Cat Swarm Optimization algorithm for optimal linear phase FIR filter design
In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response coefficients of FIR low pass, high pass, band pass and band stop filters, trying to meet the respective ideal frequency response characteristics....
Saved in:
| Published in | ISA transactions Vol. 52; no. 6; pp. 781 - 794 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.11.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0019-0578 1879-2022 1879-2022 |
| DOI | 10.1016/j.isatra.2013.07.009 |
Cover
| Abstract | In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response coefficients of FIR low pass, high pass, band pass and band stop filters, trying to meet the respective ideal frequency response characteristics. CSO is generated by observing the behaviour of cats and composed of two sub-models. In CSO, one can decide how many cats are used in the iteration. Every cat has its′ own position composed of M dimensions, velocities for each dimension, a fitness value which represents the accommodation of the cat to the fitness function, and a flag to identify whether the cat is in seeking mode or tracing mode. The final solution would be the best position of one of the cats. CSO keeps the best solution until it reaches the end of the iteration. The results of the proposed CSO based approach have been compared to those of other well-known optimization methods such as Real Coded Genetic Algorithm (RGA), standard Particle Swarm Optimization (PSO) and Differential Evolution (DE). The CSO based results confirm the superiority of the proposed CSO for solving FIR filter design problems. The performances of the CSO based designed FIR filters have proven to be superior as compared to those obtained by RGA, conventional PSO and DE. The simulation results also demonstrate that the CSO is the best optimizer among other relevant techniques, not only in the convergence speed but also in the optimal performances of the designed filters.
•A novel algorithm called Cat Swarm Optimization (CSO) algorithm is adopted in this paper.•CSO algorithm is applied for the solution of the constrained, multi-modal optimal FIR filter design problems.•It is shown that CSO converges very fast to the best quality optimal solution with the least execution times.•CSO demonstrates the best performance in terms of magnitude responses, the minimum stop band ripple, highest stop band attenuations.•The CSO is a good global optimizer for obtaining the optimal filter coefficients of digital filter design problem. |
|---|---|
| AbstractList | In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response coefficients of FIR low pass, high pass, band pass and band stop filters, trying to meet the respective ideal frequency response characteristics. CSO is generated by observing the behaviour of cats and composed of two sub-models. In CSO, one can decide how many cats are used in the iteration. Every cat has its' own position composed of M dimensions, velocities for each dimension, a fitness value which represents the accommodation of the cat to the fitness function, and a flag to identify whether the cat is in seeking mode or tracing mode. The final solution would be the best position of one of the cats. CSO keeps the best solution until it reaches the end of the iteration. The results of the proposed CSO based approach have been compared to those of other well-known optimization methods such as Real Coded Genetic Algorithm (RGA), standard Particle Swarm Optimization (PSO) and Differential Evolution (DE). The CSO based results confirm the superiority of the proposed CSO for solving FIR filter design problems. The performances of the CSO based designed FIR filters have proven to be superior as compared to those obtained by RGA, conventional PSO and DE. The simulation results also demonstrate that the CSO is the best optimizer among other relevant techniques, not only in the convergence speed but also in the optimal performances of the designed filters. In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response coefficients of FIR low pass, high pass, band pass and band stop filters, trying to meet the respective ideal frequency response characteristics. CSO is generated by observing the behaviour of cats and composed of two sub-models. In CSO, one can decide how many cats are used in the iteration. Every cat has its' own position composed of M dimensions, velocities for each dimension, a fitness value which represents the accommodation of the cat to the fitness function, and a flag to identify whether the cat is in seeking mode or tracing mode. The final solution would be the best position of one of the cats. CSO keeps the best solution until it reaches the end of the iteration. The results of the proposed CSO based approach have been compared to those of other well-known optimization methods such as Real Coded Genetic Algorithm (RGA), standard Particle Swarm Optimization (PSO) and Differential Evolution (DE). The CSO based results confirm the superiority of the proposed CSO for solving FIR filter design problems. The performances of the CSO based designed FIR filters have proven to be superior as compared to those obtained by RGA, conventional PSO and DE. The simulation results also demonstrate that the CSO is the best optimizer among other relevant techniques, not only in the convergence speed but also in the optimal performances of the designed filters.In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response coefficients of FIR low pass, high pass, band pass and band stop filters, trying to meet the respective ideal frequency response characteristics. CSO is generated by observing the behaviour of cats and composed of two sub-models. In CSO, one can decide how many cats are used in the iteration. Every cat has its' own position composed of M dimensions, velocities for each dimension, a fitness value which represents the accommodation of the cat to the fitness function, and a flag to identify whether the cat is in seeking mode or tracing mode. The final solution would be the best position of one of the cats. CSO keeps the best solution until it reaches the end of the iteration. The results of the proposed CSO based approach have been compared to those of other well-known optimization methods such as Real Coded Genetic Algorithm (RGA), standard Particle Swarm Optimization (PSO) and Differential Evolution (DE). The CSO based results confirm the superiority of the proposed CSO for solving FIR filter design problems. The performances of the CSO based designed FIR filters have proven to be superior as compared to those obtained by RGA, conventional PSO and DE. The simulation results also demonstrate that the CSO is the best optimizer among other relevant techniques, not only in the convergence speed but also in the optimal performances of the designed filters. In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response coefficients of FIR low pass, high pass, band pass and band stop filters, trying to meet the respective ideal frequency response characteristics. CSO is generated by observing the behaviour of cats and composed of two sub-models. In CSO, one can decide how many cats are used in the iteration. Every cat has its′ own position composed of M dimensions, velocities for each dimension, a fitness value which represents the accommodation of the cat to the fitness function, and a flag to identify whether the cat is in seeking mode or tracing mode. The final solution would be the best position of one of the cats. CSO keeps the best solution until it reaches the end of the iteration. The results of the proposed CSO based approach have been compared to those of other well-known optimization methods such as Real Coded Genetic Algorithm (RGA), standard Particle Swarm Optimization (PSO) and Differential Evolution (DE). The CSO based results confirm the superiority of the proposed CSO for solving FIR filter design problems. The performances of the CSO based designed FIR filters have proven to be superior as compared to those obtained by RGA, conventional PSO and DE. The simulation results also demonstrate that the CSO is the best optimizer among other relevant techniques, not only in the convergence speed but also in the optimal performances of the designed filters. •A novel algorithm called Cat Swarm Optimization (CSO) algorithm is adopted in this paper.•CSO algorithm is applied for the solution of the constrained, multi-modal optimal FIR filter design problems.•It is shown that CSO converges very fast to the best quality optimal solution with the least execution times.•CSO demonstrates the best performance in terms of magnitude responses, the minimum stop band ripple, highest stop band attenuations.•The CSO is a good global optimizer for obtaining the optimal filter coefficients of digital filter design problem. |
| Author | Kar, Rajib Mandal, Durbadal Saha, Suman Kumar Ghoshal, Sakti Prasad |
| Author_xml | – sequence: 1 givenname: Suman Kumar surname: Saha fullname: Saha, Suman Kumar organization: Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur, India – sequence: 2 givenname: Sakti Prasad surname: Ghoshal fullname: Ghoshal, Sakti Prasad email: spghoshalnitdgp@gmail.com organization: Department of Electrical Engineering, National Institute of Technology, Durgapur, India – sequence: 3 givenname: Rajib surname: Kar fullname: Kar, Rajib email: rajibkarece@gmail.com organization: Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur, India – sequence: 4 givenname: Durbadal surname: Mandal fullname: Mandal, Durbadal email: durbadal.bittu@gmail.com organization: Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23958491$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUFvFCEYholpY7fVf2AMRy8zfsAww3gwMRurjU2atHomDPPRspkZVmBr9NfLuu3FQ3viwPO-hPc5JUdLWJCQNwxqBqx9v6l9MjmamgMTNXQ1QP-CrJjq-ooD50dkBcD6CmSnTshpShsA4LJXL8kJF71UTc9W5NvaZHrzy8SZXm2zn_0fk31YqJluQ_T5bqYuRBr2V2aik1_QRLq9Mwnp-cU1dX7KGOmIyd8ur8ixM1PC1w_nGflx_vn7-mt1efXlYv3psrLl2VwJYYHZ0SkrGml4K0zD1WhBIkhn-77pmHMcYbRDN8jWwMAUWqFa6wbD2lGckXeH3m0MP3eYsp59sjhNZsGwS5pJwYA3LbTPo41UZTEBUNC3D-humHHU21i-HH_rx60K8OEA2BhSiui09fnfWsWCnzQDvRejN_ogRu_FaOh0EVPCzX_hx_5nYh8PMSx73nuMOlmPi8XRR7RZj8E_XfAXrKmpEA |
| CitedBy_id | crossref_primary_10_1007_s00500_020_04877_w crossref_primary_10_1049_iet_spr_2016_0298 crossref_primary_10_1109_ACCESS_2017_2711784 crossref_primary_10_3390_app7111127 crossref_primary_10_1007_s00034_018_0880_y crossref_primary_10_1016_j_enconman_2015_11_041 crossref_primary_10_1002_jnm_2524 crossref_primary_10_1016_j_enganabound_2018_03_004 crossref_primary_10_1016_j_measen_2022_100590 crossref_primary_10_1109_TSP_2024_3405571 crossref_primary_10_1049_iet_gtd_2018_5136 crossref_primary_10_1016_j_bspc_2023_104706 crossref_primary_10_1007_s00034_015_0149_7 crossref_primary_10_1016_j_asoc_2016_10_024 crossref_primary_10_1016_j_asej_2019_10_004 crossref_primary_10_1016_j_isatra_2015_03_003 crossref_primary_10_1007_s00034_017_0529_2 crossref_primary_10_1016_j_isatra_2015_05_015 crossref_primary_10_1016_j_eswa_2018_03_045 crossref_primary_10_1007_s42835_023_01589_7 crossref_primary_10_4316_AECE_2014_02020 crossref_primary_10_1049_iet_spr_2016_0201 crossref_primary_10_1016_j_energy_2017_04_155 crossref_primary_10_1016_j_neucom_2017_02_054 crossref_primary_10_1016_j_bspc_2018_09_005 crossref_primary_10_1016_j_engappai_2016_06_006 crossref_primary_10_1049_iet_gtd_2014_0502 crossref_primary_10_1016_j_ijepes_2015_05_049 crossref_primary_10_1007_s00034_023_02302_9 crossref_primary_10_1007_s00500_020_05065_6 crossref_primary_10_1016_j_fcij_2018_06_001 crossref_primary_10_1007_s00521_019_04680_1 crossref_primary_10_1016_j_energy_2017_12_059 crossref_primary_10_1007_s10489_018_1354_4 crossref_primary_10_3390_en10101465 crossref_primary_10_1007_s00034_020_01602_8 crossref_primary_10_1016_j_asoc_2017_06_025 crossref_primary_10_1109_JSEN_2023_3312614 crossref_primary_10_4018_IJCINI_2019100103 crossref_primary_10_1016_j_engappai_2018_12_009 crossref_primary_10_1080_00051144_2019_1570632 crossref_primary_10_1007_s11269_016_1262_5 crossref_primary_10_1109_ACCESS_2016_2579598 crossref_primary_10_1007_s00500_017_2502_1 crossref_primary_10_1007_s00034_016_0330_7 crossref_primary_10_1155_2015_189080 crossref_primary_10_1016_j_jnca_2017_07_002 crossref_primary_10_1007_s11760_015_0856_3 crossref_primary_10_1016_j_bspc_2023_105213 crossref_primary_10_1016_j_physa_2017_02_056 crossref_primary_10_1007_s13369_022_06915_1 crossref_primary_10_3390_math9202630 crossref_primary_10_1016_j_jestch_2016_05_013 crossref_primary_10_46532_978_81_950008_1_4_019 crossref_primary_10_1016_j_swevo_2016_08_001 crossref_primary_10_1007_s00500_022_07506_w crossref_primary_10_1016_j_kijoms_2017_06_001 crossref_primary_10_1049_iet_spr_2015_0214 crossref_primary_10_1007_s00034_022_02003_9 crossref_primary_10_1007_s00500_022_07410_3 crossref_primary_10_1080_02533839_2018_1473803 crossref_primary_10_1007_s00500_017_2910_2 crossref_primary_10_1109_ACCESS_2024_3431444 crossref_primary_10_1007_s42835_023_01474_3 crossref_primary_10_18185_erzifbed_1097138 crossref_primary_10_1088_1757_899X_734_1_012089 crossref_primary_10_1016_j_asoc_2015_01_020 crossref_primary_10_1155_2017_1583847 crossref_primary_10_1002_jnm_2203 crossref_primary_10_1007_s11036_024_02298_9 crossref_primary_10_1016_j_isatra_2020_08_032 crossref_primary_10_1007_s00366_020_01233_2 crossref_primary_10_1016_j_eswa_2015_05_017 crossref_primary_10_1109_TBCAS_2019_2916676 crossref_primary_10_2166_hydro_2019_105 crossref_primary_10_1007_s10489_022_04149_0 crossref_primary_10_1007_s00500_020_04863_2 crossref_primary_10_3390_su12104023 crossref_primary_10_1007_s40998_017_0025_5 crossref_primary_10_3233_IDA_194687 crossref_primary_10_1142_S1469026818500207 crossref_primary_10_1016_j_isatra_2015_08_007 crossref_primary_10_1007_s00034_016_0297_4 crossref_primary_10_1109_TAP_2015_2444439 crossref_primary_10_1007_s00500_015_1963_3 crossref_primary_10_17341_gazimmfd_1061112 crossref_primary_10_32604_cmc_2022_025577 crossref_primary_10_3390_su151310002 crossref_primary_10_1016_j_swevo_2016_02_002 crossref_primary_10_1108_COMPEL_08_2015_0289 crossref_primary_10_1016_j_geog_2022_10_003 crossref_primary_10_1016_j_isatra_2016_10_018 crossref_primary_10_1080_00207217_2017_1329950 crossref_primary_10_1080_02564602_2014_1002543 crossref_primary_10_1155_2016_4632064 crossref_primary_10_1016_j_aeue_2019_153019 crossref_primary_10_3233_JIFS_169453 crossref_primary_10_1016_j_isatra_2014_05_019 crossref_primary_10_1016_j_aej_2019_09_010 crossref_primary_10_1007_s00034_018_0772_1 crossref_primary_10_1109_TSP_2015_2494869 crossref_primary_10_1115_1_4040754 crossref_primary_10_1155_2023_1572996 crossref_primary_10_1109_TASE_2020_2969485 crossref_primary_10_1007_s11664_024_11103_y crossref_primary_10_1007_s00500_017_2595_6 crossref_primary_10_1016_j_apacoust_2020_107669 crossref_primary_10_1007_s00034_022_02255_5 |
| Cites_doi | 10.1007/s00034-005-0721-7 10.1016/j.eswa.2011.02.140 10.1109/ISSPIT.2006.270931 10.1016/S0019-0578(07)60134-7 10.1109/ICNN.1995.488968 10.1016/j.isatra.2010.12.002 10.1016/j.dsp.2007.05.011 10.1109/TCT.1972.1083419 10.1016/j.engappai.2010.05.007 10.1016/j.isatra.2013.04.002 10.1016/S0019-0578(07)60111-6 10.1109/CEC.2008.4631335 10.1109/TAU.1973.1162525 10.1016/j.jfranklin.2008.11.003 10.1109/ICGCS.2010.5543031 10.1109/AICI.2009.28 10.1016/S0019-0578(07)60186-4 10.1109/TIE.2008.928111 10.1109/TIM.2010.2086850 10.1109/TIE.2008.922599 10.1109/45.877863 10.1016/j.isatra.2013.02.002 10.1109/TAU.1973.1162510 10.1007/s12204-011-1213-5 10.1109/ICCMS.2010.466 10.1109/ISSPIT.2008.4775685 10.1016/j.engappai.2010.01.022 10.1016/j.isatra.2012.06.013 10.1016/j.eswa.2011.04.054 10.1016/S0019-0578(99)00024-5 10.1109/TIE.2009.2031194 10.1007/s00034-009-9128-1 10.1109/CEC.2010.5586425 |
| ContentType | Journal Article |
| Copyright | 2013 ISA Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2013 ISA – notice: Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SC 7SP 7TA 7TB 8FD FR3 JG9 JQ2 L7M L~C L~D |
| DOI | 10.1016/j.isatra.2013.07.009 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Computer and Information Systems Abstracts Electronics & Communications Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Materials Business File Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 1879-2022 |
| EndPage | 794 |
| ExternalDocumentID | 23958491 10_1016_j_isatra_2013_07_009 S0019057813001055 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFO ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K T9H TAE TN5 UHS UNMZH WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7SC 7SP 7TA 7TB 8FD FR3 JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c395t-33c01cdf8c345a263a428dc05e05fc99471ff2e0dcb7b56a0b18ec386cfba16d3 |
| IEDL.DBID | .~1 |
| ISSN | 0019-0578 1879-2022 |
| IngestDate | Thu Oct 02 11:43:07 EDT 2025 Sun Sep 28 08:46:55 EDT 2025 Thu Apr 03 07:08:11 EDT 2025 Thu Apr 24 22:56:49 EDT 2025 Wed Oct 01 01:54:57 EDT 2025 Fri Feb 23 02:30:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | FIR filter DE Evolutionary optimization technique RGA PSO CSO Convergence |
| Language | English |
| License | Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c395t-33c01cdf8c345a263a428dc05e05fc99471ff2e0dcb7b56a0b18ec386cfba16d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PMID | 23958491 |
| PQID | 1458187300 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_1531024606 proquest_miscellaneous_1458187300 pubmed_primary_23958491 crossref_citationtrail_10_1016_j_isatra_2013_07_009 crossref_primary_10_1016_j_isatra_2013_07_009 elsevier_sciencedirect_doi_10_1016_j_isatra_2013_07_009 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-11-01 |
| PublicationDateYYYYMMDD | 2013-11-01 |
| PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ISA transactions |
| PublicationTitleAlternate | ISA Trans |
| PublicationYear | 2013 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Liu G, Li YX, He G. Design of digital FIR filters using differential evolution algorithm based on reserved gene. In: IEEE congress on evolutionary computation; 2010. p. 1–7. Kennedy J, Eberhart R. Particle Swarm Optimization. In: Proceedings of the IEEE International Conference on Neural Network, vol. 4; 1995. p. 1942–8. Hooshmand, Esfahani (bib34) 2011; 50 Ababneh, Bataineh (bib21) 2008; 18 Romero, deMadrid, Manoso, Vinagre (bib30) 2013; 52 Hime, Oliveira, Petraglia, Petraglia (bib11) 2009; 28 Pan (bib17) 2011; 60 Storn R, Price K. Differential evolution- a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report. Berkley: International Computer science Institute; 1995. Saadatzi, Poshtan, Saadatzi, Tafazzoli (bib33) 2013; 52 Biswal, Dash, Panigrahi (bib43) 2009; 56 Rabiner (bib4) 1973; AU-21 Karaboga, Cetinkaya1 (bib8) 2006; 25 Najjarzadeh M, Ayatollahi A. FIR digital filters design: particle swarm optimization utilizing LMS and minimax strategies. In: IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2008; 2008. p. 129–32. Mondal, Ghoshal, Kar, Mandal (bib26) 2011; 16 Panda, Pradhan, Majhi (bib39) 2011; 38 Oisiovici, Cruz, Pereira (bib31) 1999; 38 Chen S. IIR model identification using batch-recursive adaptive simulated annealing algorithm. In: Proceedings of the 6th annual Chinese automation and computer science conference; 2000. p. 151–5. Dai, Chen, Zhu (bib28) 2010; 57 Cuevas, Gonzalez, Zaldivar, Perez, Torales (bib14) 2012 Krusienski DJ, Jenkins WK. A modified particle swarm optimization algorithm for adaptive filtering. In: IEEE International Symposium on Circuits and Systems, ISCAS 2006; 2006. p. 137–40. Dondo, Marques (bib36) 2003; 42 Willis (bib35) 2006; 45 Walpole, Myer (bib44) 1978 Yu X, Liu J, Li H. An adaptive inertia weight Particle Swarm Optimization Algorithm for IIR digital filter. In: International Conference on Artificial Intelligence and Computational Intelligence (AICI ’09), vol. 1; 2009. p.114–8. Parks, Burrus (bib1) 1987 Oolun, Gaydecki, Bhurtun (bib37) 2003; 42 Ifeachor EC, Jervis BW. Digital signal processing: a practical approach. UK: Pearson; 2002. Parks, McClellan (bib3) 1972; CT-19 Tang W, Shen T. Optimal design of FRM-based FIR filters by using hybrid Taguchi genetic algorithm. In: International conference on green circuits and systems; 2010. p. 392–7. Rashedi, Hossien, Saryazdi (bib27) 2011; 24 Fang W, Sun J, Xu W, Liu J. FIR digital filters design based on quantum-behaved Particle Swarm Optimization. In: First International Conference on Innovative Computing, Information and Control, ICICIC ‘06, vol. 1; 2006. p. 615–9. Ling, Iu, Leung, Chan (bib42) 2008; 55 Gao H, Diao M. Differential cultural algorithm for digital filters design. In: Proceedings of the second international conference on computer modelling and simulation, vol. 3; 2010. p. 459–63. Sarangi, Mahapatra, Panigrahi (bib24) 2011; 38 Luitel B, Venayagamoorthy GK. Differential evolution particle swarm optimization for digital filter design. In: IEEE Congress on Evolutionary Computation, CEC 2008; 2008. p. 3954–61. Luitel, Venayagamoorthy (bib23) 2010; 23 Ahmad SU, Andreas A. Cascade-form multiplier less FIR filter design using orthogonal genetic algorithm. In: IEEE International Symposium on Signal Processing and Information Technology; 2006. p. 932–7. Karaboga (bib12) 2009; 346 Shu-Chuan, Fei-Wei (bib38) 2007; 3 McClellan, Parks, Rabiner (bib6) 1973; AU-21 Van den Bergh, Engelbrecht (bib13) 2000; 26 Ahmad SU, Antoniou A. A genetic algorithm approach for fractional delay FIR filters. In: IEEE International Symposium on Circuits and Systems, ISCAS 2006; 2006. p. 2517–20. Belwin Edward J, Rajasekar N, Sathiyasekar K, Senthilnathan N, Sarjila R. An enhanced bacterial foraging algorithm approach for optimal power flow problem including FACTS devices considering system loadability. ISA Transactions 2013;52(5):622-28. Litwin (bib5) 2000; 0278-6648 Cuevas (10.1016/j.isatra.2013.07.009_bib14) 2012 Dai (10.1016/j.isatra.2013.07.009_bib28) 2010; 57 Van den Bergh (10.1016/j.isatra.2013.07.009_bib13) 2000; 26 Biswal (10.1016/j.isatra.2013.07.009_bib43) 2009; 56 Oolun (10.1016/j.isatra.2013.07.009_bib37) 2003; 42 Parks (10.1016/j.isatra.2013.07.009_bib1) 1987 Parks (10.1016/j.isatra.2013.07.009_bib3) 1972; CT-19 Sarangi (10.1016/j.isatra.2013.07.009_bib24) 2011; 38 Pan (10.1016/j.isatra.2013.07.009_bib17) 2011; 60 Litwin (10.1016/j.isatra.2013.07.009_bib5) 2000; 0278-6648 10.1016/j.isatra.2013.07.009_bib16 Rabiner (10.1016/j.isatra.2013.07.009_bib4) 1973; AU-21 10.1016/j.isatra.2013.07.009_bib15 10.1016/j.isatra.2013.07.009_bib10 Luitel (10.1016/j.isatra.2013.07.009_bib23) 2010; 23 10.1016/j.isatra.2013.07.009_bib32 Saadatzi (10.1016/j.isatra.2013.07.009_bib33) 2013; 52 Dondo (10.1016/j.isatra.2013.07.009_bib36) 2003; 42 Hime (10.1016/j.isatra.2013.07.009_bib11) 2009; 28 10.1016/j.isatra.2013.07.009_bib29 Rashedi (10.1016/j.isatra.2013.07.009_bib27) 2011; 24 Panda (10.1016/j.isatra.2013.07.009_bib39) 2011; 38 Mondal (10.1016/j.isatra.2013.07.009_bib26) 2011; 16 Karaboga (10.1016/j.isatra.2013.07.009_bib8) 2006; 25 10.1016/j.isatra.2013.07.009_bib7 Shu-Chuan (10.1016/j.isatra.2013.07.009_bib38) 2007; 3 Walpole (10.1016/j.isatra.2013.07.009_bib44) 1978 10.1016/j.isatra.2013.07.009_bib9 Hooshmand (10.1016/j.isatra.2013.07.009_bib34) 2011; 50 10.1016/j.isatra.2013.07.009_bib41 10.1016/j.isatra.2013.07.009_bib40 10.1016/j.isatra.2013.07.009_bib2 Karaboga (10.1016/j.isatra.2013.07.009_bib12) 2009; 346 10.1016/j.isatra.2013.07.009_bib25 Romero (10.1016/j.isatra.2013.07.009_bib30) 2013; 52 Willis (10.1016/j.isatra.2013.07.009_bib35) 2006; 45 10.1016/j.isatra.2013.07.009_bib20 McClellan (10.1016/j.isatra.2013.07.009_bib6) 1973; AU-21 10.1016/j.isatra.2013.07.009_bib22 Ling (10.1016/j.isatra.2013.07.009_bib42) 2008; 55 10.1016/j.isatra.2013.07.009_bib18 10.1016/j.isatra.2013.07.009_bib19 Oisiovici (10.1016/j.isatra.2013.07.009_bib31) 1999; 38 Ababneh (10.1016/j.isatra.2013.07.009_bib21) 2008; 18 |
| References_xml | – volume: 24 start-page: 117 year: 2011 end-page: 122 ident: bib27 article-title: Filter modelling using gravitational search algorithm publication-title: Engineering Applications of Artificial Intelligence – reference: Najjarzadeh M, Ayatollahi A. FIR digital filters design: particle swarm optimization utilizing LMS and minimax strategies. In: IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2008; 2008. p. 129–32. – volume: 38 start-page: 217 year: 1999 end-page: 224 ident: bib31 article-title: Digital filtering in the control of a batch distillation column publication-title: ISA Transactions – reference: Storn R, Price K. Differential evolution- a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report. Berkley: International Computer science Institute; 1995. – volume: 25 start-page: 649 year: 2006 end-page: 660 ident: bib8 article-title: Design of digital FIR filters using differential Evolution algorithm publication-title: Circuits Systems Signal Processing – reference: Krusienski DJ, Jenkins WK. A modified particle swarm optimization algorithm for adaptive filtering. In: IEEE International Symposium on Circuits and Systems, ISCAS 2006; 2006. p. 137–40. – volume: AU-21 start-page: 456 year: 1973 end-page: 460 ident: bib4 article-title: Approximate design relationships for low-pass FIR digital filters publication-title: IEEE Transactions on Audio and Electroacoustics – volume: 56 start-page: 212 year: 2009 end-page: 220 ident: bib43 article-title: Power quality disturbance classification using fuzzy publication-title: IEEE Transactions on Industrial Electronics – volume: 38 start-page: 10966 year: 2011 end-page: 10973 ident: bib24 article-title: DEPSO and PSO-QI in digital filter design publication-title: Expert Systems with Applications – reference: Liu G, Li YX, He G. Design of digital FIR filters using differential evolution algorithm based on reserved gene. In: IEEE congress on evolutionary computation; 2010. p. 1–7. – volume: 23 start-page: 635 year: 2010 end-page: 649 ident: bib23 article-title: Particle swarm optimization with quantum infusion for system identification publication-title: Engineering Applications of Artificial Intelligence – reference: Yu X, Liu J, Li H. An adaptive inertia weight Particle Swarm Optimization Algorithm for IIR digital filter. In: International Conference on Artificial Intelligence and Computational Intelligence (AICI ’09), vol. 1; 2009. p.114–8. – volume: 45 start-page: 153 year: 2006 end-page: 158 ident: bib35 article-title: An online novel adaptive filter for denoising time series measurements publication-title: ISA Transactions – volume: 55 start-page: 3447 year: 2008 end-page: 3460 ident: bib42 article-title: Improved hybrid particle swarm optimized wavelet neural network for modelling the development of fluid dispensing for electronic packaging publication-title: IEEE Transactions on Industrial Electronics – reference: Ahmad SU, Antoniou A. A genetic algorithm approach for fractional delay FIR filters. In: IEEE International Symposium on Circuits and Systems, ISCAS 2006; 2006. p. 2517–20. – reference: Gao H, Diao M. Differential cultural algorithm for digital filters design. In: Proceedings of the second international conference on computer modelling and simulation, vol. 3; 2010. p. 459–63. – reference: Luitel B, Venayagamoorthy GK. Differential evolution particle swarm optimization for digital filter design. In: IEEE Congress on Evolutionary Computation, CEC 2008; 2008. p. 3954–61. – reference: Chen S. IIR model identification using batch-recursive adaptive simulated annealing algorithm. In: Proceedings of the 6th annual Chinese automation and computer science conference; 2000. p. 151–5. – volume: 38 start-page: 12671 year: 2011 end-page: 12683 ident: bib39 article-title: IIR System Identification using Cat Swarm Optimization publication-title: Expert System with Application – volume: 0278-6648 start-page: 28 year: 2000 end-page: 31 ident: bib5 article-title: FIR and IIR digital filters publication-title: IEEE Potentials – volume: 346 start-page: 328 year: 2009 end-page: 348 ident: bib12 article-title: A new design method based on artificial bee colony algorithm for digital IIR filters publication-title: Journal of the Franklin Institute – volume: 50 start-page: 142 year: 2011 end-page: 149 ident: bib34 article-title: Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators publication-title: ISA Transactions – volume: 52 start-page: 461 year: 2013 end-page: 468 ident: bib30 article-title: IIR approximations to the fractional differentiator/integrator using Chebyshev polynomials theory publication-title: ISA Transactions – volume: CT-19 start-page: 189 year: 1972 end-page: 194 ident: bib3 article-title: Chebyshev approximation for non recursive digital filters with linear phase publication-title: IEEE Transactions on Circuit Theory – volume: 26 start-page: 84 year: 2000 end-page: 90 ident: bib13 article-title: Cooperative learning in neural network using particle swarm optimizers publication-title: South African Computer Journal – reference: Ifeachor EC, Jervis BW. Digital signal processing: a practical approach. UK: Pearson; 2002. – reference: Fang W, Sun J, Xu W, Liu J. FIR digital filters design based on quantum-behaved Particle Swarm Optimization. In: First International Conference on Innovative Computing, Information and Control, ICICIC ‘06, vol. 1; 2006. p. 615–9. – year: 2012 ident: bib14 article-title: An algorithm for global optimization inspired by collective animal behaviour – volume: 28 start-page: 899 year: 2009 end-page: 911 ident: bib11 article-title: Frequency domain FIR filter design using fuzzy adaptive simulated annealing publication-title: Circuits, Systems, and Signal Processing – volume: 60 start-page: 1469 year: 2011 end-page: 1479 ident: bib17 article-title: Evolutionary computation on programmable robust IIR filter pole-placement design publication-title: IEEE Transactions on Instrumentation And Measurement – volume: 18 start-page: 657 year: 2008 end-page: 668 ident: bib21 article-title: Linear phase FIR filter design using particle swarm optimization and genetic algorithms publication-title: Digital Signal Processing – volume: 16 start-page: 696 year: 2011 end-page: 703 ident: bib26 article-title: Optimal linear phase FIR Band pass filter design using craziness based Particle Swarm Optimization Algorithm publication-title: Journal of Shanghai Jiaotong University (Science), Springer – reference: Kennedy J, Eberhart R. Particle Swarm Optimization. In: Proceedings of the IEEE International Conference on Neural Network, vol. 4; 1995. p. 1942–8. – reference: Belwin Edward J, Rajasekar N, Sathiyasekar K, Senthilnathan N, Sarjila R. An enhanced bacterial foraging algorithm approach for optimal power flow problem including FACTS devices considering system loadability. ISA Transactions 2013;52(5):622-28. – volume: 52 start-page: 129 year: 2013 end-page: 139 ident: bib33 article-title: Novel system identification method and multi-objective-optimal multivariable disturbance observer for electric wheelchair publication-title: ISA Transactions – volume: AU-21 start-page: 506 year: 1973 end-page: 526 ident: bib6 article-title: A computer program for designing optimum FIR linear phase digital filters publication-title: IEEE Transactions on Audio and Electroacoustics – volume: 57 start-page: 1710 year: 2010 end-page: 1718 ident: bib28 article-title: Seeker optimization algorithm for digital IIR filter design publication-title: IEEE Transactions on Industrial Electronics – volume: 42 start-page: 29 year: 2003 end-page: 37 ident: bib37 article-title: A coded approach to system identification using a modified Golay FIR filter publication-title: ISA Transactions – year: 1978 ident: bib44 article-title: Probability and statistics for engineers and scientists – year: 1987 ident: bib1 article-title: Digital filter design – volume: 3 start-page: 163 year: 2007 end-page: 173 ident: bib38 article-title: Computational Intelligence based on the behaviour of Cats publication-title: International Journal of Innovative computing Information and Control – reference: Ahmad SU, Andreas A. Cascade-form multiplier less FIR filter design using orthogonal genetic algorithm. In: IEEE International Symposium on Signal Processing and Information Technology; 2006. p. 932–7. – reference: Tang W, Shen T. Optimal design of FRM-based FIR filters by using hybrid Taguchi genetic algorithm. In: International conference on green circuits and systems; 2010. p. 392–7. – volume: 42 start-page: 289 year: 2003 end-page: 303 ident: bib36 article-title: Simulation results for on-line optimization of a batch bioreactor using nonlinear filtering and optimal control publication-title: ISA Transactions – ident: 10.1016/j.isatra.2013.07.009_bib22 – ident: 10.1016/j.isatra.2013.07.009_bib7 – volume: 25 start-page: 649 issue: 5 year: 2006 ident: 10.1016/j.isatra.2013.07.009_bib8 article-title: Design of digital FIR filters using differential Evolution algorithm publication-title: Circuits Systems Signal Processing doi: 10.1007/s00034-005-0721-7 – ident: 10.1016/j.isatra.2013.07.009_bib20 – volume: 38 start-page: 10966 issue: 9 year: 2011 ident: 10.1016/j.isatra.2013.07.009_bib24 article-title: DEPSO and PSO-QI in digital filter design publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.02.140 – ident: 10.1016/j.isatra.2013.07.009_bib15 doi: 10.1109/ISSPIT.2006.270931 – volume: 42 start-page: 289 year: 2003 ident: 10.1016/j.isatra.2013.07.009_bib36 article-title: Simulation results for on-line optimization of a batch bioreactor using nonlinear filtering and optimal control publication-title: ISA Transactions doi: 10.1016/S0019-0578(07)60134-7 – ident: 10.1016/j.isatra.2013.07.009_bib40 doi: 10.1109/ICNN.1995.488968 – volume: 50 start-page: 142 year: 2011 ident: 10.1016/j.isatra.2013.07.009_bib34 article-title: Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators publication-title: ISA Transactions doi: 10.1016/j.isatra.2010.12.002 – volume: 3 start-page: 163 issue: 1 year: 2007 ident: 10.1016/j.isatra.2013.07.009_bib38 article-title: Computational Intelligence based on the behaviour of Cats publication-title: International Journal of Innovative computing Information and Control – year: 1987 ident: 10.1016/j.isatra.2013.07.009_bib1 – volume: 18 start-page: 657 issue: 4 year: 2008 ident: 10.1016/j.isatra.2013.07.009_bib21 article-title: Linear phase FIR filter design using particle swarm optimization and genetic algorithms publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2007.05.011 – volume: CT-19 start-page: 189 year: 1972 ident: 10.1016/j.isatra.2013.07.009_bib3 article-title: Chebyshev approximation for non recursive digital filters with linear phase publication-title: IEEE Transactions on Circuit Theory doi: 10.1109/TCT.1972.1083419 – ident: 10.1016/j.isatra.2013.07.009_bib10 – ident: 10.1016/j.isatra.2013.07.009_bib41 – volume: 24 start-page: 117 issue: 1 year: 2011 ident: 10.1016/j.isatra.2013.07.009_bib27 article-title: Filter modelling using gravitational search algorithm publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2010.05.007 – ident: 10.1016/j.isatra.2013.07.009_bib32 doi: 10.1016/j.isatra.2013.04.002 – volume: 42 start-page: 29 year: 2003 ident: 10.1016/j.isatra.2013.07.009_bib37 article-title: A coded approach to system identification using a modified Golay FIR filter publication-title: ISA Transactions doi: 10.1016/S0019-0578(07)60111-6 – volume: 26 start-page: 84 year: 2000 ident: 10.1016/j.isatra.2013.07.009_bib13 article-title: Cooperative learning in neural network using particle swarm optimizers publication-title: South African Computer Journal – ident: 10.1016/j.isatra.2013.07.009_bib29 doi: 10.1109/CEC.2008.4631335 – volume: AU-21 start-page: 506 year: 1973 ident: 10.1016/j.isatra.2013.07.009_bib6 article-title: A computer program for designing optimum FIR linear phase digital filters publication-title: IEEE Transactions on Audio and Electroacoustics doi: 10.1109/TAU.1973.1162525 – volume: 346 start-page: 328 issue: 4 year: 2009 ident: 10.1016/j.isatra.2013.07.009_bib12 article-title: A new design method based on artificial bee colony algorithm for digital IIR filters publication-title: Journal of the Franklin Institute doi: 10.1016/j.jfranklin.2008.11.003 – ident: 10.1016/j.isatra.2013.07.009_bib2 – ident: 10.1016/j.isatra.2013.07.009_bib16 doi: 10.1109/ICGCS.2010.5543031 – ident: 10.1016/j.isatra.2013.07.009_bib25 doi: 10.1109/AICI.2009.28 – volume: 45 start-page: 153 issue: 2 year: 2006 ident: 10.1016/j.isatra.2013.07.009_bib35 article-title: An online novel adaptive filter for denoising time series measurements publication-title: ISA Transactions doi: 10.1016/S0019-0578(07)60186-4 – volume: 56 start-page: 212 issue: 1 year: 2009 ident: 10.1016/j.isatra.2013.07.009_bib43 article-title: Power quality disturbance classification using fuzzy C-means algorithm and adaptive particle swarm optimization publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2008.928111 – volume: 60 start-page: 1469 issue: 4 year: 2011 ident: 10.1016/j.isatra.2013.07.009_bib17 article-title: Evolutionary computation on programmable robust IIR filter pole-placement design publication-title: IEEE Transactions on Instrumentation And Measurement doi: 10.1109/TIM.2010.2086850 – volume: 55 start-page: 3447 issue: 9 year: 2008 ident: 10.1016/j.isatra.2013.07.009_bib42 article-title: Improved hybrid particle swarm optimized wavelet neural network for modelling the development of fluid dispensing for electronic packaging publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2008.922599 – year: 2012 ident: 10.1016/j.isatra.2013.07.009_bib14 – volume: 0278-6648 start-page: 28 year: 2000 ident: 10.1016/j.isatra.2013.07.009_bib5 article-title: FIR and IIR digital filters publication-title: IEEE Potentials doi: 10.1109/45.877863 – volume: 52 start-page: 461 year: 2013 ident: 10.1016/j.isatra.2013.07.009_bib30 article-title: IIR approximations to the fractional differentiator/integrator using Chebyshev polynomials theory publication-title: ISA Transactions doi: 10.1016/j.isatra.2013.02.002 – volume: AU-21 start-page: 456 year: 1973 ident: 10.1016/j.isatra.2013.07.009_bib4 article-title: Approximate design relationships for low-pass FIR digital filters publication-title: IEEE Transactions on Audio and Electroacoustics doi: 10.1109/TAU.1973.1162510 – volume: 16 start-page: 696 issue: 6 year: 2011 ident: 10.1016/j.isatra.2013.07.009_bib26 article-title: Optimal linear phase FIR Band pass filter design using craziness based Particle Swarm Optimization Algorithm publication-title: Journal of Shanghai Jiaotong University (Science), Springer doi: 10.1007/s12204-011-1213-5 – ident: 10.1016/j.isatra.2013.07.009_bib18 doi: 10.1109/ICCMS.2010.466 – ident: 10.1016/j.isatra.2013.07.009_bib19 doi: 10.1109/ISSPIT.2008.4775685 – volume: 23 start-page: 635 issue: 5 year: 2010 ident: 10.1016/j.isatra.2013.07.009_bib23 article-title: Particle swarm optimization with quantum infusion for system identification publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2010.01.022 – volume: 52 start-page: 129 year: 2013 ident: 10.1016/j.isatra.2013.07.009_bib33 article-title: Novel system identification method and multi-objective-optimal multivariable disturbance observer for electric wheelchair publication-title: ISA Transactions doi: 10.1016/j.isatra.2012.06.013 – volume: 38 start-page: 12671 issue: 10 year: 2011 ident: 10.1016/j.isatra.2013.07.009_bib39 article-title: IIR System Identification using Cat Swarm Optimization publication-title: Expert System with Application doi: 10.1016/j.eswa.2011.04.054 – volume: 38 start-page: 217 year: 1999 ident: 10.1016/j.isatra.2013.07.009_bib31 article-title: Digital filtering in the control of a batch distillation column publication-title: ISA Transactions doi: 10.1016/S0019-0578(99)00024-5 – year: 1978 ident: 10.1016/j.isatra.2013.07.009_bib44 – volume: 57 start-page: 1710 issue: 5 year: 2010 ident: 10.1016/j.isatra.2013.07.009_bib28 article-title: Seeker optimization algorithm for digital IIR filter design publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2009.2031194 – volume: 28 start-page: 899 year: 2009 ident: 10.1016/j.isatra.2013.07.009_bib11 article-title: Frequency domain FIR filter design using fuzzy adaptive simulated annealing publication-title: Circuits, Systems, and Signal Processing doi: 10.1007/s00034-009-9128-1 – ident: 10.1016/j.isatra.2013.07.009_bib9 doi: 10.1109/CEC.2010.5586425 |
| SSID | ssj0002598 |
| Score | 2.3871412 |
| Snippet | In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 781 |
| SubjectTerms | Algorithms Animals Behavior, Animal - physiology Biomimetics - methods Cats Cats - physiology Computer Simulation Computer-Aided Design Convergence Crowding CSO Evolutionary optimization technique FIR filter FIR filters Fitness Genetic algorithms Linear Models Optimization PSO RGA Search methods Signal Processing, Computer-Assisted Swarm intelligence |
| Title | Cat Swarm Optimization algorithm for optimal linear phase FIR filter design |
| URI | https://dx.doi.org/10.1016/j.isatra.2013.07.009 https://www.ncbi.nlm.nih.gov/pubmed/23958491 https://www.proquest.com/docview/1458187300 https://www.proquest.com/docview/1531024606 |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2022 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: AKRWK dateStart: 19890101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4huMABFUphy0Ou1AM9BJI4TuIjWrFaCqKIFolb5PjR3Yp9KARx47czkzg8pBaknqIk48gaj2c-Z14AXzNnkkiHJrDSCWphVgZS0x8xm2phTChcW-3zPB1eJd-vxfUC9LtcGAqr9Lq_1emNtvZPDj03D-fjMeX4ojFDgSOHDLV5pAz2JKMuBgcPz2EeCO-9NpYBUXfpc02MF0XMVFR9KOJNCU8KS_y7efoX_GzM0OADrHr8yI7aKa7Bgp2uw8qLqoLrsOb36y3b90Wlv32E076q2c97VU3YD9QSE59-ydTN71k1rkcThuiVzegVfp6wp6rYfIQ2jg1OLpkbk1edmSbeYwOuBse_-sPAN1IINJeiDjjXYaSNyzVPhIpTrvDQYXQoLK6FlhINlHOxDY0us1KkKiyj3Gqep9qVKkoN_wSL09nUbgErE8OdNogCZZogQY6fUjEXLs1UGcemB7zjX6F9lXFqdnFTdOFkf4qW6wVxvQjJ_S17EDyNmrdVNt6hz7qlKV5JS4GG4J2RX7qVLHAjkXdETe3s7hbPQALBC5Xvf4MGNRaCGjz09WCzFYOn-cbI6jyR0ef_nts2LNNdm-m4A4t1dWd3EfLU5V4j03uwdNS_PLug68np8PwROiMBlg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLQcUKEtLH25Ug_tISWJ4yQ-VquulkJBoiBxsxw_YBH7UAji1t_emcQBKrVF4ho_ZI3HM99kXgAfC2-zxMQ2ctILamFWRdLQHzGXG2FtLHxX7fMgH59k30_F6RIM-1wYCqsMsr-T6a20Dl92AjV3FpMJ5fiiMkOGI4cMtXl8AiuZSAuywL78uovzQHwfxLGMaHqfP9cGeVHITE3lhxLe1vCkuMS_66d_4c9WD42ew1oAkOxrd8Z1WHKzDVi9V1ZwA9bDg71in0JV6c8vYG-oG_bzRtdTdohiYhryL5m-PJvXk-Z8yhC-sjkN4fYEPnXNFueo5Nho94j5CbnVmW0DPl7Cyejb8XAchU4KkeFSNBHnJk6M9aXhmdBpzjVaHdbEwuFlGClRQ3mfutiaqqhEruMqKZ3hZW58pZPc8lewPJvP3BawKrPcG4swUOYZTihxK51y4fNCV2lqB8B7-ikTyoxTt4tL1ceTXaiO6oqormLyf8sBRLerFl2ZjQfmF_3VqD_YRaEmeGDlh_4mFb4kco_omZtfX6ERJBC9UP3-_8xBkYWoBq2-AWx2bHB73hRJXWYy2X702d7D0_Hxj321v3uw9xqe0UiX9vgGlpv62r1F_NNU71r-_g0UAgGW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cat+Swarm+Optimization+algorithm+for+optimal+linear+phase+FIR+filter+design&rft.jtitle=ISA+transactions&rft.au=Saha%2C+Suman+Kumar&rft.au=Ghoshal%2C+Sakti+Prasad&rft.au=Kar%2C+Rajib&rft.au=Mandal%2C+Durbadal&rft.date=2013-11-01&rft.issn=1879-2022&rft.eissn=1879-2022&rft.volume=52&rft.issue=6&rft.spage=781&rft_id=info:doi/10.1016%2Fj.isatra.2013.07.009&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon |