Proton transfer in the D-channel of cytochrome c oxidase modeled by a transition network approach
Determination of proton uptake pathways in Cytochrome c Oxidase is difficult due to the complexity of the system. The transition networks approach allows sampling of proton transfer pathways without predefined reaction coordinate. Computation of the proton transfer pathways in a model of the D-chann...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1864; no. 8; p. 129614 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2020.129614 |
Cover
Abstract | Determination of proton uptake pathways in Cytochrome c Oxidase is difficult due to the complexity of the system. The transition networks approach allows sampling of proton transfer pathways without predefined reaction coordinate.
Computation of the proton transfer pathways in a model of the D-channel of cytochrome c oxidase has been performed by a transition network approach that combines discrete, optimisation based and molecular dynamics based sampling.
The optimal pathway involves an opening of the so-called asparagine gate, hydration of the asparagine region, the formation of a hydrogen-bonded chain, and finally concerted proton hole transport along this chain. The optimal pathway finds the protonation of residue H26 close to the channel entrance favourable for lowering the transition energies of subsequent steps, in particular, opening of the Asn gate and formation of a hydrogen-bonded chain. Residue Y33 plays an important role in shuttling the transferred proton hole.
The optimal pathway found by the transition network approach shows the same important characteristics as pathways determined earlier by other methods. The computed barrier and reaction energies are also in good agreement with previous studies. The transition network approach provides an alternative to explore pathways in complex systems.
The correct function of the enzyme as oxidase and proton pump depends on the interplay of several redox and proton transport steps. Understanding the proton transport mechanism is therefore key to understanding the protein's function. The complex nature of long- distances proton transfer through a protein requires a non-trivial simulation strategy. |
---|---|
AbstractList | Determination of proton uptake pathways in Cytochrome c Oxidase is difficult due to the complexity of the system. The transition networks approach allows sampling of proton transfer pathways without predefined reaction coordinate.
Computation of the proton transfer pathways in a model of the D-channel of cytochrome c oxidase has been performed by a transition network approach that combines discrete, optimisation based and molecular dynamics based sampling.
The optimal pathway involves an opening of the so-called asparagine gate, hydration of the asparagine region, the formation of a hydrogen-bonded chain, and finally concerted proton hole transport along this chain. The optimal pathway finds the protonation of residue H26 close to the channel entrance favourable for lowering the transition energies of subsequent steps, in particular, opening of the Asn gate and formation of a hydrogen-bonded chain. Residue Y33 plays an important role in shuttling the transferred proton hole.
The optimal pathway found by the transition network approach shows the same important characteristics as pathways determined earlier by other methods. The computed barrier and reaction energies are also in good agreement with previous studies. The transition network approach provides an alternative to explore pathways in complex systems.
The correct function of the enzyme as oxidase and proton pump depends on the interplay of several redox and proton transport steps. Understanding the proton transport mechanism is therefore key to understanding the protein's function. The complex nature of long- distances proton transfer through a protein requires a non-trivial simulation strategy. Determination of proton uptake pathways in Cytochrome c Oxidase is difficult due to the complexity of the system. The transition networks approach allows sampling of proton transfer pathways without predefined reaction coordinate.Computation of the proton transfer pathways in a model of the D-channel of cytochrome c oxidase has been performed by a transition network approach that combines discrete, optimisation based and molecular dynamics based sampling.The optimal pathway involves an opening of the so-called asparagine gate, hydration of the asparagine region, the formation of a hydrogen-bonded chain, and finally concerted proton hole transport along this chain. The optimal pathway finds the protonation of residue H26 close to the channel entrance favourable for lowering the transition energies of subsequent steps, in particular, opening of the Asn gate and formation of a hydrogen-bonded chain. Residue Y33 plays an important role in shuttling the transferred proton hole.The optimal pathway found by the transition network approach shows the same important characteristics as pathways determined earlier by other methods. The computed barrier and reaction energies are also in good agreement with previous studies. The transition network approach provides an alternative to explore pathways in complex systems.The correct function of the enzyme as oxidase and proton pump depends on the interplay of several redox and proton transport steps. Understanding the proton transport mechanism is therefore key to understanding the protein's function. The complex nature of long- distances proton transfer through a protein requires a non-trivial simulation strategy. Determination of proton uptake pathways in Cytochrome c Oxidase is difficult due to the complexity of the system. The transition networks approach allows sampling of proton transfer pathways without predefined reaction coordinate.BACKGROUNDDetermination of proton uptake pathways in Cytochrome c Oxidase is difficult due to the complexity of the system. The transition networks approach allows sampling of proton transfer pathways without predefined reaction coordinate.Computation of the proton transfer pathways in a model of the D-channel of cytochrome c oxidase has been performed by a transition network approach that combines discrete, optimisation based and molecular dynamics based sampling.METHODSComputation of the proton transfer pathways in a model of the D-channel of cytochrome c oxidase has been performed by a transition network approach that combines discrete, optimisation based and molecular dynamics based sampling.The optimal pathway involves an opening of the so-called asparagine gate, hydration of the asparagine region, the formation of a hydrogen-bonded chain, and finally concerted proton hole transport along this chain. The optimal pathway finds the protonation of residue H26 close to the channel entrance favourable for lowering the transition energies of subsequent steps, in particular, opening of the Asn gate and formation of a hydrogen-bonded chain. Residue Y33 plays an important role in shuttling the transferred proton hole.RESULTSThe optimal pathway involves an opening of the so-called asparagine gate, hydration of the asparagine region, the formation of a hydrogen-bonded chain, and finally concerted proton hole transport along this chain. The optimal pathway finds the protonation of residue H26 close to the channel entrance favourable for lowering the transition energies of subsequent steps, in particular, opening of the Asn gate and formation of a hydrogen-bonded chain. Residue Y33 plays an important role in shuttling the transferred proton hole.The optimal pathway found by the transition network approach shows the same important characteristics as pathways determined earlier by other methods. The computed barrier and reaction energies are also in good agreement with previous studies. The transition network approach provides an alternative to explore pathways in complex systems.CONCLUSIONSThe optimal pathway found by the transition network approach shows the same important characteristics as pathways determined earlier by other methods. The computed barrier and reaction energies are also in good agreement with previous studies. The transition network approach provides an alternative to explore pathways in complex systems.The correct function of the enzyme as oxidase and proton pump depends on the interplay of several redox and proton transport steps. Understanding the proton transport mechanism is therefore key to understanding the protein's function. The complex nature of long- distances proton transfer through a protein requires a non-trivial simulation strategy.GENERAL SIGNIFICANCEThe correct function of the enzyme as oxidase and proton pump depends on the interplay of several redox and proton transport steps. Understanding the proton transport mechanism is therefore key to understanding the protein's function. The complex nature of long- distances proton transfer through a protein requires a non-trivial simulation strategy. |
ArticleNumber | 129614 |
Author | Imhof, Petra Reidelbach, Marco |
Author_xml | – sequence: 1 givenname: Marco surname: Reidelbach fullname: Reidelbach, Marco – sequence: 2 givenname: Petra surname: Imhof fullname: Imhof, Petra email: petra.imhof@fu-berlin.de |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32305338$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS3Uik4Lb4CQl2wy-C9OzAIJFSiVKpUFrC3buWE8JPZge1rm7fEo7YZFeze-ss53rnTOOToJMQBCbyhZU0Ll--3aWvMLwpoRVr-YklS8QCvad6zpCZEnaEU4EY2gsj1D5zlvSZ1WtS_RGWectJz3K2S-p1hiwCWZkEdI2Nd9A_hz4zYmBJhwHLE7lOg2Kc6AHY5__WAy4DkOMMGA7QGbBffFV6cA5T6m39jsdikat3mFTkczZXj98F6gn1-__Lj81tzcXl1ffrppHFdtabhwZHCSWyOENSNt7SAkkQb61nYjpeAYcMsMtcp2TBBLlSJyNMoCExQ4v0DvFt969s8ectGzzw6myQSI-6yZ6DpZIU6el3LFRKt431Xp2wfp3s4w6F3ys0kH_ZhgFXxYBC7FnBOM2vlijknUTPykKdHHuvRWL3XpY116qavC4j_40f8Z7OOCQc3zzkPS2XkIDgafwBU9RP-0wT87EbAg |
CitedBy_id | crossref_primary_10_3389_fchem_2021_640155 crossref_primary_10_3390_biom12111615 crossref_primary_10_1016_j_bbagen_2021_129888 |
Cites_doi | 10.1016/j.bpj.2017.07.005 10.1007/BF01386390 10.1063/1.1749604 10.1073/pnas.0408117102 10.1063/1.445869 10.1093/nar/28.1.235 10.1021/ja067360s 10.1021/jp5095118 10.1021/acs.chemrev.7b00664 10.1002/wcms.31 10.1016/S0022-2836(02)00619-8 10.1021/jp973084f 10.1039/C4SC01674B 10.1021/bi026582+ 10.1002/wcms.66 10.1021/jp101759q 10.1021/jp407250d 10.1016/j.bbabio.2008.04.013 10.1016/j.bbabio.2006.05.028 10.1021/acs.jctc.5b01109 10.1016/j.bbabio.2011.10.001 10.1073/pnas.0507734103 10.1073/pnas.1706278114 10.1073/pnas.1601982113 10.1016/0009-2614(92)85543-J 10.1007/s002149900083 10.1073/pnas.1703654114 10.1016/j.bbabio.2018.03.009 10.1021/bi992235x 10.1073/pnas.1703625114 10.1021/ct050162r 10.1073/pnas.0606149103 10.1039/C8SC01587B 10.1016/0304-4173(79)90014-4 10.1007/s00232-018-0019-x 10.1016/S0006-3495(04)74254-X 10.1073/pnas.1319156111 10.1016/j.cplett.2016.07.021 10.1021/ja00153a017 10.1016/j.jmb.2009.02.042 10.1073/pnas.1010974107 10.1002/jcc.21287 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2020.129614 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 32305338 10_1016_j_bbagen_2020_129614 S0304416520301264 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-34c0dc63ba44baf15bd4606ae85b7f11ec2e3b2a1b9b7240b19906fa9be241e33 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Sat Sep 27 18:35:00 EDT 2025 Wed Oct 01 14:49:40 EDT 2025 Thu Apr 03 07:06:37 EDT 2025 Wed Oct 01 00:42:42 EDT 2025 Thu Apr 24 23:11:15 EDT 2025 Fri Feb 23 02:47:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Cytochrome c oxidase Reaction path sampling Transition networks Proton transfer |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-34c0dc63ba44baf15bd4606ae85b7f11ec2e3b2a1b9b7240b19906fa9be241e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 32305338 |
PQID | 2392459387 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2477619930 proquest_miscellaneous_2392459387 pubmed_primary_32305338 crossref_citationtrail_10_1016_j_bbagen_2020_129614 crossref_primary_10_1016_j_bbagen_2020_129614 elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129614 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Svensson-Ek, Abramson, Larsson, Törnroth, Brzezinski, Iwata (bb0025) 2002; 321 Brooks, Brooks, Mackerell, Nilsson, Petrella, Roux, Won, Archontis, Bartels, Boresch, Caflisch, Caves, Cui, Dinner, Feig, Fischer, Gao, Hodoscek, Im, Kuczera, Lazaridis, Ma, Ovchinnikov, Paci, Pastor, Post, Pu, Schaefer, Tidor, Venable, Woodcock, Wu, Yang, York, Karplus (bb0220) 2009; 30 Dijkstra (bb0210) 1959; 1 Berman, Westbrook, Zeng, Gilliland, Bhat, Weissig, Shindiyalov, Bourne (bb0170) 2000; 28 Imhof (bb0145) 2016 Woelke, Galstyan, Galstyan, Meyer, Heberle, Knapp (bb0195) 2013; 117 Goyal, Yang, Cui (bb0165) 2015; 6 Henry, Yu, Rodinger, Pommès (bb0020) 2009; 387 Xu, Voth (bb0080) 2005; 102 Xu, Sharpe, Qin, Ferguson-Miller, Voth (bb0090) 2007; 129 Supekar, Kaila (bb0105) 2018; 32 Pawate, Morgan, Namslauer, Mills, Brzezinski, Ferguson-Miller, Gennis (bb0055) 2002; 41 Weber (bb0200) 1996 Liang, Swansson, Peng, Wikström, Voth (bb0095) 2016; 113 Suomivuori, Gamiz-Hernandez, Sundholm, Kaila (bb0120) 2017; 114 Wikström, Krab (bb0015) 1979; 549 MacKerell, Wiorkiewicz-Kuczera, Karplus (bb0180) 1995; 117 Peng, Swanson, Kang, Zhou, Voth (bb0100) 2015; 119 Fischer, Karplus (bb0135) 1992; 194 Lee, Liang, Voth, Swanson (bb0125) 2016; 12 Noé, Krachtus, Smith, Fischer (bb0230) 2006; 2 Qin, Hiser, Mulichak, Garavita, Ferguson-Miller (bb0030) 2006; 103 Luca, Gamiz-Hernandez, Kaila (bb0110) 2017; 114 Reidelbach, Betz, Mäusle, Imhof (bb0130) 2016; 659 Helabad, Ghane, Reidelbach, Woelke, Knapp, Imhof (bb0040) 2017; 113 Kaila, Wikström, Hummer (bb0115) 2014; 111 Eyring (bb0215) 1935; 3 Pfitzner, Hoffmeier, Harrenga, Kannt, Michel, Bamberg (bb0050) 2000; 39 Liang, Swansson, Wikström, Voth (bb0070) 2017; 114 Belevich, Gorbikova, Belevich, Rauhamäki, Wikström, Verkhovsky (bb0075) 2010; 107 Kästner (bb0150) 2011; 1 Thiel (bb0225) 2004 Henkelmann, Johannesson, Jonsson (bb0140) 2002 Weinan, Ren, Vanden-Eijnden (bb0160) 2007; 126 Varanasi, Hosler (bb0240) 2012; 1817 Olkhova, Hutter, Lill, Helms, Michel (bb0035) 2004; 86 Wikstrom, Sharma (bb0010) 2018; 1859 Lepp, Salomonsson, Zhu, Gennis, Brzezinski (bb0065) 2008; 1777 Ghane, Gorriz, Wrzalek, Volkenandt, Dalatieh, Reidelbach, Imhof (bb0045) 2018; 251 Jorgensen, Chandrasekhar, Madura, Impey, Klein (bb0175) 1983; 79 Weber, Thiel (bb0205) 2000; 103 Barducci, Bonomi, Parrinello (bb0155) 2011; 1 MacKerell (bb0185) 1998; 102 Xu, Voth (bb0085) 2006; 1757 D Michail, J Kinable, B Naveh, and JV Sichi. Jgrapht - a java library for graph data structures and algorithms. arXiv preprint arXiv:1904.08355, 2019. Wikstrom, Krab, Sharma (bb0005) 2018; 118 Brändén, Pawate, Gennis, Brzezinski (bb0060) 2006; 103 Klauda, Venable, Freitas, O’Connor, Tobias, Mondragon-Ramirez, Vorobyov, MacKerell, Pastor (bb0190) 2010; 114 Henkelmann (10.1016/j.bbagen.2020.129614_bb0140) 2002 Goyal (10.1016/j.bbagen.2020.129614_bb0165) 2015; 6 Reidelbach (10.1016/j.bbagen.2020.129614_bb0130) 2016; 659 10.1016/j.bbagen.2020.129614_bb0235 Kaila (10.1016/j.bbagen.2020.129614_bb0115) 2014; 111 Weinan (10.1016/j.bbagen.2020.129614_bb0160) 2007; 126 Henry (10.1016/j.bbagen.2020.129614_bb0020) 2009; 387 Pawate (10.1016/j.bbagen.2020.129614_bb0055) 2002; 41 Helabad (10.1016/j.bbagen.2020.129614_bb0040) 2017; 113 Supekar (10.1016/j.bbagen.2020.129614_bb0105) 2018; 32 Svensson-Ek (10.1016/j.bbagen.2020.129614_bb0025) 2002; 321 Peng (10.1016/j.bbagen.2020.129614_bb0100) 2015; 119 Weber (10.1016/j.bbagen.2020.129614_bb0205) 2000; 103 Liang (10.1016/j.bbagen.2020.129614_bb0095) 2016; 113 Woelke (10.1016/j.bbagen.2020.129614_bb0195) 2013; 117 Imhof (10.1016/j.bbagen.2020.129614_bb0145) 2016 Xu (10.1016/j.bbagen.2020.129614_bb0080) 2005; 102 Eyring (10.1016/j.bbagen.2020.129614_bb0215) 1935; 3 Olkhova (10.1016/j.bbagen.2020.129614_bb0035) 2004; 86 Brändén (10.1016/j.bbagen.2020.129614_bb0060) 2006; 103 Suomivuori (10.1016/j.bbagen.2020.129614_bb0120) 2017; 114 Wikström (10.1016/j.bbagen.2020.129614_bb0015) 1979; 549 MacKerell (10.1016/j.bbagen.2020.129614_bb0180) 1995; 117 Weber (10.1016/j.bbagen.2020.129614_bb0200) 1996 MacKerell (10.1016/j.bbagen.2020.129614_bb0185) 1998; 102 Fischer (10.1016/j.bbagen.2020.129614_bb0135) 1992; 194 Wikstrom (10.1016/j.bbagen.2020.129614_bb0005) 2018; 118 Klauda (10.1016/j.bbagen.2020.129614_bb0190) 2010; 114 Liang (10.1016/j.bbagen.2020.129614_bb0070) 2017; 114 Belevich (10.1016/j.bbagen.2020.129614_bb0075) 2010; 107 Thiel (10.1016/j.bbagen.2020.129614_bb0225) 2004 Dijkstra (10.1016/j.bbagen.2020.129614_bb0210) 1959; 1 Xu (10.1016/j.bbagen.2020.129614_bb0090) 2007; 129 Wikstrom (10.1016/j.bbagen.2020.129614_bb0010) 2018; 1859 Berman (10.1016/j.bbagen.2020.129614_bb0170) 2000; 28 Ghane (10.1016/j.bbagen.2020.129614_bb0045) 2018; 251 Lee (10.1016/j.bbagen.2020.129614_bb0125) 2016; 12 Xu (10.1016/j.bbagen.2020.129614_bb0085) 2006; 1757 Lepp (10.1016/j.bbagen.2020.129614_bb0065) 2008; 1777 Kästner (10.1016/j.bbagen.2020.129614_bb0150) 2011; 1 Luca (10.1016/j.bbagen.2020.129614_bb0110) 2017; 114 Noé (10.1016/j.bbagen.2020.129614_bb0230) 2006; 2 Brooks (10.1016/j.bbagen.2020.129614_bb0220) 2009; 30 Barducci (10.1016/j.bbagen.2020.129614_bb0155) 2011; 1 Varanasi (10.1016/j.bbagen.2020.129614_bb0240) 2012; 1817 Pfitzner (10.1016/j.bbagen.2020.129614_bb0050) 2000; 39 Jorgensen (10.1016/j.bbagen.2020.129614_bb0175) 1983; 79 Qin (10.1016/j.bbagen.2020.129614_bb0030) 2006; 103 |
References_xml | – volume: 103 start-page: 16117 year: 2006 end-page: 16122 ident: bb0030 article-title: Identification of conserved lipid/detergent-binding in a high resolution structure of the membrane protein cytochrome c oxidase publication-title: PNAS – volume: 102 start-page: 6795 year: 2005 end-page: 6800 ident: bb0080 article-title: Computer simulation of explicit proton translocation in cytochrome c oxidase: the d-pathway publication-title: PNAS – volume: 129 start-page: 2910 year: 2007 end-page: 2913 ident: bb0090 article-title: Storage of an excess proton in the hydrogen-bonded network of the D-pathway of cytochrome c oxidase: identification of a protonated water cluster publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 6988 year: 2014 end-page: 6993 ident: bb0115 article-title: Electrostatics, hydration, and proton transfer dynamics in the membrane domain of respiratory complex I publication-title: PNAS – volume: 28 start-page: 283 year: 2000 end-page: 422 ident: bb0170 article-title: The protein databank publication-title: Nucleic Acid Res. – volume: 114 start-page: 5924 year: 2017 end-page: 5929 ident: bb0070 article-title: Understaning the essential proton-pumping kinetic gates and decoupling mutations in cytochrome c oxidase publication-title: PNAS – volume: 321 start-page: 329 year: 2002 end-page: 339 ident: bb0025 article-title: The x-rayy crystal structures of wild-type and eq(i-286) mutant ctochrome c oxidase from rhodobacter sphaeroides publication-title: J. Mol. Biol. – volume: 251 start-page: 299 year: 2018 end-page: 314 ident: bb0045 article-title: Hydrogen-bonded network and water dynamics in the d-channel of cytochrome c oxidase publication-title: J. Membr. Biol. – volume: 659 start-page: 169 year: 2016 end-page: 175 ident: bb0130 article-title: Proton transfer pathways in an aspartate-water cluster sampled by a network of discrete states publication-title: Chemical Physics Letters – volume: 1777 start-page: 897 year: 2008 end-page: 903 ident: bb0065 article-title: Impaired proton pumping in cytochrome c oxidase upon structural alteration of the d pathway publication-title: Biochim. Biophys. Acta – volume: 39 start-page: 6756 year: 2000 end-page: 6762 ident: bb0050 article-title: Tracing the d-pathway in reconstituted site-directed mutants of cytochrome c oxidase from paracoccus dentrificans publication-title: Biochemistry – volume: 114 start-page: 7043 year: 2017 end-page: 7048 ident: bb0120 article-title: Electrostatics, hydration, and proton transfer dynamics in the membrane domain of respiratory complex I publication-title: PNAS – volume: 117 start-page: 11946 year: 1995 end-page: 11975 ident: bb0180 article-title: An all atom empirical energy function for the simulation of nucleic acids publication-title: J. Am. Chem. Soc. – volume: 126 year: 2007 ident: bb0160 article-title: A simplified and improved string method for computing the minimum energy paths in barrier-crossing events publication-title: J. Chem. Phys. – volume: 79 start-page: 926 year: 1983 end-page: 935 ident: bb0175 article-title: Comparison of simple potential functions for simulating liquid water publication-title: J. Chem. Phys. – volume: 32 start-page: 6703 year: 2018 end-page: 6710 ident: bb0105 article-title: Dewetting transitions coupled to K-channel activation in cytochrome c oxidase publication-title: Chem. Sci. – volume: 194 start-page: 252 year: 1992 end-page: 261 ident: bb0135 article-title: Conjugate peak refinement: an algorithm for finding reaction paths and accurate transition states with many degrees of freedom publication-title: Chem. Phys. Lett. – volume: 103 start-page: 317 year: 2006 end-page: 322 ident: bb0060 article-title: Controlled uncoupling and recoupling of proton pumping cytochrome c oxidase publication-title: PNAS – volume: 41 start-page: 13417 year: 2002 end-page: 13423 ident: bb0055 article-title: A mutation of subunit i in cytochrome c oxidase from rhodobacter sphaeroides results in an increase in steady state activity but completely eliminates proton pumping publication-title: Biochemistry – volume: 1 start-page: 826 year: 2011 end-page: 843 ident: bb0155 article-title: Metadynamics publication-title: WIREs Comput. Mol. Sci. – reference: D Michail, J Kinable, B Naveh, and JV Sichi. Jgrapht - a java library for graph data structures and algorithms. arXiv preprint arXiv:1904.08355, 2019. – volume: 1 start-page: 932 year: 2011 end-page: 942 ident: bb0150 article-title: Umbrella sampling publication-title: WIREs Comput. Mol. Sci. – volume: 3 start-page: 107 year: 1935 end-page: 115 ident: bb0215 article-title: The activated complex in chemical reactions publication-title: J. Chem. Phys. – volume: 2 start-page: 840 year: 2006 end-page: 857 ident: bb0230 article-title: Transition networks for the comprehensive characterization of complex conformational change in proteins publication-title: J. Chem. Theory Comput. – year: 2004 ident: bb0225 article-title: Mndo version 6.1. Max-Planck Institut für Kohlenforschung – volume: 114 start-page: 6314 year: 2017 end-page: 6321 ident: bb0110 article-title: Symmetry-related proton transfer pathways in respiratory complex I publication-title: PNAS – volume: 119 start-page: 9212 year: 2015 end-page: 9218 ident: bb0100 article-title: Hydrated excess protons can create their own water wires publication-title: J. Phys. Chem. B – volume: 6 start-page: 826 year: 2015 end-page: 841 ident: bb0165 article-title: Microscopic basis for kinetic gating in cytochrome c oxidase: insights from QM/MM analysis publication-title: Chem. Sci. – start-page: 249 year: 2016 end-page: 272 ident: bb0145 article-title: A network approach to modeling enzymatic reactions publication-title: Computational Approaches for Studying Enzyme Mechanism Part B – volume: 86 start-page: 1873 year: 2004 end-page: 1889 ident: bb0035 article-title: Dynamic water networks in ctochrome c oxidase from paracoccus denitrificans investigated by molecular dynamics simulations publication-title: Biophys. J. – volume: 1 start-page: 269 year: 1959 end-page: 271 ident: bb0210 article-title: A note on two problems in connexion with graphs publication-title: Numer. Math. – volume: 107 start-page: 18469 year: 2010 end-page: 18474 ident: bb0075 article-title: Initiation of the proton pump of cytochrome c oxidase publication-title: PNAS – year: 1996 ident: bb0200 article-title: Ein neues semiempirisches NDDO-Verfahren mit Orthogonalisierungskorrekturen: Entwicklung des Modells, Implementierung, Parametrisierung und Anwendungen – volume: 118 start-page: 2469 year: 2018 end-page: 2490 ident: bb0005 article-title: Oxygen activation and energy conservation by cytochrome c oxidase publication-title: Chem. Rev. – volume: 113 start-page: 817 year: 2017 end-page: 828 ident: bb0040 article-title: Protonation-state-dependent communication in cytochrome c oxidase publication-title: Biophys. J. – volume: 549 start-page: 177 year: 1979 end-page: 222 ident: bb0015 article-title: Proton-pumping cytochrome c oxidase publication-title: Biochim. Biophys. Acta Bioenerg. – volume: 103 start-page: 495 year: 2000 end-page: 506 ident: bb0205 article-title: Orthogonalization corrections for semiempirical methods publication-title: Theor. Chem. Accounts – volume: 1859 start-page: 692 year: 2018 end-page: 698 ident: bb0010 article-title: Proton pumping by cytochrome c oxidase - a 40 year anniversary publication-title: Biochim. Biophys. Acta Bioenerg. – volume: 387 start-page: 1165 year: 2009 end-page: 1185 ident: bb0020 article-title: Functional hydration and conformational gating of proton uptake in cytochrome c oxidase publication-title: J. Mol. Biol. – volume: 102 start-page: 3586 year: 1998 end-page: 3616 ident: bb0185 article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins publication-title: J. Phys. Chem. B – volume: 114 start-page: 7830 year: 2010 end-page: 7843 ident: bb0190 article-title: Update of the charmm all-atom additive force field for lipids: validation on six lipid types publication-title: J. Phys. Chem. B – volume: 117 start-page: 12432 year: 2013 end-page: 12441 ident: bb0195 article-title: Exploring the possible role of glu286 in cco by electrostatic energy computations combined with molecular dynamics publication-title: J. Phys. Chem. B – volume: 1757 start-page: 852 year: 2006 end-page: 859 ident: bb0085 article-title: Free energy profiles for H publication-title: Biochim. Biophys. Acta – start-page: 269 year: 2002 end-page: 300 ident: bb0140 article-title: Methods for finding saddle points and minimum energy paths publication-title: Theoretical Methods in Condensed Phase Chemistry – volume: 30 year: 2009 ident: bb0220 article-title: Charmm: the biomolecular simulation program publication-title: J. Comput. Chem. – volume: 1817 start-page: 545 year: 2012 end-page: 551 ident: bb0240 article-title: Subunit iii-depleted cytochrome c oxidase provides insight into the process of proton uptake by proteins publication-title: Biochim. Biophys. Acta – volume: 113 start-page: 7420 year: 2016 end-page: 7425 ident: bb0095 article-title: Multiscale simulations reveal key-features of the proton-pumping mechanism in cytochrome c oxidase publication-title: PNAS – volume: 12 start-page: 879 year: 2016 end-page: 891 ident: bb0125 article-title: Computationally efficient multiscale reactive molecular dynamics to describe amino acid deprotonation in proteins publication-title: J. Chem. Theory Comput. – volume: 113 start-page: 817 year: 2017 ident: 10.1016/j.bbagen.2020.129614_bb0040 article-title: Protonation-state-dependent communication in cytochrome c oxidase publication-title: Biophys. J. doi: 10.1016/j.bpj.2017.07.005 – volume: 1 start-page: 269 year: 1959 ident: 10.1016/j.bbagen.2020.129614_bb0210 article-title: A note on two problems in connexion with graphs publication-title: Numer. Math. doi: 10.1007/BF01386390 – volume: 3 start-page: 107 year: 1935 ident: 10.1016/j.bbagen.2020.129614_bb0215 article-title: The activated complex in chemical reactions publication-title: J. Chem. Phys. doi: 10.1063/1.1749604 – volume: 102 start-page: 6795 year: 2005 ident: 10.1016/j.bbagen.2020.129614_bb0080 article-title: Computer simulation of explicit proton translocation in cytochrome c oxidase: the d-pathway publication-title: PNAS doi: 10.1073/pnas.0408117102 – volume: 79 start-page: 926 year: 1983 ident: 10.1016/j.bbagen.2020.129614_bb0175 article-title: Comparison of simple potential functions for simulating liquid water publication-title: J. Chem. Phys. doi: 10.1063/1.445869 – volume: 28 start-page: 283 year: 2000 ident: 10.1016/j.bbagen.2020.129614_bb0170 article-title: The protein databank publication-title: Nucleic Acid Res. doi: 10.1093/nar/28.1.235 – volume: 129 start-page: 2910 year: 2007 ident: 10.1016/j.bbagen.2020.129614_bb0090 article-title: Storage of an excess proton in the hydrogen-bonded network of the D-pathway of cytochrome c oxidase: identification of a protonated water cluster publication-title: J. Am. Chem. Soc. doi: 10.1021/ja067360s – volume: 119 start-page: 9212 year: 2015 ident: 10.1016/j.bbagen.2020.129614_bb0100 article-title: Hydrated excess protons can create their own water wires publication-title: J. Phys. Chem. B doi: 10.1021/jp5095118 – volume: 118 start-page: 2469 year: 2018 ident: 10.1016/j.bbagen.2020.129614_bb0005 article-title: Oxygen activation and energy conservation by cytochrome c oxidase publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00664 – volume: 1 start-page: 826 year: 2011 ident: 10.1016/j.bbagen.2020.129614_bb0155 article-title: Metadynamics publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.31 – volume: 321 start-page: 329 year: 2002 ident: 10.1016/j.bbagen.2020.129614_bb0025 article-title: The x-rayy crystal structures of wild-type and eq(i-286) mutant ctochrome c oxidase from rhodobacter sphaeroides publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)00619-8 – volume: 102 start-page: 3586 year: 1998 ident: 10.1016/j.bbagen.2020.129614_bb0185 article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins publication-title: J. Phys. Chem. B doi: 10.1021/jp973084f – volume: 6 start-page: 826 year: 2015 ident: 10.1016/j.bbagen.2020.129614_bb0165 article-title: Microscopic basis for kinetic gating in cytochrome c oxidase: insights from QM/MM analysis publication-title: Chem. Sci. doi: 10.1039/C4SC01674B – volume: 41 start-page: 13417 year: 2002 ident: 10.1016/j.bbagen.2020.129614_bb0055 article-title: A mutation of subunit i in cytochrome c oxidase from rhodobacter sphaeroides results in an increase in steady state activity but completely eliminates proton pumping publication-title: Biochemistry doi: 10.1021/bi026582+ – volume: 1 start-page: 932 year: 2011 ident: 10.1016/j.bbagen.2020.129614_bb0150 article-title: Umbrella sampling publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.66 – year: 2004 ident: 10.1016/j.bbagen.2020.129614_bb0225 – volume: 114 start-page: 7830 year: 2010 ident: 10.1016/j.bbagen.2020.129614_bb0190 article-title: Update of the charmm all-atom additive force field for lipids: validation on six lipid types publication-title: J. Phys. Chem. B doi: 10.1021/jp101759q – volume: 117 start-page: 12432 year: 2013 ident: 10.1016/j.bbagen.2020.129614_bb0195 article-title: Exploring the possible role of glu286 in cco by electrostatic energy computations combined with molecular dynamics publication-title: J. Phys. Chem. B doi: 10.1021/jp407250d – volume: 1777 start-page: 897 year: 2008 ident: 10.1016/j.bbagen.2020.129614_bb0065 article-title: Impaired proton pumping in cytochrome c oxidase upon structural alteration of the d pathway publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2008.04.013 – volume: 1757 start-page: 852 year: 2006 ident: 10.1016/j.bbagen.2020.129614_bb0085 article-title: Free energy profiles for H+ conduction in the D-pathway of cytochrome c oxidase: a study of the wild type and N98D mutant enzyme publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2006.05.028 – volume: 12 start-page: 879 year: 2016 ident: 10.1016/j.bbagen.2020.129614_bb0125 article-title: Computationally efficient multiscale reactive molecular dynamics to describe amino acid deprotonation in proteins publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b01109 – volume: 1817 start-page: 545 year: 2012 ident: 10.1016/j.bbagen.2020.129614_bb0240 article-title: Subunit iii-depleted cytochrome c oxidase provides insight into the process of proton uptake by proteins publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2011.10.001 – year: 1996 ident: 10.1016/j.bbagen.2020.129614_bb0200 – volume: 103 start-page: 317 year: 2006 ident: 10.1016/j.bbagen.2020.129614_bb0060 article-title: Controlled uncoupling and recoupling of proton pumping cytochrome c oxidase publication-title: PNAS doi: 10.1073/pnas.0507734103 – volume: 114 start-page: 6314 year: 2017 ident: 10.1016/j.bbagen.2020.129614_bb0110 article-title: Symmetry-related proton transfer pathways in respiratory complex I publication-title: PNAS doi: 10.1073/pnas.1706278114 – start-page: 269 year: 2002 ident: 10.1016/j.bbagen.2020.129614_bb0140 article-title: Methods for finding saddle points and minimum energy paths – volume: 113 start-page: 7420 year: 2016 ident: 10.1016/j.bbagen.2020.129614_bb0095 article-title: Multiscale simulations reveal key-features of the proton-pumping mechanism in cytochrome c oxidase publication-title: PNAS doi: 10.1073/pnas.1601982113 – volume: 194 start-page: 252 year: 1992 ident: 10.1016/j.bbagen.2020.129614_bb0135 article-title: Conjugate peak refinement: an algorithm for finding reaction paths and accurate transition states with many degrees of freedom publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(92)85543-J – volume: 103 start-page: 495 year: 2000 ident: 10.1016/j.bbagen.2020.129614_bb0205 article-title: Orthogonalization corrections for semiempirical methods publication-title: Theor. Chem. Accounts doi: 10.1007/s002149900083 – volume: 114 start-page: 5924 year: 2017 ident: 10.1016/j.bbagen.2020.129614_bb0070 article-title: Understaning the essential proton-pumping kinetic gates and decoupling mutations in cytochrome c oxidase publication-title: PNAS doi: 10.1073/pnas.1703654114 – ident: 10.1016/j.bbagen.2020.129614_bb0235 – volume: 1859 start-page: 692 year: 2018 ident: 10.1016/j.bbagen.2020.129614_bb0010 article-title: Proton pumping by cytochrome c oxidase - a 40 year anniversary publication-title: Biochim. Biophys. Acta Bioenerg. doi: 10.1016/j.bbabio.2018.03.009 – volume: 39 start-page: 6756 year: 2000 ident: 10.1016/j.bbagen.2020.129614_bb0050 article-title: Tracing the d-pathway in reconstituted site-directed mutants of cytochrome c oxidase from paracoccus dentrificans publication-title: Biochemistry doi: 10.1021/bi992235x – volume: 114 start-page: 7043 year: 2017 ident: 10.1016/j.bbagen.2020.129614_bb0120 article-title: Electrostatics, hydration, and proton transfer dynamics in the membrane domain of respiratory complex I publication-title: PNAS doi: 10.1073/pnas.1703625114 – volume: 2 start-page: 840 year: 2006 ident: 10.1016/j.bbagen.2020.129614_bb0230 article-title: Transition networks for the comprehensive characterization of complex conformational change in proteins publication-title: J. Chem. Theory Comput. doi: 10.1021/ct050162r – volume: 103 start-page: 16117 year: 2006 ident: 10.1016/j.bbagen.2020.129614_bb0030 article-title: Identification of conserved lipid/detergent-binding in a high resolution structure of the membrane protein cytochrome c oxidase publication-title: PNAS doi: 10.1073/pnas.0606149103 – volume: 126 year: 2007 ident: 10.1016/j.bbagen.2020.129614_bb0160 article-title: A simplified and improved string method for computing the minimum energy paths in barrier-crossing events publication-title: J. Chem. Phys. – volume: 32 start-page: 6703 year: 2018 ident: 10.1016/j.bbagen.2020.129614_bb0105 article-title: Dewetting transitions coupled to K-channel activation in cytochrome c oxidase publication-title: Chem. Sci. doi: 10.1039/C8SC01587B – volume: 549 start-page: 177 year: 1979 ident: 10.1016/j.bbagen.2020.129614_bb0015 article-title: Proton-pumping cytochrome c oxidase publication-title: Biochim. Biophys. Acta Bioenerg. doi: 10.1016/0304-4173(79)90014-4 – volume: 251 start-page: 299 year: 2018 ident: 10.1016/j.bbagen.2020.129614_bb0045 article-title: Hydrogen-bonded network and water dynamics in the d-channel of cytochrome c oxidase publication-title: J. Membr. Biol. doi: 10.1007/s00232-018-0019-x – volume: 86 start-page: 1873 year: 2004 ident: 10.1016/j.bbagen.2020.129614_bb0035 article-title: Dynamic water networks in ctochrome c oxidase from paracoccus denitrificans investigated by molecular dynamics simulations publication-title: Biophys. J. doi: 10.1016/S0006-3495(04)74254-X – volume: 111 start-page: 6988 year: 2014 ident: 10.1016/j.bbagen.2020.129614_bb0115 article-title: Electrostatics, hydration, and proton transfer dynamics in the membrane domain of respiratory complex I publication-title: PNAS doi: 10.1073/pnas.1319156111 – volume: 659 start-page: 169 year: 2016 ident: 10.1016/j.bbagen.2020.129614_bb0130 article-title: Proton transfer pathways in an aspartate-water cluster sampled by a network of discrete states publication-title: Chemical Physics Letters doi: 10.1016/j.cplett.2016.07.021 – volume: 117 start-page: 11946 year: 1995 ident: 10.1016/j.bbagen.2020.129614_bb0180 article-title: An all atom empirical energy function for the simulation of nucleic acids publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00153a017 – volume: 387 start-page: 1165 year: 2009 ident: 10.1016/j.bbagen.2020.129614_bb0020 article-title: Functional hydration and conformational gating of proton uptake in cytochrome c oxidase publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.02.042 – volume: 107 start-page: 18469 year: 2010 ident: 10.1016/j.bbagen.2020.129614_bb0075 article-title: Initiation of the proton pump of cytochrome c oxidase publication-title: PNAS doi: 10.1073/pnas.1010974107 – start-page: 249 year: 2016 ident: 10.1016/j.bbagen.2020.129614_bb0145 article-title: A network approach to modeling enzymatic reactions – volume: 30 year: 2009 ident: 10.1016/j.bbagen.2020.129614_bb0220 article-title: Charmm: the biomolecular simulation program publication-title: J. Comput. Chem. doi: 10.1002/jcc.21287 |
SSID | ssj0000595 |
Score | 2.334609 |
Snippet | Determination of proton uptake pathways in Cytochrome c Oxidase is difficult due to the complexity of the system. The transition networks approach allows... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129614 |
SubjectTerms | asparagine Asparagine - chemistry Asparagine - metabolism Biological Transport Cytochrome c oxidase Electron Transport Complex IV - chemistry Electron Transport Complex IV - metabolism Hydrogen Bonding molecular dynamics Molecular Dynamics Simulation proton pump Proton transfer protonation Protons Reaction path sampling Transition networks |
Title | Proton transfer in the D-channel of cytochrome c oxidase modeled by a transition network approach |
URI | https://dx.doi.org/10.1016/j.bbagen.2020.129614 https://www.ncbi.nlm.nih.gov/pubmed/32305338 https://www.proquest.com/docview/2392459387 https://www.proquest.com/docview/2477619930 |
Volume | 1864 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: AIKHN dateStart: 19950118 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: SD Complete Freedom Collection customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: ACRLP dateStart: 19950118 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: AKRWK dateStart: 19640113 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB1CSmkvpU2_NkmDCr26a1uSZR_DpmHb0lBoA7kJjSyTDcEOWwe6l_z2zFh2Sg9poBdjGwmGkaz3ZL2ZAfiQosy89C4JqlaJKumCTSUTrBo0pkiDLzhQ-NtJsTxVX8702RYsplgYllWOa39c04fVenwzH705v1qt5j_4UI_ohM6Z1ROucwS7KljW9_Hmj8yD6IOOJwlkCrWewucGjRcifbScBTXnNAtVkan74Ok--jnA0PFzeDbyR3EYTXwBW6HdgcexouRmB54spgJuL8F9X3fE7EQ_cNOwFiu6Pw_iKOFo3zZciq4RftN3_pxzFggvut-rmlBNxPI4tcCNcLH7IOwSbdSMiykR-Ss4Pf70c7FMxooKiZeV7hOpfFr7QqJTCl2TaawV7WBcKDWaJsuCz4PE3GVYoSGsx4zAqmhchYGQPkj5Grbbrg1vQeimJLJC-y2vjcI8RU4NZzjZTJ0b9G4GcnKk9WO6ca56cWknXdmFje637H4b3T-D5K7XVUy38UB7M42R_WvaWEKEB3q-n4bU0rjwMYlrQ3f9y-ZEGZWuZGn-0UYZ_v9TyXQGb-J8uLNX0q6OSHS5-9-27cFTfoo6w33Y7tfX4R1xnx4Phsl9AI8OP39dntwCNrwCIg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3SDSW5lDT9yLZpq0KvYm1Lsuxj2DZsmmQpNIHchEaWyZZgh60D3X_fkWWn9JAGejHGlkCM5HlP1swbgE8JitQJZ7mXleSyoAvWpeBY1qh1nniXh0Th82W-uJRfr9TVFszHXJgQVjn4_ujTe289PJkN1pzdrlaz7-FQj-iEygKrJ1x_AttSkU-ewPbRyeli-cchq774SmjPQ4cxg64P80Kk7zYIoWZBaaHMU_kQQj3EQHskOt6DZwOFZEdxlM9hyzf78DQWldzsw858rOH2Auy3dUvkjnU9PfVrtqL7a88-85Dw2_gb1tbMbbrWXQfZAuZY-2tVEbCxWCGnYrhhNnbvY7tYE8PG2ahF_hIuj79czBd8KKrAnShVx4V0SeVygVZKtHWqsJK0ibG-UKjrNPUu8wIzm2KJmuAeU8KrvLYlegJ7L8QrmDRt4w-AqbogvkJbLqe0xCzBoA6ng95MlWl0dgpiNKRxg-J4KHxxY8bQsh8mmt8E85to_inw-163UXHjkfZ6nCPz18oxBAqP9Pw4TqmheQknJbbx7d1PkxFrlKoUhf5HG6nDL6BSJFN4HdfD_XgFbeyIRxdv_ntsH2BncXF-Zs5OlqdvYTe8iWGHhzDp1nf-HVGhDt8PS_03-6EEzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proton+transfer+in+the+D-channel+of+cytochrome+c+oxidase+modeled+by+a+transition+network+approach&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Reidelbach%2C+Marco&rft.au=Imhof%2C+Petra&rft.date=2020-08-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1864&rft.issue=8&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129614&rft.externalDocID=S0304416520301264 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |