Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension
Departments of 1 Biomedical Engineering and 2 Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin Submitted 1 December 2003 ; accepted in final form 22 October 2004 Right heart failure due to pulmonary hypertension causes significant morbidity and mortality. To study t...
Saved in:
Published in | American journal of physiology. Heart and circulatory physiology Vol. 288; no. 3; pp. H1209 - H1217 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.03.2005
|
Subjects | |
Online Access | Get full text |
ISSN | 0363-6135 1522-1539 |
DOI | 10.1152/ajpheart.01129.2003 |
Cover
Abstract | Departments of 1 Biomedical Engineering and 2 Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin
Submitted 1 December 2003
; accepted in final form 22 October 2004
Right heart failure due to pulmonary hypertension causes significant morbidity and mortality. To study the linked vascular mechanical and biological changes that are induced by pulmonary hypertension, we mechanically tested isolated left main pulmonary arteries from mice exposed to chronic hypobaric hypoxia and performed histological assays on contralateral vessels. In isolated vessel tests, hypoxic vessels stretched less in response to pressure than controls at all pressure levels. Given the short length and large diameter of the pulmonary artery, the tangent Young's modulus could not be measured; instead, an effective elastic modulus was calculated that increased significantly with hypoxia [(280 kPa (SD 53) and 296 kPa (SD 50) for 10 and 15 days, respectively, vs. 222 kPa (SD 35) for control; P < 0.02)]. Hypoxic vessels also had higher damping coefficients [(0.063 (SD 0.017) and 0.054 (SD 0.014) for 10 and 15 days, respectively, vs. 0.033 (SD 0.016) for control; P < 0.002)], indicating increased energy dissipation. The increased stiffness with hypoxia correlated with an increase in collagen thickness (percent collagen multiplied by wall thickness) as well as the sum of elastin and collagen thicknesses measured histologically in the artery wall. These results highlight the mechanobiological changes in the pulmonary vasculature that occur in response to hypoxia-induced pulmonary hypertension. Furthermore, they demonstrate significant vascular mechanical and biological changes that would increase pulmonary vascular impedance, leading to right heart failure.
pulmonary hypertension; elastic modulus; damping; elastin; collagen
Address for reprint requests and other correspondence: N. C. Chesler, Dept. of Biomedical Engineering, Univ. of Wisconsin-Madison, Rm. 2146, Engineering Centers Bldg., 1550 Engineering Dr., Madison, WI 53706-1609 (E-mail: chesler{at}engr.wisc.edu ) |
---|---|
AbstractList | Right heart failure due to pulmonary hypertension causes significant morbidity and mortality. To study the linked vascular mechanical and biological changes that are induced by pulmonary hypertension, we mechanically tested isolated left main pulmonary arteries from mice exposed to chronic hypobaric hypoxia and performed histological assays on contralateral vessels. In isolated vessel tests, hypoxic vessels stretched less in response to pressure than controls at all pressure levels. Given the short length and large diameter of the pulmonary artery, the tangent Young's modulus could not be measured; instead, an effective elastic modulus was calculated that increased significantly with hypoxia [(280 kPa (SD 53) and 296 kPa (SD 50) for 10 and 15 days, respectively, vs. 222 kPa (SD 35) for control; P < 0.02)]. Hypoxic vessels also had higher damping coefficients [(0.063 (SD 0.017) and 0.054 (SD 0.014) for 10 and 15 days, respectively, vs. 0.033 (SD 0.016) for control; P < 0.002)], indicating increased energy dissipation. The increased stiffness with hypoxia correlated with an increase in collagen thickness (percent collagen multiplied by wall thickness) as well as the sum of elastin and collagen thicknesses measured histologically in the artery wall. These results highlight the mechanobiological changes in the pulmonary vasculature that occur in response to hypoxia-induced pulmonary hypertension. Furthermore, they demonstrate significant vascular mechanical and biological changes that would increase pulmonary vascular impedance, leading to right heart failure. Departments of 1 Biomedical Engineering and 2 Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin Submitted 1 December 2003 ; accepted in final form 22 October 2004 Right heart failure due to pulmonary hypertension causes significant morbidity and mortality. To study the linked vascular mechanical and biological changes that are induced by pulmonary hypertension, we mechanically tested isolated left main pulmonary arteries from mice exposed to chronic hypobaric hypoxia and performed histological assays on contralateral vessels. In isolated vessel tests, hypoxic vessels stretched less in response to pressure than controls at all pressure levels. Given the short length and large diameter of the pulmonary artery, the tangent Young's modulus could not be measured; instead, an effective elastic modulus was calculated that increased significantly with hypoxia [(280 kPa (SD 53) and 296 kPa (SD 50) for 10 and 15 days, respectively, vs. 222 kPa (SD 35) for control; P < 0.02)]. Hypoxic vessels also had higher damping coefficients [(0.063 (SD 0.017) and 0.054 (SD 0.014) for 10 and 15 days, respectively, vs. 0.033 (SD 0.016) for control; P < 0.002)], indicating increased energy dissipation. The increased stiffness with hypoxia correlated with an increase in collagen thickness (percent collagen multiplied by wall thickness) as well as the sum of elastin and collagen thicknesses measured histologically in the artery wall. These results highlight the mechanobiological changes in the pulmonary vasculature that occur in response to hypoxia-induced pulmonary hypertension. Furthermore, they demonstrate significant vascular mechanical and biological changes that would increase pulmonary vascular impedance, leading to right heart failure. pulmonary hypertension; elastic modulus; damping; elastin; collagen Address for reprint requests and other correspondence: N. C. Chesler, Dept. of Biomedical Engineering, Univ. of Wisconsin-Madison, Rm. 2146, Engineering Centers Bldg., 1550 Engineering Dr., Madison, WI 53706-1609 (E-mail: chesler{at}engr.wisc.edu ) Right heart failure due to pulmonary hypertension causes significant morbidity and mortality. To study the linked vascular mechanical and biological changes that are induced by pulmonary hypertension, we mechanically tested isolated left main pulmonary arteries from mice exposed to chronic hypobaric hypoxia and performed histological assays on contralateral vessels. In isolated vessel tests, hypoxic vessels stretched less in response to pressure than controls at all pressure levels. Given the short length and large diameter of the pulmonary artery, the tangent Young's modulus could not be measured; instead, an effective elastic modulus was calculated that increased significantly with hypoxia [(280 kPa (SD 53) and 296 kPa (SD 50) for 10 and 15 days, respectively, vs. 222 kPa (SD 35) for control; P < 0.02)]. Hypoxic vessels also had higher damping coefficients [(0.063 (SD 0.017) and 0.054 (SD 0.014) for 10 and 15 days, respectively, vs. 0.033 (SD 0.016) for control; P < 0.002)], indicating increased energy dissipation. The increased stiffness with hypoxia correlated with an increase in collagen thickness (percent collagen multiplied by wall thickness) as well as the sum of elastin and collagen thicknesses measured histologically in the artery wall. These results highlight the mechanobiological changes in the pulmonary vasculature that occur in response to hypoxia-induced pulmonary hypertension. Furthermore, they demonstrate significant vascular mechanical and biological changes that would increase pulmonary vascular impedance, leading to right heart failure.Right heart failure due to pulmonary hypertension causes significant morbidity and mortality. To study the linked vascular mechanical and biological changes that are induced by pulmonary hypertension, we mechanically tested isolated left main pulmonary arteries from mice exposed to chronic hypobaric hypoxia and performed histological assays on contralateral vessels. In isolated vessel tests, hypoxic vessels stretched less in response to pressure than controls at all pressure levels. Given the short length and large diameter of the pulmonary artery, the tangent Young's modulus could not be measured; instead, an effective elastic modulus was calculated that increased significantly with hypoxia [(280 kPa (SD 53) and 296 kPa (SD 50) for 10 and 15 days, respectively, vs. 222 kPa (SD 35) for control; P < 0.02)]. Hypoxic vessels also had higher damping coefficients [(0.063 (SD 0.017) and 0.054 (SD 0.014) for 10 and 15 days, respectively, vs. 0.033 (SD 0.016) for control; P < 0.002)], indicating increased energy dissipation. The increased stiffness with hypoxia correlated with an increase in collagen thickness (percent collagen multiplied by wall thickness) as well as the sum of elastin and collagen thicknesses measured histologically in the artery wall. These results highlight the mechanobiological changes in the pulmonary vasculature that occur in response to hypoxia-induced pulmonary hypertension. Furthermore, they demonstrate significant vascular mechanical and biological changes that would increase pulmonary vascular impedance, leading to right heart failure. |
Author | Chesler, Naomi C Eickhoff, Jens C Kobs, Ryan W Muvarak, Nidal E |
Author_xml | – sequence: 1 fullname: Kobs, Ryan W – sequence: 2 fullname: Muvarak, Nidal E – sequence: 3 fullname: Eickhoff, Jens C – sequence: 4 fullname: Chesler, Naomi C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15528223$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rGzEQhkVJaZy0v6BQdOptHX1Y8i49ldA0BUMv6VnI0qxXqVbaSloS__sqcWJCoIWBYdD7zIfeM3QSYgCEPlKypFSwC307DaBTWRJKWbdkhPA3aFFfWEMF707QgnDJG0m5OEVnOd8SQsRa8nfolArBWsb4ApWNC7_B4hHMoIMz2mMdLN666OPuUOYJTMk49jjBGC14F3bYBTzGOQOeZj_GoNMe11UgOcj4zpUBD_sp3jvduGBnUwfUGqogZBfDe_S21z7Dh6d8jn5dfbu5vG42P7__uPy6aQzvRGm4tB2TwpptRykw4FtNJWOt6KWUrSRgqDWyxsroNecr3YtWAu31ismOAeHn6POh75TinxlyUaPLBrzXAerySq6rkqxXVfjpSThvR7BqSm6sJ6nnf6qC7iAwKeacoFfGFV3qLSVp5xUl6sET9eyJevREPXhSWf6KPbb_L_XlQA1uN9y5BGoa9vnRlr26mr2_gftyJFnbKq6uKSOdmmxf6Yt_08dxLyj-FwsEuyU |
CitedBy_id | crossref_primary_10_1371_journal_pone_0078569 crossref_primary_10_1152_physiol_00019_2021 crossref_primary_10_3389_fphys_2020_00002 crossref_primary_10_4103_2045_8932_105040 crossref_primary_10_1152_ajpheart_00493_2009 crossref_primary_10_1115_1_4024135 crossref_primary_10_1172_jci_insight_86987 crossref_primary_10_1016_j_lfs_2018_10_005 crossref_primary_10_1007_s10439_018_2047_1 crossref_primary_10_1038_s41598_022_07616_3 crossref_primary_10_1115_1_4048031 crossref_primary_10_1152_japplphysiol_00595_2005 crossref_primary_10_1183_09031936_00105110 crossref_primary_10_1007_s10237_008_0133_2 crossref_primary_10_1152_japplphysiol_00533_2010 crossref_primary_10_1007_s10439_012_0509_4 crossref_primary_10_1152_ajpheart_00695_2017 crossref_primary_10_1007_s10237_011_0309_z crossref_primary_10_1152_ajpregu_00282_2020 crossref_primary_10_1016_j_jbiomech_2006_03_010 crossref_primary_10_1016_j_jbiomech_2014_07_013 crossref_primary_10_1016_j_jbiomech_2010_03_033 crossref_primary_10_4103_2045_8932_83453 crossref_primary_10_1016_j_jbiomech_2018_12_012 crossref_primary_10_1038_s41598_019_55796_2 crossref_primary_10_1016_j_cmpb_2011_09_002 crossref_primary_10_1007_s11517_011_0849_5 crossref_primary_10_1115_1_4064967 crossref_primary_10_1152_japplphysiol_01173_2009 crossref_primary_10_1115_1_4034826 crossref_primary_10_1007_s10237_006_0018_1 crossref_primary_10_1016_j_actbio_2015_11_058 crossref_primary_10_1007_s11831_014_9133_9 crossref_primary_10_1152_ajpregu_00274_2011 crossref_primary_10_1016_j_jmbbm_2015_04_025 crossref_primary_10_1016_j_jbiomech_2006_03_023 crossref_primary_10_1152_ajpheart_00025_2011 crossref_primary_10_2746_042516409X464131 crossref_primary_10_1152_ajpheart_00758_2013 crossref_primary_10_1016_j_devcel_2016_11_007 crossref_primary_10_1152_ajplung_00002_2012 crossref_primary_10_1152_japplphysiol_00962_2016 crossref_primary_10_1007_s12195_018_0534_y crossref_primary_10_1113_expphysiol_2012_069096 crossref_primary_10_1016_j_ppedcard_2010_09_008 crossref_primary_10_1186_1532_429X_15_81 crossref_primary_10_1152_japplphysiol_90592_2008 crossref_primary_10_1152_ajpheart_00127_2008 crossref_primary_10_3389_fphys_2018_00951 crossref_primary_10_1007_s13239_012_0115_5 crossref_primary_10_1152_japplphysiol_00314_2014 crossref_primary_10_1513_AnnalsATS_201509_599FR crossref_primary_10_1115_1_4024161 crossref_primary_10_1016_j_jmbbm_2021_104448 crossref_primary_10_1007_s10439_016_1716_1 crossref_primary_10_14814_phy2_12815 crossref_primary_10_3389_fbioe_2020_611149 crossref_primary_10_1016_j_pharmthera_2023_108438 crossref_primary_10_1161_01_RES_0000243584_45145_3f crossref_primary_10_1172_JCI141467 crossref_primary_10_1152_japplphysiol_00325_2016 crossref_primary_10_1016_j_jcmg_2015_12_015 crossref_primary_10_1007_s10237_012_0467_7 crossref_primary_10_1016_S2213_2600_15_00517_2 crossref_primary_10_1016_j_bbrc_2022_09_036 crossref_primary_10_1002_mrm_25326 crossref_primary_10_1016_j_jbiomech_2011_11_020 crossref_primary_10_1007_s10237_021_01519_4 crossref_primary_10_1007_s11340_020_00666_6 crossref_primary_10_1152_japplphysiol_00274_2007 crossref_primary_10_1161_JAHA_121_023532 crossref_primary_10_1038_nature20173 crossref_primary_10_1113_jphysiol_2011_210625 crossref_primary_10_1155_2017_8475701 crossref_primary_10_1152_ajplung_00381_2015 |
Cites_doi | 10.1161/01.HYP.37.2.322 10.1152/ajplung.2000.279.4.L641 10.1056/NEJM199701093360207 10.1152/ajpheart.1979.236.6.H818 10.1016/0021-9290(77)90070-7 10.1152/ajpheart.1984.246.1.H90 10.1152/jappl.1996.81.5.2147 10.1038/sj.neo.7900069 10.1378/chest.122.6_suppl.326S 10.1115/1.3138218 10.1152/ajpheart.1999.277.5.H2002 10.1016/0021-9290(84)90142-8 10.1152/jappl.1991.70.6.2455 10.1161/01.RES.25.6.637 10.1152/jappl.2002.92.1.67 10.1152/jappl.1994.77.3.1451 10.1016/0735-1097(93)90682-Q 10.1113/jphysiol.1965.sp007623 10.1152/ajplung.1995.269.5.L690 10.1114/1.1380417 10.1007/978-1-4419-6856-2 10.1172/JCI3862 10.1115/1.1695578 10.1007/978-0-387-21576-1 10.1152/ajpheart.1999.277.5.H1745 10.1172/JCI11144 10.1177/37.3.2465335 10.1152/ajpregu.1992.263.6.R1260 10.1152/ajplung.1993.264.2.L100 10.1172/JCI117077 10.1007/978-1-4757-2257-4 10.1172/JCI114862 10.1152/jappl.1992.72.6.2118 10.1016/S0163-7258(01)00157-7 10.1016/0026-2862(70)90048-8 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1152/ajpheart.01129.2003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1539 |
EndPage | H1217 |
ExternalDocumentID | 15528223 10_1152_ajpheart_01129_2003 ajpheart_288_3_H1209 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: P20RR15557 |
GroupedDBID | - 02 23M 2WC 39C 53G 5GY 5VS 8M5 ABFLS ABPTK ACIWK ACPRK ADACO ADBBV AENEX AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP C1A DIK DL E3Z EBS EJD F5P GX1 H13 KQ8 O0- OK1 P2P PQEST PQQKQ RAP RHF RHI RPL UKR WH7 WOQ --- 3O- 4.4 6J9 AAFWJ AAYXX ABJNI ACBEA BKKCC BTFSW CITATION EMOBN ITBOX RPRKH TR2 W8F XSW YSK YYP ~02 CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c395t-36d9265dcb911e2e3ba162285f666860ec1dc6dc64ca7334af586e1fa42692e03 |
ISSN | 0363-6135 |
IngestDate | Thu Jul 10 22:09:07 EDT 2025 Sat Sep 28 07:49:20 EDT 2024 Thu Apr 24 23:04:25 EDT 2025 Tue Jul 01 04:19:56 EDT 2025 Mon May 06 11:35:17 EDT 2019 Tue Jan 05 17:57:05 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c395t-36d9265dcb911e2e3ba162285f666860ec1dc6dc64ca7334af586e1fa42692e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 15528223 |
PQID | 67426074 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_67426074 crossref_primary_10_1152_ajpheart_01129_2003 crossref_citationtrail_10_1152_ajpheart_01129_2003 pubmed_primary_15528223 highwire_physiology_ajpheart_288_3_H1209 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20050301 2005-03-00 2005-Mar |
PublicationDateYYYYMMDD | 2005-03-01 |
PublicationDate_xml | – month: 03 year: 2005 text: 20050301 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of physiology. Heart and circulatory physiology |
PublicationTitleAlternate | Am J Physiol Heart Circ Physiol |
PublicationYear | 2005 |
References | R41 R40 R21 R43 R20 R42 R23 R22 R25 R24 R27 R26 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R30 R10 R32 R31 R12 R34 R11 R33 R14 R36 R13 R35 R16 R38 R15 R37 R18 R17 R39 R19 |
References_xml | – ident: R32 doi: 10.1161/01.HYP.37.2.322 – ident: R35 doi: 10.1152/ajplung.2000.279.4.L641 – ident: R37 doi: 10.1056/NEJM199701093360207 – ident: R36 doi: 10.1152/ajpheart.1979.236.6.H818 – ident: R26 doi: 10.1016/0021-9290(77)90070-7 – ident: R23 – ident: R6 doi: 10.1152/ajpheart.1984.246.1.H90 – ident: R27 doi: 10.1152/jappl.1996.81.5.2147 – ident: R33 doi: 10.1038/sj.neo.7900069 – ident: R39 doi: 10.1378/chest.122.6_suppl.326S – ident: R42 doi: 10.1115/1.3138218 – ident: R4 doi: 10.1152/ajpheart.1999.277.5.H2002 – ident: R41 doi: 10.1016/0021-9290(84)90142-8 – ident: R15 doi: 10.1152/jappl.1991.70.6.2455 – ident: R31 doi: 10.1161/01.RES.25.6.637 – ident: R1 – ident: R12 doi: 10.1152/jappl.2002.92.1.67 – ident: R5 – ident: R25 doi: 10.1152/jappl.1994.77.3.1451 – ident: R18 – ident: R24 doi: 10.1016/0735-1097(93)90682-Q – ident: R2 doi: 10.1113/jphysiol.1965.sp007623 – ident: R7 doi: 10.1152/ajplung.1995.269.5.L690 – ident: R19 doi: 10.1114/1.1380417 – ident: R13 doi: 10.1007/978-1-4419-6856-2 – ident: R10 doi: 10.1172/JCI3862 – ident: R3 doi: 10.1115/1.1695578 – ident: R20 doi: 10.1007/978-0-387-21576-1 – ident: R11 doi: 10.1152/ajpheart.1999.277.5.H1745 – ident: R29 – ident: R40 doi: 10.1172/JCI11144 – ident: R16 doi: 10.1177/37.3.2465335 – ident: R9 doi: 10.1152/ajpregu.1992.263.6.R1260 – ident: R22 doi: 10.1152/ajplung.1993.264.2.L100 – ident: R38 doi: 10.1172/JCI117077 – ident: R14 doi: 10.1007/978-1-4757-2257-4 – ident: R34 doi: 10.1172/JCI114862 – ident: R43 doi: 10.1152/jappl.1992.72.6.2118 – ident: R21 doi: 10.1016/S0163-7258(01)00157-7 – ident: R28 doi: 10.1016/0026-2862(70)90048-8 – ident: R30 – ident: R8 – ident: R17 |
SSID | ssj0005763 |
Score | 2.1397483 |
Snippet | Departments of 1 Biomedical Engineering and 2 Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin
Submitted 1 December 2003
;... Right heart failure due to pulmonary hypertension causes significant morbidity and mortality. To study the linked vascular mechanical and biological changes... |
SourceID | proquest pubmed crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | H1209 |
SubjectTerms | Animals Collagen - metabolism Elasticity Elastin - metabolism Hypertension, Pulmonary - etiology Hypertension, Pulmonary - pathology Hypertension, Pulmonary - physiopathology Hypoxia - complications Hypoxia - pathology Hypoxia - physiopathology Male Mice Mice, Inbred C57BL Pulmonary Artery - pathology Pulmonary Artery - physiology Stress, Mechanical |
Title | Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension |
URI | http://ajpheart.physiology.org/cgi/content/abstract/288/3/H1209 https://www.ncbi.nlm.nih.gov/pubmed/15528223 https://www.proquest.com/docview/67426074 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1522-1539 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005763 issn: 0363-6135 databaseCode: KQ8 dateStart: 19971001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1522-1539 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0005763 issn: 0363-6135 databaseCode: GX1 dateStart: 19971001 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bj5QwFG7GNTG-GN31gtc-GGOijEOBwjxuNupkk934MBvnjZRSMugOEGSM42_yR3pOSwHNrFGTCRlooQ3fBz3ncC6EPM_yKBU84C5XWewGXqxckFozV3oClgeW5nOJBv2zc764CE5X4Woy-THyWtq26VR-3xtX8j-owjHAFaNk_wHZ_qJwAP4DvrAFhGH7VxijIgkC40Zh-G4f9m_yKpldHUipvTUapYvedCEsqPCrV_X2EuaKfnPasxOUZmOXXe_q6lshXNDXt-gfAPuq0a7uHYg2ba393DPKP6FNJdpWP8UYp8Z4sMuiQYdX_UV_6NG_7avUGHx2cK2PAwe-ikaYGkFFhvmPe_G_kJ_XlckneQrTGky9J2v1pYttPBfVpuharFkjHPy6-nAuH_Rak8vEvqpZHI846Y9evAuMAd6_JISYYlZ8qrFCeDudoYCp88COewOu9UazBFPSgdDkD-tj77Vom66R6yziHOtlvF-NHIoiU7fPTrzLcQXjv9kzuq4HZa73q0hk01RfrfJo0Wd5m9zqdBZ6bAh4h0xUeUiOjkuAc7OjL-iHHtBDcuOsc9Y4Iq2hJx3oSYEKdKAn7ehJq5wO9KRFSTU9aU9PaulJkZ70N3rSMT3vkot3b5cnC7cr8uFKfx62rs-zOeNhJlNYdhVTfio8zlgc5qBYx3ympJdJDr9Aisj3A5GHMVdeLjAGm6mZf48clFWpHhDKWToLpYw9yUWQBukcBDFPMBnwNMzimXQIs_c5kV0GfCzEcploTThkicUp0ThhiVbfIa_7k2qTAObP3QMLYDI8Tgnak5bApv4UYHLiJ5q1SZ3lDnm577R-gFF3hzyzvEhgKcDve6JUAEvCIyw3EQUOuW_oMky4Y9rDK1sekZvDU_iYHLTNVj0BcbtNn2qW_wTXGNyn |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linked+mechanical+and+biological+aspects+of+remodeling+in+mouse+pulmonary+arteries+with+hypoxia-induced+hypertension&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=Kobs%2C+Ryan+W&rft.au=Muvarak%2C+Nidal+E&rft.au=Eickhoff%2C+Jens+C&rft.au=Chesler%2C+Naomi+C&rft.date=2005-03-01&rft.issn=0363-6135&rft.volume=288&rft.issue=3&rft.spage=H1209&rft_id=info:doi/10.1152%2Fajpheart.01129.2003&rft_id=info%3Apmid%2F15528223&rft.externalDocID=15528223 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon |