Nonparametric monitoring of multivariate data via KNN learning
Process monitoring of multivariate quality attributes is important in many industrial applications, in which rich historical data are often available thanks to modern sensing technologies. While multivariate statistical process control (SPC) has been receiving increasing attention, existing methods...
Saved in:
| Published in | International journal of production research Vol. 59; no. 20; pp. 6311 - 6326 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Taylor & Francis
18.10.2021
Taylor & Francis LLC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0020-7543 1366-588X |
| DOI | 10.1080/00207543.2020.1812750 |
Cover
| Abstract | Process monitoring of multivariate quality attributes is important in many industrial applications, in which rich historical data are often available thanks to modern sensing technologies. While multivariate statistical process control (SPC) has been receiving increasing attention, existing methods are often inadequate as they are sensitive to the parametric model assumptions of multivariate data. In this paper, we propose a novel, nonparametric k-nearest neighbours empirical cumulative sum (KNN-ECUSUM) control chart that is a machine-learning-based black-box control chart for monitoring multivariate data by utilising extensive historical data under both in-control and out-of-control scenarios. Our proposed method utilises the k-nearest neighbours (KNN) algorithm for dimension reduction to transform multivariate data into univariate data and then applies the CUSUM procedure to monitor the change on the empirical distribution of the transformed univariate data. Extensive simulation studies and a real industrial example based on a disk monitoring system demonstrate the robustness and effectiveness of our proposed method. |
|---|---|
| AbstractList | Process monitoring of multivariate quality attributes is important in many industrial applications, in which rich historical data are often available thanks to modern sensing technologies. While multivariate statistical process control (SPC) has been receiving increasing attention, existing methods are often inadequate as they are sensitive to the parametric model assumptions of multivariate data. In this paper, we propose a novel, nonparametric k-nearest neighbours empirical cumulative sum (KNN-ECUSUM) control chart that is a machine-learning-based black-box control chart for monitoring multivariate data by utilising extensive historical data under both in-control and out-of-control scenarios. Our proposed method utilises the k-nearest neighbours (KNN) algorithm for dimension reduction to transform multivariate data into univariate data and then applies the CUSUM procedure to monitor the change on the empirical distribution of the transformed univariate data. Extensive simulation studies and a real industrial example based on a disk monitoring system demonstrate the robustness and effectiveness of our proposed method. |
| Author | Zhang, Chi Li, Wendong Tsung, Fugee Mei, Yajun |
| Author_xml | – sequence: 1 givenname: Wendong surname: Li fullname: Li, Wendong organization: School of Statistics and Management, Shanghai University of Finance and Economics – sequence: 2 givenname: Chi surname: Zhang fullname: Zhang, Chi organization: Department of Industrial Engineering and Decision Analytics, Hong Kong University of Science and Technology – sequence: 3 givenname: Fugee surname: Tsung fullname: Tsung, Fugee organization: Department of Industrial Engineering and Decision Analytics, Hong Kong University of Science and Technology – sequence: 4 givenname: Yajun surname: Mei fullname: Mei, Yajun email: ymei@isye.gatech.edu organization: H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology |
| BookMark | eNqFkE1Lw0AQhhepYFv9CULAc-pms7tJEEQpfmGpFwVvy2SzkS3Jbp1sK_33JrRePOhcZg7POzM8EzJy3hlCzhM6S2hOLyllNBM8nbF-mCV5wjJBj8g4SaWMRZ6_j8h4YOIBOiGTrlvRvkTOx-R66d0aEFoT0Oqo9c4Gj9Z9RL6O2k0T7BbQQjBRBQGirYXoebmMGgPoeuqUHNfQdObs0Kfk7f7udf4YL14enua3i1inhQixKET_ktAlY0BpzasqT2rKuWRaF5LnkhYgKWey0mVmyjTLjZZacpExSTUv0ym52O9do__cmC6old-g608qJrKCMVpw3lNXe0qj7zo0tdI2QLDeBQTbqISqQZj6EaYGYeogrE-LX-k12hZw92_uZp-zrvbYwpfHplIBdo3HGsFp26n07xXfPESCKQ |
| CitedBy_id | crossref_primary_10_1016_j_dajour_2022_100075 crossref_primary_10_1080_00207543_2021_1959664 crossref_primary_10_1038_s41597_024_03153_y crossref_primary_10_1002_nav_22095 crossref_primary_10_1007_s10845_023_02156_7 crossref_primary_10_1016_j_knosys_2024_112613 crossref_primary_10_1080_10485252_2024_2365212 crossref_primary_10_1016_j_cie_2022_108936 crossref_primary_10_1016_j_jmsy_2024_08_005 crossref_primary_10_1016_j_cie_2024_110142 crossref_primary_10_1016_j_cie_2024_110186 crossref_primary_10_1080_00207543_2023_2173508 crossref_primary_10_1080_16843703_2024_2356970 crossref_primary_10_1080_00207543_2023_2172474 crossref_primary_10_1080_00224065_2024_2393869 crossref_primary_10_1016_j_bspc_2022_104006 crossref_primary_10_1080_00224065_2021_1991251 crossref_primary_10_1080_00207543_2024_2387095 crossref_primary_10_1080_02664763_2021_1971633 crossref_primary_10_1080_24725854_2024_2330077 crossref_primary_10_1080_00224065_2023_2210320 crossref_primary_10_3390_math11010155 crossref_primary_10_1080_00207543_2023_2175591 |
| Cites_doi | 10.1002/nav.21475 10.1080/00224065.2014.11917954 10.1080/07408170701744843 10.1214/aos/1176348768 10.1080/00207540500543265 10.1016/j.cie.2016.11.024 10.1080/00224065.2009.11917780 10.1080/00401706.1992.10485232 10.1080/07408170903019150 10.1198/TECH.2010.09095 10.1002/asmb.900 10.1080/07408170600899615 10.1080/07408179508936797 10.1080/002075498192166 10.1016/j.cie.2015.03.007 10.1007/978-1-4419-0468-3 10.1201/9781420036152 10.1080/24725854.2018.1557794 10.1198/jasa.2009.tm08128 10.1080/00401706.1985.10488053 10.1080/00224065.2001.11980081 10.1093/biomet/89.4.851 10.1080/00224065.1997.11979748 10.1214/aos/1176350164 10.1080/0740817X.2011.587863 10.1080/00224065.1985.11978941 10.1111/1467-9884.00348 10.1080/1352816031000075224 10.1080/00224065.2014.11917955 10.1080/00401706.1991.10484770 10.1007/978-0-387-84858-7 10.1080/00401706.1988.10488402 10.1080/00224065.2018.1404315 10.1080/00401706.2018.1562988 10.1093/biomet/41.1-2.100 |
| ContentType | Journal Article |
| Copyright | 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 2020 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
| DOI | 10.1080/00207543.2020.1812750 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1366-588X |
| EndPage | 6326 |
| ExternalDocumentID | 10_1080_00207543_2020_1812750 1812750 |
| Genre | Research Article |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 8VB A8Z AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACGOD ACIWK ACNCT ACTIO ADCVX ADGTB ADXPE AEGXH AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AHQJS AIAGR AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBD EBE EBO EBR EBS EBU EMK EPL ESTFP E~A E~B GTTXZ H13 HF~ HZ~ H~9 H~P I-F IPNFZ J.P K1G KYCEM LJTGL M4Z ML~ NA5 NX~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TH9 TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAYXX CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c395t-5957505cb22a00f4dd81f04462cc9648609a60426dcb7eb378ec6c6457260c4b3 |
| ISSN | 0020-7543 |
| IngestDate | Wed Aug 13 07:04:13 EDT 2025 Wed Oct 01 04:11:10 EDT 2025 Thu Apr 24 22:57:55 EDT 2025 Mon Oct 20 23:48:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c395t-5957505cb22a00f4dd81f04462cc9648609a60426dcb7eb378ec6c6457260c4b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2579220944 |
| PQPubID | 30924 |
| PageCount | 16 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_00207543_2020_1812750 crossref_citationtrail_10_1080_00207543_2020_1812750 proquest_journals_2579220944 crossref_primary_10_1080_00207543_2020_1812750 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-18 |
| PublicationDateYYYYMMDD | 2021-10-18 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | International journal of production research |
| PublicationYear | 2021 |
| Publisher | Taylor & Francis Taylor & Francis LLC |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
| References | CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 CIT0014 CIT0013 CIT0035 CIT0038 CIT0015 CIT0037 CIT0018 Qiu P. (CIT0023) 2014 CIT0017 CIT0019 Varmuza K. (CIT0030) 2010 CIT0021 CIT0020 CIT0001 CIT0022 Crosier R. B. (CIT0004) 1988; 30 Zou C. (CIT0036) 2009; 40 Montgomery D. C. (CIT0016) 2009 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0038 doi: 10.1002/nav.21475 – ident: CIT0008 doi: 10.1080/00224065.2014.11917954 – ident: CIT0022 doi: 10.1080/07408170701744843 – volume-title: Introduction to Statistical Process Control year: 2014 ident: CIT0023 – ident: CIT0029 doi: 10.1214/aos/1176348768 – ident: CIT0002 doi: 10.1080/00207540500543265 – ident: CIT0010 doi: 10.1016/j.cie.2016.11.024 – ident: CIT0031 doi: 10.1080/00224065.2009.11917780 – ident: CIT0013 doi: 10.1080/00401706.1992.10485232 – volume-title: Introduction to Multivariate Statistical Analysis in Chemometrics year: 2010 ident: CIT0030 – ident: CIT0027 doi: 10.1080/07408170903019150 – ident: CIT0037 doi: 10.1198/TECH.2010.09095 – ident: CIT0001 doi: 10.1002/asmb.900 – ident: CIT0009 doi: 10.1080/07408170600899615 – ident: CIT0012 doi: 10.1080/07408179508936797 – ident: CIT0014 doi: 10.1080/002075498192166 – ident: CIT0035 doi: 10.1016/j.cie.2015.03.007 – ident: CIT0019 doi: 10.1007/978-1-4419-0468-3 – ident: CIT0020 doi: 10.1201/9781420036152 – ident: CIT0011 doi: 10.1080/24725854.2018.1557794 – volume: 40 start-page: 1586 year: 2009 ident: CIT0036 publication-title: Journal of American Statistical Association doi: 10.1198/jasa.2009.tm08128 – ident: CIT0034 doi: 10.1080/00401706.1985.10488053 – ident: CIT0003 doi: 10.1080/00224065.2001.11980081 – ident: CIT0007 doi: 10.1093/biomet/89.4.851 – ident: CIT0032 doi: 10.1080/00224065.1997.11979748 – volume-title: Statistical Quality Control: A Modern Introduction year: 2009 ident: CIT0016 – ident: CIT0017 doi: 10.1214/aos/1176350164 – ident: CIT0018 doi: 10.1080/0740817X.2011.587863 – ident: CIT0015 doi: 10.1080/00224065.1985.11978941 – ident: CIT0025 doi: 10.1111/1467-9884.00348 – ident: CIT0028 doi: 10.1080/1352816031000075224 – ident: CIT0033 doi: 10.1080/00224065.2014.11917955 – ident: CIT0006 doi: 10.1080/00401706.1991.10484770 – ident: CIT0005 doi: 10.1007/978-0-387-84858-7 – volume: 30 start-page: 243 year: 1988 ident: CIT0004 publication-title: Technometrics doi: 10.1080/00401706.1988.10488402 – ident: CIT0024 doi: 10.1080/00224065.2018.1404315 – ident: CIT0026 doi: 10.1080/00401706.2018.1562988 – ident: CIT0021 doi: 10.1093/biomet/41.1-2.100 |
| SSID | ssj0000584 |
| Score | 2.4971836 |
| Snippet | Process monitoring of multivariate quality attributes is important in many industrial applications, in which rich historical data are often available thanks to... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6311 |
| SubjectTerms | categorical variable Control charts CUSUM empirical probability mass function Industrial applications K-nearest neighbors algorithm KNN algorithm Machine learning Monitoring Multivariate analysis Multivariate statistical process control Nonparametric statistics Process controls Quality management Statistical process control |
| Title | Nonparametric monitoring of multivariate data via KNN learning |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00207543.2020.1812750 https://www.proquest.com/docview/2579220944 |
| Volume | 59 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1366-588X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000584 issn: 0020-7543 databaseCode: A8Z dateStart: 19611101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1366-588X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000584 issn: 0020-7543 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1366-588X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000584 issn: 0020-7543 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4ED4lOMDZQDtyqV49iOfUGaBlPFR0-bNrhEtuOUTSydtnSHXfnHeY6dj9KJMS5RG9VOmvfz-8rz7yH0jqgUC9C9caYKHFOwkbCkChlbopROeVKQ0iX0v8757Ih-OmEno9GvQdXSqtZTc3PrvpL_kSqcA7m6XbL3kGw3KZyAzyBfOIKE4fhPMp4vK0fdfe66YpnJebM8L0MZc1MpeA2RMDiTE1cHOrk-VZPP83nbKGIx9EvXE4MDOokLzwjrQBJ4gbr88ZemEODYun4gi40E9P6P0y4rcBU0ysFqYftaW9uM_6bOVtUw90Ca4rehunTOZpwxT7Q0tV6FppzHTDQNgzsdG1i_PZYIHmhMngZla8NXv4F-Q7O3pZAEu-tBYE_gpGjo6XtT1r6-_8PCdXWHSUeI6qfJ3TR5mOYB2iJgGvAYbe3NPnw_7g06E4HM2__ZdiOYo2i_7X7WXJw1AtwNg994MYdP0OMQfkR7HktP0chWz9CjASnlc_R-DVVRj6poWUZDVEUOVRGgKgJURS2qXqCjg4-H-7M4dNmITSpZHTMJHjtmRhOiMC5pUYikdK_5iTGSux5lUnEXaRdGZ1anmbCGG05ZBqGwoTp9icbVsrKvUMR0YmWZOv4lRUWphcRcJ_BLJSDMKPA2ou2DyU2goHedUH7mfxXMNpp2wy48B8tdA-Twqed1k_wqfaeaPL1j7G4rojystqsc7JokBEtKX9_3XnbQw37l7KJxfbmyb8CPrfXbgLPfwmiQ1g |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1Eo4IE1VeI4ibMgIURVaJuplbpZtpMgBG0RpB349dzlUVoQ6tA1yVnOxb6773L-jpAbplxbgO21AhXbFgcfCVsqDq2EKaVd34lZign9XuS3B_xp6A0XzsJgWSVi6LQgishtNW5uTEZXJXF4hBs8HXcB3jG4JHKS8k2y5UGwj10MXDv6scaeKJmYbQtlqlM8_w2z5J-W2Ev_WOvcBbX2iakmX1SevDanmW6ar1-8juu93QHZKyNUelcsqUOykYyPyO4Cb-ExuY0mY-QMH2E7LkNHuV3AW3SS0rxEcQYQHKJYigWodPaiaCeKaNmh4vmEDFoP_fu2VTZisIwbepkFeoUpeEYzpmw75XEsnBT_BDNjQh_bWIXKRzAWGx0AOg9EYnzjcy8AtGS4dk9JbTwZJ2eEetpJwtRFih7FRapFaPvagSeVgEg0tuuEV-qXpmQpx2YZb9KZk5kW6pGoHlmqp06ac7H3gqZjlUC4-G1lludH0qKZiXRXyDaqhSDLHf8pwfSFjAFY5udrDH1Nttv9Xld2H6POBdlhWECD5TOiQWrZxzS5hAgo01f5Ev8GpcTziQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYJAQHdkRZfeCaynEc174gIaAqW8SBStws24kRgi6iaQ98PZ4srEI99JpkrGRiz2K_eYPQCdUREd72Bi2dkoB5H-mXVCqDjGptIh6m1MGG_l3CO112_RjXaMJRBauEHNqVRBGFrYbFPUxdjYiDCm7v6FjkszvqL4mCo3weLXI4FYMqDpJ8GeNYVETMJACZuojnv2F-uKcf5KV_jHXhgdpryNTvXgJPXprj3DTt-y9ax5k-bh2tVvEpPisn1Aaay_qbaOUba-EWOk0GfWAM70EzLot7hVWAW3jgcAFQnPgE3MewGOCnePKs8U2S4Ko_xdM26rYvH847QdWGIbCRjPMglj6kI7E1lGpCHEtTETo4B6bWSg5NrKTmkIql1rR8bt4SmeWWs7jlcyXLTLSDFvqDfraLcGzCTLoICHo0E84ISbgJ_ZNa-Dg0JQ3Eau0rW3GUQ6uMVxV-UpmW6lGgHlWpp4Gan2LDkqRjmoD8_mtVXuyOuLKViYqmyB7U80BV632kvOGTlPpUme3NMPQxWrq_aKvbq-RmHy1TQM8AdkYcoIX8bZwd-vAnN0fFBP8Am1vyLQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+monitoring+of+multivariate+data+via+KNN+learning&rft.jtitle=International+journal+of+production+research&rft.au=Li%2C+Wendong&rft.au=Zhang%2C+Chi&rft.au=Tsung%2C+Fugee&rft.au=Mei%2C+Yajun&rft.date=2021-10-18&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=59&rft.issue=20&rft.spage=6311&rft.epage=6326&rft_id=info:doi/10.1080%2F00207543.2020.1812750&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207543_2020_1812750 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon |