LAGC: Lazily Aggregated Gradient Coding for Straggler-Tolerant and Communication-Efficient Distributed Learning
Gradient-based distributed learning in parameter server (PS) computing architectures is subject to random delays due to straggling worker nodes and to possible communication bottlenecks between PS and workers. Solutions have been recently proposed to separately address these impairments based on the...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 32; no. 3; pp. 962 - 974 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2020.2979762 |
Cover
Abstract | Gradient-based distributed learning in parameter server (PS) computing architectures is subject to random delays due to straggling worker nodes and to possible communication bottlenecks between PS and workers. Solutions have been recently proposed to separately address these impairments based on the ideas of gradient coding (GC), worker grouping, and adaptive worker selection. This article provides a unified analysis of these techniques in terms of wall-clock time, communication, and computation complexity measures. Furthermore, in order to combine the benefits of GC and grouping in terms of robustness to stragglers with the communication and computation load gains of adaptive selection, novel strategies, named lazily aggregated GC (LAGC) and grouped-LAG (G-LAG), are introduced. Analysis and results show that G-LAG provides the best wall-clock time and communication performance while maintaining a low computational cost, for two representative distributions of the computing times of the worker nodes. |
---|---|
AbstractList | Gradient-based distributed learning in parameter server (PS) computing architectures is subject to random delays due to straggling worker nodes and to possible communication bottlenecks between PS and workers. Solutions have been recently proposed to separately address these impairments based on the ideas of gradient coding (GC), worker grouping, and adaptive worker selection. This article provides a unified analysis of these techniques in terms of wall-clock time, communication, and computation complexity measures. Furthermore, in order to combine the benefits of GC and grouping in terms of robustness to stragglers with the communication and computation load gains of adaptive selection, novel strategies, named lazily aggregated GC (LAGC) and grouped-LAG (G-LAG), are introduced. Analysis and results show that G-LAG provides the best wall-clock time and communication performance while maintaining a low computational cost, for two representative distributions of the computing times of the worker nodes.Gradient-based distributed learning in parameter server (PS) computing architectures is subject to random delays due to straggling worker nodes and to possible communication bottlenecks between PS and workers. Solutions have been recently proposed to separately address these impairments based on the ideas of gradient coding (GC), worker grouping, and adaptive worker selection. This article provides a unified analysis of these techniques in terms of wall-clock time, communication, and computation complexity measures. Furthermore, in order to combine the benefits of GC and grouping in terms of robustness to stragglers with the communication and computation load gains of adaptive selection, novel strategies, named lazily aggregated GC (LAGC) and grouped-LAG (G-LAG), are introduced. Analysis and results show that G-LAG provides the best wall-clock time and communication performance while maintaining a low computational cost, for two representative distributions of the computing times of the worker nodes. Gradient-based distributed learning in parameter server (PS) computing architectures is subject to random delays due to straggling worker nodes and to possible communication bottlenecks between PS and workers. Solutions have been recently proposed to separately address these impairments based on the ideas of gradient coding (GC), worker grouping, and adaptive worker selection. This article provides a unified analysis of these techniques in terms of wall-clock time, communication, and computation complexity measures. Furthermore, in order to combine the benefits of GC and grouping in terms of robustness to stragglers with the communication and computation load gains of adaptive selection, novel strategies, named lazily aggregated GC (LAGC) and grouped-LAG (G-LAG), are introduced. Analysis and results show that G-LAG provides the best wall-clock time and communication performance while maintaining a low computational cost, for two representative distributions of the computing times of the worker nodes. |
Author | Zhang, Jingjing Simeone, Osvaldo |
Author_xml | – sequence: 1 givenname: Jingjing orcidid: 0000-0003-1498-4912 surname: Zhang fullname: Zhang, Jingjing email: jingjing.1.zhang@kcl.ac.uk organization: Department of Informatics, King's College London, London, U.K – sequence: 2 givenname: Osvaldo orcidid: 0000-0001-9898-3209 surname: Simeone fullname: Simeone, Osvaldo email: osvaldo.simeone@kcl.ac.uk organization: Department of Informatics, King's College London, London, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32287013$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks2L1DAYxoOsuOu6_4CCFLx46ZiPNh_ehnEdhbIedgRvJW3flixtMiYpMv71Zj6cwwjmkATye948ed68RFfWWUDoNcELQrD6sHl4qB4XFFO8oEoowekzdEMJpzllUl6d9-LHNboL4QmnwXHJC_UCXTNKpcCE3SBXLderj1mlf5txly2HwcOgI3TZ2uvOgI3ZynXGDlnvfPYYvR6GEXy-cWnW6VTbLhHTNFvT6micze_73rQH5ScTojfNvC9XgfY21XmFnvd6DHB3Wm_R98_3m9WXvPq2_rpaVnnLVBnzZE9pqjpOC6p6xdObhAQFChdAuqKRtC9wz4RoRSOJEJiSTpUFbxQRJSsFu0XsWHe2W737pcex3nozab-rCa73CdbR2jHU-wTrU4JJ9f6o2nr3c4YQ68mEFsZRW3BzgpnCpGSS8YS-u0Cf3Oyt3pcslOSCYVwk6u2JmpsJurOHvw1IAD0CrXcheOj_sXlo9KVNeSFqTTyknxpkxv9L3xylBgDOd6n0MSRW7A-FpLIt |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_OJCOMS_2024_3458802 crossref_primary_10_1016_j_dsp_2023_104353 crossref_primary_10_1109_TNNLS_2023_3304453 crossref_primary_10_1109_JIOT_2024_3403178 crossref_primary_10_1007_s11227_022_04466_8 crossref_primary_10_1109_TCOMM_2022_3166902 crossref_primary_10_1109_TCOMM_2024_3377715 crossref_primary_10_3390_s22228727 crossref_primary_10_1109_TNNLS_2020_3041185 crossref_primary_10_1109_COMST_2021_3086014 crossref_primary_10_1109_TSC_2024_3395931 crossref_primary_10_1109_TITS_2022_3149753 crossref_primary_10_1109_JIOT_2022_3182394 crossref_primary_10_1109_TCOMM_2020_2992721 crossref_primary_10_1109_TSP_2024_3452035 crossref_primary_10_1109_TNSE_2022_3185672 crossref_primary_10_1007_s12083_021_01254_8 crossref_primary_10_1109_OJCOMS_2024_3423362 |
Cites_doi | 10.1007/978-3-7908-2604-3_16 10.1137/1.9780898718508 10.1109/ALLERTON.2017.8262882 10.1109/TAC.1986.1104412 10.1109/ITW44776.2019.8989328 10.1109/ISIT.2017.8006963 10.1080/10556788.2016.1278445 10.1016/S0167-7152(97)00066-7 10.1109/TIT.2017.2736066 10.1145/2408776.2408794 10.1007/BF00229304 10.14778/1920841.1920931 10.2307/2285605 10.1109/ISIT.2019.8849690 10.1109/DSW.2019.8755563 10.1017/CBO9781316402276 10.1145/3133956.3133982 10.1109/ISIT.2018.8437467 10.2200/S00193ED1V01Y200905CAC006 10.1145/2640087.2644155 10.1137/1.9780898719062 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTOC UNPAY |
DOI | 10.1109/TNNLS.2020.2979762 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 974 |
ExternalDocumentID | oai:kclpure.kcl.ac.uk:publications/8c8ba1cc-1287-4aa4-bb57-9e8c23aa8ff0 32287013 10_1109_TNNLS_2020_2979762 9056809 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: European Research Council through the European Union’s Horizon 2020 Research and Innovation Program grantid: 725731 funderid: 10.13039/501100000781 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTOC UNPAY |
ID | FETCH-LOGICAL-c395t-2879a29d62429f9623878e9e904e1d4b82f40f377c7b8177021d9546b91753573 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Thu Aug 28 11:30:08 EDT 2025 Sat Sep 27 20:50:03 EDT 2025 Mon Jun 30 02:38:19 EDT 2025 Thu Apr 03 07:08:44 EDT 2025 Wed Oct 01 00:44:51 EDT 2025 Thu Apr 24 22:57:30 EDT 2025 Wed Aug 27 02:48:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 other-oa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-2879a29d62429f9623878e9e904e1d4b82f40f377c7b8177021d9546b91753573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9898-3209 0000-0003-1498-4912 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://kclpure.kcl.ac.uk/ws/files/126958281/LAGC_Lazily_Aggregated_Gradient_ZHANG_Acc2May2020Epub3Apr2020_GREEN_AAM.pdf |
PMID | 32287013 |
PQID | 2498673004 |
PQPubID | 85436 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2390153836 proquest_journals_2498673004 crossref_citationtrail_10_1109_TNNLS_2020_2979762 pubmed_primary_32287013 crossref_primary_10_1109_TNNLS_2020_2979762 ieee_primary_9056809 unpaywall_primary_10_1109_tnnls_2020_2979762 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 bottou (ref34) 2007 jaggi (ref28) 2014 schmidt (ref44) 2018 ref11 ye (ref12) 2018 ref17 ref16 dutta (ref38) 2018 mallick (ref45) 2018 tandon (ref8) 2017 ref50 bernstein (ref36) 2018 ref46 maity (ref19) 2018 ref48 ref47 yu (ref22) 2017 ref43 ref49 shamir (ref30) 2014 wangni (ref27) 2018 zhang (ref31) 2015 ref7 alistarh (ref35) 2017 ref9 ref4 ref6 ref5 ba (ref41) 2017 ref37 ref33 suresh (ref26) 2017 chen (ref10) 2018 dean (ref1) 2012 zinkevich (ref3) 2010 ref23 martens (ref40) 2015 zhang (ref25) 2017 dutta (ref24) 2016 recht (ref39) 2011 ref20 charles (ref15) 2017 raviv (ref14) 2018 ref21 jahani (ref32) 2018 ref29 wang (ref18) 2019 abadi (ref2) 2015 bottou (ref42) 2016 |
References_xml | – ident: ref33 doi: 10.1007/978-3-7908-2604-3_16 – ident: ref50 doi: 10.1137/1.9780898718508 – ident: ref23 doi: 10.1109/ALLERTON.2017.8262882 – ident: ref37 doi: 10.1109/TAC.1986.1104412 – start-page: 1223 year: 2012 ident: ref1 article-title: Large scale distributed deep networks publication-title: Proc Adv Neural Inf Process Syst (NeurIPS) – start-page: 5606 year: 2018 ident: ref12 article-title: Communication-computation efficient gradient coding publication-title: Proc Int Conf Mach Learn (ICML) – ident: ref17 doi: 10.1109/ITW44776.2019.8989328 – start-page: 1000 year: 2014 ident: ref30 article-title: Communication-efficient distributed optimization using an approximate Newton-type method publication-title: Proc Int Conf Mach Learn – start-page: 161 year: 2007 ident: ref34 article-title: The tradeoffs of large scale learning publication-title: Proc Adv Neural Inf Process Syst (NeurIPS) Workshop – ident: ref21 doi: 10.1109/ISIT.2017.8006963 – start-page: 362 year: 2015 ident: ref31 article-title: DiSCO: Distributed optimization for self-concordant empirical loss publication-title: Proc Int Conf Mach Learn – start-page: 2100 year: 2016 ident: ref24 article-title: Short-dot: Computing large linear transforms distributedly using coded short dot products publication-title: Proc Adv Neural Inf Process Syst (NeurIPS) – ident: ref29 doi: 10.1080/10556788.2016.1278445 – start-page: 4035 year: 2017 ident: ref25 article-title: ZipML: Training linear models with end-to-end low precision, and a little bit of deep learning publication-title: Proc Int Conf Mach Learn – ident: ref49 doi: 10.1016/S0167-7152(97)00066-7 – ident: ref20 doi: 10.1109/TIT.2017.2736066 – ident: ref6 doi: 10.1145/2408776.2408794 – ident: ref43 doi: 10.1007/BF00229304 – start-page: 1709 year: 2018 ident: ref36 article-title: SIGNSGD: Compressed optimisation for non-convex problems publication-title: Proc 35th Int Conf Mach Learn (ICML) – year: 2016 ident: ref42 article-title: Optimization methods for large-scale machine learning publication-title: arXiv 1606 04838 – start-page: 2595 year: 2010 ident: ref3 article-title: Parallelized stochastic gradient descent publication-title: Proc Adv Neural Inf Process Syst (NeurIPS) – ident: ref4 doi: 10.14778/1920841.1920931 – ident: ref46 doi: 10.2307/2285605 – ident: ref16 doi: 10.1109/ISIT.2019.8849690 – ident: ref9 doi: 10.1109/DSW.2019.8755563 – year: 2018 ident: ref44 publication-title: Lecture Slides Rates of Convergence – start-page: 1306 year: 2018 ident: ref27 article-title: Gradient sparsification for communication-efficient distributed optimization publication-title: Proc Adv Neural Inf Process Syst (NeurIPS) Workshop – year: 2017 ident: ref15 article-title: Approximate gradient coding via sparse random graphs publication-title: arXiv 1711 06771 – start-page: 803 year: 2018 ident: ref38 article-title: Slow and stale gradients can win the race: Error-runtime trade-offs in distributed SGD publication-title: Proc Int Conf Artif Intell Statist (AISTATS) – start-page: 3329 year: 2017 ident: ref26 article-title: Distributed mean estimation with limited communication publication-title: Proc Int Conf Mach Learn – year: 2015 ident: ref2 publication-title: Tensorflow Large-scale machine learning on heterogeneous distributed systems – start-page: 3368 year: 2017 ident: ref8 article-title: Gradient coding: Avoiding stragglers in distributed learning publication-title: Proc 34th Int Conf Mach Learn – ident: ref11 doi: 10.1017/CBO9781316402276 – start-page: 1709 year: 2017 ident: ref35 article-title: QSGD: Communication-efficient SGD via gradient quantization and encoding publication-title: Proc Adv Neural Inf Process Syst (NeurIPS) Workshop – year: 2018 ident: ref19 article-title: Robust gradient descent via moment encoding with LDPC codes publication-title: arXiv 1805 08327 – ident: ref48 doi: 10.1145/3133956.3133982 – year: 2018 ident: ref45 article-title: Rateless codes for near-perfect load balancing in distributed matrix-vector multiplication publication-title: arXiv 1804 10331 – start-page: 4302 year: 2018 ident: ref14 article-title: Gradient coding from cyclic MDS codes and expander graphs publication-title: Proc Int Conf Mach Learn (ICML) – start-page: 5050 year: 2018 ident: ref10 article-title: LAG: Lazily aggregated gradient for communication-efficient distributed learning publication-title: Proc Adv Neural Inf Process Syst (NeurIPS) – year: 2017 ident: ref41 article-title: Distributed second-order optimization using Kronecker-factored approximations publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref13 doi: 10.1109/ISIT.2018.8437467 – ident: ref7 doi: 10.2200/S00193ED1V01Y200905CAC006 – ident: ref5 doi: 10.1145/2640087.2644155 – year: 2018 ident: ref32 article-title: Efficient distributed hessian free algorithm for large-scale empirical risk minimization via accumulating sample strategy publication-title: arXiv 1810 11507 – start-page: 693 year: 2011 ident: ref39 article-title: Hogwild: A lock-free approach to parallelizing stochastic gradient descent publication-title: Proc Adv Neural Inf Process Syst (NeurIPS) Workshop – year: 2019 ident: ref18 article-title: ErasureHead: Distributed gradient descent without delays using approximate gradient coding publication-title: arXiv 1901 09671 – start-page: 4403 year: 2017 ident: ref22 article-title: Polynomial codes: An optimal design for high-dimensional coded matrix multiplication publication-title: Proc Adv Neural Inf Process Syst (NeurIPS) – ident: ref47 doi: 10.1137/1.9780898719062 – start-page: 3068 year: 2014 ident: ref28 article-title: Communication-efficient distributed dual coordinate ascent publication-title: Proc Adv Neural Inf Process Syst (NeurIPS) – start-page: 2408 year: 2015 ident: ref40 article-title: Optimizing neural networks with Kronecker-factored approximate curvature publication-title: Proc Int Conf Mach Learn (ICML) |
SSID | ssj0000605649 |
Score | 2.4818282 |
Snippet | Gradient-based distributed learning in parameter server (PS) computing architectures is subject to random delays due to straggling worker nodes and to possible... |
SourceID | unpaywall proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 962 |
SubjectTerms | Adaptive selection Coding Communication Computational complexity Computer applications Computer architecture Computing costs distributed learning Encoding gradient descent (GD) grouping Learning Nodes Redundancy Robustness Robustness (mathematics) Servers |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3fb9MwED6N7gF42IAxCAxkJN4gbeK4ic1bVLpWqI0QtFLhxUpip0KL0qpLtXX_Cf8tvjTpKCAknnhJIsWJf-Ry953t-w7gNReKsUwwm6aZbzMtPDtxEvNBjOPmOrEWrsJ453HkD6fsw6w7O4DrJhbmIs2X65Vum3MdTHWFy7e5vuy41Be4yON2RuGgJ0fxzbd8I8O58UtxxknJwaraJVXKr8MwGsgwTek43hjv3umbvnnhcoXXcvCp349kGI7bS5XdgUMfl6ZacDiNPoZfMBed61ObesHs9przJt7GEZ2yKHIk-qZOm4rAmHO6Z9OqJC1_wqv34e66WMabqzjPf7Jh58fwven9duvKRXtdJu305hdiyP8xPA_gqAbGJNxK8kM40MUjOG6STpBaB53AAut9R7YVk9uKSVMx6S3QHhODxgly787nuV7Zk4U5GikicaHIXlSM3a9YNPDJ98gijAnAzOtq4tn5Y5ie9ye9oV1njbBTT3RL27iAIqZCYeCLyISBdzzgWmjhMO0qlnCaMSfzgiANEu4GgQE5SnSZnwgkLe0G3im0ikWhnwLRaSxoVzHlxQnTBqu5CVMIEf2Ei4RxC9zmu8u0plTHzB65rFwrR8hJFI0-y2pca1mx4M3umeWWUOSvpU9QnHYlhcGr3BEWnDXiJWudcymNI819TD_ALHi1u220BS4BxYVerE2ZaorL455vwZOtWO7ebVS7Ud6uZ8HbnZz-1sRK-Pea-Ozfij-HexS3BVXb-M6gVa7W-oXBdWXysv4FfwCONkX4 priority: 102 providerName: Unpaywall |
Title | LAGC: Lazily Aggregated Gradient Coding for Straggler-Tolerant and Communication-Efficient Distributed Learning |
URI | https://ieeexplore.ieee.org/document/9056809 https://www.ncbi.nlm.nih.gov/pubmed/32287013 https://www.proquest.com/docview/2498673004 https://www.proquest.com/docview/2390153836 https://kclpure.kcl.ac.uk/ws/files/126958281/LAGC_Lazily_Aggregated_Gradient_ZHANG_Acc2May2020Epub3Apr2020_GREEN_AAM.pdf |
UnpaywallVersion | submittedVersion |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-2388 databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFCiPQKmMxI1mm4cTx9xWSx9C2xUSu9JyiuLYWSGipFoSofbXM-M81EKFuESRYjtOZqz5xp75BuB9IjXnheRukBexy40MXeUpFAg6br6XGelryne-WMTnK_55Ha134GjMhTHG2OAzM6Fbe5av67ylrbJjidY6oWy9e0LILldr3E_xEJfHFu0Gfhy4QSjWQ46MJ4-Xi8X8K3qDgTcJpEATTFVsUJdRW_3wlkmyNVbugpuP4EFbXWZXv7KyvGGCTvfgYph8F3nyY9I2apJf_8Hr-L9f9wQe91iUTTvleQo7pnoGe0OdB9Yv-32o59Oz2Uc2z66_l1dsukEXnTbfNDvb2oCxhs1qMoEMATAjutvNpjRbd1njFQXHskqzW4ko7oklrqCen4i4l2pu4XA91-vmOaxOT5azc7cv1ODmoYwaF3-jzAKpKddEFhIRVSISI430uPE1V0lQcK8IhciFSnwhEFdoGfFYSeIJjUT4AnarujKvgJk8k0GkuQ4zxQ3CI19xTagsVolUPHHAH2SV5j2LORXTKFPrzXgytaJOSdRpL2oHPox9LjsOj3-23ifZjC17sThwMKhE2i_znyn6rklMjP_cgXfjY1ygdOqSVaZusY3dVQqTMHbgZadK49iDBjpwNOrWX1NsqopedWOKr--e4ht4GFDEjY2QO4DdZtuatwiZGnVo18oh3F8tvky__QZ0PA76 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5VA4tEB5BAoYiRvNNg_nYW6rpe0C2b2wlfYWxbGzQkRJtU2E2l_PjPNQCxXiEkWK7TiZseYbe-YbgA-xUJwXgtteXoQ218K3pSNRIOi4uU6mhaso33mxDOcX_Os6WO_A8ZgLo7U2wWd6QrfmLF_VeUtbZScCrXVM2XoPAvQqoi5ba9xRcRCZhwbvem7o2Z4frYcsGUecrJbL5Dv6g54z8USERpjq2KA2o766_h2jZKqs3Ac4H8FeW11m17-ysrxlhM4OYDFMv4s9-TlpGznJb_5gdvzf73sM-z0aZdNOfZ7Ajq6ewsFQ6YH1C_8Q6mR6PvvEkuzmR3nNpht00mn7TbHzrQkZa9isJiPIEAIzIrzdbEq9tVc1XlF0LKsUu5OKYp8a6grq-Zmoe6nqFg7Xs71unsHF2elqNrf7Ug127ougsfE3iswTirJNRCEQU8VRrIUWDteu4jL2Cu4UfhTlkYzdKEJkoUTAQymIKTSI_OewW9WVfglM55nwAsWVn0muESC5kivCZaGMheSxBe4gqzTvecypnEaZGn_GEakRdUqiTntRW_Bx7HPZsXj8s_UhyWZs2YvFgqNBJdJ-oV-l6L3GIXH-cwvej49xidK5S1bpusU2Zl_Jj_3QghedKo1jDxpowfGoW39NsakqetWtKb66f4rvYG--WiRp8mX57TU89Cj-xsTLHcFus231GwRQjXxr1s1vTSIQmw |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3fb9MwED6N7gF42IAxCAxkJN4gbeK4ic1bVLpWqI0QtFLhxUpip0KL0qpLtXX_Cf8tvjTpKCAknnhJIsWJf-Ry953t-w7gNReKsUwwm6aZbzMtPDtxEvNBjOPmOrEWrsJ453HkD6fsw6w7O4DrJhbmIs2X65Vum3MdTHWFy7e5vuy41Be4yON2RuGgJ0fxzbd8I8O58UtxxknJwaraJVXKr8MwGsgwTek43hjv3umbvnnhcoXXcvCp349kGI7bS5XdgUMfl6ZacDiNPoZfMBed61ObesHs9przJt7GEZ2yKHIk-qZOm4rAmHO6Z9OqJC1_wqv34e66WMabqzjPf7Jh58fwven9duvKRXtdJu305hdiyP8xPA_gqAbGJNxK8kM40MUjOG6STpBaB53AAut9R7YVk9uKSVMx6S3QHhODxgly787nuV7Zk4U5GikicaHIXlSM3a9YNPDJ98gijAnAzOtq4tn5Y5ie9ye9oV1njbBTT3RL27iAIqZCYeCLyISBdzzgWmjhMO0qlnCaMSfzgiANEu4GgQE5SnSZnwgkLe0G3im0ikWhnwLRaSxoVzHlxQnTBqu5CVMIEf2Ei4RxC9zmu8u0plTHzB65rFwrR8hJFI0-y2pca1mx4M3umeWWUOSvpU9QnHYlhcGr3BEWnDXiJWudcymNI819TD_ALHi1u220BS4BxYVerE2ZaorL455vwZOtWO7ebVS7Ud6uZ8HbnZz-1sRK-Pea-Ozfij-HexS3BVXb-M6gVa7W-oXBdWXysv4FfwCONkX4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LAGC%3A+Lazily+Aggregated+Gradient+Coding+for+Straggler-Tolerant+and+Communication-Efficient+Distributed+Learning&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Jingjing&rft.au=Simeone%2C+Osvaldo&rft.date=2021-03-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=32&rft.issue=3&rft.spage=962&rft.epage=974&rft_id=info:doi/10.1109%2FTNNLS.2020.2979762&rft_id=info%3Apmid%2F32287013&rft.externalDocID=9056809 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |