Cat Swarm Optimization algorithm for optimal linear phase FIR filter design

In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response coefficients of FIR low pass, high pass, band pass and band stop filters, trying to meet the respective ideal frequency response characteristics....

Full description

Saved in:
Bibliographic Details
Published inISA transactions Vol. 52; no. 6; pp. 781 - 794
Main Authors Saha, Suman Kumar, Ghoshal, Sakti Prasad, Kar, Rajib, Mandal, Durbadal
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.11.2013
Subjects
Online AccessGet full text
ISSN0019-0578
1879-2022
1879-2022
DOI10.1016/j.isatra.2013.07.009

Cover

Abstract In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response coefficients of FIR low pass, high pass, band pass and band stop filters, trying to meet the respective ideal frequency response characteristics. CSO is generated by observing the behaviour of cats and composed of two sub-models. In CSO, one can decide how many cats are used in the iteration. Every cat has its′ own position composed of M dimensions, velocities for each dimension, a fitness value which represents the accommodation of the cat to the fitness function, and a flag to identify whether the cat is in seeking mode or tracing mode. The final solution would be the best position of one of the cats. CSO keeps the best solution until it reaches the end of the iteration. The results of the proposed CSO based approach have been compared to those of other well-known optimization methods such as Real Coded Genetic Algorithm (RGA), standard Particle Swarm Optimization (PSO) and Differential Evolution (DE). The CSO based results confirm the superiority of the proposed CSO for solving FIR filter design problems. The performances of the CSO based designed FIR filters have proven to be superior as compared to those obtained by RGA, conventional PSO and DE. The simulation results also demonstrate that the CSO is the best optimizer among other relevant techniques, not only in the convergence speed but also in the optimal performances of the designed filters. •A novel algorithm called Cat Swarm Optimization (CSO) algorithm is adopted in this paper.•CSO algorithm is applied for the solution of the constrained, multi-modal optimal FIR filter design problems.•It is shown that CSO converges very fast to the best quality optimal solution with the least execution times.•CSO demonstrates the best performance in terms of magnitude responses, the minimum stop band ripple, highest stop band attenuations.•The CSO is a good global optimizer for obtaining the optimal filter coefficients of digital filter design problem.
AbstractList In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response coefficients of FIR low pass, high pass, band pass and band stop filters, trying to meet the respective ideal frequency response characteristics. CSO is generated by observing the behaviour of cats and composed of two sub-models. In CSO, one can decide how many cats are used in the iteration. Every cat has its' own position composed of M dimensions, velocities for each dimension, a fitness value which represents the accommodation of the cat to the fitness function, and a flag to identify whether the cat is in seeking mode or tracing mode. The final solution would be the best position of one of the cats. CSO keeps the best solution until it reaches the end of the iteration. The results of the proposed CSO based approach have been compared to those of other well-known optimization methods such as Real Coded Genetic Algorithm (RGA), standard Particle Swarm Optimization (PSO) and Differential Evolution (DE). The CSO based results confirm the superiority of the proposed CSO for solving FIR filter design problems. The performances of the CSO based designed FIR filters have proven to be superior as compared to those obtained by RGA, conventional PSO and DE. The simulation results also demonstrate that the CSO is the best optimizer among other relevant techniques, not only in the convergence speed but also in the optimal performances of the designed filters.
In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response coefficients of FIR low pass, high pass, band pass and band stop filters, trying to meet the respective ideal frequency response characteristics. CSO is generated by observing the behaviour of cats and composed of two sub-models. In CSO, one can decide how many cats are used in the iteration. Every cat has its' own position composed of M dimensions, velocities for each dimension, a fitness value which represents the accommodation of the cat to the fitness function, and a flag to identify whether the cat is in seeking mode or tracing mode. The final solution would be the best position of one of the cats. CSO keeps the best solution until it reaches the end of the iteration. The results of the proposed CSO based approach have been compared to those of other well-known optimization methods such as Real Coded Genetic Algorithm (RGA), standard Particle Swarm Optimization (PSO) and Differential Evolution (DE). The CSO based results confirm the superiority of the proposed CSO for solving FIR filter design problems. The performances of the CSO based designed FIR filters have proven to be superior as compared to those obtained by RGA, conventional PSO and DE. The simulation results also demonstrate that the CSO is the best optimizer among other relevant techniques, not only in the convergence speed but also in the optimal performances of the designed filters.In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response coefficients of FIR low pass, high pass, band pass and band stop filters, trying to meet the respective ideal frequency response characteristics. CSO is generated by observing the behaviour of cats and composed of two sub-models. In CSO, one can decide how many cats are used in the iteration. Every cat has its' own position composed of M dimensions, velocities for each dimension, a fitness value which represents the accommodation of the cat to the fitness function, and a flag to identify whether the cat is in seeking mode or tracing mode. The final solution would be the best position of one of the cats. CSO keeps the best solution until it reaches the end of the iteration. The results of the proposed CSO based approach have been compared to those of other well-known optimization methods such as Real Coded Genetic Algorithm (RGA), standard Particle Swarm Optimization (PSO) and Differential Evolution (DE). The CSO based results confirm the superiority of the proposed CSO for solving FIR filter design problems. The performances of the CSO based designed FIR filters have proven to be superior as compared to those obtained by RGA, conventional PSO and DE. The simulation results also demonstrate that the CSO is the best optimizer among other relevant techniques, not only in the convergence speed but also in the optimal performances of the designed filters.
In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response coefficients of FIR low pass, high pass, band pass and band stop filters, trying to meet the respective ideal frequency response characteristics. CSO is generated by observing the behaviour of cats and composed of two sub-models. In CSO, one can decide how many cats are used in the iteration. Every cat has its′ own position composed of M dimensions, velocities for each dimension, a fitness value which represents the accommodation of the cat to the fitness function, and a flag to identify whether the cat is in seeking mode or tracing mode. The final solution would be the best position of one of the cats. CSO keeps the best solution until it reaches the end of the iteration. The results of the proposed CSO based approach have been compared to those of other well-known optimization methods such as Real Coded Genetic Algorithm (RGA), standard Particle Swarm Optimization (PSO) and Differential Evolution (DE). The CSO based results confirm the superiority of the proposed CSO for solving FIR filter design problems. The performances of the CSO based designed FIR filters have proven to be superior as compared to those obtained by RGA, conventional PSO and DE. The simulation results also demonstrate that the CSO is the best optimizer among other relevant techniques, not only in the convergence speed but also in the optimal performances of the designed filters. •A novel algorithm called Cat Swarm Optimization (CSO) algorithm is adopted in this paper.•CSO algorithm is applied for the solution of the constrained, multi-modal optimal FIR filter design problems.•It is shown that CSO converges very fast to the best quality optimal solution with the least execution times.•CSO demonstrates the best performance in terms of magnitude responses, the minimum stop band ripple, highest stop band attenuations.•The CSO is a good global optimizer for obtaining the optimal filter coefficients of digital filter design problem.
Author Kar, Rajib
Mandal, Durbadal
Saha, Suman Kumar
Ghoshal, Sakti Prasad
Author_xml – sequence: 1
  givenname: Suman Kumar
  surname: Saha
  fullname: Saha, Suman Kumar
  organization: Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur, India
– sequence: 2
  givenname: Sakti Prasad
  surname: Ghoshal
  fullname: Ghoshal, Sakti Prasad
  email: spghoshalnitdgp@gmail.com
  organization: Department of Electrical Engineering, National Institute of Technology, Durgapur, India
– sequence: 3
  givenname: Rajib
  surname: Kar
  fullname: Kar, Rajib
  email: rajibkarece@gmail.com
  organization: Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur, India
– sequence: 4
  givenname: Durbadal
  surname: Mandal
  fullname: Mandal, Durbadal
  email: durbadal.bittu@gmail.com
  organization: Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23958491$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvFCEYholpY7fVf2AMRy8zfsAww3gwMRurjU2atHomDPPRspkZVmBr9NfLuu3FQ3viwPO-hPc5JUdLWJCQNwxqBqx9v6l9MjmamgMTNXQ1QP-CrJjq-ooD50dkBcD6CmSnTshpShsA4LJXL8kJF71UTc9W5NvaZHrzy8SZXm2zn_0fk31YqJluQ_T5bqYuRBr2V2aik1_QRLq9Mwnp-cU1dX7KGOmIyd8ur8ixM1PC1w_nGflx_vn7-mt1efXlYv3psrLl2VwJYYHZ0SkrGml4K0zD1WhBIkhn-77pmHMcYbRDN8jWwMAUWqFa6wbD2lGckXeH3m0MP3eYsp59sjhNZsGwS5pJwYA3LbTPo41UZTEBUNC3D-humHHU21i-HH_rx60K8OEA2BhSiui09fnfWsWCnzQDvRejN_ogRu_FaOh0EVPCzX_hx_5nYh8PMSx73nuMOlmPi8XRR7RZj8E_XfAXrKmpEA
CitedBy_id crossref_primary_10_1007_s00500_020_04877_w
crossref_primary_10_1049_iet_spr_2016_0298
crossref_primary_10_1109_ACCESS_2017_2711784
crossref_primary_10_3390_app7111127
crossref_primary_10_1007_s00034_018_0880_y
crossref_primary_10_1016_j_enconman_2015_11_041
crossref_primary_10_1002_jnm_2524
crossref_primary_10_1016_j_enganabound_2018_03_004
crossref_primary_10_1016_j_measen_2022_100590
crossref_primary_10_1109_TSP_2024_3405571
crossref_primary_10_1049_iet_gtd_2018_5136
crossref_primary_10_1016_j_bspc_2023_104706
crossref_primary_10_1007_s00034_015_0149_7
crossref_primary_10_1016_j_asoc_2016_10_024
crossref_primary_10_1016_j_asej_2019_10_004
crossref_primary_10_1016_j_isatra_2015_03_003
crossref_primary_10_1007_s00034_017_0529_2
crossref_primary_10_1016_j_isatra_2015_05_015
crossref_primary_10_1016_j_eswa_2018_03_045
crossref_primary_10_1007_s42835_023_01589_7
crossref_primary_10_4316_AECE_2014_02020
crossref_primary_10_1049_iet_spr_2016_0201
crossref_primary_10_1016_j_energy_2017_04_155
crossref_primary_10_1016_j_neucom_2017_02_054
crossref_primary_10_1016_j_bspc_2018_09_005
crossref_primary_10_1016_j_engappai_2016_06_006
crossref_primary_10_1049_iet_gtd_2014_0502
crossref_primary_10_1016_j_ijepes_2015_05_049
crossref_primary_10_1007_s00034_023_02302_9
crossref_primary_10_1007_s00500_020_05065_6
crossref_primary_10_1016_j_fcij_2018_06_001
crossref_primary_10_1007_s00521_019_04680_1
crossref_primary_10_1016_j_energy_2017_12_059
crossref_primary_10_1007_s10489_018_1354_4
crossref_primary_10_3390_en10101465
crossref_primary_10_1007_s00034_020_01602_8
crossref_primary_10_1016_j_asoc_2017_06_025
crossref_primary_10_1109_JSEN_2023_3312614
crossref_primary_10_4018_IJCINI_2019100103
crossref_primary_10_1016_j_engappai_2018_12_009
crossref_primary_10_1080_00051144_2019_1570632
crossref_primary_10_1007_s11269_016_1262_5
crossref_primary_10_1109_ACCESS_2016_2579598
crossref_primary_10_1007_s00500_017_2502_1
crossref_primary_10_1007_s00034_016_0330_7
crossref_primary_10_1155_2015_189080
crossref_primary_10_1016_j_jnca_2017_07_002
crossref_primary_10_1007_s11760_015_0856_3
crossref_primary_10_1016_j_bspc_2023_105213
crossref_primary_10_1016_j_physa_2017_02_056
crossref_primary_10_1007_s13369_022_06915_1
crossref_primary_10_3390_math9202630
crossref_primary_10_1016_j_jestch_2016_05_013
crossref_primary_10_46532_978_81_950008_1_4_019
crossref_primary_10_1016_j_swevo_2016_08_001
crossref_primary_10_1007_s00500_022_07506_w
crossref_primary_10_1016_j_kijoms_2017_06_001
crossref_primary_10_1049_iet_spr_2015_0214
crossref_primary_10_1007_s00034_022_02003_9
crossref_primary_10_1007_s00500_022_07410_3
crossref_primary_10_1080_02533839_2018_1473803
crossref_primary_10_1007_s00500_017_2910_2
crossref_primary_10_1109_ACCESS_2024_3431444
crossref_primary_10_1007_s42835_023_01474_3
crossref_primary_10_18185_erzifbed_1097138
crossref_primary_10_1088_1757_899X_734_1_012089
crossref_primary_10_1016_j_asoc_2015_01_020
crossref_primary_10_1155_2017_1583847
crossref_primary_10_1002_jnm_2203
crossref_primary_10_1007_s11036_024_02298_9
crossref_primary_10_1016_j_isatra_2020_08_032
crossref_primary_10_1007_s00366_020_01233_2
crossref_primary_10_1016_j_eswa_2015_05_017
crossref_primary_10_1109_TBCAS_2019_2916676
crossref_primary_10_2166_hydro_2019_105
crossref_primary_10_1007_s10489_022_04149_0
crossref_primary_10_1007_s00500_020_04863_2
crossref_primary_10_3390_su12104023
crossref_primary_10_1007_s40998_017_0025_5
crossref_primary_10_3233_IDA_194687
crossref_primary_10_1142_S1469026818500207
crossref_primary_10_1016_j_isatra_2015_08_007
crossref_primary_10_1007_s00034_016_0297_4
crossref_primary_10_1109_TAP_2015_2444439
crossref_primary_10_1007_s00500_015_1963_3
crossref_primary_10_17341_gazimmfd_1061112
crossref_primary_10_32604_cmc_2022_025577
crossref_primary_10_3390_su151310002
crossref_primary_10_1016_j_swevo_2016_02_002
crossref_primary_10_1108_COMPEL_08_2015_0289
crossref_primary_10_1016_j_geog_2022_10_003
crossref_primary_10_1016_j_isatra_2016_10_018
crossref_primary_10_1080_00207217_2017_1329950
crossref_primary_10_1080_02564602_2014_1002543
crossref_primary_10_1155_2016_4632064
crossref_primary_10_1016_j_aeue_2019_153019
crossref_primary_10_3233_JIFS_169453
crossref_primary_10_1016_j_isatra_2014_05_019
crossref_primary_10_1016_j_aej_2019_09_010
crossref_primary_10_1007_s00034_018_0772_1
crossref_primary_10_1109_TSP_2015_2494869
crossref_primary_10_1115_1_4040754
crossref_primary_10_1155_2023_1572996
crossref_primary_10_1109_TASE_2020_2969485
crossref_primary_10_1007_s11664_024_11103_y
crossref_primary_10_1007_s00500_017_2595_6
crossref_primary_10_1016_j_apacoust_2020_107669
crossref_primary_10_1007_s00034_022_02255_5
Cites_doi 10.1007/s00034-005-0721-7
10.1016/j.eswa.2011.02.140
10.1109/ISSPIT.2006.270931
10.1016/S0019-0578(07)60134-7
10.1109/ICNN.1995.488968
10.1016/j.isatra.2010.12.002
10.1016/j.dsp.2007.05.011
10.1109/TCT.1972.1083419
10.1016/j.engappai.2010.05.007
10.1016/j.isatra.2013.04.002
10.1016/S0019-0578(07)60111-6
10.1109/CEC.2008.4631335
10.1109/TAU.1973.1162525
10.1016/j.jfranklin.2008.11.003
10.1109/ICGCS.2010.5543031
10.1109/AICI.2009.28
10.1016/S0019-0578(07)60186-4
10.1109/TIE.2008.928111
10.1109/TIM.2010.2086850
10.1109/TIE.2008.922599
10.1109/45.877863
10.1016/j.isatra.2013.02.002
10.1109/TAU.1973.1162510
10.1007/s12204-011-1213-5
10.1109/ICCMS.2010.466
10.1109/ISSPIT.2008.4775685
10.1016/j.engappai.2010.01.022
10.1016/j.isatra.2012.06.013
10.1016/j.eswa.2011.04.054
10.1016/S0019-0578(99)00024-5
10.1109/TIE.2009.2031194
10.1007/s00034-009-9128-1
10.1109/CEC.2010.5586425
ContentType Journal Article
Copyright 2013 ISA
Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2013 ISA
– notice: Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
7SP
7TA
7TB
8FD
FR3
JG9
JQ2
L7M
L~C
L~D
DOI 10.1016/j.isatra.2013.07.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Materials Business File
Computer and Information Systems Abstracts Professional
DatabaseTitleList MEDLINE
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1879-2022
EndPage 794
ExternalDocumentID 23958491
10_1016_j_isatra_2013_07_009
S0019057813001055
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6P2
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
T9H
TAE
TN5
UHS
UNMZH
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7SC
7SP
7TA
7TB
8FD
FR3
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c395t-33c01cdf8c345a263a428dc05e05fc99471ff2e0dcb7b56a0b18ec386cfba16d3
IEDL.DBID .~1
ISSN 0019-0578
1879-2022
IngestDate Thu Oct 02 11:43:07 EDT 2025
Sun Sep 28 08:46:55 EDT 2025
Thu Apr 03 07:08:11 EDT 2025
Thu Apr 24 22:56:49 EDT 2025
Wed Oct 01 01:54:57 EDT 2025
Fri Feb 23 02:30:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords FIR filter
DE
Evolutionary optimization technique
RGA
PSO
CSO
Convergence
Language English
License Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-33c01cdf8c345a263a428dc05e05fc99471ff2e0dcb7b56a0b18ec386cfba16d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 23958491
PQID 1458187300
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_1531024606
proquest_miscellaneous_1458187300
pubmed_primary_23958491
crossref_citationtrail_10_1016_j_isatra_2013_07_009
crossref_primary_10_1016_j_isatra_2013_07_009
elsevier_sciencedirect_doi_10_1016_j_isatra_2013_07_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ISA transactions
PublicationTitleAlternate ISA Trans
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu G, Li YX, He G. Design of digital FIR filters using differential evolution algorithm based on reserved gene. In: IEEE congress on evolutionary computation; 2010. p. 1–7.
Kennedy J, Eberhart R. Particle Swarm Optimization. In: Proceedings of the IEEE International Conference on Neural Network, vol. 4; 1995. p. 1942–8.
Hooshmand, Esfahani (bib34) 2011; 50
Ababneh, Bataineh (bib21) 2008; 18
Romero, deMadrid, Manoso, Vinagre (bib30) 2013; 52
Hime, Oliveira, Petraglia, Petraglia (bib11) 2009; 28
Pan (bib17) 2011; 60
Storn R, Price K. Differential evolution- a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report. Berkley: International Computer science Institute; 1995.
Saadatzi, Poshtan, Saadatzi, Tafazzoli (bib33) 2013; 52
Biswal, Dash, Panigrahi (bib43) 2009; 56
Rabiner (bib4) 1973; AU-21
Karaboga, Cetinkaya1 (bib8) 2006; 25
Najjarzadeh M, Ayatollahi A. FIR digital filters design: particle swarm optimization utilizing LMS and minimax strategies. In: IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2008; 2008. p. 129–32.
Mondal, Ghoshal, Kar, Mandal (bib26) 2011; 16
Panda, Pradhan, Majhi (bib39) 2011; 38
Oisiovici, Cruz, Pereira (bib31) 1999; 38
Chen S. IIR model identification using batch-recursive adaptive simulated annealing algorithm. In: Proceedings of the 6th annual Chinese automation and computer science conference; 2000. p. 151–5.
Dai, Chen, Zhu (bib28) 2010; 57
Cuevas, Gonzalez, Zaldivar, Perez, Torales (bib14) 2012
Krusienski DJ, Jenkins WK. A modified particle swarm optimization algorithm for adaptive filtering. In: IEEE International Symposium on Circuits and Systems, ISCAS 2006; 2006. p. 137–40.
Dondo, Marques (bib36) 2003; 42
Willis (bib35) 2006; 45
Walpole, Myer (bib44) 1978
Yu X, Liu J, Li H. An adaptive inertia weight Particle Swarm Optimization Algorithm for IIR digital filter. In: International Conference on Artificial Intelligence and Computational Intelligence (AICI ’09), vol. 1; 2009. p.114–8.
Parks, Burrus (bib1) 1987
Oolun, Gaydecki, Bhurtun (bib37) 2003; 42
Ifeachor EC, Jervis BW. Digital signal processing: a practical approach. UK: Pearson; 2002.
Parks, McClellan (bib3) 1972; CT-19
Tang W, Shen T. Optimal design of FRM-based FIR filters by using hybrid Taguchi genetic algorithm. In: International conference on green circuits and systems; 2010. p. 392–7.
Rashedi, Hossien, Saryazdi (bib27) 2011; 24
Fang W, Sun J, Xu W, Liu J. FIR digital filters design based on quantum-behaved Particle Swarm Optimization. In: First International Conference on Innovative Computing, Information and Control, ICICIC ‘06, vol. 1; 2006. p. 615–9.
Ling, Iu, Leung, Chan (bib42) 2008; 55
Gao H, Diao M. Differential cultural algorithm for digital filters design. In: Proceedings of the second international conference on computer modelling and simulation, vol. 3; 2010. p. 459–63.
Sarangi, Mahapatra, Panigrahi (bib24) 2011; 38
Luitel B, Venayagamoorthy GK. Differential evolution particle swarm optimization for digital filter design. In: IEEE Congress on Evolutionary Computation, CEC 2008; 2008. p. 3954–61.
Luitel, Venayagamoorthy (bib23) 2010; 23
Ahmad SU, Andreas A. Cascade-form multiplier less FIR filter design using orthogonal genetic algorithm. In: IEEE International Symposium on Signal Processing and Information Technology; 2006. p. 932–7.
Karaboga (bib12) 2009; 346
Shu-Chuan, Fei-Wei (bib38) 2007; 3
McClellan, Parks, Rabiner (bib6) 1973; AU-21
Van den Bergh, Engelbrecht (bib13) 2000; 26
Ahmad SU, Antoniou A. A genetic algorithm approach for fractional delay FIR filters. In: IEEE International Symposium on Circuits and Systems, ISCAS 2006; 2006. p. 2517–20.
Belwin Edward J, Rajasekar N, Sathiyasekar K, Senthilnathan N, Sarjila R. An enhanced bacterial foraging algorithm approach for optimal power flow problem including FACTS devices considering system loadability. ISA Transactions 2013;52(5):622-28.
Litwin (bib5) 2000; 0278-6648
Cuevas (10.1016/j.isatra.2013.07.009_bib14) 2012
Dai (10.1016/j.isatra.2013.07.009_bib28) 2010; 57
Van den Bergh (10.1016/j.isatra.2013.07.009_bib13) 2000; 26
Biswal (10.1016/j.isatra.2013.07.009_bib43) 2009; 56
Oolun (10.1016/j.isatra.2013.07.009_bib37) 2003; 42
Parks (10.1016/j.isatra.2013.07.009_bib1) 1987
Parks (10.1016/j.isatra.2013.07.009_bib3) 1972; CT-19
Sarangi (10.1016/j.isatra.2013.07.009_bib24) 2011; 38
Pan (10.1016/j.isatra.2013.07.009_bib17) 2011; 60
Litwin (10.1016/j.isatra.2013.07.009_bib5) 2000; 0278-6648
10.1016/j.isatra.2013.07.009_bib16
Rabiner (10.1016/j.isatra.2013.07.009_bib4) 1973; AU-21
10.1016/j.isatra.2013.07.009_bib15
10.1016/j.isatra.2013.07.009_bib10
Luitel (10.1016/j.isatra.2013.07.009_bib23) 2010; 23
10.1016/j.isatra.2013.07.009_bib32
Saadatzi (10.1016/j.isatra.2013.07.009_bib33) 2013; 52
Dondo (10.1016/j.isatra.2013.07.009_bib36) 2003; 42
Hime (10.1016/j.isatra.2013.07.009_bib11) 2009; 28
10.1016/j.isatra.2013.07.009_bib29
Rashedi (10.1016/j.isatra.2013.07.009_bib27) 2011; 24
Panda (10.1016/j.isatra.2013.07.009_bib39) 2011; 38
Mondal (10.1016/j.isatra.2013.07.009_bib26) 2011; 16
Karaboga (10.1016/j.isatra.2013.07.009_bib8) 2006; 25
10.1016/j.isatra.2013.07.009_bib7
Shu-Chuan (10.1016/j.isatra.2013.07.009_bib38) 2007; 3
Walpole (10.1016/j.isatra.2013.07.009_bib44) 1978
10.1016/j.isatra.2013.07.009_bib9
Hooshmand (10.1016/j.isatra.2013.07.009_bib34) 2011; 50
10.1016/j.isatra.2013.07.009_bib41
10.1016/j.isatra.2013.07.009_bib40
10.1016/j.isatra.2013.07.009_bib2
Karaboga (10.1016/j.isatra.2013.07.009_bib12) 2009; 346
10.1016/j.isatra.2013.07.009_bib25
Romero (10.1016/j.isatra.2013.07.009_bib30) 2013; 52
Willis (10.1016/j.isatra.2013.07.009_bib35) 2006; 45
10.1016/j.isatra.2013.07.009_bib20
McClellan (10.1016/j.isatra.2013.07.009_bib6) 1973; AU-21
10.1016/j.isatra.2013.07.009_bib22
Ling (10.1016/j.isatra.2013.07.009_bib42) 2008; 55
10.1016/j.isatra.2013.07.009_bib18
10.1016/j.isatra.2013.07.009_bib19
Oisiovici (10.1016/j.isatra.2013.07.009_bib31) 1999; 38
Ababneh (10.1016/j.isatra.2013.07.009_bib21) 2008; 18
References_xml – volume: 24
  start-page: 117
  year: 2011
  end-page: 122
  ident: bib27
  article-title: Filter modelling using gravitational search algorithm
  publication-title: Engineering Applications of Artificial Intelligence
– reference: Najjarzadeh M, Ayatollahi A. FIR digital filters design: particle swarm optimization utilizing LMS and minimax strategies. In: IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2008; 2008. p. 129–32.
– volume: 38
  start-page: 217
  year: 1999
  end-page: 224
  ident: bib31
  article-title: Digital filtering in the control of a batch distillation column
  publication-title: ISA Transactions
– reference: Storn R, Price K. Differential evolution- a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report. Berkley: International Computer science Institute; 1995.
– volume: 25
  start-page: 649
  year: 2006
  end-page: 660
  ident: bib8
  article-title: Design of digital FIR filters using differential Evolution algorithm
  publication-title: Circuits Systems Signal Processing
– reference: Krusienski DJ, Jenkins WK. A modified particle swarm optimization algorithm for adaptive filtering. In: IEEE International Symposium on Circuits and Systems, ISCAS 2006; 2006. p. 137–40.
– volume: AU-21
  start-page: 456
  year: 1973
  end-page: 460
  ident: bib4
  article-title: Approximate design relationships for low-pass FIR digital filters
  publication-title: IEEE Transactions on Audio and Electroacoustics
– volume: 56
  start-page: 212
  year: 2009
  end-page: 220
  ident: bib43
  article-title: Power quality disturbance classification using fuzzy
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 38
  start-page: 10966
  year: 2011
  end-page: 10973
  ident: bib24
  article-title: DEPSO and PSO-QI in digital filter design
  publication-title: Expert Systems with Applications
– reference: Liu G, Li YX, He G. Design of digital FIR filters using differential evolution algorithm based on reserved gene. In: IEEE congress on evolutionary computation; 2010. p. 1–7.
– volume: 23
  start-page: 635
  year: 2010
  end-page: 649
  ident: bib23
  article-title: Particle swarm optimization with quantum infusion for system identification
  publication-title: Engineering Applications of Artificial Intelligence
– reference: Yu X, Liu J, Li H. An adaptive inertia weight Particle Swarm Optimization Algorithm for IIR digital filter. In: International Conference on Artificial Intelligence and Computational Intelligence (AICI ’09), vol. 1; 2009. p.114–8.
– volume: 45
  start-page: 153
  year: 2006
  end-page: 158
  ident: bib35
  article-title: An online novel adaptive filter for denoising time series measurements
  publication-title: ISA Transactions
– volume: 55
  start-page: 3447
  year: 2008
  end-page: 3460
  ident: bib42
  article-title: Improved hybrid particle swarm optimized wavelet neural network for modelling the development of fluid dispensing for electronic packaging
  publication-title: IEEE Transactions on Industrial Electronics
– reference: Ahmad SU, Antoniou A. A genetic algorithm approach for fractional delay FIR filters. In: IEEE International Symposium on Circuits and Systems, ISCAS 2006; 2006. p. 2517–20.
– reference: Gao H, Diao M. Differential cultural algorithm for digital filters design. In: Proceedings of the second international conference on computer modelling and simulation, vol. 3; 2010. p. 459–63.
– reference: Luitel B, Venayagamoorthy GK. Differential evolution particle swarm optimization for digital filter design. In: IEEE Congress on Evolutionary Computation, CEC 2008; 2008. p. 3954–61.
– reference: Chen S. IIR model identification using batch-recursive adaptive simulated annealing algorithm. In: Proceedings of the 6th annual Chinese automation and computer science conference; 2000. p. 151–5.
– volume: 38
  start-page: 12671
  year: 2011
  end-page: 12683
  ident: bib39
  article-title: IIR System Identification using Cat Swarm Optimization
  publication-title: Expert System with Application
– volume: 0278-6648
  start-page: 28
  year: 2000
  end-page: 31
  ident: bib5
  article-title: FIR and IIR digital filters
  publication-title: IEEE Potentials
– volume: 346
  start-page: 328
  year: 2009
  end-page: 348
  ident: bib12
  article-title: A new design method based on artificial bee colony algorithm for digital IIR filters
  publication-title: Journal of the Franklin Institute
– volume: 50
  start-page: 142
  year: 2011
  end-page: 149
  ident: bib34
  article-title: Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators
  publication-title: ISA Transactions
– volume: 52
  start-page: 461
  year: 2013
  end-page: 468
  ident: bib30
  article-title: IIR approximations to the fractional differentiator/integrator using Chebyshev polynomials theory
  publication-title: ISA Transactions
– volume: CT-19
  start-page: 189
  year: 1972
  end-page: 194
  ident: bib3
  article-title: Chebyshev approximation for non recursive digital filters with linear phase
  publication-title: IEEE Transactions on Circuit Theory
– volume: 26
  start-page: 84
  year: 2000
  end-page: 90
  ident: bib13
  article-title: Cooperative learning in neural network using particle swarm optimizers
  publication-title: South African Computer Journal
– reference: Ifeachor EC, Jervis BW. Digital signal processing: a practical approach. UK: Pearson; 2002.
– reference: Fang W, Sun J, Xu W, Liu J. FIR digital filters design based on quantum-behaved Particle Swarm Optimization. In: First International Conference on Innovative Computing, Information and Control, ICICIC ‘06, vol. 1; 2006. p. 615–9.
– year: 2012
  ident: bib14
  article-title: An algorithm for global optimization inspired by collective animal behaviour
– volume: 28
  start-page: 899
  year: 2009
  end-page: 911
  ident: bib11
  article-title: Frequency domain FIR filter design using fuzzy adaptive simulated annealing
  publication-title: Circuits, Systems, and Signal Processing
– volume: 60
  start-page: 1469
  year: 2011
  end-page: 1479
  ident: bib17
  article-title: Evolutionary computation on programmable robust IIR filter pole-placement design
  publication-title: IEEE Transactions on Instrumentation And Measurement
– volume: 18
  start-page: 657
  year: 2008
  end-page: 668
  ident: bib21
  article-title: Linear phase FIR filter design using particle swarm optimization and genetic algorithms
  publication-title: Digital Signal Processing
– volume: 16
  start-page: 696
  year: 2011
  end-page: 703
  ident: bib26
  article-title: Optimal linear phase FIR Band pass filter design using craziness based Particle Swarm Optimization Algorithm
  publication-title: Journal of Shanghai Jiaotong University (Science), Springer
– reference: Kennedy J, Eberhart R. Particle Swarm Optimization. In: Proceedings of the IEEE International Conference on Neural Network, vol. 4; 1995. p. 1942–8.
– reference: Belwin Edward J, Rajasekar N, Sathiyasekar K, Senthilnathan N, Sarjila R. An enhanced bacterial foraging algorithm approach for optimal power flow problem including FACTS devices considering system loadability. ISA Transactions 2013;52(5):622-28.
– volume: 52
  start-page: 129
  year: 2013
  end-page: 139
  ident: bib33
  article-title: Novel system identification method and multi-objective-optimal multivariable disturbance observer for electric wheelchair
  publication-title: ISA Transactions
– volume: AU-21
  start-page: 506
  year: 1973
  end-page: 526
  ident: bib6
  article-title: A computer program for designing optimum FIR linear phase digital filters
  publication-title: IEEE Transactions on Audio and Electroacoustics
– volume: 57
  start-page: 1710
  year: 2010
  end-page: 1718
  ident: bib28
  article-title: Seeker optimization algorithm for digital IIR filter design
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 42
  start-page: 29
  year: 2003
  end-page: 37
  ident: bib37
  article-title: A coded approach to system identification using a modified Golay FIR filter
  publication-title: ISA Transactions
– year: 1978
  ident: bib44
  article-title: Probability and statistics for engineers and scientists
– year: 1987
  ident: bib1
  article-title: Digital filter design
– volume: 3
  start-page: 163
  year: 2007
  end-page: 173
  ident: bib38
  article-title: Computational Intelligence based on the behaviour of Cats
  publication-title: International Journal of Innovative computing Information and Control
– reference: Ahmad SU, Andreas A. Cascade-form multiplier less FIR filter design using orthogonal genetic algorithm. In: IEEE International Symposium on Signal Processing and Information Technology; 2006. p. 932–7.
– reference: Tang W, Shen T. Optimal design of FRM-based FIR filters by using hybrid Taguchi genetic algorithm. In: International conference on green circuits and systems; 2010. p. 392–7.
– volume: 42
  start-page: 289
  year: 2003
  end-page: 303
  ident: bib36
  article-title: Simulation results for on-line optimization of a batch bioreactor using nonlinear filtering and optimal control
  publication-title: ISA Transactions
– ident: 10.1016/j.isatra.2013.07.009_bib22
– ident: 10.1016/j.isatra.2013.07.009_bib7
– volume: 25
  start-page: 649
  issue: 5
  year: 2006
  ident: 10.1016/j.isatra.2013.07.009_bib8
  article-title: Design of digital FIR filters using differential Evolution algorithm
  publication-title: Circuits Systems Signal Processing
  doi: 10.1007/s00034-005-0721-7
– ident: 10.1016/j.isatra.2013.07.009_bib20
– volume: 38
  start-page: 10966
  issue: 9
  year: 2011
  ident: 10.1016/j.isatra.2013.07.009_bib24
  article-title: DEPSO and PSO-QI in digital filter design
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.02.140
– ident: 10.1016/j.isatra.2013.07.009_bib15
  doi: 10.1109/ISSPIT.2006.270931
– volume: 42
  start-page: 289
  year: 2003
  ident: 10.1016/j.isatra.2013.07.009_bib36
  article-title: Simulation results for on-line optimization of a batch bioreactor using nonlinear filtering and optimal control
  publication-title: ISA Transactions
  doi: 10.1016/S0019-0578(07)60134-7
– ident: 10.1016/j.isatra.2013.07.009_bib40
  doi: 10.1109/ICNN.1995.488968
– volume: 50
  start-page: 142
  year: 2011
  ident: 10.1016/j.isatra.2013.07.009_bib34
  article-title: Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2010.12.002
– volume: 3
  start-page: 163
  issue: 1
  year: 2007
  ident: 10.1016/j.isatra.2013.07.009_bib38
  article-title: Computational Intelligence based on the behaviour of Cats
  publication-title: International Journal of Innovative computing Information and Control
– year: 1987
  ident: 10.1016/j.isatra.2013.07.009_bib1
– volume: 18
  start-page: 657
  issue: 4
  year: 2008
  ident: 10.1016/j.isatra.2013.07.009_bib21
  article-title: Linear phase FIR filter design using particle swarm optimization and genetic algorithms
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2007.05.011
– volume: CT-19
  start-page: 189
  year: 1972
  ident: 10.1016/j.isatra.2013.07.009_bib3
  article-title: Chebyshev approximation for non recursive digital filters with linear phase
  publication-title: IEEE Transactions on Circuit Theory
  doi: 10.1109/TCT.1972.1083419
– ident: 10.1016/j.isatra.2013.07.009_bib10
– ident: 10.1016/j.isatra.2013.07.009_bib41
– volume: 24
  start-page: 117
  issue: 1
  year: 2011
  ident: 10.1016/j.isatra.2013.07.009_bib27
  article-title: Filter modelling using gravitational search algorithm
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2010.05.007
– ident: 10.1016/j.isatra.2013.07.009_bib32
  doi: 10.1016/j.isatra.2013.04.002
– volume: 42
  start-page: 29
  year: 2003
  ident: 10.1016/j.isatra.2013.07.009_bib37
  article-title: A coded approach to system identification using a modified Golay FIR filter
  publication-title: ISA Transactions
  doi: 10.1016/S0019-0578(07)60111-6
– volume: 26
  start-page: 84
  year: 2000
  ident: 10.1016/j.isatra.2013.07.009_bib13
  article-title: Cooperative learning in neural network using particle swarm optimizers
  publication-title: South African Computer Journal
– ident: 10.1016/j.isatra.2013.07.009_bib29
  doi: 10.1109/CEC.2008.4631335
– volume: AU-21
  start-page: 506
  year: 1973
  ident: 10.1016/j.isatra.2013.07.009_bib6
  article-title: A computer program for designing optimum FIR linear phase digital filters
  publication-title: IEEE Transactions on Audio and Electroacoustics
  doi: 10.1109/TAU.1973.1162525
– volume: 346
  start-page: 328
  issue: 4
  year: 2009
  ident: 10.1016/j.isatra.2013.07.009_bib12
  article-title: A new design method based on artificial bee colony algorithm for digital IIR filters
  publication-title: Journal of the Franklin Institute
  doi: 10.1016/j.jfranklin.2008.11.003
– ident: 10.1016/j.isatra.2013.07.009_bib2
– ident: 10.1016/j.isatra.2013.07.009_bib16
  doi: 10.1109/ICGCS.2010.5543031
– ident: 10.1016/j.isatra.2013.07.009_bib25
  doi: 10.1109/AICI.2009.28
– volume: 45
  start-page: 153
  issue: 2
  year: 2006
  ident: 10.1016/j.isatra.2013.07.009_bib35
  article-title: An online novel adaptive filter for denoising time series measurements
  publication-title: ISA Transactions
  doi: 10.1016/S0019-0578(07)60186-4
– volume: 56
  start-page: 212
  issue: 1
  year: 2009
  ident: 10.1016/j.isatra.2013.07.009_bib43
  article-title: Power quality disturbance classification using fuzzy C-means algorithm and adaptive particle swarm optimization
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2008.928111
– volume: 60
  start-page: 1469
  issue: 4
  year: 2011
  ident: 10.1016/j.isatra.2013.07.009_bib17
  article-title: Evolutionary computation on programmable robust IIR filter pole-placement design
  publication-title: IEEE Transactions on Instrumentation And Measurement
  doi: 10.1109/TIM.2010.2086850
– volume: 55
  start-page: 3447
  issue: 9
  year: 2008
  ident: 10.1016/j.isatra.2013.07.009_bib42
  article-title: Improved hybrid particle swarm optimized wavelet neural network for modelling the development of fluid dispensing for electronic packaging
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2008.922599
– year: 2012
  ident: 10.1016/j.isatra.2013.07.009_bib14
– volume: 0278-6648
  start-page: 28
  year: 2000
  ident: 10.1016/j.isatra.2013.07.009_bib5
  article-title: FIR and IIR digital filters
  publication-title: IEEE Potentials
  doi: 10.1109/45.877863
– volume: 52
  start-page: 461
  year: 2013
  ident: 10.1016/j.isatra.2013.07.009_bib30
  article-title: IIR approximations to the fractional differentiator/integrator using Chebyshev polynomials theory
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2013.02.002
– volume: AU-21
  start-page: 456
  year: 1973
  ident: 10.1016/j.isatra.2013.07.009_bib4
  article-title: Approximate design relationships for low-pass FIR digital filters
  publication-title: IEEE Transactions on Audio and Electroacoustics
  doi: 10.1109/TAU.1973.1162510
– volume: 16
  start-page: 696
  issue: 6
  year: 2011
  ident: 10.1016/j.isatra.2013.07.009_bib26
  article-title: Optimal linear phase FIR Band pass filter design using craziness based Particle Swarm Optimization Algorithm
  publication-title: Journal of Shanghai Jiaotong University (Science), Springer
  doi: 10.1007/s12204-011-1213-5
– ident: 10.1016/j.isatra.2013.07.009_bib18
  doi: 10.1109/ICCMS.2010.466
– ident: 10.1016/j.isatra.2013.07.009_bib19
  doi: 10.1109/ISSPIT.2008.4775685
– volume: 23
  start-page: 635
  issue: 5
  year: 2010
  ident: 10.1016/j.isatra.2013.07.009_bib23
  article-title: Particle swarm optimization with quantum infusion for system identification
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2010.01.022
– volume: 52
  start-page: 129
  year: 2013
  ident: 10.1016/j.isatra.2013.07.009_bib33
  article-title: Novel system identification method and multi-objective-optimal multivariable disturbance observer for electric wheelchair
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2012.06.013
– volume: 38
  start-page: 12671
  issue: 10
  year: 2011
  ident: 10.1016/j.isatra.2013.07.009_bib39
  article-title: IIR System Identification using Cat Swarm Optimization
  publication-title: Expert System with Application
  doi: 10.1016/j.eswa.2011.04.054
– volume: 38
  start-page: 217
  year: 1999
  ident: 10.1016/j.isatra.2013.07.009_bib31
  article-title: Digital filtering in the control of a batch distillation column
  publication-title: ISA Transactions
  doi: 10.1016/S0019-0578(99)00024-5
– year: 1978
  ident: 10.1016/j.isatra.2013.07.009_bib44
– volume: 57
  start-page: 1710
  issue: 5
  year: 2010
  ident: 10.1016/j.isatra.2013.07.009_bib28
  article-title: Seeker optimization algorithm for digital IIR filter design
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2009.2031194
– volume: 28
  start-page: 899
  year: 2009
  ident: 10.1016/j.isatra.2013.07.009_bib11
  article-title: Frequency domain FIR filter design using fuzzy adaptive simulated annealing
  publication-title: Circuits, Systems, and Signal Processing
  doi: 10.1007/s00034-009-9128-1
– ident: 10.1016/j.isatra.2013.07.009_bib9
  doi: 10.1109/CEC.2010.5586425
SSID ssj0002598
Score 2.3871412
Snippet In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 781
SubjectTerms Algorithms
Animals
Behavior, Animal - physiology
Biomimetics - methods
Cats
Cats - physiology
Computer Simulation
Computer-Aided Design
Convergence
Crowding
CSO
Evolutionary optimization technique
FIR filter
FIR filters
Fitness
Genetic algorithms
Linear Models
Optimization
PSO
RGA
Search methods
Signal Processing, Computer-Assisted
Swarm intelligence
Title Cat Swarm Optimization algorithm for optimal linear phase FIR filter design
URI https://dx.doi.org/10.1016/j.isatra.2013.07.009
https://www.ncbi.nlm.nih.gov/pubmed/23958491
https://www.proquest.com/docview/1458187300
https://www.proquest.com/docview/1531024606
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: AKRWK
  dateStart: 19890101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4huMABFUphy0Ou1AM9BJI4TuIjWrFaCqKIFolb5PjR3Yp9KARx47czkzg8pBaknqIk48gaj2c-Z14AXzNnkkiHJrDSCWphVgZS0x8xm2phTChcW-3zPB1eJd-vxfUC9LtcGAqr9Lq_1emNtvZPDj03D-fjMeX4ojFDgSOHDLV5pAz2JKMuBgcPz2EeCO-9NpYBUXfpc02MF0XMVFR9KOJNCU8KS_y7efoX_GzM0OADrHr8yI7aKa7Bgp2uw8qLqoLrsOb36y3b90Wlv32E076q2c97VU3YD9QSE59-ydTN71k1rkcThuiVzegVfp6wp6rYfIQ2jg1OLpkbk1edmSbeYwOuBse_-sPAN1IINJeiDjjXYaSNyzVPhIpTrvDQYXQoLK6FlhINlHOxDY0us1KkKiyj3Gqep9qVKkoN_wSL09nUbgErE8OdNogCZZogQY6fUjEXLs1UGcemB7zjX6F9lXFqdnFTdOFkf4qW6wVxvQjJ_S17EDyNmrdVNt6hz7qlKV5JS4GG4J2RX7qVLHAjkXdETe3s7hbPQALBC5Xvf4MGNRaCGjz09WCzFYOn-cbI6jyR0ef_nts2LNNdm-m4A4t1dWd3EfLU5V4j03uwdNS_PLug68np8PwROiMBlg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLQcUKEtLH25Ug_tISWJ4yQ-VquulkJBoiBxsxw_YBH7UAji1t_emcQBKrVF4ho_ZI3HM99kXgAfC2-zxMQ2ctILamFWRdLQHzGXG2FtLHxX7fMgH59k30_F6RIM-1wYCqsMsr-T6a20Dl92AjV3FpMJ5fiiMkOGI4cMtXl8AiuZSAuywL78uovzQHwfxLGMaHqfP9cGeVHITE3lhxLe1vCkuMS_66d_4c9WD42ew1oAkOxrd8Z1WHKzDVi9V1ZwA9bDg71in0JV6c8vYG-oG_bzRtdTdohiYhryL5m-PJvXk-Z8yhC-sjkN4fYEPnXNFueo5Nho94j5CbnVmW0DPl7Cyejb8XAchU4KkeFSNBHnJk6M9aXhmdBpzjVaHdbEwuFlGClRQ3mfutiaqqhEruMqKZ3hZW58pZPc8lewPJvP3BawKrPcG4swUOYZTihxK51y4fNCV2lqB8B7-ikTyoxTt4tL1ceTXaiO6oqormLyf8sBRLerFl2ZjQfmF_3VqD_YRaEmeGDlh_4mFb4kco_omZtfX6ERJBC9UP3-_8xBkYWoBq2-AWx2bHB73hRJXWYy2X702d7D0_Hxj321v3uw9xqe0UiX9vgGlpv62r1F_NNU71r-_g0UAgGW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cat+Swarm+Optimization+algorithm+for+optimal+linear+phase+FIR+filter+design&rft.jtitle=ISA+transactions&rft.au=Saha%2C+Suman+Kumar&rft.au=Ghoshal%2C+Sakti+Prasad&rft.au=Kar%2C+Rajib&rft.au=Mandal%2C+Durbadal&rft.date=2013-11-01&rft.issn=1879-2022&rft.eissn=1879-2022&rft.volume=52&rft.issue=6&rft.spage=781&rft_id=info:doi/10.1016%2Fj.isatra.2013.07.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon