN1JrLRrYCGlpB2VaV7GqgTHJbdYbxS_R-9Z23up8gZTW4ZKCfh4cwJcUEb7ispBTPo6yqS1nKZkHfndCpHcCqMbpBx4N6imEGPq6AiSGlCJ0yLh_vnqN2vaJELZmrvVozV0vmas18Fot_xE_-z8g-rTKY7_ngIKpkHCwxuAgmKxvc_w3-APYNzTY
CitedBy_id crossref_primary_10_3390_w16020314
crossref_primary_10_1080_02626667_2024_2423050
crossref_primary_10_3390_w14060947
crossref_primary_10_1007_s11269_020_02639_9
crossref_primary_10_1016_j_jenvman_2020_111173
crossref_primary_10_1016_j_ejrh_2023_101331
crossref_primary_10_3390_app132011217
crossref_primary_10_1016_j_scitotenv_2020_143015
crossref_primary_10_3390_w17030453
crossref_primary_10_1016_j_gsd_2021_100612
crossref_primary_10_1016_j_jece_2021_105645
crossref_primary_10_24857_rgsa_v18n2_096
crossref_primary_10_1155_2022_8425798
crossref_primary_10_1016_j_watres_2023_121092
crossref_primary_10_1016_j_envres_2021_111846
crossref_primary_10_1007_s10765_024_03434_z
crossref_primary_10_1016_j_chemosphere_2021_130599
crossref_primary_10_1016_j_envres_2022_113058
crossref_primary_10_1016_j_jhydrol_2023_130034
crossref_primary_10_1007_s10040_020_02279_8
crossref_primary_10_1016_j_molliq_2020_113653
crossref_primary_10_1016_j_watres_2020_116576
crossref_primary_10_1016_j_jenvman_2023_117416
crossref_primary_10_1080_19392699_2024_2333828
crossref_primary_10_1088_1755_1315_1374_1_012068
crossref_primary_10_1007_s10661_022_10904_0
crossref_primary_10_1007_s11356_024_32415_w
crossref_primary_10_1061_JOEEDU_EEENG_7467
crossref_primary_10_1021_acs_iecr_3c03847
crossref_primary_10_1016_j_biortech_2023_129436
crossref_primary_10_1016_j_ecohyd_2024_06_002
crossref_primary_10_1016_j_eswa_2022_119453
crossref_primary_10_3390_su13147830
crossref_primary_10_1002_admt_202300990
crossref_primary_10_1016_j_cej_2024_156025
crossref_primary_10_3390_pr12091824
crossref_primary_10_1080_21681015_2024_2330401
crossref_primary_10_1007_s00330_022_08954_6
crossref_primary_10_1007_s10064_023_03286_1
crossref_primary_10_1016_j_watres_2020_116641
crossref_primary_10_1007_s00343_019_9174_x
crossref_primary_10_5004_dwt_2021_26903
crossref_primary_10_1007_s11042_023_14402_4
crossref_primary_10_1007_s00521_021_05876_0
crossref_primary_10_1016_j_jwpe_2023_104087
crossref_primary_10_1016_j_jwpe_2024_104781
crossref_primary_10_1007_s11356_020_11490_9
crossref_primary_10_1016_j_psep_2019_11_014
crossref_primary_10_1007_s11356_021_16471_0
crossref_primary_10_3390_w14071053
crossref_primary_10_1016_j_psep_2021_12_034
crossref_primary_10_1016_j_jwpe_2023_104247
crossref_primary_10_3390_w15061126
crossref_primary_10_1016_j_jksuci_2021_06_003
crossref_primary_10_1139_facets_2022_0223
crossref_primary_10_1016_j_cplett_2020_137479
crossref_primary_10_1021_acsestengg_4c00830
crossref_primary_10_1016_j_jece_2024_114481
crossref_primary_10_3390_w14223766
crossref_primary_10_2166_wst_2024_259
crossref_primary_10_1016_j_jhazmat_2021_126163
crossref_primary_10_1016_j_scitotenv_2021_147083
crossref_primary_10_3390_toxics11080699
crossref_primary_10_1016_j_pce_2021_103052
crossref_primary_10_1016_j_energy_2025_135389
crossref_primary_10_1016_j_chemosphere_2025_144299
crossref_primary_10_1007_s11356_020_10543_3
crossref_primary_10_2965_jwet_21_085
crossref_primary_10_1007_s11269_021_02927_y
crossref_primary_10_1016_j_envres_2021_112578
crossref_primary_10_1016_j_jwpe_2023_103935
crossref_primary_10_1016_j_desal_2024_117849
crossref_primary_10_1016_j_jece_2022_108398
crossref_primary_10_1007_s10666_021_09759_5
crossref_primary_10_1088_1755_1315_834_1_012059
crossref_primary_10_3390_ai5040098
crossref_primary_10_1007_s40899_024_01092_5
crossref_primary_10_1007_s11356_020_08023_9
crossref_primary_10_1007_s40808_024_02079_z
crossref_primary_10_3390_ijerph17041189
crossref_primary_10_1016_j_eehl_2022_06_001
crossref_primary_10_1016_j_psep_2022_10_005
crossref_primary_10_3389_fenve_2024_1401180
crossref_primary_10_1021_acsestwater_3c00117
crossref_primary_10_1016_j_jhazmat_2020_123612
crossref_primary_10_1016_j_jwpe_2023_104502
crossref_primary_10_1016_j_memsci_2023_122218
crossref_primary_10_1016_j_uclim_2023_101487
crossref_primary_10_1016_j_envres_2021_111370
crossref_primary_10_1016_j_jhydrol_2021_126817
crossref_primary_10_1016_j_jece_2023_111849
crossref_primary_10_1016_j_jwpe_2022_102974
crossref_primary_10_1016_j_jenvman_2024_122386
crossref_primary_10_1016_j_asoc_2023_110801
crossref_primary_10_1016_j_jmrt_2023_07_041
crossref_primary_10_1016_j_jwpe_2024_105662
crossref_primary_10_1007_s13369_024_09238_5
crossref_primary_10_3390_su13147515
crossref_primary_10_1016_j_eswa_2024_124488
crossref_primary_10_1007_s40808_021_01276_4
crossref_primary_10_1016_j_watres_2019_115256
crossref_primary_10_3390_w14172727
crossref_primary_10_3390_membranes13030285
crossref_primary_10_5585_exactaep_2021_16318
crossref_primary_10_1016_j_cscee_2024_100955
crossref_primary_10_1016_j_envres_2025_120946
crossref_primary_10_1016_j_jhydrol_2024_132373
crossref_primary_10_1016_j_wroa_2024_100291
crossref_primary_10_1007_s41207_024_00659_0
crossref_primary_10_1016_j_watres_2021_117666
crossref_primary_10_3390_su151813802
crossref_primary_10_1016_j_desal_2022_116221
crossref_primary_10_3934_mbe_2023417
Cites_doi 10.1016/j.psep.2019.01.013
10.1016/j.watres.2009.07.023
10.2166/wst.2004.0403
10.3390/ma9080687
10.1002/clen.201000234
10.1205/fbp07074
10.1016/j.cej.2014.03.073
10.1016/j.watres.2008.01.002
10.1016/j.desal.2019.02.005
10.1016/j.cis.2017.04.015
10.1016/j.eswa.2016.04.018
10.1016/j.cherd.2009.12.005
10.1016/j.jhazmat.2010.02.068
10.1021/acs.est.8b01022
10.1016/j.watres.2016.04.038
10.1016/j.cej.2010.11.014
10.1002/j.1551-8833.1990.tb07053.x
10.1007/s10661-011-2091-x
10.1007/s13201-017-0541-5
10.1016/j.envsoft.2010.02.003
10.1139/l00-053
10.1177/030913330102500104
10.1029/2001WR000266
10.1023/A:1021251113462
10.1016/S0001-8686(02)00067-2
10.1016/j.jclepro.2018.01.075
10.1016/j.measurement.2019.02.014
10.1016/j.watres.2017.03.015
10.1080/19443994.2015.1021852
10.1016/j.jhazmat.2010.06.132
10.1016/j.chemosphere.2018.02.111
10.2166/aqua.2008.008
10.5004/dwt.2019.23383
10.1016/S1364-8152(99)00007-9
10.1016/j.jclepro.2015.09.015
10.1016/j.envsoft.2013.12.016
10.1016/j.watres.2019.03.030
10.1139/s02-014
10.1016/j.watres.2011.11.027
10.1080/02626667.2010.529448
10.1061/(ASCE)EE.1943-7870.0000439
10.1016/j.watres.2006.01.046
10.1142/S1469026815500133
10.1016/j.jes.2015.01.007
10.1016/S0376-7388(03)00075-9
10.1021/ie020077r
10.15666/aeer/1504_129142
10.2166/wst.2002.0539
10.1089/ees.2011.0170
10.1016/j.marpolbul.2006.04.003
10.2166/aqua.2008.098
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.watres.2019.114888
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
ExternalDocumentID 31377525
10_1016_j_watres_2019_114888
S0043135419306621
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
~HD
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-615a427bb8cc7bbdeeec37d0910e7b8d97aa3797b4e916e5b667f8e1273d6fc23
IEDL.DBID .~1
ISSN 0043-1354
1879-2448
IngestDate Sun Sep 28 07:43:20 EDT 2025
Sun Sep 28 10:48:41 EDT 2025
Wed Feb 19 02:36:52 EST 2025
Thu Apr 24 23:10:10 EDT 2025
Wed Oct 01 05:17:47 EDT 2025
Fri Feb 23 02:23:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Drinking water treatment
Artificial neural network
Genetic algorithm
Water production
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-615a427bb8cc7bbdeeec37d0910e7b8d97aa3797b4e916e5b667f8e1273d6fc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3626-1539
0000-0002-4949-4318
PMID 31377525
PQID 2268575794
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2439376774
proquest_miscellaneous_2268575794
pubmed_primary_31377525
crossref_citationtrail_10_1016_j_watres_2019_114888
crossref_primary_10_1016_j_watres_2019_114888
elsevier_sciencedirect_doi_10_1016_j_watres_2019_114888
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Baxter, Shariff, Stanley, Smith, Zhang, Saumer (bib8) 2002; 45
Sincero (bib43) 2003
Strugholtz, Panglisch, Gebhardt, Gimbel (bib45) 2008; 57
Guo, Jeong, Lim, Jo, Kim, Park, Kim, Cho (bib23) 2015; 32
Burchard-Levine, Liu, Vince, Li, Ostfeld (bib11) 2014; 143
Borhani, Saniedanesh, Bagheri, Lim (bib9) 2016; 98
Fan, Hu, Cao, Ruan, Wei (bib19) 2018; 200
Ho, Pepyne (bib27) 2002; 115
He, He (bib25) 2008; 42
Najafzadeh, Zeinolabedini (bib38) 2019; 138
Bagheri, Mirbagheri, Kamarkhani, Bagheri (bib4) 2016; 57
Khataee, Kasiri (bib30) 2011; 39
Ghaedi, Vafaei (bib20) 2017; 245
Newhart, Holloway, Hering, Cath (bib40) 2019; 157
Baxter, Zhang, Stanley, Shariff, Tupas, Stark (bib6) 2001; 28
Kim, Parnichkun (bib31) 2017; 7
Elmolla, Chaudhuri, Eltoukhy (bib17) 2010; 179
Kar (bib29) 2016; 59
Abrahart, Dawson, See, Mount, Shamseldin (bib1) 2010; 55
Chau (bib12) 2006; 52
Koc, Heinemann, Ziegler (bib32) 2007; 85
Chew, Aroua, Hussain (bib13) 2018; 179
Kuo, Wang, Lung (bib33) 2006; 40
Ju, Park, Choi, Lee (bib28) 2019; 143
Al Aani, Bonny, Hasan, Hilal (bib2) 2019; 458
Zhang, Deng, Rusch (bib51) 2012; 46
Bagheri, Akbari, Mirbagheri (bib5) 2019; 123
Smeti, Thanasoulias, Lytras, Tzoumerkas, Golfinopoulos (bib44) 2009; 43
Baxter, Stanley, Zhang, Smith (bib7) 2002; 1
Dawson, Wilby (bib14) 2001; 25
Zhao, Gao, Cao, Yang, Yue, Shon, Kim (bib53) 2011; 166
Naeamikhah, Nasrabadi, Sirdari (bib37) 2017; 15
Zhang, Qiu, Li, Niu, Neyers, Hu, Phanikumar (bib52) 2018; 52
Ye, Wei, Spinney, Tang, Luo, Xiao, Dionysiou (bib48) 2017; 116
Al-Shayji, Liu (bib3) 2002; 41
Dharman, Chandramouli, Lingireddy (bib15) 2012; 29
Heddam, Bermad, Dechemi (bib26) 2012; 184
Fan, Li, Hu, Cao, Wu, Wei, Li, Shi, Ruan (bib18) 2016; 9
Rietveld, van der Helm, van Schagen, van der Aa, van Dijk (bib41) 2008; 57
Marzouk, Elkadi (bib36) 2016; 112
Shetty, Chellam (bib42) 2003; 217
Zhang, Pan (bib50) 2014; 249
Wu, Dandy, Maier (bib47) 2014; 54
Bowden, Maier, Dandy (bib10) 2002; 38
Nandi, Moparthi, Uppaluri, Purkait (bib39) 2010; 88
Maier, Dandy (bib34) 2000; 15
Maier, Jain, Dandy, Sudheer (bib35) 2010; 25
Wilderer (bib46) 2004; 49
Hanson, Cleasby (bib24) 1990; 82
Zhan, Gao, Yue, Liu, Xu, Li (bib49) 2010; 183
Duan, Gregory (bib16) 2003; 100
Gomes, Souza, The Pontes, Fernandes Neto, Araujo (bib21) 2015; 14
Griffiths, Andrews (bib22) 2011; 137
Shetty (10.1016/j.watres.2019.114888_bib42) 2003; 217
Najafzadeh (10.1016/j.watres.2019.114888_bib38) 2019; 138
Chau (10.1016/j.watres.2019.114888_bib12) 2006; 52
Bagheri (10.1016/j.watres.2019.114888_bib4) 2016; 57
Smeti (10.1016/j.watres.2019.114888_bib44) 2009; 43
Al Aani (10.1016/j.watres.2019.114888_bib2) 2019; 458
Fan (10.1016/j.watres.2019.114888_bib18) 2016; 9
Fan (10.1016/j.watres.2019.114888_bib19) 2018; 200
Ho (10.1016/j.watres.2019.114888_bib27) 2002; 115
Al-Shayji (10.1016/j.watres.2019.114888_bib3) 2002; 41
Chew (10.1016/j.watres.2019.114888_bib13) 2018; 179
Kar (10.1016/j.watres.2019.114888_bib29) 2016; 59
Burchard-Levine (10.1016/j.watres.2019.114888_bib11) 2014; 143
Koc (10.1016/j.watres.2019.114888_bib32) 2007; 85
Maier (10.1016/j.watres.2019.114888_bib34) 2000; 15
Bagheri (10.1016/j.watres.2019.114888_bib5) 2019; 123
Marzouk (10.1016/j.watres.2019.114888_bib36) 2016; 112
Strugholtz (10.1016/j.watres.2019.114888_bib45) 2008; 57
Baxter (10.1016/j.watres.2019.114888_bib8) 2002; 45
Baxter (10.1016/j.watres.2019.114888_bib6) 2001; 28
Borhani (10.1016/j.watres.2019.114888_bib9) 2016; 98
Zhang (10.1016/j.watres.2019.114888_bib51) 2012; 46
Dharman (10.1016/j.watres.2019.114888_bib15) 2012; 29
Abrahart (10.1016/j.watres.2019.114888_bib1) 2010; 55
Duan (10.1016/j.watres.2019.114888_bib16) 2003; 100
He (10.1016/j.watres.2019.114888_bib25) 2008; 42
Ju (10.1016/j.watres.2019.114888_bib28) 2019; 143
Kim (10.1016/j.watres.2019.114888_bib31) 2017; 7
Hanson (10.1016/j.watres.2019.114888_bib24) 1990; 82
Heddam (10.1016/j.watres.2019.114888_bib26) 2012; 184
Ye (10.1016/j.watres.2019.114888_bib48) 2017; 116
Maier (10.1016/j.watres.2019.114888_bib35) 2010; 25
Elmolla (10.1016/j.watres.2019.114888_bib17) 2010; 179
Newhart (10.1016/j.watres.2019.114888_bib40) 2019; 157
Zhang (10.1016/j.watres.2019.114888_bib50) 2014; 249
Zhang (10.1016/j.watres.2019.114888_bib52) 2018; 52
Ghaedi (10.1016/j.watres.2019.114888_bib20) 2017; 245
Kuo (10.1016/j.watres.2019.114888_bib33) 2006; 40
Naeamikhah (10.1016/j.watres.2019.114888_bib37) 2017; 15
Zhao (10.1016/j.watres.2019.114888_bib53) 2011; 166
Rietveld (10.1016/j.watres.2019.114888_bib41) 2008; 57
Guo (10.1016/j.watres.2019.114888_bib23) 2015; 32
Wu (10.1016/j.watres.2019.114888_bib47) 2014; 54
Griffiths (10.1016/j.watres.2019.114888_bib22) 2011; 137
Bowden (10.1016/j.watres.2019.114888_bib10) 2002; 38
Khataee (10.1016/j.watres.2019.114888_bib30) 2011; 39
Dawson (10.1016/j.watres.2019.114888_bib14) 2001; 25
Gomes (10.1016/j.watres.2019.114888_bib21) 2015; 14
Wilderer (10.1016/j.watres.2019.114888_bib46) 2004; 49
Zhan (10.1016/j.watres.2019.114888_bib49) 2010; 183
Nandi (10.1016/j.watres.2019.114888_bib39) 2010; 88
Sincero (10.1016/j.watres.2019.114888_bib43) 2003
Baxter (10.1016/j.watres.2019.114888_bib7) 2002; 1
References_xml – volume: 57
  start-page: 133
  year: 2008
  end-page: 141
  ident: bib41
  article-title: Integrated simulation of drinking water treatment
  publication-title: J. Water Supply Res. Technol. - Aqua
– volume: 49
  start-page: 8
  year: 2004
  end-page: 16
  ident: bib46
  article-title: Applying sustainable water management concepts in rural and urban areas: some thoughts about reasons, means and needs
  publication-title: Water Sci. Technol.
– volume: 39
  start-page: 742
  year: 2011
  end-page: 749
  ident: bib30
  article-title: Modeling of biological water and wastewater treatment processes using artificial neural networks
  publication-title: Clean. - Soil, Air, Water
– volume: 14
  year: 2015
  ident: bib21
  article-title: Coagulant dosage determination in a water treatment plant using dynamic neural network models
  publication-title: Int. J. Comput. Intell. Appl.
– volume: 85
  start-page: 336
  year: 2007
  end-page: 343
  ident: bib32
  article-title: Optimization of whole milk powder processing variables with neural networks and genetic algorithms
  publication-title: Food Bioprod. Process.
– volume: 143
  start-page: 8
  year: 2014
  end-page: 16
  ident: bib11
  article-title: A hybrid evolutionary data driven model for river water quality early warning
  publication-title: J. Environ. Manag.
– volume: 138
  start-page: 690
  year: 2019
  end-page: 701
  ident: bib38
  article-title: Prognostication of waste water treatment plant performance using efficient soft computing models: an environmental evaluation
  publication-title: Measurement
– volume: 100
  start-page: 475
  year: 2003
  end-page: 502
  ident: bib16
  article-title: Coagulation by hydrolysing metal salts
  publication-title: Adv. Colloid Interface Sci.
– volume: 98
  start-page: 344
  year: 2016
  end-page: 353
  ident: bib9
  article-title: QSPR prediction of the hydroxyl radical rate constant of water contaminants
  publication-title: Water Res.
– volume: 45
  start-page: 9
  year: 2002
  end-page: 17
  ident: bib8
  article-title: Model-based advanced process control of coagulation
  publication-title: Water Sci. Technol.
– year: 2003
  ident: bib43
  article-title: Predicting Mixing Power Using Artificial Neural Network
– volume: 55
  start-page: 1442
  year: 2010
  end-page: 1450
  ident: bib1
  article-title: Discussion of "Evapotranspiration modelling using support vector machines"
  publication-title: Hydrol. Sci. J- J. Des Sci Hydrologiques
– volume: 7
  start-page: 3885
  year: 2017
  end-page: 3902
  ident: bib31
  article-title: Prediction of settled water turbidity and optimal coagulant dosage in drinking water treatment plant using a hybrid model of k-means clustering and adaptive neuro-fuzzy inference system
  publication-title: Applied Water Science
– volume: 249
  start-page: 111
  year: 2014
  end-page: 120
  ident: bib50
  article-title: Modeling batch and column phosphate removal by hydrated ferric oxide-based nanocomposite using response surface methodology and artificial neural network
  publication-title: Chem. Eng. J.
– volume: 59
  start-page: 20
  year: 2016
  end-page: 32
  ident: bib29
  article-title: Bio inspired computing - a review of algorithms and scope of applications
  publication-title: Expert Syst. Appl.
– volume: 43
  start-page: 4676
  year: 2009
  end-page: 4684
  ident: bib44
  article-title: Treated water quality assurance and description of distribution networks by multivariate chemometrics
  publication-title: Water Res.
– volume: 41
  start-page: 6460
  year: 2002
  end-page: 6474
  ident: bib3
  article-title: Predictive modeling of large-scale commercial water desalination plants: data-based neural network and model-based process simulation
  publication-title: Ind. Eng. Chem. Res.
– volume: 115
  start-page: 549
  year: 2002
  end-page: 570
  ident: bib27
  article-title: Simple explanation of the no-free-lunch theorem and its implications
  publication-title: J. Optim. Theory Appl.
– volume: 25
  start-page: 891
  year: 2010
  end-page: 909
  ident: bib35
  article-title: Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
  publication-title: Environ. Model. Softw
– volume: 88
  start-page: 881
  year: 2010
  end-page: 892
  ident: bib39
  article-title: Treatment of oily wastewater using low cost ceramic membrane: comparative assessment of pore blocking and artificial neural network models
  publication-title: Chem. Eng. Res. Des.
– volume: 166
  start-page: 544
  year: 2011
  end-page: 550
  ident: bib53
  article-title: Comparison of coagulation behavior and floc characteristics of titanium tetrachloride (TiCl4) and polyaluminum chloride (PACl) with surface water treatment
  publication-title: Chem. Eng. J.
– volume: 15
  start-page: 129
  year: 2017
  end-page: 142
  ident: bib37
  article-title: Role of different parameters in the qualification of generated sludge in the oxylator unit of water treatment plnats, using artificial neural network model (case study) of Jalalieh water treatment plant, Tehran, Iran)
  publication-title: Appl. Ecol. Environ. Res.
– volume: 458
  start-page: 84
  year: 2019
  end-page: 96
  ident: bib2
  article-title: Can machine language and artificial intelligence revolutionize process automation for water treatment and desalination?
  publication-title: Desalination
– volume: 157
  start-page: 498
  year: 2019
  end-page: 513
  ident: bib40
  article-title: Data-driven performance analyses of wastewater treatment plants: a review
  publication-title: Water Res.
– volume: 15
  start-page: 101
  year: 2000
  end-page: 124
  ident: bib34
  article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
  publication-title: Environ. Model. Softw
– volume: 183
  start-page: 279
  year: 2010
  end-page: 286
  ident: bib49
  article-title: Removal natural organic matter by coagulation-adsorption and evaluating the serial effect through a chlorine decay model
  publication-title: J. Hazard Mater.
– volume: 46
  start-page: 465
  year: 2012
  end-page: 474
  ident: bib51
  article-title: Development of predictive models for determining enterococci levels at Gulf Coast beaches
  publication-title: Water Res.
– volume: 123
  start-page: 229
  year: 2019
  end-page: 252
  ident: bib5
  article-title: Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: a critical review
  publication-title: Process Saf. Environ. Prot.
– volume: 29
  start-page: 743
  year: 2012
  end-page: 750
  ident: bib15
  article-title: Predicting total organic carbon removal efficiency and coagulation dosage using artificial neural networks
  publication-title: Environ. Eng. Sci.
– volume: 82
  start-page: 56
  year: 1990
  end-page: 73
  ident: bib24
  article-title: The effects of temperature on turbulent floicculation-fluid-dynamics and chemistry
  publication-title: J. AWWA (Am. Water Works Assoc.)
– volume: 245
  start-page: 20
  year: 2017
  end-page: 39
  ident: bib20
  article-title: Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: a review
  publication-title: Adv. Colloid Interface Sci.
– volume: 143
  start-page: 7
  year: 2019
  end-page: 16
  ident: bib28
  article-title: Comparison of statistical methods to predict fouling propensity of microfiltration membranes for drinking water treatment
  publication-title: Desalination and water treat.
– volume: 116
  start-page: 106
  year: 2017
  end-page: 115
  ident: bib48
  article-title: Chemical structure-based predictive model for the oxidation of trace organic contaminants by sulfate radical
  publication-title: Water Res.
– volume: 184
  start-page: 1953
  year: 2012
  end-page: 1971
  ident: bib26
  article-title: ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study
  publication-title: Environ. Monit. Assess.
– volume: 112
  start-page: 4540
  year: 2016
  end-page: 4549
  ident: bib36
  article-title: Estimating water treatment plants costs using factor analysis and artificial neural networks
  publication-title: J. Clean. Prod.
– volume: 137
  start-page: 1040
  year: 2011
  end-page: 1047
  ident: bib22
  article-title: Application of artificial neural networks for filtration optimization
  publication-title: J. Environ. Engg- Asce.
– volume: 200
  start-page: 330
  year: 2018
  end-page: 343
  ident: bib19
  article-title: A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence
  publication-title: Chemosphere
– volume: 32
  start-page: 90
  year: 2015
  end-page: 101
  ident: bib23
  article-title: Prediction of effluent concentration in a wastewater treatment plant using machine learning models
  publication-title: J. Environ. Sci.
– volume: 217
  start-page: 69
  year: 2003
  end-page: 86
  ident: bib42
  article-title: Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks
  publication-title: J. Membr. Sci.
– volume: 28
  start-page: 26
  year: 2001
  end-page: 35
  ident: bib6
  article-title: Drinking water quality and treatment: the use of artificial neural networks
  publication-title: Can. J. Civ. Eng.
– volume: 38
  year: 2002
  ident: bib10
  article-title: Optimal division of data for neural network models in water resources applications
  publication-title: Water Resour. Res.
– volume: 25
  start-page: 80
  year: 2001
  end-page: 108
  ident: bib14
  article-title: Hydrological modelling using artificial neural networks
  publication-title: Prog. Phys. Geogr.
– volume: 1
  start-page: 201
  year: 2002
  end-page: 211
  ident: bib7
  article-title: Developing artificial neural network models of water treatment processes: a guide for utilities
  publication-title: J. Environ. Eng. Sci.
– volume: 42
  start-page: 2563
  year: 2008
  end-page: 2573
  ident: bib25
  article-title: Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA
  publication-title: Water Res.
– volume: 179
  start-page: 127
  year: 2010
  end-page: 134
  ident: bib17
  article-title: The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process
  publication-title: J. Hazard Mater.
– volume: 179
  start-page: 63
  year: 2018
  end-page: 80
  ident: bib13
  article-title: Advanced process control for ultrafiltration membrane water treatment system
  publication-title: J. Clean. Prod.
– volume: 9
  year: 2016
  ident: bib18
  article-title: Synthesis and characterization of reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites used for Pb(II) removal
  publication-title: Materials
– volume: 40
  start-page: 1367
  year: 2006
  end-page: 1376
  ident: bib33
  article-title: A hybrid neural-genetic algorithm for reservoir water quality management
  publication-title: Water Res.
– volume: 52
  start-page: 726
  year: 2006
  end-page: 733
  ident: bib12
  article-title: A review on integration of artificial intelligence into water quality modelling
  publication-title: Mar. Pollut. Bull.
– volume: 54
  start-page: 108
  year: 2014
  end-page: 127
  ident: bib47
  article-title: Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling
  publication-title: Environ. Model. Softw
– volume: 57
  start-page: 8068
  year: 2016
  end-page: 8089
  ident: bib4
  article-title: Modeling of effluent quality parameters in a submerged membrane bioreactor with simultaneous upward and downward aeration treating municipal wastewater using hybrid models
  publication-title: Desalination and water treat.
– volume: 52
  start-page: 8446
  year: 2018
  end-page: 8455
  ident: bib52
  article-title: Real-time nowcasting of microbiological water quality at recreational beaches: a wavelet and artificial neural network-based hybrid modeling approach
  publication-title: Environ. Sci. Technol.
– volume: 57
  start-page: 23
  year: 2008
  end-page: 34
  ident: bib45
  article-title: Neural networks and genetic algorithms in membrane technology modelling
  publication-title: J. Water Supply Res. Technol. - Aqua
– volume: 123
  start-page: 229
  year: 2019
  ident: 10.1016/j.watres.2019.114888_bib5
  article-title: Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: a critical review
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2019.01.013
– volume: 43
  start-page: 4676
  issue: 18
  year: 2009
  ident: 10.1016/j.watres.2019.114888_bib44
  article-title: Treated water quality assurance and description of distribution networks by multivariate chemometrics
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.07.023
– volume: 49
  start-page: 8
  issue: 7
  year: 2004
  ident: 10.1016/j.watres.2019.114888_bib46
  article-title: Applying sustainable water management concepts in rural and urban areas: some thoughts about reasons, means and needs
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2004.0403
– volume: 9
  issue: 8
  year: 2016
  ident: 10.1016/j.watres.2019.114888_bib18
  article-title: Synthesis and characterization of reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites used for Pb(II) removal
  publication-title: Materials
  doi: 10.3390/ma9080687
– volume: 39
  start-page: 742
  issue: 8
  year: 2011
  ident: 10.1016/j.watres.2019.114888_bib30
  article-title: Modeling of biological water and wastewater treatment processes using artificial neural networks
  publication-title: Clean. - Soil, Air, Water
  doi: 10.1002/clen.201000234
– volume: 85
  start-page: 336
  issue: C4
  year: 2007
  ident: 10.1016/j.watres.2019.114888_bib32
  article-title: Optimization of whole milk powder processing variables with neural networks and genetic algorithms
  publication-title: Food Bioprod. Process.
  doi: 10.1205/fbp07074
– volume: 249
  start-page: 111
  year: 2014
  ident: 10.1016/j.watres.2019.114888_bib50
  article-title: Modeling batch and column phosphate removal by hydrated ferric oxide-based nanocomposite using response surface methodology and artificial neural network
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.03.073
– volume: 42
  start-page: 2563
  issue: 10–11
  year: 2008
  ident: 10.1016/j.watres.2019.114888_bib25
  article-title: Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.01.002
– volume: 458
  start-page: 84
  year: 2019
  ident: 10.1016/j.watres.2019.114888_bib2
  article-title: Can machine language and artificial intelligence revolutionize process automation for water treatment and desalination?
  publication-title: Desalination
  doi: 10.1016/j.desal.2019.02.005
– volume: 245
  start-page: 20
  year: 2017
  ident: 10.1016/j.watres.2019.114888_bib20
  article-title: Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: a review
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2017.04.015
– volume: 59
  start-page: 20
  year: 2016
  ident: 10.1016/j.watres.2019.114888_bib29
  article-title: Bio inspired computing - a review of algorithms and scope of applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.04.018
– volume: 88
  start-page: 881
  issue: 7A
  year: 2010
  ident: 10.1016/j.watres.2019.114888_bib39
  article-title: Treatment of oily wastewater using low cost ceramic membrane: comparative assessment of pore blocking and artificial neural network models
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2009.12.005
– volume: 179
  start-page: 127
  issue: 1–3
  year: 2010
  ident: 10.1016/j.watres.2019.114888_bib17
  article-title: The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2010.02.068
– volume: 52
  start-page: 8446
  issue: 15
  year: 2018
  ident: 10.1016/j.watres.2019.114888_bib52
  article-title: Real-time nowcasting of microbiological water quality at recreational beaches: a wavelet and artificial neural network-based hybrid modeling approach
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01022
– volume: 98
  start-page: 344
  year: 2016
  ident: 10.1016/j.watres.2019.114888_bib9
  article-title: QSPR prediction of the hydroxyl radical rate constant of water contaminants
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.04.038
– volume: 166
  start-page: 544
  issue: 2
  year: 2011
  ident: 10.1016/j.watres.2019.114888_bib53
  article-title: Comparison of coagulation behavior and floc characteristics of titanium tetrachloride (TiCl4) and polyaluminum chloride (PACl) with surface water treatment
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.11.014
– volume: 82
  start-page: 56
  issue: 11
  year: 1990
  ident: 10.1016/j.watres.2019.114888_bib24
  article-title: The effects of temperature on turbulent floicculation-fluid-dynamics and chemistry
  publication-title: J. AWWA (Am. Water Works Assoc.)
  doi: 10.1002/j.1551-8833.1990.tb07053.x
– volume: 184
  start-page: 1953
  issue: 4
  year: 2012
  ident: 10.1016/j.watres.2019.114888_bib26
  article-title: ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-011-2091-x
– volume: 7
  start-page: 3885
  issue: 7
  year: 2017
  ident: 10.1016/j.watres.2019.114888_bib31
  article-title: Prediction of settled water turbidity and optimal coagulant dosage in drinking water treatment plant using a hybrid model of k-means clustering and adaptive neuro-fuzzy inference system
  publication-title: Applied Water Science
  doi: 10.1007/s13201-017-0541-5
– volume: 25
  start-page: 891
  issue: 8
  year: 2010
  ident: 10.1016/j.watres.2019.114888_bib35
  article-title: Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
  publication-title: Environ. Model. Softw
  doi: 10.1016/j.envsoft.2010.02.003
– volume: 28
  start-page: 26
  year: 2001
  ident: 10.1016/j.watres.2019.114888_bib6
  article-title: Drinking water quality and treatment: the use of artificial neural networks
  publication-title: Can. J. Civ. Eng.
  doi: 10.1139/l00-053
– volume: 25
  start-page: 80
  issue: 1
  year: 2001
  ident: 10.1016/j.watres.2019.114888_bib14
  article-title: Hydrological modelling using artificial neural networks
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/030913330102500104
– volume: 38
  issue: 2
  year: 2002
  ident: 10.1016/j.watres.2019.114888_bib10
  article-title: Optimal division of data for neural network models in water resources applications
  publication-title: Water Resour. Res.
  doi: 10.1029/2001WR000266
– volume: 115
  start-page: 549
  issue: 3
  year: 2002
  ident: 10.1016/j.watres.2019.114888_bib27
  article-title: Simple explanation of the no-free-lunch theorem and its implications
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1021251113462
– volume: 100
  start-page: 475
  year: 2003
  ident: 10.1016/j.watres.2019.114888_bib16
  article-title: Coagulation by hydrolysing metal salts
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(02)00067-2
– volume: 179
  start-page: 63
  year: 2018
  ident: 10.1016/j.watres.2019.114888_bib13
  article-title: Advanced process control for ultrafiltration membrane water treatment system
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.01.075
– volume: 138
  start-page: 690
  year: 2019
  ident: 10.1016/j.watres.2019.114888_bib38
  article-title: Prognostication of waste water treatment plant performance using efficient soft computing models: an environmental evaluation
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.02.014
– year: 2003
  ident: 10.1016/j.watres.2019.114888_bib43
– volume: 116
  start-page: 106
  year: 2017
  ident: 10.1016/j.watres.2019.114888_bib48
  article-title: Chemical structure-based predictive model for the oxidation of trace organic contaminants by sulfate radical
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.03.015
– volume: 57
  start-page: 8068
  issue: 18
  year: 2016
  ident: 10.1016/j.watres.2019.114888_bib4
  article-title: Modeling of effluent quality parameters in a submerged membrane bioreactor with simultaneous upward and downward aeration treating municipal wastewater using hybrid models
  publication-title: Desalination and water treat.
  doi: 10.1080/19443994.2015.1021852
– volume: 183
  start-page: 279
  issue: 1–3
  year: 2010
  ident: 10.1016/j.watres.2019.114888_bib49
  article-title: Removal natural organic matter by coagulation-adsorption and evaluating the serial effect through a chlorine decay model
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2010.06.132
– volume: 200
  start-page: 330
  year: 2018
  ident: 10.1016/j.watres.2019.114888_bib19
  article-title: A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.02.111
– volume: 57
  start-page: 23
  issue: 1
  year: 2008
  ident: 10.1016/j.watres.2019.114888_bib45
  article-title: Neural networks and genetic algorithms in membrane technology modelling
  publication-title: J. Water Supply Res. Technol. - Aqua
  doi: 10.2166/aqua.2008.008
– volume: 143
  start-page: 7
  year: 2019
  ident: 10.1016/j.watres.2019.114888_bib28
  article-title: Comparison of statistical methods to predict fouling propensity of microfiltration membranes for drinking water treatment
  publication-title: Desalination and water treat.
  doi: 10.5004/dwt.2019.23383
– volume: 15
  start-page: 101
  issue: 1
  year: 2000
  ident: 10.1016/j.watres.2019.114888_bib34
  article-title: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
  publication-title: Environ. Model. Softw
  doi: 10.1016/S1364-8152(99)00007-9
– volume: 112
  start-page: 4540
  year: 2016
  ident: 10.1016/j.watres.2019.114888_bib36
  article-title: Estimating water treatment plants costs using factor analysis and artificial neural networks
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.09.015
– volume: 54
  start-page: 108
  year: 2014
  ident: 10.1016/j.watres.2019.114888_bib47
  article-title: Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling
  publication-title: Environ. Model. Softw
  doi: 10.1016/j.envsoft.2013.12.016
– volume: 157
  start-page: 498
  year: 2019
  ident: 10.1016/j.watres.2019.114888_bib40
  article-title: Data-driven performance analyses of wastewater treatment plants: a review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.03.030
– volume: 1
  start-page: 201
  year: 2002
  ident: 10.1016/j.watres.2019.114888_bib7
  article-title: Developing artificial neural network models of water treatment processes: a guide for utilities
  publication-title: J. Environ. Eng. Sci.
  doi: 10.1139/s02-014
– volume: 46
  start-page: 465
  issue: 2
  year: 2012
  ident: 10.1016/j.watres.2019.114888_bib51
  article-title: Development of predictive models for determining enterococci levels at Gulf Coast beaches
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.11.027
– volume: 55
  start-page: 1442
  issue: 8
  year: 2010
  ident: 10.1016/j.watres.2019.114888_bib1
  article-title: Discussion of "Evapotranspiration modelling using support vector machines"
  publication-title: Hydrol. Sci. J- J. Des Sci Hydrologiques
  doi: 10.1080/02626667.2010.529448
– volume: 137
  start-page: 1040
  issue: 11
  year: 2011
  ident: 10.1016/j.watres.2019.114888_bib22
  article-title: Application of artificial neural networks for filtration optimization
  publication-title: J. Environ. Engg- Asce.
  doi: 10.1061/(ASCE)EE.1943-7870.0000439
– volume: 40
  start-page: 1367
  issue: 7
  year: 2006
  ident: 10.1016/j.watres.2019.114888_bib33
  article-title: A hybrid neural-genetic algorithm for reservoir water quality management
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.01.046
– volume: 14
  issue: 3
  year: 2015
  ident: 10.1016/j.watres.2019.114888_bib21
  article-title: Coagulant dosage determination in a water treatment plant using dynamic neural network models
  publication-title: Int. J. Comput. Intell. Appl.
  doi: 10.1142/S1469026815500133
– volume: 32
  start-page: 90
  year: 2015
  ident: 10.1016/j.watres.2019.114888_bib23
  article-title: Prediction of effluent concentration in a wastewater treatment plant using machine learning models
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2015.01.007
– volume: 217
  start-page: 69
  issue: 1–2
  year: 2003
  ident: 10.1016/j.watres.2019.114888_bib42
  article-title: Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(03)00075-9
– volume: 41
  start-page: 6460
  issue: 25
  year: 2002
  ident: 10.1016/j.watres.2019.114888_bib3
  article-title: Predictive modeling of large-scale commercial water desalination plants: data-based neural network and model-based process simulation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie020077r
– volume: 15
  start-page: 129
  issue: 4
  year: 2017
  ident: 10.1016/j.watres.2019.114888_bib37
  article-title: Role of different parameters in the qualification of generated sludge in the oxylator unit of water treatment plnats, using artificial neural network model (case study) of Jalalieh water treatment plant, Tehran, Iran)
  publication-title: Appl. Ecol. Environ. Res.
  doi: 10.15666/aeer/1504_129142
– volume: 45
  start-page: 9
  issue: 4–5
  year: 2002
  ident: 10.1016/j.watres.2019.114888_bib8
  article-title: Model-based advanced process control of coagulation
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2002.0539
– volume: 29
  start-page: 743
  issue: 8
  year: 2012
  ident: 10.1016/j.watres.2019.114888_bib15
  article-title: Predicting total organic carbon removal efficiency and coagulation dosage using artificial neural networks
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/ees.2011.0170
– volume: 143
  start-page: 8
  year: 2014
  ident: 10.1016/j.watres.2019.114888_bib11
  article-title: A hybrid evolutionary data driven model for river water quality early warning
  publication-title: J. Environ. Manag.
– volume: 52
  start-page: 726
  issue: 7
  year: 2006
  ident: 10.1016/j.watres.2019.114888_bib12
  article-title: A review on integration of artificial intelligence into water quality modelling
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2006.04.003
– volume: 57
  start-page: 133
  issue: 3
  year: 2008
  ident: 10.1016/j.watres.2019.114888_bib41
  article-title: Integrated simulation of drinking water treatment
  publication-title: J. Water Supply Res. Technol. - Aqua
  doi: 10.2166/aqua.2008.098
SSID ssj0002239
Score 2.6238563
Snippet Stringent regulations and deteriorating source water quality could greatly influence the water production capacity of drinking water treatment plants (DWTPs)....
Stringent regulations and deteriorating source water quality could greatly influence the water production capacity of drinking water treatment plants...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 114888
SubjectTerms algorithms
analysis of variance
Artificial neural network
chemical oxygen demand
China
data collection
decision making
drinking water
Drinking water treatment
electric energy consumption
Genetic algorithm
neural networks
planning
prediction
principal component analysis
statistical models
supply balance
temperature
Water production
water quality
Title Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network
URI https://dx.doi.org/10.1016/j.watres.2019.114888
https://www.ncbi.nlm.nih.gov/pubmed/31377525
https://www.proquest.com/docview/2268575794
https://www.proquest.com/docview/2439376774
Volume 164
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2448
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002239
  issn: 0043-1354
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2448
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002239
  issn: 0043-1354
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2448
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002239
  issn: 0043-1354
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2448
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002239
  issn: 0043-1354
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2448
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002239
  issn: 0043-1354
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG7EvehB3PU1uisteI2PPLonR5GVUdGTgrfQj4qOjEkIGcSLP8ffaVV3Z1xBV_AUOqmQJlXp-kJ_9RVju8pgqBipiSVuolQfikgn0kbU3DgtBYi4pELhi0sxuk7PbrKbOXbc18IQrTKs_X5Nd6t1OLMf3uZ-Mx5TjS8mvyRLEYKQjLmrYE8ldTHYe36jeWD6y_tdZrLuy-ccx-tRUUEGEbxyEs0duv4rH6anz-CnS0Mny2wp4Ed-5Kf4k81B9Yst_qMquMJeToMEBI44Phta7ksnn7iqLK8b8F7n46qredPSVo0b12Uwb7wMrLfhtvX9FcLFGTWdNxMi0XD9xDEKqRiSq8lt3Y67uwcO1Z3jFnB6mV6lgpN2pjs45vkquz75e3U8ikI7hsgkedbhT2am0lhqPTToXG0BwKBbCXCA1EObS6USmUudAmJOyLQQshzCIQIkK0oTJ2tsvqor2GBcSA1KkzS8TRBRHGirELhpLWwO6BozYEnvhcIErXJqmTEpelLafeF9V5DvCu-7AYtmdzVeq-MLe9k7uHgXcwWmky_u3OnjocDPkfZYVAX1FI1iQT1PcZX7j01KKoQCgfeArftgms03IQXILM42vz23LbZAI18v-ZvNd-0U_iBw6vS2-zK22Y-j0_PR5SusYR14
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHAqHqi2vbSl1Ja7hkYe9OSIEWlrgBBI3y48JLFqSKAqquPTn9Hd2xna2rURB4hQlmShWZuL5LH_zDWM72mKoWGmIJW6T3ByIxGTSJdTcOK8EiLSiQuHzCzG5yr9dF9cL7GiohSFaZZz7w5zuZ-t4ZS9-zb12OqUaX0x-WZEjBCEZc1wCLeVFKmkFtvvzD88D8185bDOT-VA_50lePzRVZBDDqyTV3LFvwPJkfvof_vR56OQdexsBJD8MY3zPFqD-wFb-khVcZb9OowYEnnF8N3Q81E4-cl073rQQ3M6ndd_wtqO9Gn_eVNG8DTqwwYa7LjRYiDfn3HTezohFw80jxzCkakiuZzdNN-1v7znUt55cwOlrBpkKTuKZ_uCp52vs6uT48miSxH4Mic3KosdVZqHzVBoztuhd4wDAol8JcYA0Y1dKrTNZSpMDgk4ojBCyGsMBIiQnKptm62yxbmrYZFxIA9qQNrzLEFLsG6cRuRkjXAnoGjti2eAFZaNYOfXMmKmBlXangu8U-U4F341YMn-qDWIdL9jLwcHqn6BTmE9eePLrEA8K_0faZNE1NA9olApqeorT3DM2OckQCkTeI7YRgmk-3owkIIu0-PjqsX1hbyaX52fq7PTi-ye2THdC8eQWW-y7B_iMKKo32_4v-Q0QsB8N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+water+quality+and+operation+into+prediction+of+water+production+in+drinking+water+treatment+plants+by+genetic+algorithm+enhanced+artificial+neural+network&rft.jtitle=Water+research+%28Oxford%29&rft.au=Zhang%2C+Yanyang&rft.au=Gao%2C+Xiang&rft.au=Smith%2C+Kate&rft.au=Inial%2C+Goulven&rft.date=2019-11-01&rft.pub=Elsevier+Ltd&rft.issn=0043-1354&rft.eissn=1879-2448&rft.volume=164&rft_id=info:doi/10.1016%2Fj.watres.2019.114888&rft.externalDocID=S0043135419306621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon