Neural Decoding of Chinese Sign Language With Machine Learning for Brain-Computer Interfaces
Limb motion decoding is an important part of brain-computer interface (BCI) research. Among the limb motion, sign language not only contains rich semantic information and abundant maneuverable actions but also provides different executable commands. However, many researchers focus on decoding the gr...
Saved in:
| Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 2721 - 2732 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1534-4320 1558-0210 1558-0210 |
| DOI | 10.1109/TNSRE.2021.3137340 |
Cover
| Abstract | Limb motion decoding is an important part of brain-computer interface (BCI) research. Among the limb motion, sign language not only contains rich semantic information and abundant maneuverable actions but also provides different executable commands. However, many researchers focus on decoding the gross motor skills, such as the decoding of ordinary motor imagery or simple upper limb movements. Here we explored the neural features and decoding of Chinese sign language from electroencephalograph (EEG) signal with motor imagery and motor execution. Sign language not only contains rich semantic information, but also has abundant maneuverable actions, and provides us with more different executable commands. In this paper, twenty subjects were instructed to perform movement execution and movement imagery based on Chinese sign language. Seven classifiers are employed to classify the selected features of sign language EEG. L1 regularization is used to learn and select features that contain more information from the mean, power spectral density, sample entropy, and brain network connectivity. The best average classification accuracy of the classifier is 89.90% (imagery sign language is 83.40%). These results have shown the feasibility of decoding between different sign languages. The source location reveals that the neural circuits involved in sign language are related to the visual contact area and the pre-movement area. Experimental evaluation shows that the proposed decoding strategy based on sign language can obtain outstanding classification results, which provides a certain reference value for the subsequent research of limb decoding based on sign language. |
|---|---|
| AbstractList | Limb motion decoding is an important part of brain-computer interface (BCI) research. Among the limb motion, sign language not only contains rich semantic information and abundant maneuverable actions but also provides different executable commands. However, many researchers focus on decoding the gross motor skills, such as the decoding of ordinary motor imagery or simple upper limb movements. Here we explored the neural features and decoding of Chinese sign language from electroencephalograph (EEG) signal with motor imagery and motor execution. Sign language not only contains rich semantic information, but also has abundant maneuverable actions, and provides us with more different executable commands. In this paper, twenty subjects were instructed to perform movement execution and movement imagery based on Chinese sign language. Seven classifiers are employed to classify the selected features of sign language EEG. L1 regularization is used to learn and select features that contain more information from the mean, power spectral density, sample entropy, and brain network connectivity. The best average classification accuracy of the classifier is 89.90% (imagery sign language is 83.40%). These results have shown the feasibility of decoding between different sign languages. The source location reveals that the neural circuits involved in sign language are related to the visual contact area and the pre-movement area. Experimental evaluation shows that the proposed decoding strategy based on sign language can obtain outstanding classification results, which provides a certain reference value for the subsequent research of limb decoding based on sign language. Limb motion decoding is an important part of brain-computer interface (BCI) research. Among the limb motion, sign language not only contains rich semantic information and abundant maneuverable actions but also provides different executable commands. However, many researchers focus on decoding the gross motor skills, such as the decoding of ordinary motor imagery or simple upper limb movements. Here we explored the neural features and decoding of Chinese sign language from electroencephalograph (EEG) signal with motor imagery and motor execution. Sign language not only contains rich semantic information, but also has abundant maneuverable actions, and provides us with more different executable commands. In this paper, twenty subjects were instructed to perform movement execution and movement imagery based on Chinese sign language. Seven classifiers are employed to classify the selected features of sign language EEG. L1 regularization is used to learn and select features that contain more information from the mean, power spectral density, sample entropy, and brain network connectivity. The best average classification accuracy of the classifier is 89.90% (imagery sign language is 83.40%). These results have shown the feasibility of decoding between different sign languages. The source location reveals that the neural circuits involved in sign language are related to the visual contact area and the pre-movement area. Experimental evaluation shows that the proposed decoding strategy based on sign language can obtain outstanding classification results, which provides a certain reference value for the subsequent research of limb decoding based on sign language.Limb motion decoding is an important part of brain-computer interface (BCI) research. Among the limb motion, sign language not only contains rich semantic information and abundant maneuverable actions but also provides different executable commands. However, many researchers focus on decoding the gross motor skills, such as the decoding of ordinary motor imagery or simple upper limb movements. Here we explored the neural features and decoding of Chinese sign language from electroencephalograph (EEG) signal with motor imagery and motor execution. Sign language not only contains rich semantic information, but also has abundant maneuverable actions, and provides us with more different executable commands. In this paper, twenty subjects were instructed to perform movement execution and movement imagery based on Chinese sign language. Seven classifiers are employed to classify the selected features of sign language EEG. L1 regularization is used to learn and select features that contain more information from the mean, power spectral density, sample entropy, and brain network connectivity. The best average classification accuracy of the classifier is 89.90% (imagery sign language is 83.40%). These results have shown the feasibility of decoding between different sign languages. The source location reveals that the neural circuits involved in sign language are related to the visual contact area and the pre-movement area. Experimental evaluation shows that the proposed decoding strategy based on sign language can obtain outstanding classification results, which provides a certain reference value for the subsequent research of limb decoding based on sign language. |
| Author | Wang, Pengpai Zhang, Daoqiang Li, Zhongnian Huang, Shuo Zhou, Yueying |
| Author_xml | – sequence: 1 givenname: Pengpai orcidid: 0000-0002-8414-8146 surname: Wang fullname: Wang, Pengpai email: pengpaiwang@nuaa.edu.cn organization: MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 2 givenname: Yueying orcidid: 0000-0003-0971-9428 surname: Zhou fullname: Zhou, Yueying organization: MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 3 givenname: Zhongnian surname: Li fullname: Li, Zhongnian organization: MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 4 givenname: Shuo surname: Huang fullname: Huang, Shuo organization: MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 5 givenname: Daoqiang orcidid: 0000-0002-5658-7643 surname: Zhang fullname: Zhang, Daoqiang email: dqzhang@nuaa.edu.cn organization: MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34932480$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkV1rFDEUhoNU7If-AQUJeOPNbPMxSWYu7VptYVvBVrwRwtmZM9uU2WRNZpD-ezPddS8WCSTh5HkP73lzSo588EjIW85mnLP6_P727vvlTDDBZ5JLI0v2gpxwpaoil9jRdJdlUUrBjslpSo-McaOVeUWOZVlLUVbshPy6xTFCTz9jE1rnVzR0dP7gPCakd27l6QL8aoQV0p9ueKA30EyPdIEQ_YR3IdKLCM4X87DejANGeu3z3kGD6TV52UGf8M3uPCM_vlzez6-Kxbev1_NPi6KRtRoKKesW0GjRGSMVKA650mhECaxcguigVstqiUyDbo3mUraqzquFtm2U6OQZkdu-o9_A0x_oe7uJbg3xyXJmp6zs4FNEO2Vld1ll1cetahPD7xHTYNcuNdj34DGMyQrNhZGZ1Bn9cIA-hjH6PNNEacMrUU0N3--ocbnGdu_hX9oZqLZAE0PKfjrbuAEGF_yQI-z3Zp8_9tCsOJAeTvhf0butyCHiXlBrpauay78to6uj |
| CODEN | ITNSB3 |
| CitedBy_id | crossref_primary_10_1016_j_brainresbull_2023_110713 crossref_primary_10_1109_TNSRE_2023_3275172 crossref_primary_10_3390_s24237690 crossref_primary_10_1007_s11042_024_20585_1 crossref_primary_10_1080_21681163_2022_2103451 crossref_primary_10_1108_SR_10_2024_0887 crossref_primary_10_1109_TIM_2022_3224991 |
| Cites_doi | 10.1016/j.jneumeth.2020.109037 10.14569/IJACSA.2020.0110118 10.14569/IJACSA.2019.0100868 10.1109/TPAMI.2008.123 10.1109/TNSRE.2020.3048106 10.1109/TNSRE.2018.2876129 10.1177/10775463211009373 10.1016/j.neucom.2020.12.006 10.1007/s13042-017-0705-5 10.1088/1741-2552/aaf3f6 10.3233/NRE-172394 10.1088/1741-2560/6/3/036004 10.1016/j.eswa.2020.113794 10.1109/JSEN.2019.2956998 10.1109/JBHI.2021.3073632 10.1088/1741-2552/ab59a7 10.1109/TNSRE.2019.2908125 10.1109/TBME.2020.2975614 10.31258/Jamt.2.2.74-84 10.1109/TGRS.2019.2949180 10.1109/TAFFC.2018.2817622 10.1016/j.neunet.2019.09.037 10.1109/34.735811 10.1016/j.bspc.2019.01.012 10.1109/JSEN.2019.2909837 10.1142/S012906571850034X 10.1109/TPAMI.2010.125 10.1088/1741-2552/aaf12e 10.1016/j.neunet.2020.05.032 10.1371/journal.pone.0207351 10.1109/TAFFC.2020.3013711 10.1088/1741-2552/abc0b4 10.1109/TBME.2018.2881051 10.1109/BIBM.2018.8621147 10.1088/1741-2560/13/3/031002 10.1109/JBHI.2018.2832538 10.1109/TCBB.2021.3052811 10.1088/1741-2552/aab2f2 10.1088/1741-2552/aace8c 10.1016/j.neucom.2013.10.031 10.1016/j.clinph.2010.02.163 10.1016/j.aasri.2014.09.005 10.1016/j.tics.2021.04.003 10.1016/j.physrep.2021.03.002 10.1109/TNN.2004.832719 10.1016/j.asoc.2020.106954 10.1109/TBME.2019.2921198 10.1109/TCSVT.2018.2870740 10.1109/TSMCC.2007.893280 10.1109/TNSRE.2020.3030639 10.1109/TBME.2013.2270283 10.1109/TAFFC.2017.2712143 10.1109/TNSRE.2020.3027955 10.1109/ACCESS.2021.3078638 10.1504/IJSNET.2020.111780 10.1016/j.bandl.2021.104968 10.26599/BSA.2020.9050017 10.1088/1741-2552/abd1c0 10.1088/2057-1976/ac0d91 10.1016/j.bspc.2018.03.010 10.1109/CVPR.1993.341109 10.1007/978-3-642-39094-4_17 10.30684/etj.v39i7.1854 10.1109/FUZZY.2006.1681687 10.1016/j.neucom.2020.12.098 10.1038/s41586-021-03506-2 10.1038/s41586-019-1119-1 10.1016/j.measurement.2020.108471 10.1016/j.neuroimage.2020.117298 10.3390/s19061423 10.3390/s140405967 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 ADTOC UNPAY |
| DOI | 10.1109/TNSRE.2021.3137340 |
| DatabaseName | Accès INSA - IEEE Xplore ASPP 2005 IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Occupational Therapy & Rehabilitation |
| EISSN | 1558-0210 |
| EndPage | 2732 |
| ExternalDocumentID | 10.1109/tnsre.2021.3137340 34932480 10_1109_TNSRE_2021_3137340 9656891 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: Chinese Association for Artificial Intelligence (CAAI)-Huawei MindSpore Open Fund – fundername: National Key Research and Development Program of China grantid: 2018YFC2001600; 2018YFC2001602 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 62136004; 61876082; 61732006 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c395t-339dae762f7735a51a339c6ee3a04ba2fa95b8be06a6d76133d59595daddc52f3 |
| IEDL.DBID | UNPAY |
| ISSN | 1534-4320 1558-0210 |
| IngestDate | Wed Oct 01 16:49:38 EDT 2025 Fri Jul 11 07:58:20 EDT 2025 Sun Jul 13 03:50:20 EDT 2025 Wed Feb 19 02:26:52 EST 2025 Thu Apr 24 23:09:34 EDT 2025 Wed Oct 01 01:12:30 EDT 2025 Wed Aug 27 03:02:55 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c395t-339dae762f7735a51a339c6ee3a04ba2fa95b8be06a6d76133d59595daddc52f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8414-8146 0000-0003-0971-9428 0000-0002-5658-7643 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/7333/4359219/09656891.pdf |
| PMID | 34932480 |
| PQID | 2616718280 |
| PQPubID | 85423 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_9656891 proquest_miscellaneous_2612733406 unpaywall_primary_10_1109_tnsre_2021_3137340 crossref_citationtrail_10_1109_TNSRE_2021_3137340 crossref_primary_10_1109_TNSRE_2021_3137340 pubmed_primary_34932480 proquest_journals_2616718280 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
| PublicationTitleAbbrev | TNSRE |
| PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 suriya (ref72) 2016 izhikevich (ref71) 2007; 25 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 suneetha (ref43) 2021; 78 ref40 ref35 ref34 ref37 ref36 ref31 ref74 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref70 ref73 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref64 doi: 10.1016/j.jneumeth.2020.109037 – ident: ref48 doi: 10.14569/IJACSA.2020.0110118 – ident: ref45 doi: 10.14569/IJACSA.2019.0100868 – ident: ref36 doi: 10.1109/TPAMI.2008.123 – ident: ref63 doi: 10.1109/TNSRE.2020.3048106 – ident: ref59 doi: 10.1109/TNSRE.2018.2876129 – ident: ref33 doi: 10.1177/10775463211009373 – ident: ref44 doi: 10.1016/j.neucom.2020.12.006 – ident: ref29 doi: 10.1007/s13042-017-0705-5 – ident: ref12 doi: 10.1088/1741-2552/aaf3f6 – ident: ref14 doi: 10.3233/NRE-172394 – ident: ref46 doi: 10.1088/1741-2560/6/3/036004 – ident: ref74 doi: 10.1016/j.eswa.2020.113794 – ident: ref60 doi: 10.1109/JSEN.2019.2956998 – ident: ref58 doi: 10.1109/JBHI.2021.3073632 – ident: ref31 doi: 10.1088/1741-2552/ab59a7 – ident: ref10 doi: 10.1109/TNSRE.2019.2908125 – ident: ref28 doi: 10.1109/TBME.2020.2975614 – ident: ref32 doi: 10.31258/Jamt.2.2.74-84 – ident: ref68 doi: 10.1109/TGRS.2019.2949180 – ident: ref55 doi: 10.1109/TAFFC.2018.2817622 – ident: ref56 doi: 10.1016/j.neunet.2019.09.037 – ident: ref37 doi: 10.1109/34.735811 – ident: ref50 doi: 10.1016/j.bspc.2019.01.012 – ident: ref39 doi: 10.1109/JSEN.2019.2909837 – start-page: 219 year: 2016 ident: ref72 article-title: Survey on real time sign language recognition system: An LDA approach publication-title: Proc Int Conf Explor Innov Eng Technol (ICEIET) – ident: ref20 doi: 10.1142/S012906571850034X – volume: 25 start-page: 227 year: 2007 ident: ref71 article-title: Dynamical systems in neuroscience computational neuroscience publication-title: Dyn Syst – ident: ref22 doi: 10.1109/TPAMI.2010.125 – ident: ref4 doi: 10.1088/1741-2552/aaf12e – ident: ref27 doi: 10.1016/j.neunet.2020.05.032 – ident: ref24 doi: 10.1371/journal.pone.0207351 – ident: ref61 doi: 10.1109/TAFFC.2020.3013711 – ident: ref15 doi: 10.1088/1741-2552/abc0b4 – ident: ref51 doi: 10.1109/TBME.2018.2881051 – ident: ref67 doi: 10.1109/BIBM.2018.8621147 – ident: ref16 doi: 10.1088/1741-2560/13/3/031002 – ident: ref23 doi: 10.1109/JBHI.2018.2832538 – ident: ref17 doi: 10.1109/TCBB.2021.3052811 – ident: ref52 doi: 10.1088/1741-2552/aab2f2 – ident: ref62 doi: 10.1088/1741-2552/aace8c – ident: ref65 doi: 10.1016/j.neucom.2013.10.031 – ident: ref49 doi: 10.1016/j.clinph.2010.02.163 – ident: ref73 doi: 10.1016/j.aasri.2014.09.005 – volume: 78 year: 2021 ident: ref43 article-title: Multi-view motion modelled deep attention networks (M2DA-Net) for video based sign language recognition publication-title: J Vis Commun Image Represent – ident: ref3 doi: 10.1016/j.tics.2021.04.003 – ident: ref6 doi: 10.1016/j.physrep.2021.03.002 – ident: ref69 doi: 10.1109/TNN.2004.832719 – ident: ref53 doi: 10.1016/j.asoc.2020.106954 – ident: ref13 doi: 10.1109/TBME.2019.2921198 – ident: ref38 doi: 10.1109/TCSVT.2018.2870740 – ident: ref40 doi: 10.1109/TSMCC.2007.893280 – ident: ref8 doi: 10.1109/TNSRE.2020.3030639 – ident: ref1 doi: 10.1109/TBME.2013.2270283 – ident: ref57 doi: 10.1109/TAFFC.2017.2712143 – ident: ref9 doi: 10.1109/TNSRE.2020.3027955 – ident: ref34 doi: 10.1109/ACCESS.2021.3078638 – ident: ref19 doi: 10.1504/IJSNET.2020.111780 – ident: ref30 doi: 10.1016/j.bandl.2021.104968 – ident: ref2 doi: 10.26599/BSA.2020.9050017 – ident: ref21 doi: 10.1088/1741-2552/abd1c0 – ident: ref42 doi: 10.1088/2057-1976/ac0d91 – ident: ref54 doi: 10.1016/j.bspc.2018.03.010 – ident: ref35 doi: 10.1109/CVPR.1993.341109 – ident: ref41 doi: 10.1007/978-3-642-39094-4_17 – ident: ref5 doi: 10.30684/etj.v39i7.1854 – ident: ref66 doi: 10.1109/FUZZY.2006.1681687 – ident: ref70 doi: 10.1016/j.neucom.2020.12.098 – ident: ref11 doi: 10.1038/s41586-021-03506-2 – ident: ref7 doi: 10.1038/s41586-019-1119-1 – ident: ref47 doi: 10.1016/j.measurement.2020.108471 – ident: ref25 doi: 10.1016/j.neuroimage.2020.117298 – ident: ref26 doi: 10.3390/s19061423 – ident: ref18 doi: 10.3390/s140405967 |
| SSID | ssj0017657 |
| Score | 2.4005182 |
| Snippet | Limb motion decoding is an important part of brain-computer interface (BCI) research. Among the limb motion, sign language not only contains rich semantic... |
| SourceID | unpaywall proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2721 |
| SubjectTerms | Assistive technologies Brain Brain research brain-computer interface (BCI) Brain-Computer Interfaces China Chinese sign language recognition Classification Classifiers Computer applications EEG electroencephalograph (EEG) Electroencephalography Electromyography Entropy feature learning Gesture recognition Human-computer interface Humans Image recognition Imagery Imagination Implants Interfaces Language Learning algorithms Licenses limb motion decoding Machine Learning Mental task performance Motor skill Movement Neural coding Neural networks Power spectral density Regularization Semantics Sign Language Visual pathways Visualization |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8gL-gDiihWkayJ-iI9et2Pdh-VjxDj8QBH5MGk2W2nSLj0iLQx-tc7u_3IIYSQvlx603aame38Znf2NwDvDXKbx5aHWHAZCikx1EK4CgBSW1CAR-tWdCdH6vBUfD2TZ0uwPeyFQURffIYj99Ov5RfzvHFTZTuawEfqtqo_SlLV7tUaVgwS5Vk9aQCLUPA46jfIRHpnenRyvE-pYDymDJUnXLj2b1wQchGODXIhHvkGK3dhzSew0lRX5s9vM5stxJ-DpzDpNW_LTi5HTW1H-d__SB0f-mrPYLUDouxz6zlrsITVc_iwSDrMpi3jAPvIjm_wea_DD8fpQRJ7lLy64MfmJXOduPEa2cnFecW-ddOg7PtF_ZNNfMUmso7M9ZwRUmZfXHOKsO8qwfzUZOkKxF7A6cH-dPcw7Po0hDnXsg4514VB-qqWScKlkWNDZ3KFyE0krIlLo6VNLUbKqCIh_MALqeko6Nuay7jkL2G5mlf4Chgn-GYjgamURpC30FOlVCaX5ViXQmAA495aWd69tOulMct8MhPpzBs7c8bOOmMH8Gm45qql8LhXet1ZZ5DsDBPAZu8UWTfKrzPKPhXF9jilq94Nf9P4dIsupsJ542UIIdKNVQAbrTMN9-59MIDtwbtuqVhXpPkNFV_freIbeOyk2vmhTViufzX4lhBTbbf8UPkHKgIO-g priority: 102 providerName: IEEE |
| Title | Neural Decoding of Chinese Sign Language With Machine Learning for Brain-Computer Interfaces |
| URI | https://ieeexplore.ieee.org/document/9656891 https://www.ncbi.nlm.nih.gov/pubmed/34932480 https://www.proquest.com/docview/2616718280 https://www.proquest.com/docview/2612733406 https://ieeexplore.ieee.org/ielx7/7333/4359219/09656891.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gHxwNf4KBqVkYAXSJvGdhKLpwGbJsQqtLViSIjITi6jokonloqPJ_4H_kP-Es6OE3WAkEB9qdpzYuvOvt_Z598B3NfITR4ZHmDBZSCkxEAJYTMAqNuCHDwae6J7MIn3Z-LFsTzegCfdXRhEdMlnOLRf3Vn-HBefk1HCOR-Rc1c0x0aWsyROFS0zRXkBNmNJQLwHm7PJq503DUOqCAR3pIzkMNPARjbtlZlQjeqK_A8Fh9GYYlaecLv1seaWXJ2VP0HOS3BxVZ3qL5_0YrHmhvauwNt2AE32yYfhqjbD_Osv3I7_OcKrcNnDU7bT2NM12MDqOjxYpyJm04aHgD1kh-dYvrfgnWX6IInnFNJal8iWJbP1ufEM2dH8pGIv_eYoez2v37MDl8eJzFO8njDCz-ypLVnx49v3ttoEc1uWpU0cuwGzvd3ps_3A128Icq5kHXCuCo202pZJwqWWY02_5DEi16EwOiq1kiY1GMY6LhLCFbyQij4Frbm5jEp-E3rVssLbwDjBOhMKTKXUgqyI3iplrHNZjlUpBPZh3Kovy_2wbY2NReaCnFBl08nR4W5mVZ55lffhUdfmtKH2-Kv0llVXJ-nV04ft1koyP_vPMopKY_L5UUqt7nV_07y1hzG6wuXKyRBypAfHfbjVWFf3bC4IVQvb-nFnbr910dnwuS7e-TfxbejVH1d4l0BVbQZuM2Lg7j8O_ET6CfR0He4 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5VA4QKE8QgsYCbjQbLPxOFkfebRaYHcP7Vb0gBQ5yaRUrLIVTVTBr-_YeWgLFUK5RImdTDTjzDf2-BuAV4ZkmoWp9CmXykelyNeINgOAxUZ28JTaFd3pLBof4-cTdbIGu_1eGCJyyWc0sKduLT9fZrWdKtvTDD5Gdqv6LYWIqtmt1a8ZxJHj9eQhjD7KMOi2yAR6bz47OtznYDAccowqY4m2AJxExi5o-SBXPJIrsXIT2rwDG3V5bn5dmsVixQMd3INpJ3uTePJjUFfpIPv9B63j_37cJtxtoah419jOfVij8gG8XqUdFvOGc0C8EYfXGL234Jtl9eAWHzl8te5PLAtha3HTBYmjs9NSTNqJUPH1rPoupi5nk0RL53oqGCuL97Y8hd_VlRBucrKwKWIP4fhgf_5h7LeVGvxMalX5UurcEP9XiziWyqih4StZRCRNgKkJC6NVOkopiEyUx4wgZK40Hzn_XTMVFvIRrJfLkp6AkAzg0gBppJRBthd-q1KRyVQx1AUieTDstJVk7UfbahqLxIUzgU6cshOr7KRVtgdv-z7nDYnHP1tvWe30LVvFeLDTGUXSjvOLhOPPiL17OOJeL_vbPELtsospaVm7NowR-cGRB48bY-qf3dmgB7u9df0lYlWy5NdEfHqziC9gYzyfTpLJp9mXbbhtezSzRTuwXv2s6Rnjpyp97obNFXnCEkc |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6V9IA48CqPVAUtEnABJ473Ya84FWhVIRqhNhFFQrXW9rhEjZyKOuJx4j_wD_klzK7XVgoICeRL5Mzau5rZnW92x98APDTIszzKeIAFl4GQEgMthM0AoG4LcvCY2RPd_bHam4pXR_JoDZ5138Igoks-w4H96c7yZzj_HA9jzvmQnLumOTa0nCUq0bTMFOUlWFeSgHgP1qfjN9vvGoZUEQjuSBnJYSaBjWzaT2ZCPawr8j8UHEYjill5zO3Wx4pbcnVW_gQ5r8DlZXVmvnwy8_mKG9q9Bu_bATTZJ6eDZZ0N8q-_cDv-5wivw1UPT9l2Y083YA2rm_BolYqYTRoeAvaYHVxg-d6AY8v0QRIvKaS1LpEtSmbrc-M5ssPZScVe-81R9nZWf2D7Lo8Tmad4PWGEn9lzW7Lix7fvbbUJ5rYsS5s4dgumuzuTF3uBr98Q5FzLOuBcFwZptS3jmEsjR4bu5AqRm1BkJiqNllmSYaiMKmLCFbyQmq6C1txcRiW_Db1qUeFdYJxgXRYKTKQ0gqyI3iqlMrksR7oUAvswatWX5n7YtsbGPHVBTqjTyfjwYCe1Kk-9yvvwpGtz1lB7_FV6w6qrk_Tq6cNWayWpn_3nKUWlinx-lFCrB93fNG_tYYypcLF0MoQc6cGqD3ca6-qezQWhamFbP-3M7bcuOhu-0MXNfxPfgl79cYn3CFTV2X0_eX4Cnp8b-A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Decoding+of+Chinese+Sign+Language+With+Machine+Learning+for+Brain-Computer+Interfaces&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Wang%2C+Pengpai&rft.au=Zhou%2C+Yueying&rft.au=Li%2C+Zhongnian&rft.au=Huang%2C+Shuo&rft.date=2021&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=29&rft.spage=2721&rft.epage=2732&rft_id=info:doi/10.1109%2FTNSRE.2021.3137340&rft_id=info%3Apmid%2F34932480&rft.externalDocID=9656891 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |