Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension

Departments of 1 Biomedical Engineering and 2 Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin Submitted 1 December 2003 ; accepted in final form 22 October 2004 Right heart failure due to pulmonary hypertension causes significant morbidity and mortality. To study t...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Heart and circulatory physiology Vol. 288; no. 3; pp. H1209 - H1217
Main Authors Kobs, Ryan W, Muvarak, Nidal E, Eickhoff, Jens C, Chesler, Naomi C
Format Journal Article
LanguageEnglish
Published United States 01.03.2005
Subjects
Online AccessGet full text
ISSN0363-6135
1522-1539
DOI10.1152/ajpheart.01129.2003

Cover

Abstract Departments of 1 Biomedical Engineering and 2 Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin Submitted 1 December 2003 ; accepted in final form 22 October 2004 Right heart failure due to pulmonary hypertension causes significant morbidity and mortality. To study the linked vascular mechanical and biological changes that are induced by pulmonary hypertension, we mechanically tested isolated left main pulmonary arteries from mice exposed to chronic hypobaric hypoxia and performed histological assays on contralateral vessels. In isolated vessel tests, hypoxic vessels stretched less in response to pressure than controls at all pressure levels. Given the short length and large diameter of the pulmonary artery, the tangent Young's modulus could not be measured; instead, an effective elastic modulus was calculated that increased significantly with hypoxia [(280 kPa (SD 53) and 296 kPa (SD 50) for 10 and 15 days, respectively, vs. 222 kPa (SD 35) for control; P < 0.02)]. Hypoxic vessels also had higher damping coefficients [(0.063 (SD 0.017) and 0.054 (SD 0.014) for 10 and 15 days, respectively, vs. 0.033 (SD 0.016) for control; P < 0.002)], indicating increased energy dissipation. The increased stiffness with hypoxia correlated with an increase in collagen thickness (percent collagen multiplied by wall thickness) as well as the sum of elastin and collagen thicknesses measured histologically in the artery wall. These results highlight the mechanobiological changes in the pulmonary vasculature that occur in response to hypoxia-induced pulmonary hypertension. Furthermore, they demonstrate significant vascular mechanical and biological changes that would increase pulmonary vascular impedance, leading to right heart failure. pulmonary hypertension; elastic modulus; damping; elastin; collagen Address for reprint requests and other correspondence: N. C. Chesler, Dept. of Biomedical Engineering, Univ. of Wisconsin-Madison, Rm. 2146, Engineering Centers Bldg., 1550 Engineering Dr., Madison, WI 53706-1609 (E-mail: chesler{at}engr.wisc.edu )
AbstractList Right heart failure due to pulmonary hypertension causes significant morbidity and mortality. To study the linked vascular mechanical and biological changes that are induced by pulmonary hypertension, we mechanically tested isolated left main pulmonary arteries from mice exposed to chronic hypobaric hypoxia and performed histological assays on contralateral vessels. In isolated vessel tests, hypoxic vessels stretched less in response to pressure than controls at all pressure levels. Given the short length and large diameter of the pulmonary artery, the tangent Young's modulus could not be measured; instead, an effective elastic modulus was calculated that increased significantly with hypoxia [(280 kPa (SD 53) and 296 kPa (SD 50) for 10 and 15 days, respectively, vs. 222 kPa (SD 35) for control; P < 0.02)]. Hypoxic vessels also had higher damping coefficients [(0.063 (SD 0.017) and 0.054 (SD 0.014) for 10 and 15 days, respectively, vs. 0.033 (SD 0.016) for control; P < 0.002)], indicating increased energy dissipation. The increased stiffness with hypoxia correlated with an increase in collagen thickness (percent collagen multiplied by wall thickness) as well as the sum of elastin and collagen thicknesses measured histologically in the artery wall. These results highlight the mechanobiological changes in the pulmonary vasculature that occur in response to hypoxia-induced pulmonary hypertension. Furthermore, they demonstrate significant vascular mechanical and biological changes that would increase pulmonary vascular impedance, leading to right heart failure.
Departments of 1 Biomedical Engineering and 2 Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin Submitted 1 December 2003 ; accepted in final form 22 October 2004 Right heart failure due to pulmonary hypertension causes significant morbidity and mortality. To study the linked vascular mechanical and biological changes that are induced by pulmonary hypertension, we mechanically tested isolated left main pulmonary arteries from mice exposed to chronic hypobaric hypoxia and performed histological assays on contralateral vessels. In isolated vessel tests, hypoxic vessels stretched less in response to pressure than controls at all pressure levels. Given the short length and large diameter of the pulmonary artery, the tangent Young's modulus could not be measured; instead, an effective elastic modulus was calculated that increased significantly with hypoxia [(280 kPa (SD 53) and 296 kPa (SD 50) for 10 and 15 days, respectively, vs. 222 kPa (SD 35) for control; P < 0.02)]. Hypoxic vessels also had higher damping coefficients [(0.063 (SD 0.017) and 0.054 (SD 0.014) for 10 and 15 days, respectively, vs. 0.033 (SD 0.016) for control; P < 0.002)], indicating increased energy dissipation. The increased stiffness with hypoxia correlated with an increase in collagen thickness (percent collagen multiplied by wall thickness) as well as the sum of elastin and collagen thicknesses measured histologically in the artery wall. These results highlight the mechanobiological changes in the pulmonary vasculature that occur in response to hypoxia-induced pulmonary hypertension. Furthermore, they demonstrate significant vascular mechanical and biological changes that would increase pulmonary vascular impedance, leading to right heart failure. pulmonary hypertension; elastic modulus; damping; elastin; collagen Address for reprint requests and other correspondence: N. C. Chesler, Dept. of Biomedical Engineering, Univ. of Wisconsin-Madison, Rm. 2146, Engineering Centers Bldg., 1550 Engineering Dr., Madison, WI 53706-1609 (E-mail: chesler{at}engr.wisc.edu )
Right heart failure due to pulmonary hypertension causes significant morbidity and mortality. To study the linked vascular mechanical and biological changes that are induced by pulmonary hypertension, we mechanically tested isolated left main pulmonary arteries from mice exposed to chronic hypobaric hypoxia and performed histological assays on contralateral vessels. In isolated vessel tests, hypoxic vessels stretched less in response to pressure than controls at all pressure levels. Given the short length and large diameter of the pulmonary artery, the tangent Young's modulus could not be measured; instead, an effective elastic modulus was calculated that increased significantly with hypoxia [(280 kPa (SD 53) and 296 kPa (SD 50) for 10 and 15 days, respectively, vs. 222 kPa (SD 35) for control; P < 0.02)]. Hypoxic vessels also had higher damping coefficients [(0.063 (SD 0.017) and 0.054 (SD 0.014) for 10 and 15 days, respectively, vs. 0.033 (SD 0.016) for control; P < 0.002)], indicating increased energy dissipation. The increased stiffness with hypoxia correlated with an increase in collagen thickness (percent collagen multiplied by wall thickness) as well as the sum of elastin and collagen thicknesses measured histologically in the artery wall. These results highlight the mechanobiological changes in the pulmonary vasculature that occur in response to hypoxia-induced pulmonary hypertension. Furthermore, they demonstrate significant vascular mechanical and biological changes that would increase pulmonary vascular impedance, leading to right heart failure.Right heart failure due to pulmonary hypertension causes significant morbidity and mortality. To study the linked vascular mechanical and biological changes that are induced by pulmonary hypertension, we mechanically tested isolated left main pulmonary arteries from mice exposed to chronic hypobaric hypoxia and performed histological assays on contralateral vessels. In isolated vessel tests, hypoxic vessels stretched less in response to pressure than controls at all pressure levels. Given the short length and large diameter of the pulmonary artery, the tangent Young's modulus could not be measured; instead, an effective elastic modulus was calculated that increased significantly with hypoxia [(280 kPa (SD 53) and 296 kPa (SD 50) for 10 and 15 days, respectively, vs. 222 kPa (SD 35) for control; P < 0.02)]. Hypoxic vessels also had higher damping coefficients [(0.063 (SD 0.017) and 0.054 (SD 0.014) for 10 and 15 days, respectively, vs. 0.033 (SD 0.016) for control; P < 0.002)], indicating increased energy dissipation. The increased stiffness with hypoxia correlated with an increase in collagen thickness (percent collagen multiplied by wall thickness) as well as the sum of elastin and collagen thicknesses measured histologically in the artery wall. These results highlight the mechanobiological changes in the pulmonary vasculature that occur in response to hypoxia-induced pulmonary hypertension. Furthermore, they demonstrate significant vascular mechanical and biological changes that would increase pulmonary vascular impedance, leading to right heart failure.
Author Chesler, Naomi C
Eickhoff, Jens C
Kobs, Ryan W
Muvarak, Nidal E
Author_xml – sequence: 1
  fullname: Kobs, Ryan W
– sequence: 2
  fullname: Muvarak, Nidal E
– sequence: 3
  fullname: Eickhoff, Jens C
– sequence: 4
  fullname: Chesler, Naomi C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15528223$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rGzEQhkVJaZy0v6BQdOptHX1Y8i49ldA0BUMv6VnI0qxXqVbaSloS__sqcWJCoIWBYdD7zIfeM3QSYgCEPlKypFSwC307DaBTWRJKWbdkhPA3aFFfWEMF707QgnDJG0m5OEVnOd8SQsRa8nfolArBWsb4ApWNC7_B4hHMoIMz2mMdLN666OPuUOYJTMk49jjBGC14F3bYBTzGOQOeZj_GoNMe11UgOcj4zpUBD_sp3jvduGBnUwfUGqogZBfDe_S21z7Dh6d8jn5dfbu5vG42P7__uPy6aQzvRGm4tB2TwpptRykw4FtNJWOt6KWUrSRgqDWyxsroNecr3YtWAu31ismOAeHn6POh75TinxlyUaPLBrzXAerySq6rkqxXVfjpSThvR7BqSm6sJ6nnf6qC7iAwKeacoFfGFV3qLSVp5xUl6sET9eyJevREPXhSWf6KPbb_L_XlQA1uN9y5BGoa9vnRlr26mr2_gftyJFnbKq6uKSOdmmxf6Yt_08dxLyj-FwsEuyU
CitedBy_id crossref_primary_10_1371_journal_pone_0078569
crossref_primary_10_1152_physiol_00019_2021
crossref_primary_10_3389_fphys_2020_00002
crossref_primary_10_4103_2045_8932_105040
crossref_primary_10_1152_ajpheart_00493_2009
crossref_primary_10_1115_1_4024135
crossref_primary_10_1172_jci_insight_86987
crossref_primary_10_1016_j_lfs_2018_10_005
crossref_primary_10_1007_s10439_018_2047_1
crossref_primary_10_1038_s41598_022_07616_3
crossref_primary_10_1115_1_4048031
crossref_primary_10_1152_japplphysiol_00595_2005
crossref_primary_10_1183_09031936_00105110
crossref_primary_10_1007_s10237_008_0133_2
crossref_primary_10_1152_japplphysiol_00533_2010
crossref_primary_10_1007_s10439_012_0509_4
crossref_primary_10_1152_ajpheart_00695_2017
crossref_primary_10_1007_s10237_011_0309_z
crossref_primary_10_1152_ajpregu_00282_2020
crossref_primary_10_1016_j_jbiomech_2006_03_010
crossref_primary_10_1016_j_jbiomech_2014_07_013
crossref_primary_10_1016_j_jbiomech_2010_03_033
crossref_primary_10_4103_2045_8932_83453
crossref_primary_10_1016_j_jbiomech_2018_12_012
crossref_primary_10_1038_s41598_019_55796_2
crossref_primary_10_1016_j_cmpb_2011_09_002
crossref_primary_10_1007_s11517_011_0849_5
crossref_primary_10_1115_1_4064967
crossref_primary_10_1152_japplphysiol_01173_2009
crossref_primary_10_1115_1_4034826
crossref_primary_10_1007_s10237_006_0018_1
crossref_primary_10_1016_j_actbio_2015_11_058
crossref_primary_10_1007_s11831_014_9133_9
crossref_primary_10_1152_ajpregu_00274_2011
crossref_primary_10_1016_j_jmbbm_2015_04_025
crossref_primary_10_1016_j_jbiomech_2006_03_023
crossref_primary_10_1152_ajpheart_00025_2011
crossref_primary_10_2746_042516409X464131
crossref_primary_10_1152_ajpheart_00758_2013
crossref_primary_10_1016_j_devcel_2016_11_007
crossref_primary_10_1152_ajplung_00002_2012
crossref_primary_10_1152_japplphysiol_00962_2016
crossref_primary_10_1007_s12195_018_0534_y
crossref_primary_10_1113_expphysiol_2012_069096
crossref_primary_10_1016_j_ppedcard_2010_09_008
crossref_primary_10_1186_1532_429X_15_81
crossref_primary_10_1152_japplphysiol_90592_2008
crossref_primary_10_1152_ajpheart_00127_2008
crossref_primary_10_3389_fphys_2018_00951
crossref_primary_10_1007_s13239_012_0115_5
crossref_primary_10_1152_japplphysiol_00314_2014
crossref_primary_10_1513_AnnalsATS_201509_599FR
crossref_primary_10_1115_1_4024161
crossref_primary_10_1016_j_jmbbm_2021_104448
crossref_primary_10_1007_s10439_016_1716_1
crossref_primary_10_14814_phy2_12815
crossref_primary_10_3389_fbioe_2020_611149
crossref_primary_10_1016_j_pharmthera_2023_108438
crossref_primary_10_1161_01_RES_0000243584_45145_3f
crossref_primary_10_1172_JCI141467
crossref_primary_10_1152_japplphysiol_00325_2016
crossref_primary_10_1016_j_jcmg_2015_12_015
crossref_primary_10_1007_s10237_012_0467_7
crossref_primary_10_1016_S2213_2600_15_00517_2
crossref_primary_10_1016_j_bbrc_2022_09_036
crossref_primary_10_1002_mrm_25326
crossref_primary_10_1016_j_jbiomech_2011_11_020
crossref_primary_10_1007_s10237_021_01519_4
crossref_primary_10_1007_s11340_020_00666_6
crossref_primary_10_1152_japplphysiol_00274_2007
crossref_primary_10_1161_JAHA_121_023532
crossref_primary_10_1038_nature20173
crossref_primary_10_1113_jphysiol_2011_210625
crossref_primary_10_1155_2017_8475701
crossref_primary_10_1152_ajplung_00381_2015
Cites_doi 10.1161/01.HYP.37.2.322
10.1152/ajplung.2000.279.4.L641
10.1056/NEJM199701093360207
10.1152/ajpheart.1979.236.6.H818
10.1016/0021-9290(77)90070-7
10.1152/ajpheart.1984.246.1.H90
10.1152/jappl.1996.81.5.2147
10.1038/sj.neo.7900069
10.1378/chest.122.6_suppl.326S
10.1115/1.3138218
10.1152/ajpheart.1999.277.5.H2002
10.1016/0021-9290(84)90142-8
10.1152/jappl.1991.70.6.2455
10.1161/01.RES.25.6.637
10.1152/jappl.2002.92.1.67
10.1152/jappl.1994.77.3.1451
10.1016/0735-1097(93)90682-Q
10.1113/jphysiol.1965.sp007623
10.1152/ajplung.1995.269.5.L690
10.1114/1.1380417
10.1007/978-1-4419-6856-2
10.1172/JCI3862
10.1115/1.1695578
10.1007/978-0-387-21576-1
10.1152/ajpheart.1999.277.5.H1745
10.1172/JCI11144
10.1177/37.3.2465335
10.1152/ajpregu.1992.263.6.R1260
10.1152/ajplung.1993.264.2.L100
10.1172/JCI117077
10.1007/978-1-4757-2257-4
10.1172/JCI114862
10.1152/jappl.1992.72.6.2118
10.1016/S0163-7258(01)00157-7
10.1016/0026-2862(70)90048-8
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1152/ajpheart.01129.2003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1539
EndPage H1217
ExternalDocumentID 15528223
10_1152_ajpheart_01129_2003
ajpheart_288_3_H1209
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: P20RR15557
GroupedDBID -
02
23M
2WC
39C
53G
5GY
5VS
8M5
ABFLS
ABPTK
ACIWK
ACPRK
ADACO
ADBBV
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
C1A
DIK
DL
E3Z
EBS
EJD
F5P
GX1
H13
KQ8
O0-
OK1
P2P
PQEST
PQQKQ
RAP
RHF
RHI
RPL
UKR
WH7
WOQ
---
3O-
4.4
6J9
AAFWJ
AAYXX
ABJNI
ACBEA
BKKCC
BTFSW
CITATION
EMOBN
ITBOX
RPRKH
TR2
W8F
XSW
YSK
YYP
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c395t-36d9265dcb911e2e3ba162285f666860ec1dc6dc64ca7334af586e1fa42692e03
ISSN 0363-6135
IngestDate Thu Jul 10 22:09:07 EDT 2025
Sat Sep 28 07:49:20 EDT 2024
Thu Apr 24 23:04:25 EDT 2025
Tue Jul 01 04:19:56 EDT 2025
Mon May 06 11:35:17 EDT 2019
Tue Jan 05 17:57:05 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-36d9265dcb911e2e3ba162285f666860ec1dc6dc64ca7334af586e1fa42692e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15528223
PQID 67426074
PQPubID 23479
ParticipantIDs proquest_miscellaneous_67426074
crossref_primary_10_1152_ajpheart_01129_2003
crossref_citationtrail_10_1152_ajpheart_01129_2003
pubmed_primary_15528223
highwire_physiology_ajpheart_288_3_H1209
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20050301
2005-03-00
2005-Mar
PublicationDateYYYYMMDD 2005-03-01
PublicationDate_xml – month: 03
  year: 2005
  text: 20050301
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of physiology. Heart and circulatory physiology
PublicationTitleAlternate Am J Physiol Heart Circ Physiol
PublicationYear 2005
References R41
R40
R21
R43
R20
R42
R23
R22
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R10
R32
R31
R12
R34
R11
R33
R14
R36
R13
R35
R16
R38
R15
R37
R18
R17
R39
R19
References_xml – ident: R32
  doi: 10.1161/01.HYP.37.2.322
– ident: R35
  doi: 10.1152/ajplung.2000.279.4.L641
– ident: R37
  doi: 10.1056/NEJM199701093360207
– ident: R36
  doi: 10.1152/ajpheart.1979.236.6.H818
– ident: R26
  doi: 10.1016/0021-9290(77)90070-7
– ident: R23
– ident: R6
  doi: 10.1152/ajpheart.1984.246.1.H90
– ident: R27
  doi: 10.1152/jappl.1996.81.5.2147
– ident: R33
  doi: 10.1038/sj.neo.7900069
– ident: R39
  doi: 10.1378/chest.122.6_suppl.326S
– ident: R42
  doi: 10.1115/1.3138218
– ident: R4
  doi: 10.1152/ajpheart.1999.277.5.H2002
– ident: R41
  doi: 10.1016/0021-9290(84)90142-8
– ident: R15
  doi: 10.1152/jappl.1991.70.6.2455
– ident: R31
  doi: 10.1161/01.RES.25.6.637
– ident: R1
– ident: R12
  doi: 10.1152/jappl.2002.92.1.67
– ident: R5
– ident: R25
  doi: 10.1152/jappl.1994.77.3.1451
– ident: R18
– ident: R24
  doi: 10.1016/0735-1097(93)90682-Q
– ident: R2
  doi: 10.1113/jphysiol.1965.sp007623
– ident: R7
  doi: 10.1152/ajplung.1995.269.5.L690
– ident: R19
  doi: 10.1114/1.1380417
– ident: R13
  doi: 10.1007/978-1-4419-6856-2
– ident: R10
  doi: 10.1172/JCI3862
– ident: R3
  doi: 10.1115/1.1695578
– ident: R20
  doi: 10.1007/978-0-387-21576-1
– ident: R11
  doi: 10.1152/ajpheart.1999.277.5.H1745
– ident: R29
– ident: R40
  doi: 10.1172/JCI11144
– ident: R16
  doi: 10.1177/37.3.2465335
– ident: R9
  doi: 10.1152/ajpregu.1992.263.6.R1260
– ident: R22
  doi: 10.1152/ajplung.1993.264.2.L100
– ident: R38
  doi: 10.1172/JCI117077
– ident: R14
  doi: 10.1007/978-1-4757-2257-4
– ident: R34
  doi: 10.1172/JCI114862
– ident: R43
  doi: 10.1152/jappl.1992.72.6.2118
– ident: R21
  doi: 10.1016/S0163-7258(01)00157-7
– ident: R28
  doi: 10.1016/0026-2862(70)90048-8
– ident: R30
– ident: R8
– ident: R17
SSID ssj0005763
Score 2.1397483
Snippet Departments of 1 Biomedical Engineering and 2 Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin Submitted 1 December 2003 ;...
Right heart failure due to pulmonary hypertension causes significant morbidity and mortality. To study the linked vascular mechanical and biological changes...
SourceID proquest
pubmed
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage H1209
SubjectTerms Animals
Collagen - metabolism
Elasticity
Elastin - metabolism
Hypertension, Pulmonary - etiology
Hypertension, Pulmonary - pathology
Hypertension, Pulmonary - physiopathology
Hypoxia - complications
Hypoxia - pathology
Hypoxia - physiopathology
Male
Mice
Mice, Inbred C57BL
Pulmonary Artery - pathology
Pulmonary Artery - physiology
Stress, Mechanical
Title Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension
URI http://ajpheart.physiology.org/cgi/content/abstract/288/3/H1209
https://www.ncbi.nlm.nih.gov/pubmed/15528223
https://www.proquest.com/docview/67426074
Volume 288
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1522-1539
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005763
  issn: 0363-6135
  databaseCode: KQ8
  dateStart: 19971001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1522-1539
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0005763
  issn: 0363-6135
  databaseCode: GX1
  dateStart: 19971001
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bj5QwFG7GNTG-GN31gtc-GGOijEOBwjxuNupkk934MBvnjZRSMugOEGSM42_yR3pOSwHNrFGTCRlooQ3fBz3ncC6EPM_yKBU84C5XWewGXqxckFozV3oClgeW5nOJBv2zc764CE5X4Woy-THyWtq26VR-3xtX8j-owjHAFaNk_wHZ_qJwAP4DvrAFhGH7VxijIgkC40Zh-G4f9m_yKpldHUipvTUapYvedCEsqPCrV_X2EuaKfnPasxOUZmOXXe_q6lshXNDXt-gfAPuq0a7uHYg2ba393DPKP6FNJdpWP8UYp8Z4sMuiQYdX_UV_6NG_7avUGHx2cK2PAwe-ikaYGkFFhvmPe_G_kJ_XlckneQrTGky9J2v1pYttPBfVpuharFkjHPy6-nAuH_Rak8vEvqpZHI846Y9evAuMAd6_JISYYlZ8qrFCeDudoYCp88COewOu9UazBFPSgdDkD-tj77Vom66R6yziHOtlvF-NHIoiU7fPTrzLcQXjv9kzuq4HZa73q0hk01RfrfJo0Wd5m9zqdBZ6bAh4h0xUeUiOjkuAc7OjL-iHHtBDcuOsc9Y4Iq2hJx3oSYEKdKAn7ehJq5wO9KRFSTU9aU9PaulJkZ70N3rSMT3vkot3b5cnC7cr8uFKfx62rs-zOeNhJlNYdhVTfio8zlgc5qBYx3ympJdJDr9Aisj3A5GHMVdeLjAGm6mZf48clFWpHhDKWToLpYw9yUWQBukcBDFPMBnwNMzimXQIs_c5kV0GfCzEcploTThkicUp0ThhiVbfIa_7k2qTAObP3QMLYDI8Tgnak5bApv4UYHLiJ5q1SZ3lDnm577R-gFF3hzyzvEhgKcDve6JUAEvCIyw3EQUOuW_oMky4Y9rDK1sekZvDU_iYHLTNVj0BcbtNn2qW_wTXGNyn
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linked+mechanical+and+biological+aspects+of+remodeling+in+mouse+pulmonary+arteries+with+hypoxia-induced+hypertension&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=Kobs%2C+Ryan+W&rft.au=Muvarak%2C+Nidal+E&rft.au=Eickhoff%2C+Jens+C&rft.au=Chesler%2C+Naomi+C&rft.date=2005-03-01&rft.issn=0363-6135&rft.volume=288&rft.issue=3&rft.spage=H1209&rft_id=info:doi/10.1152%2Fajpheart.01129.2003&rft_id=info%3Apmid%2F15528223&rft.externalDocID=15528223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon