The role of frataxin in fission yeast iron metabolism: Implications for Friedreich's ataxia
The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron–sulfur cluster (Fe–S) cofactor biogenesis, but its functional role in this pathway is debated. This is due to the interconnectivity of iron metabolic and...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1840; no. 10; pp. 3022 - 3033 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.10.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 0006-3002 1872-8006 |
DOI | 10.1016/j.bbagen.2014.06.017 |
Cover
Abstract | The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron–sulfur cluster (Fe–S) cofactor biogenesis, but its functional role in this pathway is debated. This is due to the interconnectivity of iron metabolic and oxidative stress response pathways that make distinguishing primary effects of frataxin deficiency challenging. Since Fe–S cluster assembly is conserved, frataxin overexpression phenotypes in a simple eukaryotic organism will provide additional insight into frataxin function.
The Schizosaccharomyces pombe frataxin homologue (fxn1) was overexpressed from a plasmid under a thiamine repressible promoter. The S. pombe transformants were characterized at several expression strengths for cellular growth, mitochondrial organization, iron levels, oxidative stress, and activities of Fe–S cluster containing enzymes.
Observed phenotypes were dependent on the amount of Fxn1 overexpression. High Fxn1 overexpression severely inhibited S. pombe growth, impaired mitochondrial membrane integrity and cellular respiration, and led to Fxn1 aggregation. Cellular iron accumulation was observed at moderate Fxn1 overexpression but was most pronounced at high levels of Fxn1. All levels of Fxn1 overexpression up-regulated oxidative stress defense and mitochondrial Fe–S cluster containing enzyme activities.
Despite the presence of oxidative stress and accumulated iron, activation of Fe–S cluster enzymes was common to all levels of Fxn1 overexpression; therefore, Fxn1 may regulate the efficiency of Fe–S cluster biogenesis in S. pombe.
We provide evidence that suggests that dysregulated Fe–S cluster biogenesis is a primary effect of both frataxin overexpression and deficiency as in Friedreich's ataxia.
[Display omitted]
•Frataxin plays an unclear role in iron–sulfur cluster biogenesis in mitochondria.•We characterized the phenotype of frataxin overexpression in fission yeast.•Fe–S enzymes had increased activities despite iron overload and oxidative stress.•Frataxin is most likely a regulator of Fe–S biogenesis. |
---|---|
AbstractList | The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron–sulfur cluster (Fe–S) cofactor biogenesis, but its functional role in this pathway is debated. This is due to the interconnectivity of iron metabolic and oxidative stress response pathways that make distinguishing primary effects of frataxin deficiency challenging. Since Fe–S cluster assembly is conserved, frataxin overexpression phenotypes in a simple eukaryotic organism will provide additional insight into frataxin function.The Schizosaccharomyces pombe frataxin homologue (fxn1) was overexpressed from a plasmid under a thiamine repressible promoter. The S. pombe transformants were characterized at several expression strengths for cellular growth, mitochondrial organization, iron levels, oxidative stress, and activities of Fe–S cluster containing enzymes.Observed phenotypes were dependent on the amount of Fxn1 overexpression. High Fxn1 overexpression severely inhibited S. pombe growth, impaired mitochondrial membrane integrity and cellular respiration, and led to Fxn1 aggregation. Cellular iron accumulation was observed at moderate Fxn1 overexpression but was most pronounced at high levels of Fxn1. All levels of Fxn1 overexpression up-regulated oxidative stress defense and mitochondrial Fe–S cluster containing enzyme activities.Despite the presence of oxidative stress and accumulated iron, activation of Fe–S cluster enzymes was common to all levels of Fxn1 overexpression; therefore, Fxn1 may regulate the efficiency of Fe–S cluster biogenesis in S. pombe.We provide evidence that suggests that dysregulated Fe–S cluster biogenesis is a primary effect of both frataxin overexpression and deficiency as in Friedreich's ataxia. The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron–sulfur cluster (Fe–S) cofactor biogenesis, but its functional role in this pathway is debated. This is due to the interconnectivity of iron metabolic and oxidative stress response pathways that make distinguishing primary effects of frataxin deficiency challenging. Since Fe–S cluster assembly is conserved, frataxin overexpression phenotypes in a simple eukaryotic organism will provide additional insight into frataxin function. The Schizosaccharomyces pombe frataxin homologue (fxn1) was overexpressed from a plasmid under a thiamine repressible promoter. The S. pombe transformants were characterized at several expression strengths for cellular growth, mitochondrial organization, iron levels, oxidative stress, and activities of Fe–S cluster containing enzymes. Observed phenotypes were dependent on the amount of Fxn1 overexpression. High Fxn1 overexpression severely inhibited S. pombe growth, impaired mitochondrial membrane integrity and cellular respiration, and led to Fxn1 aggregation. Cellular iron accumulation was observed at moderate Fxn1 overexpression but was most pronounced at high levels of Fxn1. All levels of Fxn1 overexpression up-regulated oxidative stress defense and mitochondrial Fe–S cluster containing enzyme activities. Despite the presence of oxidative stress and accumulated iron, activation of Fe–S cluster enzymes was common to all levels of Fxn1 overexpression; therefore, Fxn1 may regulate the efficiency of Fe–S cluster biogenesis in S. pombe. We provide evidence that suggests that dysregulated Fe–S cluster biogenesis is a primary effect of both frataxin overexpression and deficiency as in Friedreich's ataxia. [Display omitted] •Frataxin plays an unclear role in iron–sulfur cluster biogenesis in mitochondria.•We characterized the phenotype of frataxin overexpression in fission yeast.•Fe–S enzymes had increased activities despite iron overload and oxidative stress.•Frataxin is most likely a regulator of Fe–S biogenesis. The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron-sulfur cluster (Fe-S) cofactor biogenesis, but its functional role in this pathway is debated. This is due to the interconnectivity of iron metabolic and oxidative stress response pathways that make distinguishing primary effects of frataxin deficiency challenging. Since Fe-S cluster assembly is conserved, frataxin overexpression phenotypes in a simple eukaryotic organism will provide additional insight into frataxin function. The Schizosaccharomyces pombe frataxin homologue (fxn1) was overexpressed from a plasmid under a thiamine repressible promoter. The S. pombe transformants were characterized at several expression strengths for cellular growth, mitochondrial organization, iron levels, oxidative stress, and activities of Fe-S cluster containing enzymes. Observed phenotypes were dependent on the amount of Fxn1 overexpression. High Fxn1 overexpression severely inhibited S. pombe growth, impaired mitochondrial membrane integrity and cellular respiration, and led to Fxn1 aggregation. Cellular iron accumulation was observed at moderate Fxn1 overexpression but was most pronounced at high levels of Fxn1. All levels of Fxn1 overexpression up-regulated oxidative stress defense and mitochondrial Fe-S cluster containing enzyme activities. Despite the presence of oxidative stress and accumulated iron, activation of Fe-S cluster enzymes was common to all levels of Fxn1 overexpression; therefore, Fxn1 may regulate the efficiency of Fe-S cluster biogenesis in S. pombe. We provide evidence that suggests that dysregulated Fe-S cluster biogenesis is a primary effect of both frataxin overexpression and deficiency as in Friedreich's ataxia. The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron-sulfur cluster (Fe-S) cofactor biogenesis, but its functional role in this pathway is debated. This is due to the interconnectivity of iron metabolic and oxidative stress response pathways that make distinguishing primary effects of frataxin deficiency challenging. Since Fe-S cluster assembly is conserved, frataxin overexpression phenotypes in a simple eukaryotic organism will provide additional insight into frataxin function.BACKGROUNDThe neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron-sulfur cluster (Fe-S) cofactor biogenesis, but its functional role in this pathway is debated. This is due to the interconnectivity of iron metabolic and oxidative stress response pathways that make distinguishing primary effects of frataxin deficiency challenging. Since Fe-S cluster assembly is conserved, frataxin overexpression phenotypes in a simple eukaryotic organism will provide additional insight into frataxin function.The Schizosaccharomyces pombe frataxin homologue (fxn1) was overexpressed from a plasmid under a thiamine repressible promoter. The S. pombe transformants were characterized at several expression strengths for cellular growth, mitochondrial organization, iron levels, oxidative stress, and activities of Fe-S cluster containing enzymes.METHODSThe Schizosaccharomyces pombe frataxin homologue (fxn1) was overexpressed from a plasmid under a thiamine repressible promoter. The S. pombe transformants were characterized at several expression strengths for cellular growth, mitochondrial organization, iron levels, oxidative stress, and activities of Fe-S cluster containing enzymes.Observed phenotypes were dependent on the amount of Fxn1 overexpression. High Fxn1 overexpression severely inhibited S. pombe growth, impaired mitochondrial membrane integrity and cellular respiration, and led to Fxn1 aggregation. Cellular iron accumulation was observed at moderate Fxn1 overexpression but was most pronounced at high levels of Fxn1. All levels of Fxn1 overexpression up-regulated oxidative stress defense and mitochondrial Fe-S cluster containing enzyme activities.RESULTSObserved phenotypes were dependent on the amount of Fxn1 overexpression. High Fxn1 overexpression severely inhibited S. pombe growth, impaired mitochondrial membrane integrity and cellular respiration, and led to Fxn1 aggregation. Cellular iron accumulation was observed at moderate Fxn1 overexpression but was most pronounced at high levels of Fxn1. All levels of Fxn1 overexpression up-regulated oxidative stress defense and mitochondrial Fe-S cluster containing enzyme activities.Despite the presence of oxidative stress and accumulated iron, activation of Fe-S cluster enzymes was common to all levels of Fxn1 overexpression; therefore, Fxn1 may regulate the efficiency of Fe-S cluster biogenesis in S. pombe.CONCLUSIONSDespite the presence of oxidative stress and accumulated iron, activation of Fe-S cluster enzymes was common to all levels of Fxn1 overexpression; therefore, Fxn1 may regulate the efficiency of Fe-S cluster biogenesis in S. pombe.We provide evidence that suggests that dysregulated Fe-S cluster biogenesis is a primary effect of both frataxin overexpression and deficiency as in Friedreich's ataxia.GENERAL SIGNIFICANCEWe provide evidence that suggests that dysregulated Fe-S cluster biogenesis is a primary effect of both frataxin overexpression and deficiency as in Friedreich's ataxia. |
Author | Busenlehner, L.S. Wang, Yu Wang, Yiwei Marcus, S. |
Author_xml | – sequence: 1 givenname: Yu surname: Wang fullname: Wang, Yu organization: Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487, USA – sequence: 2 givenname: Yiwei surname: Wang fullname: Wang, Yiwei organization: Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA – sequence: 3 givenname: S. surname: Marcus fullname: Marcus, S. email: smarcus@ua.edu organization: Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA – sequence: 4 givenname: L.S. surname: Busenlehner fullname: Busenlehner, L.S. email: LSBusenlehner@ua.edu organization: Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24997422$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1URLeFb4CQb3BJ8Di2k_SAhCoKlSpx2RsHy38m1KskXmwvot8et9teONCRpfHh9540752RkzWuSMhbYC0wUB93rbXmJ64tZyBaploG_QuygaHnzcCYOiEb1jHRCFDylJzlvGN15ChfkVMuxrEXnG_Ij-0t0hRnpHGiUzLF_AkrrW8KOYe40js0udCQ6nfBYmycQ14u6PWyn4MzpSKZTjHRqxTQJwzu9n2mDzbmNXk5mTnjm8d9TrZXX7aX35qb71-vLz_fNK4bZWmENei9GDpjR4fWGyl7ZQVnfvS-l9gBOMWU6KADO0noOhg8gHLcome-Oycfjrb7FH8dMBe9hOxwns2K8ZA1r2dzzgWHZ1GQUvGhr-lU9N0jerALer1PYTHpTj9FV4GLI-BSzDnhpF0oD4GUZMKsgen7nvROH3vS9z1ppnTtqYrFP-In_2dkn44yrHH-Dph0dgFXhz4kdEX7GP5v8Beu6q3Y |
CitedBy_id | crossref_primary_10_3389_fnins_2022_838335 crossref_primary_10_1007_s12041_018_0954_4 crossref_primary_10_1093_femsre_fux050 crossref_primary_10_1016_j_fgb_2018_10_003 crossref_primary_10_3389_fgeed_2022_903139 crossref_primary_10_1016_j_ygeno_2015_05_006 crossref_primary_10_1242_dmm_032706 crossref_primary_10_1016_j_mad_2016_05_002 crossref_primary_10_1038_s41598_019_55799_z crossref_primary_10_1016_j_omtm_2020_08_018 crossref_primary_10_1016_j_bbamcr_2016_03_023 |
Cites_doi | 10.1016/S0021-9258(19)38525-4 10.1006/meth.2001.1262 10.1038/84818 10.7326/0003-4819-120-6-199403150-00008 10.1016/j.mcn.2012.08.003 10.1371/journal.pone.0028000 10.1016/j.bbagen.2007.12.004 10.1016/0003-2697(77)90389-X 10.1083/jcb.107.2.481 10.1128/MMBR.45.4.542-555.1981 10.1371/journal.pone.0063958 10.1242/dmm.008706 10.1074/jbc.M513569200 10.1038/nature724 10.1038/sj.emboj.7601253 10.1086/303056 10.1016/j.tem.2009.12.006 10.1016/j.fob.2013.07.004 10.1016/S0969-2126(00)00158-1 10.1073/pnas.0911055107 10.1021/bi4010304 10.1021/bi0488193 10.1126/science.276.5319.1709 10.1016/S1357-2725(01)00063-2 10.1093/nar/gkq1179 10.1371/journal.pone.0016199 10.1016/j.bbrc.2012.01.022 10.1096/fj.05-5709com 10.1016/j.bbagen.2011.08.002 10.1016/j.mito.2009.01.007 10.1016/S0076-6879(02)49317-2 10.1093/hmg/ddn178 10.1093/hmg/9.8.1219 10.1074/jbc.M112.421735 10.1016/j.bbamcr.2012.05.009 10.1074/jbc.M109.091710 10.1016/S0076-6879(78)53050-4 10.1007/s10534-006-9056-5 10.1083/jcb.200712147 10.1093/hmg/ddi367 10.1016/j.ab.2005.12.001 10.1007/s00702-010-0503-7 10.1073/pnas.220403797 10.1093/hmg/11.17.2025 10.1016/S0014-5793(97)00734-5 10.1074/jbc.C400107200 10.1016/j.febslet.2004.07.022 10.1021/cr9001676 10.1073/pnas.0601945103 10.1146/annurev.bi.64.070195.000525 10.1074/jbc.M109.011197 10.1126/science.1098991 10.1021/bi1013062 10.1073/pnas.192449599 10.1002/1531-8249(199905)45:5<673::AID-ANA20>3.0.CO;2-Q 10.1186/gb-2007-8-5-r73 10.1073/pnas.94.14.7452 10.1073/pnas.0804261105 10.1016/j.brainresrev.2011.04.001 10.1021/ja308736e 10.1038/sj.embor.7400272 10.1038/nprot.2009.39 10.1128/MCB.13.7.4342 10.1038/ng1097-215 10.1074/jbc.273.23.14588 10.1093/hmg/ddn244 10.1196/annals.1427.015 10.1021/bi300382d 10.1371/journal.pone.0021017 10.1007/s00415-009-1003-2 10.1093/hmg/10.21.2463 10.1016/j.bbrc.2010.07.014 10.1093/hmg/11.7.815 10.1016/S0014-5793(02)02251-2 10.1016/j.febslet.2008.01.046 10.1007/978-1-59745-365-3_7 10.1073/pnas.200346997 10.1021/ja027967i 10.1093/nar/21.12.2955 10.1093/nar/24.23.4676 10.1128/MCB.00025-13 10.1007/s00294-003-0404-5 10.1126/science.271.5254.1423 10.1074/jbc.M511064200 10.1007/s100480100118 10.1016/j.str.2004.08.012 10.1128/EC.00048-07 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. Copyright © 2014 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: Copyright © 2014 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2014.06.017 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 3033 |
ExternalDocumentID | 24997422 10_1016_j_bbagen_2014_06_017 S0304416514002372 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c395t-4baedd483ab9cebda5576b420d9dd75e311c60643131bf513318d116c2bed0d3 |
IEDL.DBID | AIKHN |
ISSN | 0304-4165 0006-3002 |
IngestDate | Thu Sep 04 21:21:28 EDT 2025 Thu Sep 04 21:03:37 EDT 2025 Mon Jul 21 05:45:38 EDT 2025 Tue Jul 01 00:22:03 EDT 2025 Thu Apr 24 23:11:25 EDT 2025 Fri Feb 23 02:32:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Isd11 Isu1 BPS Fxn1Δ2–11 Frp1 DFO CyaY nmt1 NADP+/NADPH Iron–sulfur cluster Nfs1 Frataxin Fe–S Yfh1 SDH2 Iron homeostasis BCA DTPA hFxn EMM MALDI-TOF qRT-PCR SOD Friedreich's ataxia TCA PMS ROS DCIP FA sdh2-GFP |
Language | English |
License | Copyright © 2014 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-4baedd483ab9cebda5576b420d9dd75e311c60643131bf513318d116c2bed0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24997422 |
PQID | 1556287499 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2000222421 proquest_miscellaneous_1556287499 pubmed_primary_24997422 crossref_citationtrail_10_1016_j_bbagen_2014_06_017 crossref_primary_10_1016_j_bbagen_2014_06_017 elsevier_sciencedirect_doi_10_1016_j_bbagen_2014_06_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-01 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yoon, Cowan (bb0105) 2004; 279 Gabrielli, Ayte, Hidalgo (bb0165) 2012; 287 Gardner (bb0310) 2002; 349 Ohshima, Montermini, Wells, Pandolfo (bb0025) 1998; 273 Pook, Al-Mahdawi, Carroll, Cossee, Puccio, Lawrence, Clark, Lowrie, Bradley, Cooper, Koenig, Chamberlain (bb0360) 2001; 3 Aloria, Schilke, Andrew, Craig (bb0390) 2004; 5 Rotig, de Lonlay, Chretien, Foury, Koenig, Sidi, Munnich, Rustin (bb0015) 1997; 17 Forsburg (bb0170) 1993; 21 Shoichet, Baumer, Stamenkovic, Sauer, Pfeiffer, Kahn, Muller-Wieland, Richter, Ristow (bb0345) 2002; 11 Shakoury-Elizeh, Protchenko, Berger, Cox, Gable, Dunn, Prinz, Bard, Philpott (bb0305) 2010; 285 Wood, Gwilliam, Rajandream, Lyne, Lyne, Stewart, Sgouros, Peat, Hayles, Baker, Basham, Bowman, Brooks, Brown, Brown, Chillingworth, Churcher, Collins, Connor, Cronin, Davis, Feltwell, Fraser, Gentles, Goble, Hamlin, Harris, Hidalgo, Hodgson, Holroyd, Hornsby, Howarth, Huckle, Hunt, Jagels, James, Jones, Jones, Leather, McDonald, McLean, Mooney, Moule, Mungall, Murphy, Niblett, Odell, Oliver, O'Neil, Pearson, Quail, Rabbinowitsch, Rutherford, Rutter, Saunders, Seeger, Sharp, Skelton, Simmonds, Squares, Squares, Stevens, Taylor, Taylor, Tivey, Walsh, Warren, Whitehead, Woodward, Volckaert, Aert, Robben, Grymonprez, Weltjens, Vanstreels, Rieger, Schafer, Muller-Auer, Gabel, Fuchs, Dusterhoft, Fritzc, Holzer, Moestl, Hilbert, Borzym, Langer, Beck, Lehrach, Reinhardt, Pohl, Eger, Zimmermann, Wedler, Wambutt, Purnelle, Goffeau, Cadieu, Dreano, Gloux, Lelaure, Mottier, Galibert, Aves, Xiang, Hunt, Moore, Hurst, Lucas, Rochet, Gaillardin, Tallada, Garzon, Thode, Daga, Cruzado, Jimenez, Sanchez, del Rey, Benito, Dominguez, Revuelta, Moreno, Armstrong, Forsburg, Cerutti, Lowe, McCombie, Paulsen, Potashkin, Shpakovski, Ussery, Barrell, Nurse (bb0160) 2002; 415 Faraj, Venturutti, Roman, Marino-Buslje, Mignone, Tosatto, Delfino, Santos (bb0385) 2013; 3 Bulteau, O'Neill, Kennedy, Ikeda-Saito, Isaya, Szweda (bb0095) 2004; 305 Yoon, Cowan (bb0065) 2003; 125 Schafer (bb0365) 2003; 43 Chiron, Gaisne, Guillou, Belenguer, Clark-Walker, Bonnefoy (bb0210) 2007; 372 Park, McCormick, Chakrabarti, Lindahl (bb0440) 2013; 52 Aisen, Enns, Wessling-Resnick (bb0325) 2001; 33 Sun, Wang, Jiang, Zhang, Bahler, Chen, Murchie (bb0370) 2010; 39 Delatycki, Camakaris, Brooks, Evans-Whipp, Thorburn, Williamson, Forrest (bb0420) 1999; 45 Sheftel, Mason, Ponka (bb0125) 2011; 1820 Vaubel, Isaya (bb0240) 2013; 55 Miranda, Santos, Ohshima, Tessaro, Sequeiros, Pandolfo (bb0130) 2004; 572 Herrero, Ros, Belli, Cabiscol (bb0335) 2008; 1780 Lill, Hoffmann, Molik, Pierik, Rietzschel, Stehling, Uzarska, Webert, Wilbrecht, Muhlenhoff (bb0280) 2012; 1823 Tsai, Barondeau (bb0075) 2010; 49 Maundrell (bb0175) 1990; 265 Nair, Adinolfi, Pastore, Kelly, Temussi, Pastore (bb0045) 2004; 12 Starkov (bb0400) 2008; 1147 Cossee, Puccio, Gansmuller, Koutnikova, Dierich, LeMeur, Fischbeck, Dolle, Koenig (bb0110) 2000; 9 Puccio, Simon, Cossee, Criqui-Filipe, Tiziano, Melki, Hindelang, Matyas, Rustin, Koenig (bb0050) 2001; 27 Layer, Ollagnier-de Choudens, Sanakis, Fontecave (bb0070) 2006; 281 Wiley, Catanuto, Fontanesi, Rios, Sanchez, Barrientos, Verde (bb0395) 2008; 7 Navarro, Llorens, Soriano, Botella, Schneuwly, Martinez-Sebastian, Molto (bb0145) 2011; 6 Roman, Dancis, Anderson, Klausner (bb0290) 1993; 13 Tamarit, Irazusta, Moreno-Cermeno, Ros (bb0215) 2006; 351 Kaplan, Kaplan (bb0150) 2009; 109 Gille, Reichmann (bb0320) 2011; 118 Jhurry, Chakrabarti, McCormick, Holmes-Hampton, Lindahl (bb0405) 2012; 51 Pandolfo, Pastore (bb0415) 2009; 256 Aravind, Watanabe, Lipman, Koonin (bb0155) 2000; 97 Robinson, Janes, Pehar, Monette, Ross, Hagen, Murphy, Beckman (bb0265) 2006; 103 Marmolino (bb0010) 2011; 67 Seguin, Bayot, Dancis, Rogowska-Wrzesinska, Auchere, Camadro, Bulteau, Lesuisse (bb0140) 2009; 9 Colin, Martelli, Clemancey, Latour, Gambarelli, Zeppieri, Birck, Page, Puccio, Ollagnier de Choudens (bb0080) 2013; 135 Amchenkova, Bakeeva, Chentsov, Skulachev, Zorov (bb0250) 1988; 107 Voest, Vreugdenhil, Marx (bb0300) 1994; 120 Javerzat, Cranston, Allshire (bb0190) 1996; 24 Huynen, Snel, Bork, Gibson (bb0055) 2001; 10 Babcock, de Silva, Oaks, Davis-Kaplan, Jiralerspong, Montermini, Pandolfo, Kaplan (bb0285) 1997; 276 Schulz, Thierbach, Voigt, Drewes, Mietzner, Steinberg, Pfeiffer, Ristow (bb0350) 2006; 281 Llorens, Navarro, Martinez-Sebastian, Baylies, Schneuwly, Botella, Molto (bb0355) 2007; 21 Wu, Zhao, Ye, Wu (bb0375) 2011; 6 Miranda, Santos, Ohshima, Smith, Li, Bunting, Cossee, Koenig, Sequeiros, Kaplan, Pandolfo (bb0115) 2002; 512 Cossee, Schmitt, Campuzano, Reutenauer, Moutou, Mandel, Koenig (bb0005) 1997; 94 Musco, Stier, Kolmerer, Adinolfi, Martin, Frenkiel, Gibson, Pastore (bb0035) 2000; 8 Campuzano, Montermini, Molto, Pianese, Cossee, Cavalcanti, Monros, Rodius, Duclos, Monticelli, Zara, Canizares, Koutnikova, Bidichandani, Gellera, Brice, Trouillas, De Michele, Filla, De Frutos, Palau, Patel, Di Donato, Mandel, Cocozza, Koenig, Pandolfo (bb0020) 1996; 271 Baker, Ueberheide, Dewell, Chait, Zheng, Allis (bb0330) 2013; 33 Foury, Cazzalini (bb0100) 1997; 411 Schmucker, Martelli, Colin, Page, Wattenhofer-Donze, Reutenauer, Puccio (bb0180) 2011; 6 Auchere, Santos, Planamente, Lesuisse, Camadro (bb0410) 2008; 17 Muhlenhoff, Richhardt, Ristow, Kispal, Lill (bb0090) 2002; 11 Labbe, Pelletier, Mercier (bb0295) 2007; 20 Pierik, Netz, Lill (bb0220) 2009; 4 Schmucker, Argentini, Carelle-Calmels, Martelli, Puccio (bb0270) 2008; 17 Alfa, Fantes, Hyams, McLeod, Warbrick (bb0185) 1993 Adamec, Rusnak, Owen, Naylor, Benson, Gacy, Isaya (bb0275) 2000; 67 Hederstedt, Rutberg (bb0235) 1981; 45 Chiron, Bobkova, Zhou, Yaffe (bb0255) 2008; 182 Li, Gakh, Smith, Isaya (bb0380) 2009; 284 Takeda, Yoshida, Kikuchi, Nagao, Kokubu, Pluskal, Villar-Briones, Nakamura, Yanagida (bb0200) 2010; 107 Whitnall, Rahmanto, Sutak, Xu, Becker, Mikhael, Ponka, Richardson (bb0425) 2008; 105 Plasterer, Deutsch, Belmonte, Egan, Lynch, Rusche (bb0030) 2013; 8 Wang, Gulis, Buckner, Johnson, Sullivan, Busenlehner, Marcus (bb0195) 2010; 399 Barsoum, Yuan, Gerencser, Liot, Kushnareva, Graber, Kovacs, Lee, Waggoner, Cui, White, Bossy, Martinou, Youle, Lipton, Ellisman, Perkins, Bossy-Wetzel (bb0245) 2006; 25 Rustici, van Bakel, Lackner, Holstege, Wijmenga, Bahler, Brazma (bb0430) 2007; 8 Anderson, Kirby, Hilliker, Phillips (bb0120) 2005; 14 Ackrell, Kearney, Singer (bb0225) 1978; 53 Livak, Schmittgen (bb0205) 2001; 25 Sheftel, Stehling, Lill (bb0315) 2010; 21 He, Alam, Proteasa, Zhang, Lesuisse, Dancis, Stemmler (bb0040) 2004; 43 Lefevre, Sliwa, Rustin, Camadro, Santos (bb0260) 2012; 418 Runko, Griswold, Min (bb0135) 2008; 582 Martelli, Napierala, Puccio (bb0060) 2012; 5 Chen, Hemenway, Kaplan (bb0085) 2002; 99 Worsfold, Marshall, Ellis (bb0230) 1977; 79 Fridovich (bb0435) 1995; 64 Ristow, Pfister, Yee, Schubert, Michael, Zhang, Ueki, Michael, Lowell, Kahn (bb0340) 2000; 97 Wang (10.1016/j.bbagen.2014.06.017_bb0195) 2010; 399 Yoon (10.1016/j.bbagen.2014.06.017_bb0065) 2003; 125 Ohshima (10.1016/j.bbagen.2014.06.017_bb0025) 1998; 273 Seguin (10.1016/j.bbagen.2014.06.017_bb0140) 2009; 9 He (10.1016/j.bbagen.2014.06.017_bb0040) 2004; 43 Babcock (10.1016/j.bbagen.2014.06.017_bb0285) 1997; 276 Aloria (10.1016/j.bbagen.2014.06.017_bb0390) 2004; 5 Delatycki (10.1016/j.bbagen.2014.06.017_bb0420) 1999; 45 Ristow (10.1016/j.bbagen.2014.06.017_bb0340) 2000; 97 Pierik (10.1016/j.bbagen.2014.06.017_bb0220) 2009; 4 Shoichet (10.1016/j.bbagen.2014.06.017_bb0345) 2002; 11 Muhlenhoff (10.1016/j.bbagen.2014.06.017_bb0090) 2002; 11 Sheftel (10.1016/j.bbagen.2014.06.017_bb0125) 2011; 1820 Park (10.1016/j.bbagen.2014.06.017_bb0440) 2013; 52 Puccio (10.1016/j.bbagen.2014.06.017_bb0050) 2001; 27 Cossee (10.1016/j.bbagen.2014.06.017_bb0110) 2000; 9 Anderson (10.1016/j.bbagen.2014.06.017_bb0120) 2005; 14 Schmucker (10.1016/j.bbagen.2014.06.017_bb0270) 2008; 17 Pook (10.1016/j.bbagen.2014.06.017_bb0360) 2001; 3 Whitnall (10.1016/j.bbagen.2014.06.017_bb0425) 2008; 105 Aravind (10.1016/j.bbagen.2014.06.017_bb0155) 2000; 97 Tamarit (10.1016/j.bbagen.2014.06.017_bb0215) 2006; 351 Barsoum (10.1016/j.bbagen.2014.06.017_bb0245) 2006; 25 Miranda (10.1016/j.bbagen.2014.06.017_bb0115) 2002; 512 Cossee (10.1016/j.bbagen.2014.06.017_bb0005) 1997; 94 Campuzano (10.1016/j.bbagen.2014.06.017_bb0020) 1996; 271 Foury (10.1016/j.bbagen.2014.06.017_bb0100) 1997; 411 Li (10.1016/j.bbagen.2014.06.017_bb0380) 2009; 284 Wood (10.1016/j.bbagen.2014.06.017_bb0160) 2002; 415 Gardner (10.1016/j.bbagen.2014.06.017_bb0310) 2002; 349 Adamec (10.1016/j.bbagen.2014.06.017_bb0275) 2000; 67 Sheftel (10.1016/j.bbagen.2014.06.017_bb0315) 2010; 21 Navarro (10.1016/j.bbagen.2014.06.017_bb0145) 2011; 6 Faraj (10.1016/j.bbagen.2014.06.017_bb0385) 2013; 3 Shakoury-Elizeh (10.1016/j.bbagen.2014.06.017_bb0305) 2010; 285 Javerzat (10.1016/j.bbagen.2014.06.017_bb0190) 1996; 24 Wu (10.1016/j.bbagen.2014.06.017_bb0375) 2011; 6 Starkov (10.1016/j.bbagen.2014.06.017_bb0400) 2008; 1147 Takeda (10.1016/j.bbagen.2014.06.017_bb0200) 2010; 107 Sun (10.1016/j.bbagen.2014.06.017_bb0370) 2010; 39 Chen (10.1016/j.bbagen.2014.06.017_bb0085) 2002; 99 Yoon (10.1016/j.bbagen.2014.06.017_bb0105) 2004; 279 Runko (10.1016/j.bbagen.2014.06.017_bb0135) 2008; 582 Schafer (10.1016/j.bbagen.2014.06.017_bb0365) 2003; 43 Alfa (10.1016/j.bbagen.2014.06.017_bb0185) 1993 Livak (10.1016/j.bbagen.2014.06.017_bb0205) 2001; 25 Nair (10.1016/j.bbagen.2014.06.017_bb0045) 2004; 12 Roman (10.1016/j.bbagen.2014.06.017_bb0290) 1993; 13 Miranda (10.1016/j.bbagen.2014.06.017_bb0130) 2004; 572 Lill (10.1016/j.bbagen.2014.06.017_bb0280) 2012; 1823 Vaubel (10.1016/j.bbagen.2014.06.017_bb0240) 2013; 55 Layer (10.1016/j.bbagen.2014.06.017_bb0070) 2006; 281 Gabrielli (10.1016/j.bbagen.2014.06.017_bb0165) 2012; 287 Pandolfo (10.1016/j.bbagen.2014.06.017_bb0415) 2009; 256 Robinson (10.1016/j.bbagen.2014.06.017_bb0265) 2006; 103 Herrero (10.1016/j.bbagen.2014.06.017_bb0335) 2008; 1780 Forsburg (10.1016/j.bbagen.2014.06.017_bb0170) 1993; 21 Rustici (10.1016/j.bbagen.2014.06.017_bb0430) 2007; 8 Schulz (10.1016/j.bbagen.2014.06.017_bb0350) 2006; 281 Plasterer (10.1016/j.bbagen.2014.06.017_bb0030) 2013; 8 Kaplan (10.1016/j.bbagen.2014.06.017_bb0150) 2009; 109 Aisen (10.1016/j.bbagen.2014.06.017_bb0325) 2001; 33 Baker (10.1016/j.bbagen.2014.06.017_bb0330) 2013; 33 Maundrell (10.1016/j.bbagen.2014.06.017_bb0175) 1990; 265 Auchere (10.1016/j.bbagen.2014.06.017_bb0410) 2008; 17 Chiron (10.1016/j.bbagen.2014.06.017_bb0255) 2008; 182 Lefevre (10.1016/j.bbagen.2014.06.017_bb0260) 2012; 418 Marmolino (10.1016/j.bbagen.2014.06.017_bb0010) 2011; 67 Tsai (10.1016/j.bbagen.2014.06.017_bb0075) 2010; 49 Schmucker (10.1016/j.bbagen.2014.06.017_bb0180) 2011; 6 Rotig (10.1016/j.bbagen.2014.06.017_bb0015) 1997; 17 Huynen (10.1016/j.bbagen.2014.06.017_bb0055) 2001; 10 Bulteau (10.1016/j.bbagen.2014.06.017_bb0095) 2004; 305 Wiley (10.1016/j.bbagen.2014.06.017_bb0395) 2008; 7 Amchenkova (10.1016/j.bbagen.2014.06.017_bb0250) 1988; 107 Voest (10.1016/j.bbagen.2014.06.017_bb0300) 1994; 120 Labbe (10.1016/j.bbagen.2014.06.017_bb0295) 2007; 20 Colin (10.1016/j.bbagen.2014.06.017_bb0080) 2013; 135 Worsfold (10.1016/j.bbagen.2014.06.017_bb0230) 1977; 79 Ackrell (10.1016/j.bbagen.2014.06.017_bb0225) 1978; 53 Chiron (10.1016/j.bbagen.2014.06.017_bb0210) 2007; 372 Gille (10.1016/j.bbagen.2014.06.017_bb0320) 2011; 118 Fridovich (10.1016/j.bbagen.2014.06.017_bb0435) 1995; 64 Hederstedt (10.1016/j.bbagen.2014.06.017_bb0235) 1981; 45 Musco (10.1016/j.bbagen.2014.06.017_bb0035) 2000; 8 Martelli (10.1016/j.bbagen.2014.06.017_bb0060) 2012; 5 Llorens (10.1016/j.bbagen.2014.06.017_bb0355) 2007; 21 Jhurry (10.1016/j.bbagen.2014.06.017_bb0405) 2012; 51 |
References_xml | – volume: 7 start-page: 619 year: 2008 end-page: 629 ident: bb0395 article-title: Bot1p is required for mitochondrial translation, respiratory function, and normal cell morphology in the fission yeast Schizosaccharomyces pombe publication-title: Eukaryot. Cell – volume: 103 start-page: 15038 year: 2006 end-page: 15043 ident: bb0265 article-title: Selective fluorescent imaging of superoxide in vivo using ethidium-based probes publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 55 start-page: 50 year: 2013 end-page: 61 ident: bb0240 article-title: Iron–sulfur cluster synthesis, iron homeostasis and oxidative stress in Friedreich ataxia publication-title: Mol. Cell. Neurosci. – volume: 94 start-page: 7452 year: 1997 end-page: 7457 ident: bb0005 article-title: Evolution of the Friedreich's ataxia trinucleotide repeat expansion: founder effect and premutations publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 43 start-page: 16254 year: 2004 end-page: 16262 ident: bb0040 article-title: Yeast frataxin solution structure, iron binding, and ferrochelatase interaction publication-title: Biochemistry – volume: 512 start-page: 291 year: 2002 end-page: 297 ident: bb0115 article-title: Frataxin knockin mouse publication-title: FEBS Lett. – volume: 33 start-page: 3735 year: 2013 end-page: 3748 ident: bb0330 article-title: The yeast snt2 protein coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress publication-title: Mol. Cell. Biol. – volume: 51 start-page: 5276 year: 2012 end-page: 5284 ident: bb0405 article-title: Biophysical investigation of the ironome of human jurkat cells and mitochondria publication-title: Biochemistry – volume: 27 start-page: 181 year: 2001 end-page: 186 ident: bb0050 article-title: Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe–S enzyme deficiency followed by intramitochondrial iron deposits publication-title: Nat. Genet. – volume: 107 start-page: 3540 year: 2010 end-page: 3545 ident: bb0200 article-title: Synergistic roles of the proteasome and autophagy for mitochondrial maintenance and chronological lifespan in fission yeast publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 45 start-page: 542 year: 1981 end-page: 555 ident: bb0235 article-title: Succinate dehydrogenase–a comparative review publication-title: Microbiol. Rev. – volume: 256 start-page: 9 year: 2009 end-page: 17 ident: bb0415 article-title: The pathogenesis of Friedreich ataxia and the structure and function of frataxin publication-title: J. Neurol. – volume: 9 start-page: 1219 year: 2000 end-page: 1226 ident: bb0110 article-title: Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation publication-title: Hum. Mol. Genet. – volume: 411 start-page: 373 year: 1997 end-page: 377 ident: bb0100 article-title: Deletion of the yeast homologue of the human gene associated with Friedreich's ataxia elicits iron accumulation in mitochondria publication-title: FEBS Lett. – volume: 5 start-page: 165 year: 2012 end-page: 176 ident: bb0060 article-title: Understanding the genetic and molecular pathogenesis of Friedreich's ataxia through animal and cellular models publication-title: Dis. Model. Mech. – volume: 97 start-page: 11319 year: 2000 end-page: 11324 ident: bb0155 article-title: Lineage-specific loss and divergence of functionally linked genes in eukaryotes publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 13 start-page: 4342 year: 1993 end-page: 4350 ident: bb0290 article-title: The fission yeast ferric reductase gene frp1 publication-title: Mol. Cell. Biol. – volume: 4 start-page: 753 year: 2009 end-page: 766 ident: bb0220 article-title: Analysis of iron–sulfur protein maturation in eukaryotes publication-title: Nat. Protoc. – volume: 53 start-page: 466 year: 1978 end-page: 483 ident: bb0225 article-title: Mammalian succinate dehydrogenase publication-title: Methods Enzymol. – volume: 6 start-page: e16199 year: 2011 ident: bb0180 article-title: Mammalian frataxin: an essential function for cellular viability through an interaction with a preformed ISCU/NFS1/ISD11 iron–sulfur assembly complex publication-title: PLoS One – volume: 11 start-page: 815 year: 2002 end-page: 821 ident: bb0345 article-title: Frataxin promotes antioxidant defense in a thiol-dependent manner resulting in diminished malignant transformation in vitro publication-title: Hum. Mol. Genet. – volume: 52 start-page: 9413 year: 2013 end-page: 9425 ident: bb0440 article-title: The lack of synchronization between iron uptake and cell growth leads to iron overload in Saccharomyces cerevisiae during post-exponential growth modes publication-title: Biochemistry – volume: 21 start-page: 302 year: 2010 end-page: 314 ident: bb0315 article-title: Iron–sulfur proteins in health and disease publication-title: Trends Endocrinol. Metab. – volume: 43 start-page: 311 year: 2003 end-page: 326 ident: bb0365 article-title: Genetic conservation versus variability in mitochondria: the architecture of the mitochondrial genome in the petite-negative yeast Schizosaccharomyces pombe publication-title: Curr. Genet. – volume: 349 start-page: 9 year: 2002 end-page: 23 ident: bb0310 article-title: Aconitase: sensitive target and measure of superoxide publication-title: Methods Enzymol. – volume: 418 start-page: 336 year: 2012 end-page: 341 ident: bb0260 article-title: Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells publication-title: Biochem. Biophys. Res. Commun. – volume: 1780 start-page: 1217 year: 2008 end-page: 1235 ident: bb0335 article-title: Redox control and oxidative stress in yeast cells publication-title: Biochim. Biophys. Acta – volume: 8 start-page: R73 year: 2007 ident: bb0430 article-title: Global transcriptional responses of fission and budding yeast to changes in copper and iron levels: a comparative study publication-title: Genome Biol. – volume: 10 start-page: 2463 year: 2001 end-page: 2468 ident: bb0055 article-title: The phylogenetic distribution of frataxin indicates a role in iron–sulfur cluster protein assembly publication-title: Hum. Mol. Genet. – volume: 33 start-page: 940 year: 2001 end-page: 959 ident: bb0325 article-title: Chemistry and biology of eukaryotic iron metabolism publication-title: Int. J. Biochem. Cell Biol. – volume: 3 start-page: 310 year: 2013 end-page: 320 ident: bb0385 article-title: The role of the N-terminal tail for the oligomerization, folding and stability of human frataxin publication-title: FEBS Open Biol. – volume: 11 start-page: 2025 year: 2002 end-page: 2036 ident: bb0090 article-title: The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins publication-title: Hum. Mol. Genet. – volume: 39 start-page: 2690 year: 2010 end-page: 2700 ident: bb0370 article-title: A novel function of the mitochondrial transcription factor Mtf1 in fission yeast; Mtf1 regulates the nuclear transcription of srk1 publication-title: Nucleic Acids Res. – volume: 5 start-page: 1096 year: 2004 end-page: 1101 ident: bb0390 article-title: Iron-induced oligomerization of yeast frataxin homologue Yfh1 is dispensable in vivo publication-title: EMBO Rep. – volume: 17 start-page: 215 year: 1997 end-page: 217 ident: bb0015 article-title: Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia publication-title: Nat. Genet. – volume: 12 start-page: 2037 year: 2004 end-page: 2048 ident: bb0045 article-title: Solution structure of the bacterial frataxin ortholog, CyaY: mapping the iron binding sites publication-title: Structure – volume: 287 start-page: 43042 year: 2012 end-page: 43051 ident: bb0165 article-title: Cells lacking pfh1, a fission yeast homolog of mammalian frataxin protein, display constitutive activation of the iron starvation response publication-title: J. Biol. Chem. – volume: 135 start-page: 733 year: 2013 end-page: 740 ident: bb0080 article-title: Mammalian frataxin controls sulfur production and iron entry during de novo Fe(4)S(4) cluster assembly publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 333 year: 2007 end-page: 344 ident: bb0355 article-title: Causative role of oxidative stress in a Drosophila model of Friedreich ataxia publication-title: FASEB J. – volume: 399 start-page: 123 year: 2010 end-page: 128 ident: bb0195 article-title: The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe publication-title: Biochem. Biophys. Res. Commun. – volume: 45 start-page: 673 year: 1999 end-page: 675 ident: bb0420 article-title: Direct evidence that mitochondrial iron accumulation occurs in Friedreich ataxia publication-title: Ann. Neurol. – volume: 305 start-page: 242 year: 2004 end-page: 245 ident: bb0095 article-title: Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity publication-title: Science – volume: 21 start-page: 2955 year: 1993 end-page: 2956 ident: bb0170 article-title: Comparison of Schizosaccharomyces pombe expression systems publication-title: Nucleic Acids Res. – volume: 351 start-page: 149 year: 2006 end-page: 151 ident: bb0215 article-title: Colorimetric assay for the quantitation of iron in yeast publication-title: Anal. Biochem. – volume: 97 start-page: 12239 year: 2000 end-page: 12243 ident: bb0340 article-title: Frataxin activates mitochondrial energy conversion and oxidative phosphorylation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 415 start-page: 871 year: 2002 end-page: 880 ident: bb0160 article-title: The genome sequence of Schizosaccharomyces pombe publication-title: Nature – volume: 285 start-page: 14823 year: 2010 end-page: 14833 ident: bb0305 article-title: Metabolic response to iron deficiency in Saccharomyces cerevisiae publication-title: J. Biol. Chem. – volume: 6 start-page: e28000 year: 2011 ident: bb0375 article-title: Roles of the DYRK kinase Pom2 in cytokinesis, mitochondrial morphology, and sporulation in fission yeast publication-title: PLoS One – volume: 265 start-page: 10857 year: 1990 end-page: 10864 ident: bb0175 article-title: nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine publication-title: J. Biol. Chem. – volume: 582 start-page: 715 year: 2008 end-page: 719 ident: bb0135 article-title: Overexpression of frataxin in the mitochondria increases resistance to oxidative stress and extends lifespan in Drosophila publication-title: FEBS Lett. – volume: 67 start-page: 311 year: 2011 end-page: 330 ident: bb0010 article-title: Friedreich's ataxia: past, present and future publication-title: Brain Res. Rev. – volume: 25 start-page: 402 year: 2001 end-page: 408 ident: bb0205 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method publication-title: Methods – volume: 17 start-page: 3521 year: 2008 end-page: 3531 ident: bb0270 article-title: The in vivo mitochondrial two-step maturation of human frataxin publication-title: Hum. Mol. Genet. – volume: 1820 start-page: 161 year: 2011 end-page: 187 ident: bb0125 article-title: The long history of iron in the universe and in health and disease publication-title: Biochim. Biophys. Acta – volume: 572 start-page: 281 year: 2004 end-page: 288 ident: bb0130 article-title: Frataxin overexpressing mice publication-title: FEBS Lett. – volume: 125 start-page: 6078 year: 2003 end-page: 6084 ident: bb0065 article-title: Iron–sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins publication-title: J. Am. Chem. Soc. – volume: 276 start-page: 1709 year: 1997 end-page: 1712 ident: bb0285 article-title: Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin publication-title: Science – volume: 24 start-page: 4676 year: 1996 end-page: 4683 ident: bb0190 article-title: Fission yeast genes which disrupt mitotic chromosome segregation when overexpressed publication-title: Nucleic Acids Res. – volume: 273 start-page: 14588 year: 1998 end-page: 14595 ident: bb0025 article-title: Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo publication-title: J. Biol. Chem. – volume: 20 start-page: 523 year: 2007 end-page: 537 ident: bb0295 article-title: Iron homeostasis in the fission yeast Schizosaccharomyces pombe publication-title: Biometals – volume: 279 start-page: 25943 year: 2004 end-page: 25946 ident: bb0105 article-title: Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis publication-title: J. Biol. Chem. – volume: 118 start-page: 349 year: 2011 end-page: 359 ident: bb0320 article-title: Iron-dependent functions of mitochondria–relation to neurodegeneration publication-title: J. Neural Transm. – volume: 49 start-page: 9132 year: 2010 end-page: 9139 ident: bb0075 article-title: Human frataxin is an allosteric switch that activates the Fe–S cluster biosynthetic complex publication-title: Biochemistry – volume: 271 start-page: 1423 year: 1996 end-page: 1427 ident: bb0020 article-title: Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion publication-title: Science – volume: 182 start-page: 41 year: 2008 end-page: 49 ident: bb0255 article-title: CLASP regulates mitochondrial distribution in Schizosaccharomyces pombe publication-title: J. Cell Biol. – volume: 25 start-page: 3900 year: 2006 end-page: 3911 ident: bb0245 article-title: Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons publication-title: EMBO J. – volume: 67 start-page: 549 year: 2000 end-page: 562 ident: bb0275 article-title: Iron-dependent self-assembly of recombinant yeast frataxin: implications for Friedreich ataxia publication-title: Am. J. Hum. Genet. – volume: 284 start-page: 21971 year: 2009 end-page: 21980 ident: bb0380 article-title: Oligomeric yeast frataxin drives assembly of core machinery for mitochondrial iron–sulfur cluster synthesis publication-title: J. Biol. Chem. – year: 1993 ident: bb0185 article-title: Experiments with Fission Yeast: A Laboratory Course Manual – volume: 64 start-page: 97 year: 1995 end-page: 112 ident: bb0435 article-title: Superoxide radical and superoxide dismutases publication-title: Annu. Rev. Biochem. – volume: 99 start-page: 12321 year: 2002 end-page: 12326 ident: bb0085 article-title: Inhibition of Fe–S cluster biosynthesis decreases mitochondrial iron export: evidence that Yfh1p affects Fe–S cluster synthesis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 8 start-page: e63958 year: 2013 ident: bb0030 article-title: Development of frataxin gene expression measures for the evaluation of experimental treatments in Friedreich's ataxia publication-title: PLoS One – volume: 6 start-page: e21017 year: 2011 ident: bb0145 article-title: Overexpression of human and fly frataxins in Drosophila provokes deleterious effects at biochemical, physiological and developmental levels publication-title: PLoS One – volume: 1147 start-page: 37 year: 2008 end-page: 52 ident: bb0400 article-title: The role of mitochondria in reactive oxygen species metabolism and signaling publication-title: Ann. N. Y. Acad. Sci. – volume: 9 start-page: 130 year: 2009 end-page: 138 ident: bb0140 article-title: Overexpression of the yeast frataxin homolog (Yfh1): contrasting effects on iron–sulfur cluster assembly, heme synthesis and resistance to oxidative stress publication-title: Mitochondrion – volume: 1823 start-page: 1491 year: 2012 end-page: 1508 ident: bb0280 article-title: The role of mitochondria in cellular iron–sulfur protein biogenesis and iron metabolism publication-title: Biochim. Biophys. Acta – volume: 8 start-page: 695 year: 2000 end-page: 707 ident: bb0035 article-title: Towards a structural understanding of Friedreich's ataxia: the solution structure of frataxin publication-title: Structure – volume: 109 start-page: 4536 year: 2009 end-page: 4552 ident: bb0150 article-title: Iron acquisition and transcriptional regulation publication-title: Chem. Rev. – volume: 120 start-page: 490 year: 1994 end-page: 499 ident: bb0300 article-title: Iron-chelating agents in non-iron overload conditions publication-title: Ann. Intern. Med. – volume: 105 start-page: 9757 year: 2008 end-page: 9762 ident: bb0425 article-title: The MCK mouse heart model of Friedreich's ataxia: alterations in iron-regulated proteins and cardiac hypertrophy are limited by iron chelation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 14 start-page: 3397 year: 2005 end-page: 3405 ident: bb0120 article-title: RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila publication-title: Hum. Mol. Genet. – volume: 281 start-page: 16256 year: 2006 end-page: 16263 ident: bb0070 article-title: Iron–sulfur cluster biosynthesis: characterization of Escherichia coli CyaY as an iron donor for the assembly of [2Fe-2S] clusters in the scaffold IscU publication-title: J. Biol. Chem. – volume: 372 start-page: 91 year: 2007 end-page: 105 ident: bb0210 article-title: Studying mitochondria in an attractive model: Schizosaccharomyces pombe publication-title: Methods Mol. Biol. – volume: 79 start-page: 152 year: 1977 end-page: 156 ident: bb0230 article-title: Enzyme detection using phenazine methosulphate and tetrazolium salts: interference by oxygen publication-title: Anal. Biochem. – volume: 3 start-page: 185 year: 2001 end-page: 193 ident: bb0360 article-title: Rescue of the Friedreich's ataxia knockout mouse by human YAC transgenesis publication-title: Neurogenetics – volume: 17 start-page: 2790 year: 2008 end-page: 2802 ident: bb0410 article-title: Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia publication-title: Hum. Mol. Genet. – volume: 107 start-page: 481 year: 1988 end-page: 495 ident: bb0250 article-title: Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes publication-title: J. Cell Biol. – volume: 281 start-page: 977 year: 2006 end-page: 981 ident: bb0350 article-title: Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto Warburg revisited publication-title: J. Biol. Chem. – volume: 265 start-page: 10857 year: 1990 ident: 10.1016/j.bbagen.2014.06.017_bb0175 article-title: nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)38525-4 – volume: 25 start-page: 402 year: 2001 ident: 10.1016/j.bbagen.2014.06.017_bb0205 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 27 start-page: 181 year: 2001 ident: 10.1016/j.bbagen.2014.06.017_bb0050 article-title: Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe–S enzyme deficiency followed by intramitochondrial iron deposits publication-title: Nat. Genet. doi: 10.1038/84818 – volume: 120 start-page: 490 year: 1994 ident: 10.1016/j.bbagen.2014.06.017_bb0300 article-title: Iron-chelating agents in non-iron overload conditions publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-120-6-199403150-00008 – volume: 55 start-page: 50 year: 2013 ident: 10.1016/j.bbagen.2014.06.017_bb0240 article-title: Iron–sulfur cluster synthesis, iron homeostasis and oxidative stress in Friedreich ataxia publication-title: Mol. Cell. Neurosci. doi: 10.1016/j.mcn.2012.08.003 – volume: 6 start-page: e28000 year: 2011 ident: 10.1016/j.bbagen.2014.06.017_bb0375 article-title: Roles of the DYRK kinase Pom2 in cytokinesis, mitochondrial morphology, and sporulation in fission yeast publication-title: PLoS One doi: 10.1371/journal.pone.0028000 – volume: 1780 start-page: 1217 year: 2008 ident: 10.1016/j.bbagen.2014.06.017_bb0335 article-title: Redox control and oxidative stress in yeast cells publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2007.12.004 – volume: 79 start-page: 152 year: 1977 ident: 10.1016/j.bbagen.2014.06.017_bb0230 article-title: Enzyme detection using phenazine methosulphate and tetrazolium salts: interference by oxygen publication-title: Anal. Biochem. doi: 10.1016/0003-2697(77)90389-X – volume: 107 start-page: 481 year: 1988 ident: 10.1016/j.bbagen.2014.06.017_bb0250 article-title: Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes publication-title: J. Cell Biol. doi: 10.1083/jcb.107.2.481 – volume: 45 start-page: 542 year: 1981 ident: 10.1016/j.bbagen.2014.06.017_bb0235 article-title: Succinate dehydrogenase–a comparative review publication-title: Microbiol. Rev. doi: 10.1128/MMBR.45.4.542-555.1981 – volume: 8 start-page: e63958 year: 2013 ident: 10.1016/j.bbagen.2014.06.017_bb0030 article-title: Development of frataxin gene expression measures for the evaluation of experimental treatments in Friedreich's ataxia publication-title: PLoS One doi: 10.1371/journal.pone.0063958 – volume: 5 start-page: 165 year: 2012 ident: 10.1016/j.bbagen.2014.06.017_bb0060 article-title: Understanding the genetic and molecular pathogenesis of Friedreich's ataxia through animal and cellular models publication-title: Dis. Model. Mech. doi: 10.1242/dmm.008706 – volume: 281 start-page: 16256 year: 2006 ident: 10.1016/j.bbagen.2014.06.017_bb0070 article-title: Iron–sulfur cluster biosynthesis: characterization of Escherichia coli CyaY as an iron donor for the assembly of [2Fe-2S] clusters in the scaffold IscU publication-title: J. Biol. Chem. doi: 10.1074/jbc.M513569200 – volume: 415 start-page: 871 year: 2002 ident: 10.1016/j.bbagen.2014.06.017_bb0160 article-title: The genome sequence of Schizosaccharomyces pombe publication-title: Nature doi: 10.1038/nature724 – volume: 25 start-page: 3900 year: 2006 ident: 10.1016/j.bbagen.2014.06.017_bb0245 article-title: Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons publication-title: EMBO J. doi: 10.1038/sj.emboj.7601253 – volume: 67 start-page: 549 year: 2000 ident: 10.1016/j.bbagen.2014.06.017_bb0275 article-title: Iron-dependent self-assembly of recombinant yeast frataxin: implications for Friedreich ataxia publication-title: Am. J. Hum. Genet. doi: 10.1086/303056 – year: 1993 ident: 10.1016/j.bbagen.2014.06.017_bb0185 – volume: 21 start-page: 302 year: 2010 ident: 10.1016/j.bbagen.2014.06.017_bb0315 article-title: Iron–sulfur proteins in health and disease publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2009.12.006 – volume: 3 start-page: 310 year: 2013 ident: 10.1016/j.bbagen.2014.06.017_bb0385 article-title: The role of the N-terminal tail for the oligomerization, folding and stability of human frataxin publication-title: FEBS Open Biol. doi: 10.1016/j.fob.2013.07.004 – volume: 8 start-page: 695 year: 2000 ident: 10.1016/j.bbagen.2014.06.017_bb0035 article-title: Towards a structural understanding of Friedreich's ataxia: the solution structure of frataxin publication-title: Structure doi: 10.1016/S0969-2126(00)00158-1 – volume: 107 start-page: 3540 year: 2010 ident: 10.1016/j.bbagen.2014.06.017_bb0200 article-title: Synergistic roles of the proteasome and autophagy for mitochondrial maintenance and chronological lifespan in fission yeast publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0911055107 – volume: 52 start-page: 9413 year: 2013 ident: 10.1016/j.bbagen.2014.06.017_bb0440 article-title: The lack of synchronization between iron uptake and cell growth leads to iron overload in Saccharomyces cerevisiae during post-exponential growth modes publication-title: Biochemistry doi: 10.1021/bi4010304 – volume: 43 start-page: 16254 year: 2004 ident: 10.1016/j.bbagen.2014.06.017_bb0040 article-title: Yeast frataxin solution structure, iron binding, and ferrochelatase interaction publication-title: Biochemistry doi: 10.1021/bi0488193 – volume: 276 start-page: 1709 year: 1997 ident: 10.1016/j.bbagen.2014.06.017_bb0285 article-title: Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin publication-title: Science doi: 10.1126/science.276.5319.1709 – volume: 33 start-page: 940 year: 2001 ident: 10.1016/j.bbagen.2014.06.017_bb0325 article-title: Chemistry and biology of eukaryotic iron metabolism publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/S1357-2725(01)00063-2 – volume: 39 start-page: 2690 year: 2010 ident: 10.1016/j.bbagen.2014.06.017_bb0370 article-title: A novel function of the mitochondrial transcription factor Mtf1 in fission yeast; Mtf1 regulates the nuclear transcription of srk1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1179 – volume: 6 start-page: e16199 year: 2011 ident: 10.1016/j.bbagen.2014.06.017_bb0180 article-title: Mammalian frataxin: an essential function for cellular viability through an interaction with a preformed ISCU/NFS1/ISD11 iron–sulfur assembly complex publication-title: PLoS One doi: 10.1371/journal.pone.0016199 – volume: 418 start-page: 336 year: 2012 ident: 10.1016/j.bbagen.2014.06.017_bb0260 article-title: Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2012.01.022 – volume: 21 start-page: 333 year: 2007 ident: 10.1016/j.bbagen.2014.06.017_bb0355 article-title: Causative role of oxidative stress in a Drosophila model of Friedreich ataxia publication-title: FASEB J. doi: 10.1096/fj.05-5709com – volume: 1820 start-page: 161 year: 2011 ident: 10.1016/j.bbagen.2014.06.017_bb0125 article-title: The long history of iron in the universe and in health and disease publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2011.08.002 – volume: 9 start-page: 130 year: 2009 ident: 10.1016/j.bbagen.2014.06.017_bb0140 article-title: Overexpression of the yeast frataxin homolog (Yfh1): contrasting effects on iron–sulfur cluster assembly, heme synthesis and resistance to oxidative stress publication-title: Mitochondrion doi: 10.1016/j.mito.2009.01.007 – volume: 349 start-page: 9 year: 2002 ident: 10.1016/j.bbagen.2014.06.017_bb0310 article-title: Aconitase: sensitive target and measure of superoxide publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(02)49317-2 – volume: 17 start-page: 2790 year: 2008 ident: 10.1016/j.bbagen.2014.06.017_bb0410 article-title: Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddn178 – volume: 9 start-page: 1219 year: 2000 ident: 10.1016/j.bbagen.2014.06.017_bb0110 article-title: Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/9.8.1219 – volume: 287 start-page: 43042 year: 2012 ident: 10.1016/j.bbagen.2014.06.017_bb0165 article-title: Cells lacking pfh1, a fission yeast homolog of mammalian frataxin protein, display constitutive activation of the iron starvation response publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.421735 – volume: 1823 start-page: 1491 year: 2012 ident: 10.1016/j.bbagen.2014.06.017_bb0280 article-title: The role of mitochondria in cellular iron–sulfur protein biogenesis and iron metabolism publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2012.05.009 – volume: 285 start-page: 14823 year: 2010 ident: 10.1016/j.bbagen.2014.06.017_bb0305 article-title: Metabolic response to iron deficiency in Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.091710 – volume: 53 start-page: 466 year: 1978 ident: 10.1016/j.bbagen.2014.06.017_bb0225 article-title: Mammalian succinate dehydrogenase publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(78)53050-4 – volume: 20 start-page: 523 year: 2007 ident: 10.1016/j.bbagen.2014.06.017_bb0295 article-title: Iron homeostasis in the fission yeast Schizosaccharomyces pombe publication-title: Biometals doi: 10.1007/s10534-006-9056-5 – volume: 182 start-page: 41 year: 2008 ident: 10.1016/j.bbagen.2014.06.017_bb0255 article-title: CLASP regulates mitochondrial distribution in Schizosaccharomyces pombe publication-title: J. Cell Biol. doi: 10.1083/jcb.200712147 – volume: 14 start-page: 3397 year: 2005 ident: 10.1016/j.bbagen.2014.06.017_bb0120 article-title: RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddi367 – volume: 351 start-page: 149 year: 2006 ident: 10.1016/j.bbagen.2014.06.017_bb0215 article-title: Colorimetric assay for the quantitation of iron in yeast publication-title: Anal. Biochem. doi: 10.1016/j.ab.2005.12.001 – volume: 118 start-page: 349 year: 2011 ident: 10.1016/j.bbagen.2014.06.017_bb0320 article-title: Iron-dependent functions of mitochondria–relation to neurodegeneration publication-title: J. Neural Transm. doi: 10.1007/s00702-010-0503-7 – volume: 97 start-page: 12239 year: 2000 ident: 10.1016/j.bbagen.2014.06.017_bb0340 article-title: Frataxin activates mitochondrial energy conversion and oxidative phosphorylation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.220403797 – volume: 11 start-page: 2025 year: 2002 ident: 10.1016/j.bbagen.2014.06.017_bb0090 article-title: The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/11.17.2025 – volume: 411 start-page: 373 year: 1997 ident: 10.1016/j.bbagen.2014.06.017_bb0100 article-title: Deletion of the yeast homologue of the human gene associated with Friedreich's ataxia elicits iron accumulation in mitochondria publication-title: FEBS Lett. doi: 10.1016/S0014-5793(97)00734-5 – volume: 279 start-page: 25943 year: 2004 ident: 10.1016/j.bbagen.2014.06.017_bb0105 article-title: Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.C400107200 – volume: 572 start-page: 281 year: 2004 ident: 10.1016/j.bbagen.2014.06.017_bb0130 article-title: Frataxin overexpressing mice publication-title: FEBS Lett. doi: 10.1016/j.febslet.2004.07.022 – volume: 109 start-page: 4536 year: 2009 ident: 10.1016/j.bbagen.2014.06.017_bb0150 article-title: Iron acquisition and transcriptional regulation publication-title: Chem. Rev. doi: 10.1021/cr9001676 – volume: 103 start-page: 15038 year: 2006 ident: 10.1016/j.bbagen.2014.06.017_bb0265 article-title: Selective fluorescent imaging of superoxide in vivo using ethidium-based probes publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0601945103 – volume: 64 start-page: 97 year: 1995 ident: 10.1016/j.bbagen.2014.06.017_bb0435 article-title: Superoxide radical and superoxide dismutases publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.64.070195.000525 – volume: 284 start-page: 21971 year: 2009 ident: 10.1016/j.bbagen.2014.06.017_bb0380 article-title: Oligomeric yeast frataxin drives assembly of core machinery for mitochondrial iron–sulfur cluster synthesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.011197 – volume: 305 start-page: 242 year: 2004 ident: 10.1016/j.bbagen.2014.06.017_bb0095 article-title: Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity publication-title: Science doi: 10.1126/science.1098991 – volume: 49 start-page: 9132 year: 2010 ident: 10.1016/j.bbagen.2014.06.017_bb0075 article-title: Human frataxin is an allosteric switch that activates the Fe–S cluster biosynthetic complex publication-title: Biochemistry doi: 10.1021/bi1013062 – volume: 99 start-page: 12321 year: 2002 ident: 10.1016/j.bbagen.2014.06.017_bb0085 article-title: Inhibition of Fe–S cluster biosynthesis decreases mitochondrial iron export: evidence that Yfh1p affects Fe–S cluster synthesis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.192449599 – volume: 45 start-page: 673 year: 1999 ident: 10.1016/j.bbagen.2014.06.017_bb0420 article-title: Direct evidence that mitochondrial iron accumulation occurs in Friedreich ataxia publication-title: Ann. Neurol. doi: 10.1002/1531-8249(199905)45:5<673::AID-ANA20>3.0.CO;2-Q – volume: 8 start-page: R73 year: 2007 ident: 10.1016/j.bbagen.2014.06.017_bb0430 article-title: Global transcriptional responses of fission and budding yeast to changes in copper and iron levels: a comparative study publication-title: Genome Biol. doi: 10.1186/gb-2007-8-5-r73 – volume: 94 start-page: 7452 year: 1997 ident: 10.1016/j.bbagen.2014.06.017_bb0005 article-title: Evolution of the Friedreich's ataxia trinucleotide repeat expansion: founder effect and premutations publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.94.14.7452 – volume: 105 start-page: 9757 year: 2008 ident: 10.1016/j.bbagen.2014.06.017_bb0425 article-title: The MCK mouse heart model of Friedreich's ataxia: alterations in iron-regulated proteins and cardiac hypertrophy are limited by iron chelation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0804261105 – volume: 67 start-page: 311 year: 2011 ident: 10.1016/j.bbagen.2014.06.017_bb0010 article-title: Friedreich's ataxia: past, present and future publication-title: Brain Res. Rev. doi: 10.1016/j.brainresrev.2011.04.001 – volume: 135 start-page: 733 year: 2013 ident: 10.1016/j.bbagen.2014.06.017_bb0080 article-title: Mammalian frataxin controls sulfur production and iron entry during de novo Fe(4)S(4) cluster assembly publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308736e – volume: 5 start-page: 1096 year: 2004 ident: 10.1016/j.bbagen.2014.06.017_bb0390 article-title: Iron-induced oligomerization of yeast frataxin homologue Yfh1 is dispensable in vivo publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400272 – volume: 4 start-page: 753 year: 2009 ident: 10.1016/j.bbagen.2014.06.017_bb0220 article-title: Analysis of iron–sulfur protein maturation in eukaryotes publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.39 – volume: 13 start-page: 4342 year: 1993 ident: 10.1016/j.bbagen.2014.06.017_bb0290 article-title: The fission yeast ferric reductase gene frp1+ is required for ferric iron uptake and encodes a protein that is homologous to the gp91-phox subunit of the human NADPH phagocyte oxidoreductase publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.13.7.4342 – volume: 17 start-page: 215 year: 1997 ident: 10.1016/j.bbagen.2014.06.017_bb0015 article-title: Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia publication-title: Nat. Genet. doi: 10.1038/ng1097-215 – volume: 273 start-page: 14588 year: 1998 ident: 10.1016/j.bbagen.2014.06.017_bb0025 article-title: Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.23.14588 – volume: 17 start-page: 3521 year: 2008 ident: 10.1016/j.bbagen.2014.06.017_bb0270 article-title: The in vivo mitochondrial two-step maturation of human frataxin publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddn244 – volume: 1147 start-page: 37 year: 2008 ident: 10.1016/j.bbagen.2014.06.017_bb0400 article-title: The role of mitochondria in reactive oxygen species metabolism and signaling publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1427.015 – volume: 51 start-page: 5276 year: 2012 ident: 10.1016/j.bbagen.2014.06.017_bb0405 article-title: Biophysical investigation of the ironome of human jurkat cells and mitochondria publication-title: Biochemistry doi: 10.1021/bi300382d – volume: 6 start-page: e21017 year: 2011 ident: 10.1016/j.bbagen.2014.06.017_bb0145 article-title: Overexpression of human and fly frataxins in Drosophila provokes deleterious effects at biochemical, physiological and developmental levels publication-title: PLoS One doi: 10.1371/journal.pone.0021017 – volume: 256 start-page: 9 issue: Suppl. 1 year: 2009 ident: 10.1016/j.bbagen.2014.06.017_bb0415 article-title: The pathogenesis of Friedreich ataxia and the structure and function of frataxin publication-title: J. Neurol. doi: 10.1007/s00415-009-1003-2 – volume: 10 start-page: 2463 year: 2001 ident: 10.1016/j.bbagen.2014.06.017_bb0055 article-title: The phylogenetic distribution of frataxin indicates a role in iron–sulfur cluster protein assembly publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/10.21.2463 – volume: 399 start-page: 123 year: 2010 ident: 10.1016/j.bbagen.2014.06.017_bb0195 article-title: The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.07.014 – volume: 11 start-page: 815 year: 2002 ident: 10.1016/j.bbagen.2014.06.017_bb0345 article-title: Frataxin promotes antioxidant defense in a thiol-dependent manner resulting in diminished malignant transformation in vitro publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/11.7.815 – volume: 512 start-page: 291 year: 2002 ident: 10.1016/j.bbagen.2014.06.017_bb0115 article-title: Frataxin knockin mouse publication-title: FEBS Lett. doi: 10.1016/S0014-5793(02)02251-2 – volume: 582 start-page: 715 year: 2008 ident: 10.1016/j.bbagen.2014.06.017_bb0135 article-title: Overexpression of frataxin in the mitochondria increases resistance to oxidative stress and extends lifespan in Drosophila publication-title: FEBS Lett. doi: 10.1016/j.febslet.2008.01.046 – volume: 372 start-page: 91 year: 2007 ident: 10.1016/j.bbagen.2014.06.017_bb0210 article-title: Studying mitochondria in an attractive model: Schizosaccharomyces pombe publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-365-3_7 – volume: 97 start-page: 11319 year: 2000 ident: 10.1016/j.bbagen.2014.06.017_bb0155 article-title: Lineage-specific loss and divergence of functionally linked genes in eukaryotes publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.200346997 – volume: 125 start-page: 6078 year: 2003 ident: 10.1016/j.bbagen.2014.06.017_bb0065 article-title: Iron–sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins publication-title: J. Am. Chem. Soc. doi: 10.1021/ja027967i – volume: 21 start-page: 2955 year: 1993 ident: 10.1016/j.bbagen.2014.06.017_bb0170 article-title: Comparison of Schizosaccharomyces pombe expression systems publication-title: Nucleic Acids Res. doi: 10.1093/nar/21.12.2955 – volume: 24 start-page: 4676 year: 1996 ident: 10.1016/j.bbagen.2014.06.017_bb0190 article-title: Fission yeast genes which disrupt mitotic chromosome segregation when overexpressed publication-title: Nucleic Acids Res. doi: 10.1093/nar/24.23.4676 – volume: 33 start-page: 3735 year: 2013 ident: 10.1016/j.bbagen.2014.06.017_bb0330 article-title: The yeast snt2 protein coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00025-13 – volume: 43 start-page: 311 year: 2003 ident: 10.1016/j.bbagen.2014.06.017_bb0365 article-title: Genetic conservation versus variability in mitochondria: the architecture of the mitochondrial genome in the petite-negative yeast Schizosaccharomyces pombe publication-title: Curr. Genet. doi: 10.1007/s00294-003-0404-5 – volume: 271 start-page: 1423 year: 1996 ident: 10.1016/j.bbagen.2014.06.017_bb0020 article-title: Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion publication-title: Science doi: 10.1126/science.271.5254.1423 – volume: 281 start-page: 977 year: 2006 ident: 10.1016/j.bbagen.2014.06.017_bb0350 article-title: Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto Warburg revisited publication-title: J. Biol. Chem. doi: 10.1074/jbc.M511064200 – volume: 3 start-page: 185 year: 2001 ident: 10.1016/j.bbagen.2014.06.017_bb0360 article-title: Rescue of the Friedreich's ataxia knockout mouse by human YAC transgenesis publication-title: Neurogenetics doi: 10.1007/s100480100118 – volume: 12 start-page: 2037 year: 2004 ident: 10.1016/j.bbagen.2014.06.017_bb0045 article-title: Solution structure of the bacterial frataxin ortholog, CyaY: mapping the iron binding sites publication-title: Structure doi: 10.1016/j.str.2004.08.012 – volume: 7 start-page: 619 year: 2008 ident: 10.1016/j.bbagen.2014.06.017_bb0395 article-title: Bot1p is required for mitochondrial translation, respiratory function, and normal cell morphology in the fission yeast Schizosaccharomyces pombe publication-title: Eukaryot. Cell doi: 10.1128/EC.00048-07 |
SSID | ssj0000595 ssj0025309 |
Score | 2.1763823 |
Snippet | The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron–sulfur cluster... The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron-sulfur cluster... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3022 |
SubjectTerms | ataxia (disorder) biogenesis cell respiration enzymes Frataxin Friedreich Ataxia - genetics Friedreich Ataxia - metabolism Friedreich's ataxia Fungal Proteins - genetics Fungal Proteins - metabolism gene overexpression iron Iron - metabolism iron absorption Iron homeostasis Iron-Binding Proteins - biosynthesis Iron-Binding Proteins - genetics Iron–sulfur cluster mitochondria mitochondrial membrane Mitochondrial Membranes - metabolism neurodegenerative diseases oxidative stress Oxidative Stress - genetics phenotype plasmids Schizosaccharomyces - genetics Schizosaccharomyces - metabolism Schizosaccharomyces pombe Sequence Homology, Amino Acid stress response thiamin Up-Regulation |
Title | The role of frataxin in fission yeast iron metabolism: Implications for Friedreich's ataxia |
URI | https://dx.doi.org/10.1016/j.bbagen.2014.06.017 https://www.ncbi.nlm.nih.gov/pubmed/24997422 https://www.proquest.com/docview/1556287499 https://www.proquest.com/docview/2000222421 |
Volume | 1840 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_sSakvpbVaz7ayBaFP8W6TTXbTNzl6nD3qgx9U8GHZr2DKmRPvBH3p396ZfKiFilAIhITdsMxM5oP97fwAdnnunI2Vi7hFCxbOoR80Mo2GVlpvhyZJFR1O_nGYTU7F97P0bAVG3VkYglW2vr_x6bW3bt8MWmkOrspycEybephOYMSnwCPRD6_GGO1VD1b3D6aTwweHnNbkKzQ-ogndCboa5mUt_rfUCJWLupFnzVz2zwj1VAZaR6LxG3jdppBsv1nlW1gJ1Tq8bEgl79bh1ajjcHsH52gFjACEbF6wApVtbsuK4VWUhH6t2B1R9zA66sYuwxINYlYuLr-yg0c4c4ZpLRtjRe2vQ-kuvixY_RmzASfjbyejSdTSKUQuydNlJKwJ3guVGJu7YL1JsdawIh763HuZhoRzl1GGwhNuC-J94cpznrnYBj_0ySb0qnkVtoAZr4KzQUlrvAhGKmFUJgOXqhBZ5kQfkk6C2rWtxonxYqY7TNkv3chdk9w1Qeu47EN0P-uqabXxzHjZKUf_ZTIao8EzMz93utSoENoiMVWY3yw0ZlcZMQDk-dNj4rppEG2l9-F9Ywj368ViFgu0ON7-77V9gDV6avCCH6G3vL4JnzDvWdodeLH3m--01k336dHP6R-TzwOE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5MQkkvpUlfbtN2A4WeVHullXaVWzExTuPkUhcCPSz7ElGxZRM7kFzy2zOjR9pCQ6Cgk7QSy8xo5lvmmxmATzx3zsbKRdyiBQvn0A8amUZDK623Q5OkioqTT8-yyQ_x7Tw978Goq4UhWmXr-xufXnvr9s6gleZgVZaD75TUQziBEZ8Cj0Q_vC1ozAEa9Zfb3zwPxA9pk0oQES3v6udqkpe1-NdSG1Qu6jae9dyyf8anh_BnHYfGz-FZCyDZ12aPu9AL1R48aUZK3uzBzqib4PYCfqINMKIPsmXBClS1uS4rhldREve1Yjc0uIdRoRtbhA2aw7xcLw7Z8R8sc4aglo3xPO0vQ-kuPq9Z_RnzEmbjo9loErXDFCKX5OkmEtYE74VKjM1dsN6keNKwIh763HuZhoRzlxE-4Qm3BU194cpznrnYBj_0ySvYqpZVeAPMeBWcDUpa40UwUgmjMhm4VIXIMif6kHQS1K5tNE7zLua6Y5T90o3cNcldE7GOyz5E92-tmkYbj6yXnXL0XwajMRY88uZBp0uNCqEEianC8mqtEVtl1P8_zx9eE9ctgyiR3ofXjSHc7xePsng8i-O3_723j7AzmZ1O9fT47OQdPKUnDXNwH7Y2l1fhPSKgjf1QW_gdlKoCow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+frataxin+in+fission+yeast+iron+metabolism%3A+implications+for+Friedreich%27s+ataxia&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Wang%2C+Yu&rft.au=Wang%2C+Yiwei&rft.au=Marcus%2C+S&rft.au=Busenlehner%2C+L+S&rft.date=2014-10-01&rft.issn=0006-3002&rft.volume=1840&rft.issue=10&rft.spage=3022&rft_id=info:doi/10.1016%2Fj.bbagen.2014.06.017&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |