Neural Decoding of Chinese Sign Language With Machine Learning for Brain-Computer Interfaces

Limb motion decoding is an important part of brain-computer interface (BCI) research. Among the limb motion, sign language not only contains rich semantic information and abundant maneuverable actions but also provides different executable commands. However, many researchers focus on decoding the gr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 2721 - 2732
Main Authors Wang, Pengpai, Zhou, Yueying, Li, Zhongnian, Huang, Shuo, Zhang, Daoqiang
Format Journal Article
LanguageEnglish
Published United States IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2021.3137340

Cover

Abstract Limb motion decoding is an important part of brain-computer interface (BCI) research. Among the limb motion, sign language not only contains rich semantic information and abundant maneuverable actions but also provides different executable commands. However, many researchers focus on decoding the gross motor skills, such as the decoding of ordinary motor imagery or simple upper limb movements. Here we explored the neural features and decoding of Chinese sign language from electroencephalograph (EEG) signal with motor imagery and motor execution. Sign language not only contains rich semantic information, but also has abundant maneuverable actions, and provides us with more different executable commands. In this paper, twenty subjects were instructed to perform movement execution and movement imagery based on Chinese sign language. Seven classifiers are employed to classify the selected features of sign language EEG. L1 regularization is used to learn and select features that contain more information from the mean, power spectral density, sample entropy, and brain network connectivity. The best average classification accuracy of the classifier is 89.90% (imagery sign language is 83.40%). These results have shown the feasibility of decoding between different sign languages. The source location reveals that the neural circuits involved in sign language are related to the visual contact area and the pre-movement area. Experimental evaluation shows that the proposed decoding strategy based on sign language can obtain outstanding classification results, which provides a certain reference value for the subsequent research of limb decoding based on sign language.
AbstractList Limb motion decoding is an important part of brain-computer interface (BCI) research. Among the limb motion, sign language not only contains rich semantic information and abundant maneuverable actions but also provides different executable commands. However, many researchers focus on decoding the gross motor skills, such as the decoding of ordinary motor imagery or simple upper limb movements. Here we explored the neural features and decoding of Chinese sign language from electroencephalograph (EEG) signal with motor imagery and motor execution. Sign language not only contains rich semantic information, but also has abundant maneuverable actions, and provides us with more different executable commands. In this paper, twenty subjects were instructed to perform movement execution and movement imagery based on Chinese sign language. Seven classifiers are employed to classify the selected features of sign language EEG. L1 regularization is used to learn and select features that contain more information from the mean, power spectral density, sample entropy, and brain network connectivity. The best average classification accuracy of the classifier is 89.90% (imagery sign language is 83.40%). These results have shown the feasibility of decoding between different sign languages. The source location reveals that the neural circuits involved in sign language are related to the visual contact area and the pre-movement area. Experimental evaluation shows that the proposed decoding strategy based on sign language can obtain outstanding classification results, which provides a certain reference value for the subsequent research of limb decoding based on sign language.
Limb motion decoding is an important part of brain-computer interface (BCI) research. Among the limb motion, sign language not only contains rich semantic information and abundant maneuverable actions but also provides different executable commands. However, many researchers focus on decoding the gross motor skills, such as the decoding of ordinary motor imagery or simple upper limb movements. Here we explored the neural features and decoding of Chinese sign language from electroencephalograph (EEG) signal with motor imagery and motor execution. Sign language not only contains rich semantic information, but also has abundant maneuverable actions, and provides us with more different executable commands. In this paper, twenty subjects were instructed to perform movement execution and movement imagery based on Chinese sign language. Seven classifiers are employed to classify the selected features of sign language EEG. L1 regularization is used to learn and select features that contain more information from the mean, power spectral density, sample entropy, and brain network connectivity. The best average classification accuracy of the classifier is 89.90% (imagery sign language is 83.40%). These results have shown the feasibility of decoding between different sign languages. The source location reveals that the neural circuits involved in sign language are related to the visual contact area and the pre-movement area. Experimental evaluation shows that the proposed decoding strategy based on sign language can obtain outstanding classification results, which provides a certain reference value for the subsequent research of limb decoding based on sign language.Limb motion decoding is an important part of brain-computer interface (BCI) research. Among the limb motion, sign language not only contains rich semantic information and abundant maneuverable actions but also provides different executable commands. However, many researchers focus on decoding the gross motor skills, such as the decoding of ordinary motor imagery or simple upper limb movements. Here we explored the neural features and decoding of Chinese sign language from electroencephalograph (EEG) signal with motor imagery and motor execution. Sign language not only contains rich semantic information, but also has abundant maneuverable actions, and provides us with more different executable commands. In this paper, twenty subjects were instructed to perform movement execution and movement imagery based on Chinese sign language. Seven classifiers are employed to classify the selected features of sign language EEG. L1 regularization is used to learn and select features that contain more information from the mean, power spectral density, sample entropy, and brain network connectivity. The best average classification accuracy of the classifier is 89.90% (imagery sign language is 83.40%). These results have shown the feasibility of decoding between different sign languages. The source location reveals that the neural circuits involved in sign language are related to the visual contact area and the pre-movement area. Experimental evaluation shows that the proposed decoding strategy based on sign language can obtain outstanding classification results, which provides a certain reference value for the subsequent research of limb decoding based on sign language.
Author Wang, Pengpai
Zhang, Daoqiang
Li, Zhongnian
Huang, Shuo
Zhou, Yueying
Author_xml – sequence: 1
  givenname: Pengpai
  orcidid: 0000-0002-8414-8146
  surname: Wang
  fullname: Wang, Pengpai
  email: pengpaiwang@nuaa.edu.cn
  organization: MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 2
  givenname: Yueying
  orcidid: 0000-0003-0971-9428
  surname: Zhou
  fullname: Zhou, Yueying
  organization: MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 3
  givenname: Zhongnian
  surname: Li
  fullname: Li, Zhongnian
  organization: MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 4
  givenname: Shuo
  surname: Huang
  fullname: Huang, Shuo
  organization: MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 5
  givenname: Daoqiang
  orcidid: 0000-0002-5658-7643
  surname: Zhang
  fullname: Zhang, Daoqiang
  email: dqzhang@nuaa.edu.cn
  organization: MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34932480$$D View this record in MEDLINE/PubMed
BookMark eNptkV1rFDEUhoNU7If-AQUJeOPNbPMxSWYu7VptYVvBVrwRwtmZM9uU2WRNZpD-ezPddS8WCSTh5HkP73lzSo588EjIW85mnLP6_P727vvlTDDBZ5JLI0v2gpxwpaoil9jRdJdlUUrBjslpSo-McaOVeUWOZVlLUVbshPy6xTFCTz9jE1rnVzR0dP7gPCakd27l6QL8aoQV0p9ueKA30EyPdIEQ_YR3IdKLCM4X87DejANGeu3z3kGD6TV52UGf8M3uPCM_vlzez6-Kxbev1_NPi6KRtRoKKesW0GjRGSMVKA650mhECaxcguigVstqiUyDbo3mUraqzquFtm2U6OQZkdu-o9_A0x_oe7uJbg3xyXJmp6zs4FNEO2Vld1ll1cetahPD7xHTYNcuNdj34DGMyQrNhZGZ1Bn9cIA-hjH6PNNEacMrUU0N3--ocbnGdu_hX9oZqLZAE0PKfjrbuAEGF_yQI-z3Zp8_9tCsOJAeTvhf0butyCHiXlBrpauay78to6uj
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_brainresbull_2023_110713
crossref_primary_10_1109_TNSRE_2023_3275172
crossref_primary_10_3390_s24237690
crossref_primary_10_1007_s11042_024_20585_1
crossref_primary_10_1080_21681163_2022_2103451
crossref_primary_10_1108_SR_10_2024_0887
crossref_primary_10_1109_TIM_2022_3224991
Cites_doi 10.1016/j.jneumeth.2020.109037
10.14569/IJACSA.2020.0110118
10.14569/IJACSA.2019.0100868
10.1109/TPAMI.2008.123
10.1109/TNSRE.2020.3048106
10.1109/TNSRE.2018.2876129
10.1177/10775463211009373
10.1016/j.neucom.2020.12.006
10.1007/s13042-017-0705-5
10.1088/1741-2552/aaf3f6
10.3233/NRE-172394
10.1088/1741-2560/6/3/036004
10.1016/j.eswa.2020.113794
10.1109/JSEN.2019.2956998
10.1109/JBHI.2021.3073632
10.1088/1741-2552/ab59a7
10.1109/TNSRE.2019.2908125
10.1109/TBME.2020.2975614
10.31258/Jamt.2.2.74-84
10.1109/TGRS.2019.2949180
10.1109/TAFFC.2018.2817622
10.1016/j.neunet.2019.09.037
10.1109/34.735811
10.1016/j.bspc.2019.01.012
10.1109/JSEN.2019.2909837
10.1142/S012906571850034X
10.1109/TPAMI.2010.125
10.1088/1741-2552/aaf12e
10.1016/j.neunet.2020.05.032
10.1371/journal.pone.0207351
10.1109/TAFFC.2020.3013711
10.1088/1741-2552/abc0b4
10.1109/TBME.2018.2881051
10.1109/BIBM.2018.8621147
10.1088/1741-2560/13/3/031002
10.1109/JBHI.2018.2832538
10.1109/TCBB.2021.3052811
10.1088/1741-2552/aab2f2
10.1088/1741-2552/aace8c
10.1016/j.neucom.2013.10.031
10.1016/j.clinph.2010.02.163
10.1016/j.aasri.2014.09.005
10.1016/j.tics.2021.04.003
10.1016/j.physrep.2021.03.002
10.1109/TNN.2004.832719
10.1016/j.asoc.2020.106954
10.1109/TBME.2019.2921198
10.1109/TCSVT.2018.2870740
10.1109/TSMCC.2007.893280
10.1109/TNSRE.2020.3030639
10.1109/TBME.2013.2270283
10.1109/TAFFC.2017.2712143
10.1109/TNSRE.2020.3027955
10.1109/ACCESS.2021.3078638
10.1504/IJSNET.2020.111780
10.1016/j.bandl.2021.104968
10.26599/BSA.2020.9050017
10.1088/1741-2552/abd1c0
10.1088/2057-1976/ac0d91
10.1016/j.bspc.2018.03.010
10.1109/CVPR.1993.341109
10.1007/978-3-642-39094-4_17
10.30684/etj.v39i7.1854
10.1109/FUZZY.2006.1681687
10.1016/j.neucom.2020.12.098
10.1038/s41586-021-03506-2
10.1038/s41586-019-1119-1
10.1016/j.measurement.2020.108471
10.1016/j.neuroimage.2020.117298
10.3390/s19061423
10.3390/s140405967
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ADTOC
UNPAY
DOI 10.1109/TNSRE.2021.3137340
DatabaseName Accès INSA - IEEE Xplore ASPP 2005
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 2732
ExternalDocumentID 10.1109/tnsre.2021.3137340
34932480
10_1109_TNSRE_2021_3137340
9656891
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Chinese Association for Artificial Intelligence (CAAI)-Huawei MindSpore Open Fund
– fundername: National Key Research and Development Program of China
  grantid: 2018YFC2001600; 2018YFC2001602
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 62136004; 61876082; 61732006
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c395t-339dae762f7735a51a339c6ee3a04ba2fa95b8be06a6d76133d59595daddc52f3
IEDL.DBID UNPAY
ISSN 1534-4320
1558-0210
IngestDate Wed Oct 01 16:49:38 EDT 2025
Fri Jul 11 07:58:20 EDT 2025
Sun Jul 13 03:50:20 EDT 2025
Wed Feb 19 02:26:52 EST 2025
Thu Apr 24 23:09:34 EDT 2025
Wed Oct 01 01:12:30 EDT 2025
Wed Aug 27 03:02:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-339dae762f7735a51a339c6ee3a04ba2fa95b8be06a6d76133d59595daddc52f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8414-8146
0000-0003-0971-9428
0000-0002-5658-7643
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/7333/4359219/09656891.pdf
PMID 34932480
PQID 2616718280
PQPubID 85423
PageCount 12
ParticipantIDs ieee_primary_9656891
proquest_miscellaneous_2612733406
unpaywall_primary_10_1109_tnsre_2021_3137340
crossref_citationtrail_10_1109_TNSRE_2021_3137340
crossref_primary_10_1109_TNSRE_2021_3137340
pubmed_primary_34932480
proquest_journals_2616718280
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
suriya (ref72) 2016
izhikevich (ref71) 2007; 25
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
suneetha (ref43) 2021; 78
ref40
ref35
ref34
ref37
ref36
ref31
ref74
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref70
ref73
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref64
  doi: 10.1016/j.jneumeth.2020.109037
– ident: ref48
  doi: 10.14569/IJACSA.2020.0110118
– ident: ref45
  doi: 10.14569/IJACSA.2019.0100868
– ident: ref36
  doi: 10.1109/TPAMI.2008.123
– ident: ref63
  doi: 10.1109/TNSRE.2020.3048106
– ident: ref59
  doi: 10.1109/TNSRE.2018.2876129
– ident: ref33
  doi: 10.1177/10775463211009373
– ident: ref44
  doi: 10.1016/j.neucom.2020.12.006
– ident: ref29
  doi: 10.1007/s13042-017-0705-5
– ident: ref12
  doi: 10.1088/1741-2552/aaf3f6
– ident: ref14
  doi: 10.3233/NRE-172394
– ident: ref46
  doi: 10.1088/1741-2560/6/3/036004
– ident: ref74
  doi: 10.1016/j.eswa.2020.113794
– ident: ref60
  doi: 10.1109/JSEN.2019.2956998
– ident: ref58
  doi: 10.1109/JBHI.2021.3073632
– ident: ref31
  doi: 10.1088/1741-2552/ab59a7
– ident: ref10
  doi: 10.1109/TNSRE.2019.2908125
– ident: ref28
  doi: 10.1109/TBME.2020.2975614
– ident: ref32
  doi: 10.31258/Jamt.2.2.74-84
– ident: ref68
  doi: 10.1109/TGRS.2019.2949180
– ident: ref55
  doi: 10.1109/TAFFC.2018.2817622
– ident: ref56
  doi: 10.1016/j.neunet.2019.09.037
– ident: ref37
  doi: 10.1109/34.735811
– ident: ref50
  doi: 10.1016/j.bspc.2019.01.012
– ident: ref39
  doi: 10.1109/JSEN.2019.2909837
– start-page: 219
  year: 2016
  ident: ref72
  article-title: Survey on real time sign language recognition system: An LDA approach
  publication-title: Proc Int Conf Explor Innov Eng Technol (ICEIET)
– ident: ref20
  doi: 10.1142/S012906571850034X
– volume: 25
  start-page: 227
  year: 2007
  ident: ref71
  article-title: Dynamical systems in neuroscience computational neuroscience
  publication-title: Dyn Syst
– ident: ref22
  doi: 10.1109/TPAMI.2010.125
– ident: ref4
  doi: 10.1088/1741-2552/aaf12e
– ident: ref27
  doi: 10.1016/j.neunet.2020.05.032
– ident: ref24
  doi: 10.1371/journal.pone.0207351
– ident: ref61
  doi: 10.1109/TAFFC.2020.3013711
– ident: ref15
  doi: 10.1088/1741-2552/abc0b4
– ident: ref51
  doi: 10.1109/TBME.2018.2881051
– ident: ref67
  doi: 10.1109/BIBM.2018.8621147
– ident: ref16
  doi: 10.1088/1741-2560/13/3/031002
– ident: ref23
  doi: 10.1109/JBHI.2018.2832538
– ident: ref17
  doi: 10.1109/TCBB.2021.3052811
– ident: ref52
  doi: 10.1088/1741-2552/aab2f2
– ident: ref62
  doi: 10.1088/1741-2552/aace8c
– ident: ref65
  doi: 10.1016/j.neucom.2013.10.031
– ident: ref49
  doi: 10.1016/j.clinph.2010.02.163
– ident: ref73
  doi: 10.1016/j.aasri.2014.09.005
– volume: 78
  year: 2021
  ident: ref43
  article-title: Multi-view motion modelled deep attention networks (M2DA-Net) for video based sign language recognition
  publication-title: J Vis Commun Image Represent
– ident: ref3
  doi: 10.1016/j.tics.2021.04.003
– ident: ref6
  doi: 10.1016/j.physrep.2021.03.002
– ident: ref69
  doi: 10.1109/TNN.2004.832719
– ident: ref53
  doi: 10.1016/j.asoc.2020.106954
– ident: ref13
  doi: 10.1109/TBME.2019.2921198
– ident: ref38
  doi: 10.1109/TCSVT.2018.2870740
– ident: ref40
  doi: 10.1109/TSMCC.2007.893280
– ident: ref8
  doi: 10.1109/TNSRE.2020.3030639
– ident: ref1
  doi: 10.1109/TBME.2013.2270283
– ident: ref57
  doi: 10.1109/TAFFC.2017.2712143
– ident: ref9
  doi: 10.1109/TNSRE.2020.3027955
– ident: ref34
  doi: 10.1109/ACCESS.2021.3078638
– ident: ref19
  doi: 10.1504/IJSNET.2020.111780
– ident: ref30
  doi: 10.1016/j.bandl.2021.104968
– ident: ref2
  doi: 10.26599/BSA.2020.9050017
– ident: ref21
  doi: 10.1088/1741-2552/abd1c0
– ident: ref42
  doi: 10.1088/2057-1976/ac0d91
– ident: ref54
  doi: 10.1016/j.bspc.2018.03.010
– ident: ref35
  doi: 10.1109/CVPR.1993.341109
– ident: ref41
  doi: 10.1007/978-3-642-39094-4_17
– ident: ref5
  doi: 10.30684/etj.v39i7.1854
– ident: ref66
  doi: 10.1109/FUZZY.2006.1681687
– ident: ref70
  doi: 10.1016/j.neucom.2020.12.098
– ident: ref11
  doi: 10.1038/s41586-021-03506-2
– ident: ref7
  doi: 10.1038/s41586-019-1119-1
– ident: ref47
  doi: 10.1016/j.measurement.2020.108471
– ident: ref25
  doi: 10.1016/j.neuroimage.2020.117298
– ident: ref26
  doi: 10.3390/s19061423
– ident: ref18
  doi: 10.3390/s140405967
SSID ssj0017657
Score 2.4005182
Snippet Limb motion decoding is an important part of brain-computer interface (BCI) research. Among the limb motion, sign language not only contains rich semantic...
SourceID unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2721
SubjectTerms Assistive technologies
Brain
Brain research
brain-computer interface (BCI)
Brain-Computer Interfaces
China
Chinese sign language recognition
Classification
Classifiers
Computer applications
EEG
electroencephalograph (EEG)
Electroencephalography
Electromyography
Entropy
feature learning
Gesture recognition
Human-computer interface
Humans
Image recognition
Imagery
Imagination
Implants
Interfaces
Language
Learning algorithms
Licenses
limb motion decoding
Machine Learning
Mental task performance
Motor skill
Movement
Neural coding
Neural networks
Power spectral density
Regularization
Semantics
Sign Language
Visual pathways
Visualization
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8gL-gDiihWkayJ-iI9et2Pdh-VjxDj8QBH5MGk2W2nSLj0iLQx-tc7u_3IIYSQvlx603aame38Znf2NwDvDXKbx5aHWHAZCikx1EK4CgBSW1CAR-tWdCdH6vBUfD2TZ0uwPeyFQURffIYj99Ov5RfzvHFTZTuawEfqtqo_SlLV7tUaVgwS5Vk9aQCLUPA46jfIRHpnenRyvE-pYDymDJUnXLj2b1wQchGODXIhHvkGK3dhzSew0lRX5s9vM5stxJ-DpzDpNW_LTi5HTW1H-d__SB0f-mrPYLUDouxz6zlrsITVc_iwSDrMpi3jAPvIjm_wea_DD8fpQRJ7lLy64MfmJXOduPEa2cnFecW-ddOg7PtF_ZNNfMUmso7M9ZwRUmZfXHOKsO8qwfzUZOkKxF7A6cH-dPcw7Po0hDnXsg4514VB-qqWScKlkWNDZ3KFyE0krIlLo6VNLUbKqCIh_MALqeko6Nuay7jkL2G5mlf4Chgn-GYjgamURpC30FOlVCaX5ViXQmAA495aWd69tOulMct8MhPpzBs7c8bOOmMH8Gm45qql8LhXet1ZZ5DsDBPAZu8UWTfKrzPKPhXF9jilq94Nf9P4dIsupsJ542UIIdKNVQAbrTMN9-59MIDtwbtuqVhXpPkNFV_freIbeOyk2vmhTViufzX4lhBTbbf8UPkHKgIO-g
  priority: 102
  providerName: IEEE
Title Neural Decoding of Chinese Sign Language With Machine Learning for Brain-Computer Interfaces
URI https://ieeexplore.ieee.org/document/9656891
https://www.ncbi.nlm.nih.gov/pubmed/34932480
https://www.proquest.com/docview/2616718280
https://www.proquest.com/docview/2612733406
https://ieeexplore.ieee.org/ielx7/7333/4359219/09656891.pdf
UnpaywallVersion publishedVersion
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gHxwNf4KBqVkYAXSJvGdhKLpwGbJsQqtLViSIjITi6jokonloqPJ_4H_kP-Es6OE3WAkEB9qdpzYuvOvt_Z598B3NfITR4ZHmDBZSCkxEAJYTMAqNuCHDwae6J7MIn3Z-LFsTzegCfdXRhEdMlnOLRf3Vn-HBefk1HCOR-Rc1c0x0aWsyROFS0zRXkBNmNJQLwHm7PJq503DUOqCAR3pIzkMNPARjbtlZlQjeqK_A8Fh9GYYlaecLv1seaWXJ2VP0HOS3BxVZ3qL5_0YrHmhvauwNt2AE32yYfhqjbD_Osv3I7_OcKrcNnDU7bT2NM12MDqOjxYpyJm04aHgD1kh-dYvrfgnWX6IInnFNJal8iWJbP1ufEM2dH8pGIv_eYoez2v37MDl8eJzFO8njDCz-ypLVnx49v3ttoEc1uWpU0cuwGzvd3ps_3A128Icq5kHXCuCo202pZJwqWWY02_5DEi16EwOiq1kiY1GMY6LhLCFbyQij4Frbm5jEp-E3rVssLbwDjBOhMKTKXUgqyI3iplrHNZjlUpBPZh3Kovy_2wbY2NReaCnFBl08nR4W5mVZ55lffhUdfmtKH2-Kv0llVXJ-nV04ft1koyP_vPMopKY_L5UUqt7nV_07y1hzG6wuXKyRBypAfHfbjVWFf3bC4IVQvb-nFnbr910dnwuS7e-TfxbejVH1d4l0BVbQZuM2Lg7j8O_ET6CfR0He4
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5VA4QKE8QgsYCbjQbLPxOFkfebRaYHcP7Vb0gBQ5yaRUrLIVTVTBr-_YeWgLFUK5RImdTDTjzDf2-BuAV4ZkmoWp9CmXykelyNeINgOAxUZ28JTaFd3pLBof4-cTdbIGu_1eGCJyyWc0sKduLT9fZrWdKtvTDD5Gdqv6LYWIqtmt1a8ZxJHj9eQhjD7KMOi2yAR6bz47OtznYDAccowqY4m2AJxExi5o-SBXPJIrsXIT2rwDG3V5bn5dmsVixQMd3INpJ3uTePJjUFfpIPv9B63j_37cJtxtoah419jOfVij8gG8XqUdFvOGc0C8EYfXGL234Jtl9eAWHzl8te5PLAtha3HTBYmjs9NSTNqJUPH1rPoupi5nk0RL53oqGCuL97Y8hd_VlRBucrKwKWIP4fhgf_5h7LeVGvxMalX5UurcEP9XiziWyqih4StZRCRNgKkJC6NVOkopiEyUx4wgZK40Hzn_XTMVFvIRrJfLkp6AkAzg0gBppJRBthd-q1KRyVQx1AUieTDstJVk7UfbahqLxIUzgU6cshOr7KRVtgdv-z7nDYnHP1tvWe30LVvFeLDTGUXSjvOLhOPPiL17OOJeL_vbPELtsospaVm7NowR-cGRB48bY-qf3dmgB7u9df0lYlWy5NdEfHqziC9gYzyfTpLJp9mXbbhtezSzRTuwXv2s6Rnjpyp97obNFXnCEkc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6V9IA48CqPVAUtEnABJ473Ya84FWhVIRqhNhFFQrXW9rhEjZyKOuJx4j_wD_klzK7XVgoICeRL5Mzau5rZnW92x98APDTIszzKeIAFl4GQEgMthM0AoG4LcvCY2RPd_bHam4pXR_JoDZ5138Igoks-w4H96c7yZzj_HA9jzvmQnLumOTa0nCUq0bTMFOUlWFeSgHgP1qfjN9vvGoZUEQjuSBnJYSaBjWzaT2ZCPawr8j8UHEYjill5zO3Wx4pbcnVW_gQ5r8DlZXVmvnwy8_mKG9q9Bu_bATTZJ6eDZZ0N8q-_cDv-5wivw1UPT9l2Y083YA2rm_BolYqYTRoeAvaYHVxg-d6AY8v0QRIvKaS1LpEtSmbrc-M5ssPZScVe-81R9nZWf2D7Lo8Tmad4PWGEn9lzW7Lix7fvbbUJ5rYsS5s4dgumuzuTF3uBr98Q5FzLOuBcFwZptS3jmEsjR4bu5AqRm1BkJiqNllmSYaiMKmLCFbyQmq6C1txcRiW_Db1qUeFdYJxgXRYKTKQ0gqyI3iqlMrksR7oUAvswatWX5n7YtsbGPHVBTqjTyfjwYCe1Kk-9yvvwpGtz1lB7_FV6w6qrk_Tq6cNWayWpn_3nKUWlinx-lFCrB93fNG_tYYypcLF0MoQc6cGqD3ca6-qezQWhamFbP-3M7bcuOhu-0MXNfxPfgl79cYn3CFTV2X0_eX4Cnp8b-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Decoding+of+Chinese+Sign+Language+With+Machine+Learning+for+Brain-Computer+Interfaces&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Wang%2C+Pengpai&rft.au=Zhou%2C+Yueying&rft.au=Li%2C+Zhongnian&rft.au=Huang%2C+Shuo&rft.date=2021&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=29&rft.spage=2721&rft.epage=2732&rft_id=info:doi/10.1109%2FTNSRE.2021.3137340&rft_id=info%3Apmid%2F34932480&rft.externalDocID=9656891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon