Deep-Learning Study of the 21-cm Differential Brightness Temperature During the Epoch of Reionization

We propose a deep learning analysis technique with a convolutional neural network (CNN) to predict the evolutionary track of the Epoch of Reionization (EoR) from the 21-cm differential brightness temperature tomography images. We use 21cmFAST, a fast semi-numerical cosmological 21-cm signal simulato...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Korean Physical Society Vol. 77; no. 1; pp. 49 - 59
Main Authors Kwon, Yungi, Hong, Sungwook E., Park, Inkyu
Format Journal Article
LanguageEnglish
Published Seoul The Korean Physical Society 01.07.2020
Springer Nature B.V
한국물리학회
Subjects
Online AccessGet full text
ISSN0374-4884
1976-8524
DOI10.3938/jkps.77.49

Cover

Abstract We propose a deep learning analysis technique with a convolutional neural network (CNN) to predict the evolutionary track of the Epoch of Reionization (EoR) from the 21-cm differential brightness temperature tomography images. We use 21cmFAST, a fast semi-numerical cosmological 21-cm signal simulator, to produce mock 21-cm maps between z = 6–13. We then apply two observational effects, such as instrumental noise and limit of (spatial and depth) resolution somewhat suitable for realistic choices of the Square Kilometre Array (SKA), into the 21-cm maps. We design our deep learning model with CNN to predict the sliced-averaged neutral hydrogen fraction from the given 21-cm map. The estimated neutral fraction from our CNN model has great agreement with the true value even after coarsely smoothing with broad beam size and frequency bandwidth and heavily covered by noise with narrow beam size and frequency bandwidth. Our results show that the deep learning analyzing method has the potential to reconstruct the EoR history efficiently from the 21-cm tomography surveys in future.
AbstractList We propose a deep learning analysis technique with a convolutional neural network (CNN) to predict the evolutionary track of the Epoch of Reionization (EoR) from the 21-cm differential brightness temperature tomography images. We use 21cmFAST, a fast semi-numerical cosmological 21-cm signal simulator, to produce mock 21-cm maps between z = 6–13. We then apply two observational effects, such as instrumental noise and limit of (spatial and depth) resolution somewhat suitable for realistic choices of the Square Kilometre Array (SKA), into the 21-cm maps. We design our deep learning model with CNN to predict the sliced-averaged neutral hydrogen fraction from the given 21-cm map. The estimated neutral fraction from our CNN model has great agreement with the true value even after coarsely smoothing with broad beam size and frequency bandwidth and heavily covered by noise with narrow beam size and frequency bandwidth. Our results show that the deep learning analyzing method has the potential to reconstruct the EoR history efficiently from the 21-cm tomography surveys in future.
We propose a deep learning analysis technique with a convolutional neural network (CNN) to predict the evolutionary track of the Epoch of Reionization (EoR) from the 21-cm differential brightness temperature tomography images. We use 21cmFAST, a fast semi-numerical cosmological 21-cm signal simulator, to produce mock 21-cm maps between z=6 ~ 13. We then apply two observational effects, such as instrumental noise and limit of (spatial and depth) resolution somewhat suitable for realistic choices of the Square Kilometre Array (SKA), into the 21-cm maps. We design our deep learning model with CNN to predict the sliced-averaged neutral hydrogen fraction from the given 21-cm map. The estimated neutral fraction from our CNN model has great agreement with the true value even after coarsely smoothing with broad beam size and frequency bandwidth and heavily covered by noise with narrow beam size and frequency bandwidth. Our results show that the deep learning analyzing method has the potential to reconstruct the EoR history efficiently from the 21-cm tomography surveys in future. KCI Citation Count: 0
We propose a deep learning analysis technique with a convolutional neural network (CNN) to predict the evolutionary track of the Epoch of Reionization (EoR) from the 21-cm differential brightness temperature tomography images. We use 21cmFAST, a fast semi-numerical cosmological 21-cm signal simulator, to produce mock 21-cm maps between z = 6–13. We then apply two observational effects, such as instrumental noise and limit of (spatial and depth) resolution somewhat suitable for realistic choices of the Square Kilometre Array (SKA), into the 21-cm maps. We design our deep learning model with CNN to predict the sliced-averaged neutral hydrogen fraction from the given 21-cm map. The estimated neutral fraction from our CNN model has great agreement with the true value even after coarsely smoothing with broad beam size and frequency bandwidth and heavily covered by noise with narrow beam size and frequency bandwidth. Our results show that the deep learning analyzing method has the potential to reconstruct the EoR history efficiently from the 21-cm tomography surveys in future.
Author Park, Inkyu
Hong, Sungwook E.
Kwon, Yungi
Author_xml – sequence: 1
  givenname: Yungi
  surname: Kwon
  fullname: Kwon, Yungi
  organization: Department of Physics, University of Seoul
– sequence: 2
  givenname: Sungwook E.
  surname: Hong
  fullname: Hong, Sungwook E.
  email: swhong83@uos.ac.kr
  organization: Natural Science Research Institute, University of Seoul
– sequence: 3
  givenname: Inkyu
  surname: Park
  fullname: Park, Inkyu
  organization: Department of Physics, University of Seoul, Natural Science Research Institute, University of Seoul
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002608806$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNptkEtr3DAUhUVJoJO0m_wCQ1dt8VTWlS1pmWbygoFAOlkL2b6e0TwkV5IX6a-PnSkEQlZn853Dvd8ZOXHeISEXBZ2DAvlru-vjXIg5V5_IrFCiymXJ-AmZURA851Lyz-Qsxi2lHEBUM4ILxD5fognOunX2Jw3tc-a7LG0wY0XeHLKF7ToM6JI1--x3sOtNchhjtsJDj8GkIWC2GMLUnkrXvW8208IjWu_sP5PG-EJOO7OP-PV_npOnm-vV1V2-fLi9v7pc5g2oMuUAEkFyEIVhlCkErEQtaSFrKWhRcY7QtgW2WJu6rMbvWFfVtWINpx1tawHn5Ptx14VO7xqrvbGvufZ6F_Tl4-peqxIAKIzstyPbB_93wJj01g_BjedpxhmUFSg2Lf44Uk3wMQbsdB_swYRnXVA9KdeTci2E5mqE6Tu4selVQArG7j-u_DxWYj8pxPB2xQf0C_LdlSA
CitedBy_id crossref_primary_10_1088_1475_7516_2021_04_081
crossref_primary_10_1093_mnras_stac3822
crossref_primary_10_1093_mnras_stae1984
crossref_primary_10_1088_1475_7516_2021_11_049
crossref_primary_10_3847_1538_4357_abd245
crossref_primary_10_1088_1475_7516_2022_01_020
crossref_primary_10_3847_1538_4357_ac033a
crossref_primary_10_1093_mnras_stac977
crossref_primary_10_1088_1538_3873_ac5f5d
crossref_primary_10_1093_mnras_stad2646
crossref_primary_10_1051_0004_6361_202449309
crossref_primary_10_1093_mnras_stab3215
crossref_primary_10_1093_pasj_psac042
Cites_doi 10.1086/423025
10.1086/170520
10.1088/2041-8205/756/1/L16
10.1093/mnras/stx734
10.1017/pasa.2012.007
10.1086/386327
10.1029/2004RS003160
10.1109/JPROC.2009.2021005
10.1088/0004-637X/756/1/65
10.1088/0004-6256/139/4/1468
10.1051/0004-6361/201731201
10.1111/j.1365-2966.2006.10919.x
10.1146/annurev-astro-081309-130936
10.1016/j.physrep.2006.08.002
10.1111/j.1365-2966.2010.17731.x
10.1086/324293
10.1051/0004-6361/201628897
10.1038/35016072
10.1088/1538-3873/129/974/045001
10.1093/mnras/staa523
10.1093/mnras/stz1663
10.1093/mnras/stw071
10.1051/0004-6361/201220873
10.1046/j.1365-8711.2003.06410.x
10.1093/mnras/stz032
10.1086/506597
10.3847/1538-4357/ab2983
10.1111/j.1365-2966.2011.18208.x
10.1103/PhysRevD.95.023513
10.1086/523958
10.5303/JKAS.2014.47.2.49
10.1111/j.1365-2966.2005.09505.x
10.1086/504836
10.1093/mnras/stz2605
10.1126/science.1085325
10.1088/0004-637X/814/1/6
ContentType Journal Article
Copyright The Korean Physical Society 2020
The Korean Physical Society 2020.
Copyright_xml – notice: The Korean Physical Society 2020
– notice: The Korean Physical Society 2020.
DBID AAYXX
CITATION
ACYCR
DOI 10.3938/jkps.77.49
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1976-8524
EndPage 59
ExternalDocumentID oai_kci_go_kr_ARTI_9533303
10_3938_jkps_77_49
GroupedDBID -EM
06D
0R~
0VY
203
29~
2LR
2WC
30V
4.4
406
408
5GY
87A
96X
9ZL
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACCUX
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
BGNMA
C1A
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRP
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HF~
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
PT4
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
ZZE
~02
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
AAFGU
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
ID FETCH-LOGICAL-c395t-338e384371a2029e3e67b8018b8701644e3dd1edebab569762f6bb92c40f0db73
IEDL.DBID AGYKE
ISSN 0374-4884
IngestDate Tue Nov 21 21:41:47 EST 2023
Thu Sep 18 00:03:15 EDT 2025
Tue Jul 01 02:52:09 EDT 2025
Thu Apr 24 22:56:22 EDT 2025
Fri Feb 21 02:40:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Epoch of reionization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-338e384371a2029e3e67b8018b8701644e3dd1edebab569762f6bb92c40f0db73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2423563927
PQPubID 2044318
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9533303
proquest_journals_2423563927
crossref_primary_10_3938_jkps_77_49
crossref_citationtrail_10_3938_jkps_77_49
springer_journals_10_3938_jkps_77_49
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle Journal of the Korean Physical Society
PublicationTitleAbbrev J. Korean Phys. Soc
PublicationYear 2020
Publisher The Korean Physical Society
Springer Nature B.V
한국물리학회
Publisher_xml – name: The Korean Physical Society
– name: Springer Nature B.V
– name: 한국물리학회
References TingayS JPubl. Astron. Soc. Aust.201330e0072013PASA...30....7T10.1017/pasa.2012.0071206.6945
van HaarlemM PAstron. Astrophys.2013556A210.1051/0004-6361/2012208731305.3550
M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems (2015), software available from tensorflow.org, URL https://www.tensorflow.org/.
LiuAParsonsA RMon. Not. R. Astron. Soc.201645718642016MNRAS.457.1864L10.1093/mnras/stw0711510.08815
H. J. Hortua, L. Malago and R. Volpi, arXiv e-prints arXiv:2005.07694 (2020); 2005.07694.
DeBoerD RPubl. Astron. Soc. Pac.20171290450012017PASP..129d5001D10.1088/1538-3873/129/974/0450011606.07473
F. Chollet et al., Keras, https://keras.io (2015).
K. He, X. Zhang, S. Ren and J. Sun, arXiv e-prints arXiv:1502.01852 (2015); 1502.01852.
FanXAstron. J.20061321172006AJ....132..117F10.1086/504836astroph/0512082
ZahnOAstrophys. J.2012756652012ApJ...756...65Z10.1088/0004-637X/756/1/651111.6386
ChardinJMon. Not. R. Astron. Soc.201949010552019MNRAS.490.1055C10.1093/mnras/stz26051905.06958
FurlanettoS ROhS PMon. Not. R. Astron. Soc.200536310312005MNRAS.363.1031F10.1111/j.1365-2966.2005.09505.xastro-ph/0505065
X. Glorot, A. Bordes and Y. Bengio, in Proceedings of the fourteenth international conference on artificial intelligence and statistics (Fort Lauderdale, FL, USA, April 11–13, 2011), pp. 315–323.
Di MatteoTPernaRAbelTReesM JAstrophys. J.20025645762002ApJ...564..576D10.1086/324293astro-ph/0109241
La PlantePNtampakaMAstrophys. J.20198801102019ApJ...880..110L10.3847/1538-4357/ab29831810.08211
IlievI TScannapiecoEMartelHShapiroP RMon. Not. R. Astron. Soc.2003341812003MNRAS.341...81I10.1046/j.1365-8711.2003.06410.xastro-ph/0209216
MellemaGIlievI TPenU-LShapiroP RMon. Not. R. Astron. Soc.20063726792006MNRAS.372..679M10.1111/j.1365-2966.2006.10919.xastro-ph/0603518
MortonsonM JHuWAstrophys. J.20086727372008ApJ...672..737M10.1086/5239580705.1132
J. Asorey et al., arXiv e-prints arXiv:2001.00833 (2020); 2001.00833.
Miralda-EscudeJScience200330019042003Sci...300.1904M10.1126/science.1085325astroph/0307396
Planck CollaborationAstron. Astrophys.2016596A10810.1051/0004-6361/2016288971605.03507
PacigaGMon. Not. R. Astron. Soc.201141311742011MNRAS.413.1174P10.1111/j.1365-2966.2011.18208.x1006.1351
ParsonsA RAstron. J.201013914682010AJ....139.1468P10.1088/0004-6256/139/4/14680904.2334
SchaeferCGeigerMKuntzerTKneibJ PAstron. Astrophys.2018611A22018A&A...611A...2S10.1051/0004-6361/2017312011705.07132
HahnloserR H RNature20004059472000Natur.405..947H10.1038/35016072
L. Koopmans et al., in Advancing Astrophysics with the Square Kilometre Array (AASKA14), SISSA Medialab (2015), p. 1; 1505.07568.
SeilerJHutterASinhaMCrotonDMon. Not. R. Astron. Soc.201948757392019MNRAS.487.5739S10.1093/mnras/stz16631902.01611
AhnKAstrophys. J. Lett.2012756L162012ApJ...756L..16A10.1088/2041-8205/756/1/L161206.5007
GilletNMon. Not. R. Astron. Soc.20194842822019MNRAS.484..282G1805.02699
FurlanettoS ROhS PBriggsF HPhys. Rep.20064331812006PhR...433..181F10.1016/j.physrep.2006.08.002astro-ph/0608032
HeinrichC HMirandaVHuWPhys. Rev. D2017950235132017PhRvD..95b3513H10.1103/PhysRevD.95.0235131609.04788
MoralesM FWyitheJ S BAnnu. Rev. Astron. Astrophys.2010481272010ARA&A..48..127M10.1146/annurev-astro-081309-1309360910.3010
WangXTegmarkMSantosM GKnoxLAstrophys. J.20066505292006ApJ...650..529W10.1086/506597astro-ph/0501081
ListFLewisG FMon. Not. R. Astron. Soc.202049359132020MNRAS.493.5913L10.1093/mnras/staa5232002.07940
BondJ RColeSEfstathiouGKaiserNAstrophys. J.19913794401991ApJ...379..440B10.1086/170520
Zel’DovichY BAstron. Astrophys.1970500132009A&A...500...13Z
S. Ioffe and C. Szegedy, arXiv e-prints arXiv:1502.03167 (2015); 1502.03167.
D. P. Kingma and J. Ba, arXiv e-prints arXiv:1412.6980 (2014); 1412.6980.
ShimabukuroHSemelinBMon. Not. R. Astron. Soc.201746838692017MNRAS.468.3869S10.1093/mnras/stx7341701.07026
S. Zaroubi, The Epoch of Reionization (2013), vol. 396 of Astrophysics and Space Science Library, Springer-Verlag Berlin Heidelberg, p. 45.
DewdneyP EHallP JSchilizziR TLazioT J L WIEEE Proc.20099714822009IEEEP..97.1482D10.1109/JPROC.2009.2021005
BriggsF HKoczJRadio Sci.200540RS5S0210.1029/2004RS003160
ParkJMesingerAGreigBGilletNMon. Not. R. Astron. Soc.20194849332019MNRAS.484..933P10.1093/mnras/stz0321809.08995
S. Hassan, A. Liu, S. Kohn and P. La Plante, in The 34th Annual New Mexico Symposium, edited by A. D. Kapinska, National Radio Astronomy Observatory, 9 Nov, 2018; p. 7.
FurlanettoS RZaldarriagaMHernquistLAstrophys. J.200461312004ApJ...613....1F10.1086/423025astro-ph/0403697
WangYAstrophys. J.201581462015ApJ...814....6W10.1088/0004-637X/814/1/61510.01404
HongS EJ. Korean Astronom. Soc.201447492014JKAS...47...49H10.5303/JKAS.2014.47.2.491008.3914
ZaldarriagaMFurlanettoS RHernquistLAstrophys. J.20046086222004ApJ...608..622Z10.1086/386327astro-ph/0311514
MesingerAFurlanettoSCenRMon. Not. R. Astron. Soc.20114119552011MNRAS.411..955M10.1111/j.1365-2966.2010.17731.x1003.3878
Planck Collaboration et al., arXiv e-prints arXiv:1807.06209 (2018); 1807.06209.
C Schaefer (4506_CR23) 2018; 611
G Mellema (4506_CR38) 2006; 372
S R Furlanetto (4506_CR35) 2004; 613
F List (4506_CR27) 2020; 493
Y B Zel’Dovich (4506_CR36) 1970; 500
P La Plante (4506_CR29) 2019; 880
A R Parsons (4506_CR12) 2010; 139
C H Heinrich (4506_CR8) 2017; 95
M F Morales (4506_CR17) 2010; 48
4506_CR42
4506_CR44
4506_CR45
4506_CR46
4506_CR47
4506_CR48
4506_CR49
J Park (4506_CR37) 2019; 484
J Chardin (4506_CR26) 2019; 490
S E Hong (4506_CR39) 2014; 47
4506_CR31
J Seiler (4506_CR25) 2019; 487
J R Bond (4506_CR34) 1991; 379
4506_CR33
M J Mortonson (4506_CR6) 2008; 672
T Di Matteo (4506_CR19) 2002; 564
P E Dewdney (4506_CR14) 2009; 97
X Wang (4506_CR22) 2006; 650
H Shimabukuro (4506_CR30) 2017; 468
R H R Hahnloser (4506_CR43) 2000; 405
J Miralda-Escude (4506_CR1) 2003; 300
N Gillet (4506_CR24) 2019; 484
M Zaldarriaga (4506_CR20) 2004; 608
S R Furlanetto (4506_CR2) 2005; 363
S R Furlanetto (4506_CR16) 2006; 433
F H Briggs (4506_CR21) 2005; 40
A Liu (4506_CR50) 2016; 457
4506_CR28
I T Iliev (4506_CR41) 2003; 341
Planck Collaboration (4506_CR5) 2016; 596
G Paciga (4506_CR10) 2011; 413
X Fan (4506_CR3) 2006; 132
K Ahn (4506_CR7) 2012; 756
Y Wang (4506_CR40) 2015; 814
S J Tingay (4506_CR9) 2013; 30
M P van Haarlem (4506_CR11) 2013; 556
O Zahn (4506_CR4) 2012; 756
D R DeBoer (4506_CR13) 2017; 129
4506_CR15
A Mesinger (4506_CR32) 2011; 411
4506_CR18
References_xml – reference: ParsonsA RAstron. J.201013914682010AJ....139.1468P10.1088/0004-6256/139/4/14680904.2334
– reference: F. Chollet et al., Keras, https://keras.io (2015).
– reference: ListFLewisG FMon. Not. R. Astron. Soc.202049359132020MNRAS.493.5913L10.1093/mnras/staa5232002.07940
– reference: ZahnOAstrophys. J.2012756652012ApJ...756...65Z10.1088/0004-637X/756/1/651111.6386
– reference: SeilerJHutterASinhaMCrotonDMon. Not. R. Astron. Soc.201948757392019MNRAS.487.5739S10.1093/mnras/stz16631902.01611
– reference: MesingerAFurlanettoSCenRMon. Not. R. Astron. Soc.20114119552011MNRAS.411..955M10.1111/j.1365-2966.2010.17731.x1003.3878
– reference: ParkJMesingerAGreigBGilletNMon. Not. R. Astron. Soc.20194849332019MNRAS.484..933P10.1093/mnras/stz0321809.08995
– reference: AhnKAstrophys. J. Lett.2012756L162012ApJ...756L..16A10.1088/2041-8205/756/1/L161206.5007
– reference: L. Koopmans et al., in Advancing Astrophysics with the Square Kilometre Array (AASKA14), SISSA Medialab (2015), p. 1; 1505.07568.
– reference: ZaldarriagaMFurlanettoS RHernquistLAstrophys. J.20046086222004ApJ...608..622Z10.1086/386327astro-ph/0311514
– reference: H. J. Hortua, L. Malago and R. Volpi, arXiv e-prints arXiv:2005.07694 (2020); 2005.07694.
– reference: SchaeferCGeigerMKuntzerTKneibJ PAstron. Astrophys.2018611A22018A&A...611A...2S10.1051/0004-6361/2017312011705.07132
– reference: Di MatteoTPernaRAbelTReesM JAstrophys. J.20025645762002ApJ...564..576D10.1086/324293astro-ph/0109241
– reference: van HaarlemM PAstron. Astrophys.2013556A210.1051/0004-6361/2012208731305.3550
– reference: LiuAParsonsA RMon. Not. R. Astron. Soc.201645718642016MNRAS.457.1864L10.1093/mnras/stw0711510.08815
– reference: HahnloserR H RNature20004059472000Natur.405..947H10.1038/35016072
– reference: S. Hassan, A. Liu, S. Kohn and P. La Plante, in The 34th Annual New Mexico Symposium, edited by A. D. Kapinska, National Radio Astronomy Observatory, 9 Nov, 2018; p. 7.
– reference: HongS EJ. Korean Astronom. Soc.201447492014JKAS...47...49H10.5303/JKAS.2014.47.2.491008.3914
– reference: X. Glorot, A. Bordes and Y. Bengio, in Proceedings of the fourteenth international conference on artificial intelligence and statistics (Fort Lauderdale, FL, USA, April 11–13, 2011), pp. 315–323.
– reference: Planck CollaborationAstron. Astrophys.2016596A10810.1051/0004-6361/2016288971605.03507
– reference: WangYAstrophys. J.201581462015ApJ...814....6W10.1088/0004-637X/814/1/61510.01404
– reference: S. Ioffe and C. Szegedy, arXiv e-prints arXiv:1502.03167 (2015); 1502.03167.
– reference: MellemaGIlievI TPenU-LShapiroP RMon. Not. R. Astron. Soc.20063726792006MNRAS.372..679M10.1111/j.1365-2966.2006.10919.xastro-ph/0603518
– reference: J. Asorey et al., arXiv e-prints arXiv:2001.00833 (2020); 2001.00833.
– reference: M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems (2015), software available from tensorflow.org, URL https://www.tensorflow.org/.
– reference: PacigaGMon. Not. R. Astron. Soc.201141311742011MNRAS.413.1174P10.1111/j.1365-2966.2011.18208.x1006.1351
– reference: MortonsonM JHuWAstrophys. J.20086727372008ApJ...672..737M10.1086/5239580705.1132
– reference: DeBoerD RPubl. Astron. Soc. Pac.20171290450012017PASP..129d5001D10.1088/1538-3873/129/974/0450011606.07473
– reference: BondJ RColeSEfstathiouGKaiserNAstrophys. J.19913794401991ApJ...379..440B10.1086/170520
– reference: D. P. Kingma and J. Ba, arXiv e-prints arXiv:1412.6980 (2014); 1412.6980.
– reference: ShimabukuroHSemelinBMon. Not. R. Astron. Soc.201746838692017MNRAS.468.3869S10.1093/mnras/stx7341701.07026
– reference: Zel’DovichY BAstron. Astrophys.1970500132009A&A...500...13Z
– reference: La PlantePNtampakaMAstrophys. J.20198801102019ApJ...880..110L10.3847/1538-4357/ab29831810.08211
– reference: FanXAstron. J.20061321172006AJ....132..117F10.1086/504836astroph/0512082
– reference: FurlanettoS ROhS PBriggsF HPhys. Rep.20064331812006PhR...433..181F10.1016/j.physrep.2006.08.002astro-ph/0608032
– reference: DewdneyP EHallP JSchilizziR TLazioT J L WIEEE Proc.20099714822009IEEEP..97.1482D10.1109/JPROC.2009.2021005
– reference: K. He, X. Zhang, S. Ren and J. Sun, arXiv e-prints arXiv:1502.01852 (2015); 1502.01852.
– reference: HeinrichC HMirandaVHuWPhys. Rev. D2017950235132017PhRvD..95b3513H10.1103/PhysRevD.95.0235131609.04788
– reference: BriggsF HKoczJRadio Sci.200540RS5S0210.1029/2004RS003160
– reference: IlievI TScannapiecoEMartelHShapiroP RMon. Not. R. Astron. Soc.2003341812003MNRAS.341...81I10.1046/j.1365-8711.2003.06410.xastro-ph/0209216
– reference: FurlanettoS ROhS PMon. Not. R. Astron. Soc.200536310312005MNRAS.363.1031F10.1111/j.1365-2966.2005.09505.xastro-ph/0505065
– reference: TingayS JPubl. Astron. Soc. Aust.201330e0072013PASA...30....7T10.1017/pasa.2012.0071206.6945
– reference: S. Zaroubi, The Epoch of Reionization (2013), vol. 396 of Astrophysics and Space Science Library, Springer-Verlag Berlin Heidelberg, p. 45.
– reference: FurlanettoS RZaldarriagaMHernquistLAstrophys. J.200461312004ApJ...613....1F10.1086/423025astro-ph/0403697
– reference: MoralesM FWyitheJ S BAnnu. Rev. Astron. Astrophys.2010481272010ARA&A..48..127M10.1146/annurev-astro-081309-1309360910.3010
– reference: GilletNMon. Not. R. Astron. Soc.20194842822019MNRAS.484..282G1805.02699
– reference: Planck Collaboration et al., arXiv e-prints arXiv:1807.06209 (2018); 1807.06209.
– reference: WangXTegmarkMSantosM GKnoxLAstrophys. J.20066505292006ApJ...650..529W10.1086/506597astro-ph/0501081
– reference: ChardinJMon. Not. R. Astron. Soc.201949010552019MNRAS.490.1055C10.1093/mnras/stz26051905.06958
– reference: Miralda-EscudeJScience200330019042003Sci...300.1904M10.1126/science.1085325astroph/0307396
– volume: 613
  start-page: 1
  year: 2004
  ident: 4506_CR35
  publication-title: Astrophys. J.
  doi: 10.1086/423025
– volume: 379
  start-page: 440
  year: 1991
  ident: 4506_CR34
  publication-title: Astrophys. J.
  doi: 10.1086/170520
– volume: 756
  start-page: L16
  year: 2012
  ident: 4506_CR7
  publication-title: Astrophys. J. Lett.
  doi: 10.1088/2041-8205/756/1/L16
– volume: 468
  start-page: 3869
  year: 2017
  ident: 4506_CR30
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stx734
– volume: 30
  start-page: e007
  year: 2013
  ident: 4506_CR9
  publication-title: Publ. Astron. Soc. Aust.
  doi: 10.1017/pasa.2012.007
– volume: 608
  start-page: 622
  year: 2004
  ident: 4506_CR20
  publication-title: Astrophys. J.
  doi: 10.1086/386327
– volume: 40
  start-page: RS5S02
  year: 2005
  ident: 4506_CR21
  publication-title: Radio Sci.
  doi: 10.1029/2004RS003160
– volume: 97
  start-page: 1482
  year: 2009
  ident: 4506_CR14
  publication-title: IEEE Proc.
  doi: 10.1109/JPROC.2009.2021005
– ident: 4506_CR45
– volume: 756
  start-page: 65
  year: 2012
  ident: 4506_CR4
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/756/1/65
– ident: 4506_CR49
– ident: 4506_CR31
– volume: 139
  start-page: 1468
  year: 2010
  ident: 4506_CR12
  publication-title: Astron. J.
  doi: 10.1088/0004-6256/139/4/1468
– volume: 611
  start-page: A2
  year: 2018
  ident: 4506_CR23
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201731201
– volume: 372
  start-page: 679
  year: 2006
  ident: 4506_CR38
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2006.10919.x
– volume: 48
  start-page: 127
  year: 2010
  ident: 4506_CR17
  publication-title: Annu. Rev. Astron. Astrophys.
  doi: 10.1146/annurev-astro-081309-130936
– volume: 433
  start-page: 181
  year: 2006
  ident: 4506_CR16
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2006.08.002
– volume: 411
  start-page: 955
  year: 2011
  ident: 4506_CR32
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2010.17731.x
– ident: 4506_CR28
– volume: 564
  start-page: 576
  year: 2002
  ident: 4506_CR19
  publication-title: Astrophys. J.
  doi: 10.1086/324293
– ident: 4506_CR44
– ident: 4506_CR48
– volume: 596
  start-page: A108
  year: 2016
  ident: 4506_CR5
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201628897
– volume: 405
  start-page: 947
  year: 2000
  ident: 4506_CR43
  publication-title: Nature
  doi: 10.1038/35016072
– volume: 129
  start-page: 045001
  year: 2017
  ident: 4506_CR13
  publication-title: Publ. Astron. Soc. Pac.
  doi: 10.1088/1538-3873/129/974/045001
– ident: 4506_CR33
– volume: 484
  start-page: 282
  year: 2019
  ident: 4506_CR24
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 493
  start-page: 5913
  year: 2020
  ident: 4506_CR27
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/staa523
– volume: 487
  start-page: 5739
  year: 2019
  ident: 4506_CR25
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stz1663
– volume: 457
  start-page: 1864
  year: 2016
  ident: 4506_CR50
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stw071
– ident: 4506_CR18
– ident: 4506_CR47
– volume: 556
  start-page: A2
  year: 2013
  ident: 4506_CR11
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201220873
– volume: 341
  start-page: 81
  year: 2003
  ident: 4506_CR41
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1046/j.1365-8711.2003.06410.x
– volume: 500
  start-page: 13
  year: 1970
  ident: 4506_CR36
  publication-title: Astron. Astrophys.
– volume: 484
  start-page: 933
  year: 2019
  ident: 4506_CR37
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stz032
– ident: 4506_CR42
– volume: 650
  start-page: 529
  year: 2006
  ident: 4506_CR22
  publication-title: Astrophys. J.
  doi: 10.1086/506597
– ident: 4506_CR46
– volume: 880
  start-page: 110
  year: 2019
  ident: 4506_CR29
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/ab2983
– volume: 413
  start-page: 1174
  year: 2011
  ident: 4506_CR10
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2011.18208.x
– volume: 95
  start-page: 023513
  year: 2017
  ident: 4506_CR8
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.023513
– volume: 672
  start-page: 737
  year: 2008
  ident: 4506_CR6
  publication-title: Astrophys. J.
  doi: 10.1086/523958
– ident: 4506_CR15
– volume: 47
  start-page: 49
  year: 2014
  ident: 4506_CR39
  publication-title: J. Korean Astronom. Soc.
  doi: 10.5303/JKAS.2014.47.2.49
– volume: 363
  start-page: 1031
  year: 2005
  ident: 4506_CR2
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2005.09505.x
– volume: 132
  start-page: 117
  year: 2006
  ident: 4506_CR3
  publication-title: Astron. J.
  doi: 10.1086/504836
– volume: 490
  start-page: 1055
  year: 2019
  ident: 4506_CR26
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/stz2605
– volume: 300
  start-page: 1904
  year: 2003
  ident: 4506_CR1
  publication-title: Science
  doi: 10.1126/science.1085325
– volume: 814
  start-page: 6
  year: 2015
  ident: 4506_CR40
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/814/1/6
SSID ssj0043376
Score 2.3241303
Snippet We propose a deep learning analysis technique with a convolutional neural network (CNN) to predict the evolutionary track of the Epoch of Reionization (EoR)...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 49
SubjectTerms Artificial neural networks
Brightness temperature
Computer simulation
Deep learning
Ionization
Machine learning
Mathematical and Computational Physics
Particle and Nuclear Physics
Physics
Physics and Astronomy
Theoretical
Tomography
물리학
Title Deep-Learning Study of the 21-cm Differential Brightness Temperature During the Epoch of Reionization
URI https://link.springer.com/article/10.3938/jkps.77.49
https://www.proquest.com/docview/2423563927
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002608806
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of the Korean Physical Society, 2020, 77(1), , pp.49-59
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB41rZC48EYNlMiCXpDYsGt7Y_uYkIQCag-okcrJsr2zBVKSKEkP8OsZ7wPUwKGnPay99nrGM9_Y488Ax5Igtg6CwpIiyETyMkuMdkWSYXAm8xKFi0sDp2eDk5n8eJFf7MGb9ixMle3ebklWljrGlUbot9_nq01fqb40HTjIM21Inw-G7798mrSWVwqh6r1JRc1qLWs60p3aNxxQZ7Eub2DLne3QystM78Np2786uWTev976fvi1Q9142x94APcauMmGtX48hD1cPII7Vdpn2DwGHCOukoZj9ZLFpMKfbFkyQoWMZ0n4wcbNBSpkCK7YqArlo3Fk50h4u-ZjZuPqqGNVabJahq_xC58xLvTWZzyfwGw6OX93kjQXLyRBmHybUNiKQkuhMsdTblDgQHlyZdrT7Kb4iiRYFBkW6J3PBwRoeDnw3vAg0zItvBJPYX-xXOAhMKFz4woVafJQujQYrRwnVJQLp9McsQuvW2nY0LCSx8sxrixFJ3HYbBw2q5SVpguv_pRd1Vwc_y31koRq5-GbjdTZ8Xm5tPO1pQDhg43ZtOS1u3DUytw2k3ZjI7TMqW9cdeG4FeHf1_829ex2xZ7DXR6j9CrJ9wj2t-trfEFQZut7pMHT0eis12hyDzozPvwNhWPz6A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB31QwguiPKhLhRqQS9IpE1sZ20fC9tqW9oe0K7Um2U7kxa27K52lwP_nrGTgFp66CmH2HE0Y3ves8fPAHuSILYOgmhJFWQmeV1kRrsqKzA4U3iJwsWlgfOL_nAsTy_LyzX41J2FSdnu3ZZkmqkjrzRCH_yYzJf7Su1Lsw6bMkYa6r1jftjNu1II1exMKmpUa9mIkd6peyv8rE8X9S1keWczNMWY42fwtAWH7LDx5has4fQ5PEpJmmH5AnCAOM9aRdQrFlMAf7NZzQjDMV5k4ScbtNed0LC9YZ8T8Y5TGRshoeNGPZkN0sHEVOloPgvX8QvfMC7LNicyX8L4-Gj0ZZi11yRkQZhylRHJRKGlUIXjOTcosK88BR7taSwSGyJ7V1WBFXrnyz7BD173vTc8yLzOK6_EK9iYzqa4DUzo0rhKRVE7lC4PRivHCcOUwum8ROzBx856NrQa4vEqixtLXCJa2kZLW6WsND348LfsvFHOuLfUe3KCnYTvNgpdx-fVzE4WluD8iY25rxRje7DT-ci2Q2xpIxAs6d-46sFe57d_r_9v6vXDiu3C4-Ho_MyenVx8fQNPeOTXKT13BzZWi1_4lkDIyr9Lfe8P5KPYPQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21W4G48F2xUMCCXjhkm9jO2j4WdpeWQoVQK7UnK3YmBbZko930AL-ecT5AXTggTjnEThyP43nPnnkG2JUEsbUXREtyLyPJiyQyOsujBH1mEidRZGFp4MPx-OBUvjtLzzZA97kwTbR7vyXZ5jQElaay3qvyIvziwgi993VerUZKjaTZhC0Z05gbwNb-2_OjaT8LSyFUu0-pqAlay1aadK32NWe0WS6LazhzbWu08TizO3Det7UNNJmPrmo38j_WZBz_52Puwu0OhrL9dtzcgw0s78ONJhzUrx4AThCrqNNevWAh2PA7WxSM0CLjSeS_sUl3sApNEJfsdUPxw6TJTpBweKvTzCZNCmRTaVot_OfwhE8YFoDb3M-HcDqbnrw5iLoDGSIvTFpHRGdRaClUkvGYGxQ4Vo5cnHZkAeJdZNk8TzBHl7l0TECHF2PnDPcyLuLcKbENg3JR4iNgQqcmy1WQz0OZxd5olXFCS6nIdJwiDuFVbxnrO7XycGjGpSXWErrNhm6zSllphvDyV9mq1ej4a6kXZGA7919skNQO14uFnS8tEYdDG6JsyZsPYae3v-1-5pUNkDOltnE1hN3enL9v__mqx_9W7Dnc_DiZ2feHx0dP4BYPRL6JA96BQb28wqeEdmr3rBvYPwE4yf1F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning+Study+of+the+21-cm+Differential+Brightness+Temperature+During+the+Epoch+of+Reionization&rft.jtitle=Journal+of+the+Korean+Physical+Society&rft.au=Kwon+Yungi&rft.au=Hong%2C+Sungwook+E&rft.au=Park+Inkyu&rft.date=2020-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0374-4884&rft.eissn=1976-8524&rft.volume=77&rft.issue=1&rft.spage=49&rft.epage=59&rft_id=info:doi/10.3938%2Fjkps.77.49&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0374-4884&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0374-4884&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0374-4884&client=summon