Nonparametric monitoring of multivariate data via KNN learning

Process monitoring of multivariate quality attributes is important in many industrial applications, in which rich historical data are often available thanks to modern sensing technologies. While multivariate statistical process control (SPC) has been receiving increasing attention, existing methods...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of production research Vol. 59; no. 20; pp. 6311 - 6326
Main Authors Li, Wendong, Zhang, Chi, Tsung, Fugee, Mei, Yajun
Format Journal Article
LanguageEnglish
Published London Taylor & Francis 18.10.2021
Taylor & Francis LLC
Subjects
Online AccessGet full text
ISSN0020-7543
1366-588X
DOI10.1080/00207543.2020.1812750

Cover

Abstract Process monitoring of multivariate quality attributes is important in many industrial applications, in which rich historical data are often available thanks to modern sensing technologies. While multivariate statistical process control (SPC) has been receiving increasing attention, existing methods are often inadequate as they are sensitive to the parametric model assumptions of multivariate data. In this paper, we propose a novel, nonparametric k-nearest neighbours empirical cumulative sum (KNN-ECUSUM) control chart that is a machine-learning-based black-box control chart for monitoring multivariate data by utilising extensive historical data under both in-control and out-of-control scenarios. Our proposed method utilises the k-nearest neighbours (KNN) algorithm for dimension reduction to transform multivariate data into univariate data and then applies the CUSUM procedure to monitor the change on the empirical distribution of the transformed univariate data. Extensive simulation studies and a real industrial example based on a disk monitoring system demonstrate the robustness and effectiveness of our proposed method.
AbstractList Process monitoring of multivariate quality attributes is important in many industrial applications, in which rich historical data are often available thanks to modern sensing technologies. While multivariate statistical process control (SPC) has been receiving increasing attention, existing methods are often inadequate as they are sensitive to the parametric model assumptions of multivariate data. In this paper, we propose a novel, nonparametric k-nearest neighbours empirical cumulative sum (KNN-ECUSUM) control chart that is a machine-learning-based black-box control chart for monitoring multivariate data by utilising extensive historical data under both in-control and out-of-control scenarios. Our proposed method utilises the k-nearest neighbours (KNN) algorithm for dimension reduction to transform multivariate data into univariate data and then applies the CUSUM procedure to monitor the change on the empirical distribution of the transformed univariate data. Extensive simulation studies and a real industrial example based on a disk monitoring system demonstrate the robustness and effectiveness of our proposed method.
Author Zhang, Chi
Li, Wendong
Tsung, Fugee
Mei, Yajun
Author_xml – sequence: 1
  givenname: Wendong
  surname: Li
  fullname: Li, Wendong
  organization: School of Statistics and Management, Shanghai University of Finance and Economics
– sequence: 2
  givenname: Chi
  surname: Zhang
  fullname: Zhang, Chi
  organization: Department of Industrial Engineering and Decision Analytics, Hong Kong University of Science and Technology
– sequence: 3
  givenname: Fugee
  surname: Tsung
  fullname: Tsung, Fugee
  organization: Department of Industrial Engineering and Decision Analytics, Hong Kong University of Science and Technology
– sequence: 4
  givenname: Yajun
  surname: Mei
  fullname: Mei, Yajun
  email: ymei@isye.gatech.edu
  organization: H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology
BookMark eNqFkE1Lw0AQhhepYFv9CULAc-pms7tJEEQpfmGpFwVvy2SzkS3Jbp1sK_33JrRePOhcZg7POzM8EzJy3hlCzhM6S2hOLyllNBM8nbF-mCV5wjJBj8g4SaWMRZ6_j8h4YOIBOiGTrlvRvkTOx-R66d0aEFoT0Oqo9c4Gj9Z9RL6O2k0T7BbQQjBRBQGirYXoebmMGgPoeuqUHNfQdObs0Kfk7f7udf4YL14enua3i1inhQixKET_ktAlY0BpzasqT2rKuWRaF5LnkhYgKWey0mVmyjTLjZZacpExSTUv0ym52O9do__cmC6old-g608qJrKCMVpw3lNXe0qj7zo0tdI2QLDeBQTbqISqQZj6EaYGYeogrE-LX-k12hZw92_uZp-zrvbYwpfHplIBdo3HGsFp26n07xXfPESCKQ
CitedBy_id crossref_primary_10_1016_j_dajour_2022_100075
crossref_primary_10_1080_00207543_2021_1959664
crossref_primary_10_1038_s41597_024_03153_y
crossref_primary_10_1002_nav_22095
crossref_primary_10_1007_s10845_023_02156_7
crossref_primary_10_1016_j_knosys_2024_112613
crossref_primary_10_1080_10485252_2024_2365212
crossref_primary_10_1016_j_cie_2022_108936
crossref_primary_10_1016_j_jmsy_2024_08_005
crossref_primary_10_1016_j_cie_2024_110142
crossref_primary_10_1016_j_cie_2024_110186
crossref_primary_10_1080_00207543_2023_2173508
crossref_primary_10_1080_16843703_2024_2356970
crossref_primary_10_1080_00207543_2023_2172474
crossref_primary_10_1080_00224065_2024_2393869
crossref_primary_10_1016_j_bspc_2022_104006
crossref_primary_10_1080_00224065_2021_1991251
crossref_primary_10_1080_00207543_2024_2387095
crossref_primary_10_1080_02664763_2021_1971633
crossref_primary_10_1080_24725854_2024_2330077
crossref_primary_10_1080_00224065_2023_2210320
crossref_primary_10_3390_math11010155
crossref_primary_10_1080_00207543_2023_2175591
Cites_doi 10.1002/nav.21475
10.1080/00224065.2014.11917954
10.1080/07408170701744843
10.1214/aos/1176348768
10.1080/00207540500543265
10.1016/j.cie.2016.11.024
10.1080/00224065.2009.11917780
10.1080/00401706.1992.10485232
10.1080/07408170903019150
10.1198/TECH.2010.09095
10.1002/asmb.900
10.1080/07408170600899615
10.1080/07408179508936797
10.1080/002075498192166
10.1016/j.cie.2015.03.007
10.1007/978-1-4419-0468-3
10.1201/9781420036152
10.1080/24725854.2018.1557794
10.1198/jasa.2009.tm08128
10.1080/00401706.1985.10488053
10.1080/00224065.2001.11980081
10.1093/biomet/89.4.851
10.1080/00224065.1997.11979748
10.1214/aos/1176350164
10.1080/0740817X.2011.587863
10.1080/00224065.1985.11978941
10.1111/1467-9884.00348
10.1080/1352816031000075224
10.1080/00224065.2014.11917955
10.1080/00401706.1991.10484770
10.1007/978-0-387-84858-7
10.1080/00401706.1988.10488402
10.1080/00224065.2018.1404315
10.1080/00401706.2018.1562988
10.1093/biomet/41.1-2.100
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1080/00207543.2020.1812750
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1366-588X
EndPage 6326
ExternalDocumentID 10_1080_00207543_2020_1812750
1812750
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
8VB
A8Z
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBD
EBE
EBO
EBR
EBS
EBU
EMK
EPL
ESTFP
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
ML~
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c395t-5957505cb22a00f4dd81f04462cc9648609a60426dcb7eb378ec6c6457260c4b3
ISSN 0020-7543
IngestDate Wed Aug 13 07:04:13 EDT 2025
Wed Oct 01 04:11:10 EDT 2025
Thu Apr 24 22:57:55 EDT 2025
Mon Oct 20 23:48:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-5957505cb22a00f4dd81f04462cc9648609a60426dcb7eb378ec6c6457260c4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2579220944
PQPubID 30924
PageCount 16
ParticipantIDs informaworld_taylorfrancis_310_1080_00207543_2020_1812750
crossref_citationtrail_10_1080_00207543_2020_1812750
proquest_journals_2579220944
crossref_primary_10_1080_00207543_2020_1812750
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-18
PublicationDateYYYYMMDD 2021-10-18
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of production research
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
CIT0014
CIT0013
CIT0035
CIT0038
CIT0015
CIT0037
CIT0018
Qiu P. (CIT0023) 2014
CIT0017
CIT0019
Varmuza K. (CIT0030) 2010
CIT0021
CIT0020
CIT0001
CIT0022
Crosier R. B. (CIT0004) 1988; 30
Zou C. (CIT0036) 2009; 40
Montgomery D. C. (CIT0016) 2009
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0038
  doi: 10.1002/nav.21475
– ident: CIT0008
  doi: 10.1080/00224065.2014.11917954
– ident: CIT0022
  doi: 10.1080/07408170701744843
– volume-title: Introduction to Statistical Process Control
  year: 2014
  ident: CIT0023
– ident: CIT0029
  doi: 10.1214/aos/1176348768
– ident: CIT0002
  doi: 10.1080/00207540500543265
– ident: CIT0010
  doi: 10.1016/j.cie.2016.11.024
– ident: CIT0031
  doi: 10.1080/00224065.2009.11917780
– ident: CIT0013
  doi: 10.1080/00401706.1992.10485232
– volume-title: Introduction to Multivariate Statistical Analysis in Chemometrics
  year: 2010
  ident: CIT0030
– ident: CIT0027
  doi: 10.1080/07408170903019150
– ident: CIT0037
  doi: 10.1198/TECH.2010.09095
– ident: CIT0001
  doi: 10.1002/asmb.900
– ident: CIT0009
  doi: 10.1080/07408170600899615
– ident: CIT0012
  doi: 10.1080/07408179508936797
– ident: CIT0014
  doi: 10.1080/002075498192166
– ident: CIT0035
  doi: 10.1016/j.cie.2015.03.007
– ident: CIT0019
  doi: 10.1007/978-1-4419-0468-3
– ident: CIT0020
  doi: 10.1201/9781420036152
– ident: CIT0011
  doi: 10.1080/24725854.2018.1557794
– volume: 40
  start-page: 1586
  year: 2009
  ident: CIT0036
  publication-title: Journal of American Statistical Association
  doi: 10.1198/jasa.2009.tm08128
– ident: CIT0034
  doi: 10.1080/00401706.1985.10488053
– ident: CIT0003
  doi: 10.1080/00224065.2001.11980081
– ident: CIT0007
  doi: 10.1093/biomet/89.4.851
– ident: CIT0032
  doi: 10.1080/00224065.1997.11979748
– volume-title: Statistical Quality Control: A Modern Introduction
  year: 2009
  ident: CIT0016
– ident: CIT0017
  doi: 10.1214/aos/1176350164
– ident: CIT0018
  doi: 10.1080/0740817X.2011.587863
– ident: CIT0015
  doi: 10.1080/00224065.1985.11978941
– ident: CIT0025
  doi: 10.1111/1467-9884.00348
– ident: CIT0028
  doi: 10.1080/1352816031000075224
– ident: CIT0033
  doi: 10.1080/00224065.2014.11917955
– ident: CIT0006
  doi: 10.1080/00401706.1991.10484770
– ident: CIT0005
  doi: 10.1007/978-0-387-84858-7
– volume: 30
  start-page: 243
  year: 1988
  ident: CIT0004
  publication-title: Technometrics
  doi: 10.1080/00401706.1988.10488402
– ident: CIT0024
  doi: 10.1080/00224065.2018.1404315
– ident: CIT0026
  doi: 10.1080/00401706.2018.1562988
– ident: CIT0021
  doi: 10.1093/biomet/41.1-2.100
SSID ssj0000584
Score 2.4971836
Snippet Process monitoring of multivariate quality attributes is important in many industrial applications, in which rich historical data are often available thanks to...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6311
SubjectTerms categorical variable
Control charts
CUSUM
empirical probability mass function
Industrial applications
K-nearest neighbors algorithm
KNN algorithm
Machine learning
Monitoring
Multivariate analysis
Multivariate statistical process control
Nonparametric statistics
Process controls
Quality management
Statistical process control
Title Nonparametric monitoring of multivariate data via KNN learning
URI https://www.tandfonline.com/doi/abs/10.1080/00207543.2020.1812750
https://www.proquest.com/docview/2579220944
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1366-588X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000584
  issn: 0020-7543
  databaseCode: A8Z
  dateStart: 19611101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1366-588X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000584
  issn: 0020-7543
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1366-588X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000584
  issn: 0020-7543
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4ED4lOMDZQDtyqV49iOfUGaBlPFR0-bNrhEtuOUTSydtnSHXfnHeY6dj9KJMS5RG9VOmvfz-8rz7yH0jqgUC9C9caYKHFOwkbCkChlbopROeVKQ0iX0v8757Ih-OmEno9GvQdXSqtZTc3PrvpL_kSqcA7m6XbL3kGw3KZyAzyBfOIKE4fhPMp4vK0fdfe66YpnJebM8L0MZc1MpeA2RMDiTE1cHOrk-VZPP83nbKGIx9EvXE4MDOokLzwjrQBJ4gbr88ZemEODYun4gi40E9P6P0y4rcBU0ysFqYftaW9uM_6bOVtUw90Ca4rehunTOZpwxT7Q0tV6FppzHTDQNgzsdG1i_PZYIHmhMngZla8NXv4F-Q7O3pZAEu-tBYE_gpGjo6XtT1r6-_8PCdXWHSUeI6qfJ3TR5mOYB2iJgGvAYbe3NPnw_7g06E4HM2__ZdiOYo2i_7X7WXJw1AtwNg994MYdP0OMQfkR7HktP0chWz9CjASnlc_R-DVVRj6poWUZDVEUOVRGgKgJURS2qXqCjg4-H-7M4dNmITSpZHTMJHjtmRhOiMC5pUYikdK_5iTGSux5lUnEXaRdGZ1anmbCGG05ZBqGwoTp9icbVsrKvUMR0YmWZOv4lRUWphcRcJ_BLJSDMKPA2ou2DyU2goHedUH7mfxXMNpp2wy48B8tdA-Twqed1k_wqfaeaPL1j7G4rojystqsc7JokBEtKX9_3XnbQw37l7KJxfbmyb8CPrfXbgLPfwmiQ1g
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1Eo4IE1VeI4ibMgIURVaJuplbpZtpMgBG0RpB349dzlUVoQ6tA1yVnOxb6773L-jpAbplxbgO21AhXbFgcfCVsqDq2EKaVd34lZign9XuS3B_xp6A0XzsJgWSVi6LQgishtNW5uTEZXJXF4hBs8HXcB3jG4JHKS8k2y5UGwj10MXDv6scaeKJmYbQtlqlM8_w2z5J-W2Ev_WOvcBbX2iakmX1SevDanmW6ar1-8juu93QHZKyNUelcsqUOykYyPyO4Cb-ExuY0mY-QMH2E7LkNHuV3AW3SS0rxEcQYQHKJYigWodPaiaCeKaNmh4vmEDFoP_fu2VTZisIwbepkFeoUpeEYzpmw75XEsnBT_BDNjQh_bWIXKRzAWGx0AOg9EYnzjcy8AtGS4dk9JbTwZJ2eEetpJwtRFih7FRapFaPvagSeVgEg0tuuEV-qXpmQpx2YZb9KZk5kW6pGoHlmqp06ac7H3gqZjlUC4-G1lludH0qKZiXRXyDaqhSDLHf8pwfSFjAFY5udrDH1Nttv9Xld2H6POBdlhWECD5TOiQWrZxzS5hAgo01f5Ev8GpcTziQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYJAQHdkRZfeCaynEc174gIaAqW8SBStws24kRgi6iaQ98PZ4srEI99JpkrGRiz2K_eYPQCdUREd72Bi2dkoB5H-mXVCqDjGptIh6m1MGG_l3CO112_RjXaMJRBauEHNqVRBGFrYbFPUxdjYiDCm7v6FjkszvqL4mCo3weLXI4FYMqDpJ8GeNYVETMJACZuojnv2F-uKcf5KV_jHXhgdpryNTvXgJPXprj3DTt-y9ax5k-bh2tVvEpPisn1Aaay_qbaOUba-EWOk0GfWAM70EzLot7hVWAW3jgcAFQnPgE3MewGOCnePKs8U2S4Ko_xdM26rYvH847QdWGIbCRjPMglj6kI7E1lGpCHEtTETo4B6bWSg5NrKTmkIql1rR8bt4SmeWWs7jlcyXLTLSDFvqDfraLcGzCTLoICHo0E84ISbgJ_ZNa-Dg0JQ3Eau0rW3GUQ6uMVxV-UpmW6lGgHlWpp4Gan2LDkqRjmoD8_mtVXuyOuLKViYqmyB7U80BV632kvOGTlPpUme3NMPQxWrq_aKvbq-RmHy1TQM8AdkYcoIX8bZwd-vAnN0fFBP8Am1vyLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+monitoring+of+multivariate+data+via+KNN+learning&rft.jtitle=International+journal+of+production+research&rft.au=Li%2C+Wendong&rft.au=Zhang%2C+Chi&rft.au=Tsung%2C+Fugee&rft.au=Mei%2C+Yajun&rft.date=2021-10-18&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=59&rft.issue=20&rft.spage=6311&rft.epage=6326&rft_id=info:doi/10.1080%2F00207543.2020.1812750&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207543_2020_1812750
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon