Deep-Learning Study of the 21-cm Differential Brightness Temperature During the Epoch of Reionization
We propose a deep learning analysis technique with a convolutional neural network (CNN) to predict the evolutionary track of the Epoch of Reionization (EoR) from the 21-cm differential brightness temperature tomography images. We use 21cmFAST, a fast semi-numerical cosmological 21-cm signal simulato...
Saved in:
Published in | Journal of the Korean Physical Society Vol. 77; no. 1; pp. 49 - 59 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Physical Society
01.07.2020
Springer Nature B.V 한국물리학회 |
Subjects | |
Online Access | Get full text |
ISSN | 0374-4884 1976-8524 |
DOI | 10.3938/jkps.77.49 |
Cover
Abstract | We propose a deep learning analysis technique with a convolutional neural network (CNN) to predict the evolutionary track of the Epoch of Reionization (EoR) from the 21-cm differential brightness temperature tomography images. We use 21cmFAST, a fast semi-numerical cosmological 21-cm signal simulator, to produce mock 21-cm maps between
z
= 6–13. We then apply two observational effects, such as instrumental noise and limit of (spatial and depth) resolution somewhat suitable for realistic choices of the Square Kilometre Array (SKA), into the 21-cm maps. We design our deep learning model with CNN to predict the sliced-averaged neutral hydrogen fraction from the given 21-cm map. The estimated neutral fraction from our CNN model has great agreement with the true value even after coarsely smoothing with broad beam size and frequency bandwidth and heavily covered by noise with narrow beam size and frequency bandwidth. Our results show that the deep learning analyzing method has the potential to reconstruct the EoR history efficiently from the 21-cm tomography surveys in future. |
---|---|
AbstractList | We propose a deep learning analysis technique with a convolutional neural network (CNN) to predict the evolutionary track of the Epoch of Reionization (EoR) from the 21-cm differential brightness temperature tomography images. We use 21cmFAST, a fast semi-numerical cosmological 21-cm signal simulator, to produce mock 21-cm maps between z = 6–13. We then apply two observational effects, such as instrumental noise and limit of (spatial and depth) resolution somewhat suitable for realistic choices of the Square Kilometre Array (SKA), into the 21-cm maps. We design our deep learning model with CNN to predict the sliced-averaged neutral hydrogen fraction from the given 21-cm map. The estimated neutral fraction from our CNN model has great agreement with the true value even after coarsely smoothing with broad beam size and frequency bandwidth and heavily covered by noise with narrow beam size and frequency bandwidth. Our results show that the deep learning analyzing method has the potential to reconstruct the EoR history efficiently from the 21-cm tomography surveys in future. We propose a deep learning analysis technique with a convolutional neural network (CNN) to predict the evolutionary track of the Epoch of Reionization (EoR) from the 21-cm differential brightness temperature tomography images. We use 21cmFAST, a fast semi-numerical cosmological 21-cm signal simulator, to produce mock 21-cm maps between z=6 ~ 13. We then apply two observational effects, such as instrumental noise and limit of (spatial and depth) resolution somewhat suitable for realistic choices of the Square Kilometre Array (SKA), into the 21-cm maps. We design our deep learning model with CNN to predict the sliced-averaged neutral hydrogen fraction from the given 21-cm map. The estimated neutral fraction from our CNN model has great agreement with the true value even after coarsely smoothing with broad beam size and frequency bandwidth and heavily covered by noise with narrow beam size and frequency bandwidth. Our results show that the deep learning analyzing method has the potential to reconstruct the EoR history efficiently from the 21-cm tomography surveys in future. KCI Citation Count: 0 We propose a deep learning analysis technique with a convolutional neural network (CNN) to predict the evolutionary track of the Epoch of Reionization (EoR) from the 21-cm differential brightness temperature tomography images. We use 21cmFAST, a fast semi-numerical cosmological 21-cm signal simulator, to produce mock 21-cm maps between z = 6–13. We then apply two observational effects, such as instrumental noise and limit of (spatial and depth) resolution somewhat suitable for realistic choices of the Square Kilometre Array (SKA), into the 21-cm maps. We design our deep learning model with CNN to predict the sliced-averaged neutral hydrogen fraction from the given 21-cm map. The estimated neutral fraction from our CNN model has great agreement with the true value even after coarsely smoothing with broad beam size and frequency bandwidth and heavily covered by noise with narrow beam size and frequency bandwidth. Our results show that the deep learning analyzing method has the potential to reconstruct the EoR history efficiently from the 21-cm tomography surveys in future. |
Author | Park, Inkyu Hong, Sungwook E. Kwon, Yungi |
Author_xml | – sequence: 1 givenname: Yungi surname: Kwon fullname: Kwon, Yungi organization: Department of Physics, University of Seoul – sequence: 2 givenname: Sungwook E. surname: Hong fullname: Hong, Sungwook E. email: swhong83@uos.ac.kr organization: Natural Science Research Institute, University of Seoul – sequence: 3 givenname: Inkyu surname: Park fullname: Park, Inkyu organization: Department of Physics, University of Seoul, Natural Science Research Institute, University of Seoul |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002608806$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNptkEtr3DAUhUVJoJO0m_wCQ1dt8VTWlS1pmWbygoFAOlkL2b6e0TwkV5IX6a-PnSkEQlZn853Dvd8ZOXHeISEXBZ2DAvlru-vjXIg5V5_IrFCiymXJ-AmZURA851Lyz-Qsxi2lHEBUM4ILxD5fognOunX2Jw3tc-a7LG0wY0XeHLKF7ToM6JI1--x3sOtNchhjtsJDj8GkIWC2GMLUnkrXvW8208IjWu_sP5PG-EJOO7OP-PV_npOnm-vV1V2-fLi9v7pc5g2oMuUAEkFyEIVhlCkErEQtaSFrKWhRcY7QtgW2WJu6rMbvWFfVtWINpx1tawHn5Ptx14VO7xqrvbGvufZ6F_Tl4-peqxIAKIzstyPbB_93wJj01g_BjedpxhmUFSg2Lf44Uk3wMQbsdB_swYRnXVA9KdeTci2E5mqE6Tu4selVQArG7j-u_DxWYj8pxPB2xQf0C_LdlSA |
CitedBy_id | crossref_primary_10_1088_1475_7516_2021_04_081 crossref_primary_10_1093_mnras_stac3822 crossref_primary_10_1093_mnras_stae1984 crossref_primary_10_1088_1475_7516_2021_11_049 crossref_primary_10_3847_1538_4357_abd245 crossref_primary_10_1088_1475_7516_2022_01_020 crossref_primary_10_3847_1538_4357_ac033a crossref_primary_10_1093_mnras_stac977 crossref_primary_10_1088_1538_3873_ac5f5d crossref_primary_10_1093_mnras_stad2646 crossref_primary_10_1051_0004_6361_202449309 crossref_primary_10_1093_mnras_stab3215 crossref_primary_10_1093_pasj_psac042 |
Cites_doi | 10.1086/423025 10.1086/170520 10.1088/2041-8205/756/1/L16 10.1093/mnras/stx734 10.1017/pasa.2012.007 10.1086/386327 10.1029/2004RS003160 10.1109/JPROC.2009.2021005 10.1088/0004-637X/756/1/65 10.1088/0004-6256/139/4/1468 10.1051/0004-6361/201731201 10.1111/j.1365-2966.2006.10919.x 10.1146/annurev-astro-081309-130936 10.1016/j.physrep.2006.08.002 10.1111/j.1365-2966.2010.17731.x 10.1086/324293 10.1051/0004-6361/201628897 10.1038/35016072 10.1088/1538-3873/129/974/045001 10.1093/mnras/staa523 10.1093/mnras/stz1663 10.1093/mnras/stw071 10.1051/0004-6361/201220873 10.1046/j.1365-8711.2003.06410.x 10.1093/mnras/stz032 10.1086/506597 10.3847/1538-4357/ab2983 10.1111/j.1365-2966.2011.18208.x 10.1103/PhysRevD.95.023513 10.1086/523958 10.5303/JKAS.2014.47.2.49 10.1111/j.1365-2966.2005.09505.x 10.1086/504836 10.1093/mnras/stz2605 10.1126/science.1085325 10.1088/0004-637X/814/1/6 |
ContentType | Journal Article |
Copyright | The Korean Physical Society 2020 The Korean Physical Society 2020. |
Copyright_xml | – notice: The Korean Physical Society 2020 – notice: The Korean Physical Society 2020. |
DBID | AAYXX CITATION ACYCR |
DOI | 10.3938/jkps.77.49 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1976-8524 |
EndPage | 59 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9533303 10_3938_jkps_77_49 |
GroupedDBID | -EM 06D 0R~ 0VY 203 29~ 2LR 2WC 30V 4.4 406 408 5GY 87A 96X 9ZL AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACCUX ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AUKKA AXYYD AYJHY BGNMA C1A CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRP FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HF~ HMJXF HRMNR HZ~ IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y MZR NPVJJ NQJWS NU0 O9- O9J OK1 P2P PT4 ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 Z7R Z7V Z7X Z7Y Z7Z Z83 Z88 ZMTXR ZZE ~02 ~A9 AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ AAFGU AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC |
ID | FETCH-LOGICAL-c395t-338e384371a2029e3e67b8018b8701644e3dd1edebab569762f6bb92c40f0db73 |
IEDL.DBID | AGYKE |
ISSN | 0374-4884 |
IngestDate | Tue Nov 21 21:41:47 EST 2023 Thu Sep 18 00:03:15 EDT 2025 Tue Jul 01 02:52:09 EDT 2025 Thu Apr 24 22:56:22 EDT 2025 Fri Feb 21 02:40:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Deep learning Epoch of reionization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-338e384371a2029e3e67b8018b8701644e3dd1edebab569762f6bb92c40f0db73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2423563927 |
PQPubID | 2044318 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9533303 proquest_journals_2423563927 crossref_primary_10_3938_jkps_77_49 crossref_citationtrail_10_3938_jkps_77_49 springer_journals_10_3938_jkps_77_49 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | Journal of the Korean Physical Society |
PublicationTitleAbbrev | J. Korean Phys. Soc |
PublicationYear | 2020 |
Publisher | The Korean Physical Society Springer Nature B.V 한국물리학회 |
Publisher_xml | – name: The Korean Physical Society – name: Springer Nature B.V – name: 한국물리학회 |
References | TingayS JPubl. Astron. Soc. Aust.201330e0072013PASA...30....7T10.1017/pasa.2012.0071206.6945 van HaarlemM PAstron. Astrophys.2013556A210.1051/0004-6361/2012208731305.3550 M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems (2015), software available from tensorflow.org, URL https://www.tensorflow.org/. LiuAParsonsA RMon. Not. R. Astron. Soc.201645718642016MNRAS.457.1864L10.1093/mnras/stw0711510.08815 H. J. Hortua, L. Malago and R. Volpi, arXiv e-prints arXiv:2005.07694 (2020); 2005.07694. DeBoerD RPubl. Astron. Soc. Pac.20171290450012017PASP..129d5001D10.1088/1538-3873/129/974/0450011606.07473 F. Chollet et al., Keras, https://keras.io (2015). K. He, X. Zhang, S. Ren and J. Sun, arXiv e-prints arXiv:1502.01852 (2015); 1502.01852. FanXAstron. J.20061321172006AJ....132..117F10.1086/504836astroph/0512082 ZahnOAstrophys. J.2012756652012ApJ...756...65Z10.1088/0004-637X/756/1/651111.6386 ChardinJMon. Not. R. Astron. Soc.201949010552019MNRAS.490.1055C10.1093/mnras/stz26051905.06958 FurlanettoS ROhS PMon. Not. R. Astron. Soc.200536310312005MNRAS.363.1031F10.1111/j.1365-2966.2005.09505.xastro-ph/0505065 X. Glorot, A. Bordes and Y. Bengio, in Proceedings of the fourteenth international conference on artificial intelligence and statistics (Fort Lauderdale, FL, USA, April 11–13, 2011), pp. 315–323. Di MatteoTPernaRAbelTReesM JAstrophys. J.20025645762002ApJ...564..576D10.1086/324293astro-ph/0109241 La PlantePNtampakaMAstrophys. J.20198801102019ApJ...880..110L10.3847/1538-4357/ab29831810.08211 IlievI TScannapiecoEMartelHShapiroP RMon. Not. R. Astron. Soc.2003341812003MNRAS.341...81I10.1046/j.1365-8711.2003.06410.xastro-ph/0209216 MellemaGIlievI TPenU-LShapiroP RMon. Not. R. Astron. Soc.20063726792006MNRAS.372..679M10.1111/j.1365-2966.2006.10919.xastro-ph/0603518 MortonsonM JHuWAstrophys. J.20086727372008ApJ...672..737M10.1086/5239580705.1132 J. Asorey et al., arXiv e-prints arXiv:2001.00833 (2020); 2001.00833. Miralda-EscudeJScience200330019042003Sci...300.1904M10.1126/science.1085325astroph/0307396 Planck CollaborationAstron. Astrophys.2016596A10810.1051/0004-6361/2016288971605.03507 PacigaGMon. Not. R. Astron. Soc.201141311742011MNRAS.413.1174P10.1111/j.1365-2966.2011.18208.x1006.1351 ParsonsA RAstron. J.201013914682010AJ....139.1468P10.1088/0004-6256/139/4/14680904.2334 SchaeferCGeigerMKuntzerTKneibJ PAstron. Astrophys.2018611A22018A&A...611A...2S10.1051/0004-6361/2017312011705.07132 HahnloserR H RNature20004059472000Natur.405..947H10.1038/35016072 L. Koopmans et al., in Advancing Astrophysics with the Square Kilometre Array (AASKA14), SISSA Medialab (2015), p. 1; 1505.07568. SeilerJHutterASinhaMCrotonDMon. Not. R. Astron. Soc.201948757392019MNRAS.487.5739S10.1093/mnras/stz16631902.01611 AhnKAstrophys. J. Lett.2012756L162012ApJ...756L..16A10.1088/2041-8205/756/1/L161206.5007 GilletNMon. Not. R. Astron. Soc.20194842822019MNRAS.484..282G1805.02699 FurlanettoS ROhS PBriggsF HPhys. Rep.20064331812006PhR...433..181F10.1016/j.physrep.2006.08.002astro-ph/0608032 HeinrichC HMirandaVHuWPhys. Rev. D2017950235132017PhRvD..95b3513H10.1103/PhysRevD.95.0235131609.04788 MoralesM FWyitheJ S BAnnu. Rev. Astron. Astrophys.2010481272010ARA&A..48..127M10.1146/annurev-astro-081309-1309360910.3010 WangXTegmarkMSantosM GKnoxLAstrophys. J.20066505292006ApJ...650..529W10.1086/506597astro-ph/0501081 ListFLewisG FMon. Not. R. Astron. Soc.202049359132020MNRAS.493.5913L10.1093/mnras/staa5232002.07940 BondJ RColeSEfstathiouGKaiserNAstrophys. J.19913794401991ApJ...379..440B10.1086/170520 Zel’DovichY BAstron. Astrophys.1970500132009A&A...500...13Z S. Ioffe and C. Szegedy, arXiv e-prints arXiv:1502.03167 (2015); 1502.03167. D. P. Kingma and J. Ba, arXiv e-prints arXiv:1412.6980 (2014); 1412.6980. ShimabukuroHSemelinBMon. Not. R. Astron. Soc.201746838692017MNRAS.468.3869S10.1093/mnras/stx7341701.07026 S. Zaroubi, The Epoch of Reionization (2013), vol. 396 of Astrophysics and Space Science Library, Springer-Verlag Berlin Heidelberg, p. 45. DewdneyP EHallP JSchilizziR TLazioT J L WIEEE Proc.20099714822009IEEEP..97.1482D10.1109/JPROC.2009.2021005 BriggsF HKoczJRadio Sci.200540RS5S0210.1029/2004RS003160 ParkJMesingerAGreigBGilletNMon. Not. R. Astron. Soc.20194849332019MNRAS.484..933P10.1093/mnras/stz0321809.08995 S. Hassan, A. Liu, S. Kohn and P. La Plante, in The 34th Annual New Mexico Symposium, edited by A. D. Kapinska, National Radio Astronomy Observatory, 9 Nov, 2018; p. 7. FurlanettoS RZaldarriagaMHernquistLAstrophys. J.200461312004ApJ...613....1F10.1086/423025astro-ph/0403697 WangYAstrophys. J.201581462015ApJ...814....6W10.1088/0004-637X/814/1/61510.01404 HongS EJ. Korean Astronom. Soc.201447492014JKAS...47...49H10.5303/JKAS.2014.47.2.491008.3914 ZaldarriagaMFurlanettoS RHernquistLAstrophys. J.20046086222004ApJ...608..622Z10.1086/386327astro-ph/0311514 MesingerAFurlanettoSCenRMon. Not. R. Astron. Soc.20114119552011MNRAS.411..955M10.1111/j.1365-2966.2010.17731.x1003.3878 Planck Collaboration et al., arXiv e-prints arXiv:1807.06209 (2018); 1807.06209. C Schaefer (4506_CR23) 2018; 611 G Mellema (4506_CR38) 2006; 372 S R Furlanetto (4506_CR35) 2004; 613 F List (4506_CR27) 2020; 493 Y B Zel’Dovich (4506_CR36) 1970; 500 P La Plante (4506_CR29) 2019; 880 A R Parsons (4506_CR12) 2010; 139 C H Heinrich (4506_CR8) 2017; 95 M F Morales (4506_CR17) 2010; 48 4506_CR42 4506_CR44 4506_CR45 4506_CR46 4506_CR47 4506_CR48 4506_CR49 J Park (4506_CR37) 2019; 484 J Chardin (4506_CR26) 2019; 490 S E Hong (4506_CR39) 2014; 47 4506_CR31 J Seiler (4506_CR25) 2019; 487 J R Bond (4506_CR34) 1991; 379 4506_CR33 M J Mortonson (4506_CR6) 2008; 672 T Di Matteo (4506_CR19) 2002; 564 P E Dewdney (4506_CR14) 2009; 97 X Wang (4506_CR22) 2006; 650 H Shimabukuro (4506_CR30) 2017; 468 R H R Hahnloser (4506_CR43) 2000; 405 J Miralda-Escude (4506_CR1) 2003; 300 N Gillet (4506_CR24) 2019; 484 M Zaldarriaga (4506_CR20) 2004; 608 S R Furlanetto (4506_CR2) 2005; 363 S R Furlanetto (4506_CR16) 2006; 433 F H Briggs (4506_CR21) 2005; 40 A Liu (4506_CR50) 2016; 457 4506_CR28 I T Iliev (4506_CR41) 2003; 341 Planck Collaboration (4506_CR5) 2016; 596 G Paciga (4506_CR10) 2011; 413 X Fan (4506_CR3) 2006; 132 K Ahn (4506_CR7) 2012; 756 Y Wang (4506_CR40) 2015; 814 S J Tingay (4506_CR9) 2013; 30 M P van Haarlem (4506_CR11) 2013; 556 O Zahn (4506_CR4) 2012; 756 D R DeBoer (4506_CR13) 2017; 129 4506_CR15 A Mesinger (4506_CR32) 2011; 411 4506_CR18 |
References_xml | – reference: ParsonsA RAstron. J.201013914682010AJ....139.1468P10.1088/0004-6256/139/4/14680904.2334 – reference: F. Chollet et al., Keras, https://keras.io (2015). – reference: ListFLewisG FMon. Not. R. Astron. Soc.202049359132020MNRAS.493.5913L10.1093/mnras/staa5232002.07940 – reference: ZahnOAstrophys. J.2012756652012ApJ...756...65Z10.1088/0004-637X/756/1/651111.6386 – reference: SeilerJHutterASinhaMCrotonDMon. Not. R. Astron. Soc.201948757392019MNRAS.487.5739S10.1093/mnras/stz16631902.01611 – reference: MesingerAFurlanettoSCenRMon. Not. R. Astron. Soc.20114119552011MNRAS.411..955M10.1111/j.1365-2966.2010.17731.x1003.3878 – reference: ParkJMesingerAGreigBGilletNMon. Not. R. Astron. Soc.20194849332019MNRAS.484..933P10.1093/mnras/stz0321809.08995 – reference: AhnKAstrophys. J. Lett.2012756L162012ApJ...756L..16A10.1088/2041-8205/756/1/L161206.5007 – reference: L. Koopmans et al., in Advancing Astrophysics with the Square Kilometre Array (AASKA14), SISSA Medialab (2015), p. 1; 1505.07568. – reference: ZaldarriagaMFurlanettoS RHernquistLAstrophys. J.20046086222004ApJ...608..622Z10.1086/386327astro-ph/0311514 – reference: H. J. Hortua, L. Malago and R. Volpi, arXiv e-prints arXiv:2005.07694 (2020); 2005.07694. – reference: SchaeferCGeigerMKuntzerTKneibJ PAstron. Astrophys.2018611A22018A&A...611A...2S10.1051/0004-6361/2017312011705.07132 – reference: Di MatteoTPernaRAbelTReesM JAstrophys. J.20025645762002ApJ...564..576D10.1086/324293astro-ph/0109241 – reference: van HaarlemM PAstron. Astrophys.2013556A210.1051/0004-6361/2012208731305.3550 – reference: LiuAParsonsA RMon. Not. R. Astron. Soc.201645718642016MNRAS.457.1864L10.1093/mnras/stw0711510.08815 – reference: HahnloserR H RNature20004059472000Natur.405..947H10.1038/35016072 – reference: S. Hassan, A. Liu, S. Kohn and P. La Plante, in The 34th Annual New Mexico Symposium, edited by A. D. Kapinska, National Radio Astronomy Observatory, 9 Nov, 2018; p. 7. – reference: HongS EJ. Korean Astronom. Soc.201447492014JKAS...47...49H10.5303/JKAS.2014.47.2.491008.3914 – reference: X. Glorot, A. Bordes and Y. Bengio, in Proceedings of the fourteenth international conference on artificial intelligence and statistics (Fort Lauderdale, FL, USA, April 11–13, 2011), pp. 315–323. – reference: Planck CollaborationAstron. Astrophys.2016596A10810.1051/0004-6361/2016288971605.03507 – reference: WangYAstrophys. J.201581462015ApJ...814....6W10.1088/0004-637X/814/1/61510.01404 – reference: S. Ioffe and C. Szegedy, arXiv e-prints arXiv:1502.03167 (2015); 1502.03167. – reference: MellemaGIlievI TPenU-LShapiroP RMon. Not. R. Astron. Soc.20063726792006MNRAS.372..679M10.1111/j.1365-2966.2006.10919.xastro-ph/0603518 – reference: J. Asorey et al., arXiv e-prints arXiv:2001.00833 (2020); 2001.00833. – reference: M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems (2015), software available from tensorflow.org, URL https://www.tensorflow.org/. – reference: PacigaGMon. Not. R. Astron. Soc.201141311742011MNRAS.413.1174P10.1111/j.1365-2966.2011.18208.x1006.1351 – reference: MortonsonM JHuWAstrophys. J.20086727372008ApJ...672..737M10.1086/5239580705.1132 – reference: DeBoerD RPubl. Astron. Soc. Pac.20171290450012017PASP..129d5001D10.1088/1538-3873/129/974/0450011606.07473 – reference: BondJ RColeSEfstathiouGKaiserNAstrophys. J.19913794401991ApJ...379..440B10.1086/170520 – reference: D. P. Kingma and J. Ba, arXiv e-prints arXiv:1412.6980 (2014); 1412.6980. – reference: ShimabukuroHSemelinBMon. Not. R. Astron. Soc.201746838692017MNRAS.468.3869S10.1093/mnras/stx7341701.07026 – reference: Zel’DovichY BAstron. Astrophys.1970500132009A&A...500...13Z – reference: La PlantePNtampakaMAstrophys. J.20198801102019ApJ...880..110L10.3847/1538-4357/ab29831810.08211 – reference: FanXAstron. J.20061321172006AJ....132..117F10.1086/504836astroph/0512082 – reference: FurlanettoS ROhS PBriggsF HPhys. Rep.20064331812006PhR...433..181F10.1016/j.physrep.2006.08.002astro-ph/0608032 – reference: DewdneyP EHallP JSchilizziR TLazioT J L WIEEE Proc.20099714822009IEEEP..97.1482D10.1109/JPROC.2009.2021005 – reference: K. He, X. Zhang, S. Ren and J. Sun, arXiv e-prints arXiv:1502.01852 (2015); 1502.01852. – reference: HeinrichC HMirandaVHuWPhys. Rev. D2017950235132017PhRvD..95b3513H10.1103/PhysRevD.95.0235131609.04788 – reference: BriggsF HKoczJRadio Sci.200540RS5S0210.1029/2004RS003160 – reference: IlievI TScannapiecoEMartelHShapiroP RMon. Not. R. Astron. Soc.2003341812003MNRAS.341...81I10.1046/j.1365-8711.2003.06410.xastro-ph/0209216 – reference: FurlanettoS ROhS PMon. Not. R. Astron. Soc.200536310312005MNRAS.363.1031F10.1111/j.1365-2966.2005.09505.xastro-ph/0505065 – reference: TingayS JPubl. Astron. Soc. Aust.201330e0072013PASA...30....7T10.1017/pasa.2012.0071206.6945 – reference: S. Zaroubi, The Epoch of Reionization (2013), vol. 396 of Astrophysics and Space Science Library, Springer-Verlag Berlin Heidelberg, p. 45. – reference: FurlanettoS RZaldarriagaMHernquistLAstrophys. J.200461312004ApJ...613....1F10.1086/423025astro-ph/0403697 – reference: MoralesM FWyitheJ S BAnnu. Rev. Astron. Astrophys.2010481272010ARA&A..48..127M10.1146/annurev-astro-081309-1309360910.3010 – reference: GilletNMon. Not. R. Astron. Soc.20194842822019MNRAS.484..282G1805.02699 – reference: Planck Collaboration et al., arXiv e-prints arXiv:1807.06209 (2018); 1807.06209. – reference: WangXTegmarkMSantosM GKnoxLAstrophys. J.20066505292006ApJ...650..529W10.1086/506597astro-ph/0501081 – reference: ChardinJMon. Not. R. Astron. Soc.201949010552019MNRAS.490.1055C10.1093/mnras/stz26051905.06958 – reference: Miralda-EscudeJScience200330019042003Sci...300.1904M10.1126/science.1085325astroph/0307396 – volume: 613 start-page: 1 year: 2004 ident: 4506_CR35 publication-title: Astrophys. J. doi: 10.1086/423025 – volume: 379 start-page: 440 year: 1991 ident: 4506_CR34 publication-title: Astrophys. J. doi: 10.1086/170520 – volume: 756 start-page: L16 year: 2012 ident: 4506_CR7 publication-title: Astrophys. J. Lett. doi: 10.1088/2041-8205/756/1/L16 – volume: 468 start-page: 3869 year: 2017 ident: 4506_CR30 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stx734 – volume: 30 start-page: e007 year: 2013 ident: 4506_CR9 publication-title: Publ. Astron. Soc. Aust. doi: 10.1017/pasa.2012.007 – volume: 608 start-page: 622 year: 2004 ident: 4506_CR20 publication-title: Astrophys. J. doi: 10.1086/386327 – volume: 40 start-page: RS5S02 year: 2005 ident: 4506_CR21 publication-title: Radio Sci. doi: 10.1029/2004RS003160 – volume: 97 start-page: 1482 year: 2009 ident: 4506_CR14 publication-title: IEEE Proc. doi: 10.1109/JPROC.2009.2021005 – ident: 4506_CR45 – volume: 756 start-page: 65 year: 2012 ident: 4506_CR4 publication-title: Astrophys. J. doi: 10.1088/0004-637X/756/1/65 – ident: 4506_CR49 – ident: 4506_CR31 – volume: 139 start-page: 1468 year: 2010 ident: 4506_CR12 publication-title: Astron. J. doi: 10.1088/0004-6256/139/4/1468 – volume: 611 start-page: A2 year: 2018 ident: 4506_CR23 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201731201 – volume: 372 start-page: 679 year: 2006 ident: 4506_CR38 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2006.10919.x – volume: 48 start-page: 127 year: 2010 ident: 4506_CR17 publication-title: Annu. Rev. Astron. Astrophys. doi: 10.1146/annurev-astro-081309-130936 – volume: 433 start-page: 181 year: 2006 ident: 4506_CR16 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2006.08.002 – volume: 411 start-page: 955 year: 2011 ident: 4506_CR32 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2010.17731.x – ident: 4506_CR28 – volume: 564 start-page: 576 year: 2002 ident: 4506_CR19 publication-title: Astrophys. J. doi: 10.1086/324293 – ident: 4506_CR44 – ident: 4506_CR48 – volume: 596 start-page: A108 year: 2016 ident: 4506_CR5 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201628897 – volume: 405 start-page: 947 year: 2000 ident: 4506_CR43 publication-title: Nature doi: 10.1038/35016072 – volume: 129 start-page: 045001 year: 2017 ident: 4506_CR13 publication-title: Publ. Astron. Soc. Pac. doi: 10.1088/1538-3873/129/974/045001 – ident: 4506_CR33 – volume: 484 start-page: 282 year: 2019 ident: 4506_CR24 publication-title: Mon. Not. R. Astron. Soc. – volume: 493 start-page: 5913 year: 2020 ident: 4506_CR27 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/staa523 – volume: 487 start-page: 5739 year: 2019 ident: 4506_CR25 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stz1663 – volume: 457 start-page: 1864 year: 2016 ident: 4506_CR50 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stw071 – ident: 4506_CR18 – ident: 4506_CR47 – volume: 556 start-page: A2 year: 2013 ident: 4506_CR11 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201220873 – volume: 341 start-page: 81 year: 2003 ident: 4506_CR41 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1046/j.1365-8711.2003.06410.x – volume: 500 start-page: 13 year: 1970 ident: 4506_CR36 publication-title: Astron. Astrophys. – volume: 484 start-page: 933 year: 2019 ident: 4506_CR37 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stz032 – ident: 4506_CR42 – volume: 650 start-page: 529 year: 2006 ident: 4506_CR22 publication-title: Astrophys. J. doi: 10.1086/506597 – ident: 4506_CR46 – volume: 880 start-page: 110 year: 2019 ident: 4506_CR29 publication-title: Astrophys. J. doi: 10.3847/1538-4357/ab2983 – volume: 413 start-page: 1174 year: 2011 ident: 4506_CR10 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2011.18208.x – volume: 95 start-page: 023513 year: 2017 ident: 4506_CR8 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.023513 – volume: 672 start-page: 737 year: 2008 ident: 4506_CR6 publication-title: Astrophys. J. doi: 10.1086/523958 – ident: 4506_CR15 – volume: 47 start-page: 49 year: 2014 ident: 4506_CR39 publication-title: J. Korean Astronom. Soc. doi: 10.5303/JKAS.2014.47.2.49 – volume: 363 start-page: 1031 year: 2005 ident: 4506_CR2 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2005.09505.x – volume: 132 start-page: 117 year: 2006 ident: 4506_CR3 publication-title: Astron. J. doi: 10.1086/504836 – volume: 490 start-page: 1055 year: 2019 ident: 4506_CR26 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/stz2605 – volume: 300 start-page: 1904 year: 2003 ident: 4506_CR1 publication-title: Science doi: 10.1126/science.1085325 – volume: 814 start-page: 6 year: 2015 ident: 4506_CR40 publication-title: Astrophys. J. doi: 10.1088/0004-637X/814/1/6 |
SSID | ssj0043376 |
Score | 2.3241303 |
Snippet | We propose a deep learning analysis technique with a convolutional neural network (CNN) to predict the evolutionary track of the Epoch of Reionization (EoR)... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 49 |
SubjectTerms | Artificial neural networks Brightness temperature Computer simulation Deep learning Ionization Machine learning Mathematical and Computational Physics Particle and Nuclear Physics Physics Physics and Astronomy Theoretical Tomography 물리학 |
Title | Deep-Learning Study of the 21-cm Differential Brightness Temperature During the Epoch of Reionization |
URI | https://link.springer.com/article/10.3938/jkps.77.49 https://www.proquest.com/docview/2423563927 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002608806 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of the Korean Physical Society, 2020, 77(1), , pp.49-59 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB41rZC48EYNlMiCXpDYsGt7Y_uYkIQCag-okcrJsr2zBVKSKEkP8OsZ7wPUwKGnPay99nrGM9_Y488Ax5Igtg6CwpIiyETyMkuMdkWSYXAm8xKFi0sDp2eDk5n8eJFf7MGb9ixMle3ebklWljrGlUbot9_nq01fqb40HTjIM21Inw-G7798mrSWVwqh6r1JRc1qLWs60p3aNxxQZ7Eub2DLne3QystM78Np2786uWTev976fvi1Q9142x94APcauMmGtX48hD1cPII7Vdpn2DwGHCOukoZj9ZLFpMKfbFkyQoWMZ0n4wcbNBSpkCK7YqArlo3Fk50h4u-ZjZuPqqGNVabJahq_xC58xLvTWZzyfwGw6OX93kjQXLyRBmHybUNiKQkuhMsdTblDgQHlyZdrT7Kb4iiRYFBkW6J3PBwRoeDnw3vAg0zItvBJPYX-xXOAhMKFz4woVafJQujQYrRwnVJQLp9McsQuvW2nY0LCSx8sxrixFJ3HYbBw2q5SVpguv_pRd1Vwc_y31koRq5-GbjdTZ8Xm5tPO1pQDhg43ZtOS1u3DUytw2k3ZjI7TMqW9cdeG4FeHf1_829ex2xZ7DXR6j9CrJ9wj2t-trfEFQZut7pMHT0eis12hyDzozPvwNhWPz6A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB31QwguiPKhLhRqQS9IpE1sZ20fC9tqW9oe0K7Um2U7kxa27K52lwP_nrGTgFp66CmH2HE0Y3ves8fPAHuSILYOgmhJFWQmeV1kRrsqKzA4U3iJwsWlgfOL_nAsTy_LyzX41J2FSdnu3ZZkmqkjrzRCH_yYzJf7Su1Lsw6bMkYa6r1jftjNu1II1exMKmpUa9mIkd6peyv8rE8X9S1keWczNMWY42fwtAWH7LDx5has4fQ5PEpJmmH5AnCAOM9aRdQrFlMAf7NZzQjDMV5k4ScbtNed0LC9YZ8T8Y5TGRshoeNGPZkN0sHEVOloPgvX8QvfMC7LNicyX8L4-Gj0ZZi11yRkQZhylRHJRKGlUIXjOTcosK88BR7taSwSGyJ7V1WBFXrnyz7BD173vTc8yLzOK6_EK9iYzqa4DUzo0rhKRVE7lC4PRivHCcOUwum8ROzBx856NrQa4vEqixtLXCJa2kZLW6WsND348LfsvFHOuLfUe3KCnYTvNgpdx-fVzE4WluD8iY25rxRje7DT-ci2Q2xpIxAs6d-46sFe57d_r_9v6vXDiu3C4-Ho_MyenVx8fQNPeOTXKT13BzZWi1_4lkDIyr9Lfe8P5KPYPQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21W4G48F2xUMCCXjhkm9jO2j4WdpeWQoVQK7UnK3YmBbZko930AL-ecT5AXTggTjnEThyP43nPnnkG2JUEsbUXREtyLyPJiyQyOsujBH1mEidRZGFp4MPx-OBUvjtLzzZA97kwTbR7vyXZ5jQElaay3qvyIvziwgi993VerUZKjaTZhC0Z05gbwNb-2_OjaT8LSyFUu0-pqAlay1aadK32NWe0WS6LazhzbWu08TizO3Det7UNNJmPrmo38j_WZBz_52Puwu0OhrL9dtzcgw0s78ONJhzUrx4AThCrqNNevWAh2PA7WxSM0CLjSeS_sUl3sApNEJfsdUPxw6TJTpBweKvTzCZNCmRTaVot_OfwhE8YFoDb3M-HcDqbnrw5iLoDGSIvTFpHRGdRaClUkvGYGxQ4Vo5cnHZkAeJdZNk8TzBHl7l0TECHF2PnDPcyLuLcKbENg3JR4iNgQqcmy1WQz0OZxd5olXFCS6nIdJwiDuFVbxnrO7XycGjGpSXWErrNhm6zSllphvDyV9mq1ej4a6kXZGA7919skNQO14uFnS8tEYdDG6JsyZsPYae3v-1-5pUNkDOltnE1hN3enL9v__mqx_9W7Dnc_DiZ2feHx0dP4BYPRL6JA96BQb28wqeEdmr3rBvYPwE4yf1F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning+Study+of+the+21-cm+Differential+Brightness+Temperature+During+the+Epoch+of+Reionization&rft.jtitle=Journal+of+the+Korean+Physical+Society&rft.au=Kwon+Yungi&rft.au=Hong%2C+Sungwook+E&rft.au=Park+Inkyu&rft.date=2020-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0374-4884&rft.eissn=1976-8524&rft.volume=77&rft.issue=1&rft.spage=49&rft.epage=59&rft_id=info:doi/10.3938%2Fjkps.77.49&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0374-4884&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0374-4884&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0374-4884&client=summon |