Big data analytics in supply chain decarbonisation: a systematic literature review and future research directions
Supply chain decarbonisation has become a strategic requirement in the era of a net-zero economy. Despite the significant role of Big Data Analytics (BDA) in decarbonising the supply chain (SC), no prior study has evaluated it systematically. The present study aims to provide a systematic literature...
Saved in:
Published in | International journal of production research Vol. 62; no. 4; pp. 1489 - 1509 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Taylor & Francis
16.02.2024
Taylor & Francis LLC |
Subjects | |
Online Access | Get full text |
ISSN | 0020-7543 1366-588X |
DOI | 10.1080/00207543.2023.2179346 |
Cover
Abstract | Supply chain decarbonisation has become a strategic requirement in the era of a net-zero economy. Despite the significant role of Big Data Analytics (BDA) in decarbonising the supply chain (SC), no prior study has evaluated it systematically. The present study aims to provide a systematic literature review on the applications and outcomes of big data analytics in SC decarbonisation. A total of 69 papers on applying BDA technology for supply chain decarbonisation published between 2016 and 2021 have been selected following the PRISMA protocol. The findings show that the topic is evolving. Studies employed methods such as surveys (30), case studies (11), and conceptual research designs (8). Thematic analysis reveals that 65% of the studies are grounded in resource-advantage theories, organisational theories, and system theories. Studies from India and China (35%) dominate the topic, while most studies have been conducted on the food and manufacturing industries. Further, this study applied the Antecedent-Decision-Outcomes (ADO) framework in BDA-based SC decarbonisation. Antecedents include BDA resources and capabilities, workforce skills, and supplier capabilities. Decisions refer to improving decision-making across the supply chain. Outcomes refer to improving decarbonisation, sustainable growth, and sustainable innovativeness. Future research directions and questions are provided using the Theory-Context-Methodology (TCM) framework. |
---|---|
AbstractList | Supply chain decarbonisation has become a strategic requirement in the era of a net-zero economy. Despite the significant role of Big Data Analytics (BDA) in decarbonising the supply chain (SC), no prior study has evaluated it systematically. The present study aims to provide a systematic literature review on the applications and outcomes of big data analytics in SC decarbonisation. A total of 69 papers on applying BDA technology for supply chain decarbonisation published between 2016 and 2021 have been selected following the PRISMA protocol. The findings show that the topic is evolving. Studies employed methods such as surveys (30), case studies (11), and conceptual research designs (8). Thematic analysis reveals that 65% of the studies are grounded in resource-advantage theories, organisational theories, and system theories. Studies from India and China (35%) dominate the topic, while most studies have been conducted on the food and manufacturing industries. Further, this study applied the Antecedent-Decision-Outcomes (ADO) framework in BDA-based SC decarbonisation. Antecedents include BDA resources and capabilities, workforce skills, and supplier capabilities. Decisions refer to improving decision-making across the supply chain. Outcomes refer to improving decarbonisation, sustainable growth, and sustainable innovativeness. Future research directions and questions are provided using the Theory-Context-Methodology (TCM) framework. |
Author | Kumar, Devinder Singh, Rajesh Kr Mishra, Ruchi Vlachos, Ilias |
Author_xml | – sequence: 1 givenname: Devinder surname: Kumar fullname: Kumar, Devinder organization: Management Development Institute (MDI) – sequence: 2 givenname: Rajesh Kr surname: Singh fullname: Singh, Rajesh Kr email: rajesh.singh@mdi.ac.in organization: Management Development Institute (MDI) – sequence: 3 givenname: Ruchi surname: Mishra fullname: Mishra, Ruchi organization: Institute of Rural Management Anand (IRMA) – sequence: 4 givenname: Ilias orcidid: 0000-0003-4921-9647 surname: Vlachos fullname: Vlachos, Ilias organization: Excelia Business School |
BookMark | eNqFkMtKxDAUhoMoOF4eQQi4rubStKlu1MEbCG4U3IWYi0Y6zXiSKn17W2fcuNAsEk74vx_Ot4M2u9g5hA4oOaJEkmNCGKlFyY8YYeNF64aX1QaaUV5VhZDyaRPNpkwxhbbRTkpvZDxCljP0fhFesNVZY93pdsjBJBw6nPrlsh2wedXjYJ3R8By7kHQOsTvBGqchZbcYR4PbkB3o3IPD4D6C-xybLPb9-ic5DeYV2wDOTHTaQ1tet8ntr99d9Hh1-TC_Ke7ur2_n53eF4Y3IBa19JWojjeWld6XnwtclZY6xsmqYt9I0z5YT5kvJa0IqSRvqrPVWNIIwJ_guOlz1LiG-9y5l9RZ7GJdMijW0rknVSDKmxCplIKYEzqslhIWGQVGiJrvqx66a7Kq13ZE7_cWZkL_1ZNCh_Zc-W9Gh8xEW-jNCa1XWQxvBg-5MSIr_XfEFGe6WUw |
CitedBy_id | crossref_primary_10_1016_j_jenvman_2024_122689 crossref_primary_10_36096_ijbes_v6i5_606 crossref_primary_10_1080_00207543_2023_2296976 crossref_primary_10_22367_jem_2024_46_07 crossref_primary_10_1016_j_jclepro_2024_142922 crossref_primary_10_1111_ijcs_13079 crossref_primary_10_1007_s10479_024_05939_0 crossref_primary_10_1108_JFRA_11_2023_0689 crossref_primary_10_1002_bse_4136 crossref_primary_10_1007_s10479_024_05879_9 crossref_primary_10_1080_00207543_2023_2225652 crossref_primary_10_1038_s41598_024_77086_2 crossref_primary_10_1002_bse_3886 crossref_primary_10_1016_j_techfore_2025_123989 crossref_primary_10_1007_s10479_023_05440_0 crossref_primary_10_4018_IJGHPC_349891 crossref_primary_10_4018_JOEUC_333894 crossref_primary_10_1080_00207543_2023_2291522 crossref_primary_10_4018_IJICTE_343320 crossref_primary_10_1007_s43674_023_00058_y crossref_primary_10_3390_buildings13112725 |
Cites_doi | 10.3390/su132112181 10.1016/j.ijpe.2019.107571 10.1016/j.jclepro.2018.02.302 10.3390/su9040608 10.1016/j.wep.2019.08.001 10.1111/ijcs.12617 10.1080/07421222.2018.1451955 10.1177/09722629211022520 10.1016/j.techfore.2020.120420 10.1016/j.ijpe.2021.108205 10.3390/su13105495 10.1016/J.TIFS.2022.01.015 10.1016/J.RESCONREC.2019.104559 10.3390/su10030639 10.1109/SMART50582.2020.9337064 10.3390/su131911068 10.1080/00207543.2022.2088426 10.17323/2587-814X.2021.1.78.96 10.1080/00207543.2021.1976859 10.3390/su13137101 10.1016/j.compind.2020.103280 10.1016/j.jclepro.2012.02.021 10.1016/j.tre.2021.102510 10.3390/su13031530 10.1108/APJML-10-2019-0611 10.3390/su12051984 10.1371/journal.pmed.1000097 10.13106/jafeb.2020.vol7.no7.001 10.1016/j.omega.2020.102388 10.1016/j.scs.2020.102383 10.3390/su10103778 10.3390/su13126702 10.1080/13602381.2021.1859748 10.1016/j.ijpe.2021.108405 10.1016/J.SCITOTENV.2020.138177 10.1111/1467-8551.12233 10.3390/SU12124826 10.1016/j.techfore.2021.120766 10.1108/IJPPM-12-2020-0678 10.1007/S00500-021-06477-8 10.1111/IJCS.12695 10.1108/IJLM-01-2022-0016 10.5755/j01.ee.31.4.24565 10.1108/IJOPM-05-2017-0306 10.1016/j.tre.2020.102170 10.1016/j.cie.2021.107676 10.1108/13598541211258609 10.22381/EMFM15420205 10.3390/su13137004 10.1016/j.jclepro.2019.06.172 10.1080/00207543.2022.2062580 10.1108/JSTPM-03-2021-0047 10.1108/IJOA-04-2020-2120 10.1504/IJDATS.2021.114671 10.3390/su13020530 10.1016/j.techfore.2021.120808 10.1080/10580530.2021.1900464 10.1016/j.im.2019.103231 10.1108/IMDS-09-2020-0521 10.1108/BIJ-12-2018-0431 10.1016/j.cie.2021.107452 10.3390/su13020751 10.1016/j.techfore.2021.120957 10.1108/BIJ-04-2020-0137 10.1111/jscm.12145 10.17645/pag.v7i1.1731 10.1108/JEIM-12-2019-0394 10.1186/s12874-017-0458-6 10.1108/IJPDLM-11-2019-399 10.1007/S10479-021-04275-X 10.1016/j.jclepro.2021.128998 10.3390/su10103491 10.3390/su13126812 10.1002/bse.2905 10.3390/su13084409 10.1016/j.jclepro.2019.06.330 10.1111/ijcs.12633 10.1108/JEIM-12-2020-0521 10.3390/joitmc6040190 10.1016/j.ibusrev.2020.101717 10.1016/j.ijinfomgt.2021.102448 10.1186/s13643-019-1259-2 10.1108/IJPPM-04-2020-0196 10.3390/su9122317 10.1016/j.jclepro.2019.03.181 10.21078/JSSI-2021-175-17 10.1108/BIJ-12-2018-0442 10.1080/09537287.2020.1712487 10.1016/j.tre.2021.102455 10.1007/s12063-021-00212-0 10.3390/su13137160 10.1016/j.jclepro.2020.120783 10.1080/00207543.2022.2044085 10.5772/INTECHOPEN.89426 10.1016/j.techfore.2018.06.030 10.1016/j.techfore.2020.120557 10.1109/iSPEC48194.2019.8975114 10.3390/su12030949 10.1016/j.jclepro.2020.125233 10.1109/EMR.2019.2951559 10.1080/00207543.2020.1832274 10.1080/00207543.2022.2063088 10.1111/poms.13272 10.1016/j.jbusres.2020.07.044 10.1080/00207543.2019.1677961 10.3390/su13052460 10.1108/IJLM-06-2020-0237 10.1080/00207543.2021.1906971 |
ContentType | Journal Article |
Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 2023 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1080/00207543.2023.2179346 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1366-588X |
EndPage | 1509 |
ExternalDocumentID | 10_1080_00207543_2023_2179346 2179346 |
Genre | Review Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACGOD ACIWK ACNCT ACTIO ADCVX ADGTB ADXPE AEGXH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIAGR AIJEM AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBR EBS EBU E~A E~B GTTXZ H13 HF~ HZ~ H~9 H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ A8Z AAGDL AAHIA AAYXX ADYSH AEMOZ AFRVT AHQJS AIYEW AMPGV CITATION EBD EBE EBO EMK EPL I-F ML~ TH9 7SC 8FD F28 FR3 JQ2 K1G L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c395t-17f657c8cd34fe4f35f7412e224692fd8c9bd302f48370068191eddfd59502e53 |
ISSN | 0020-7543 |
IngestDate | Wed Aug 13 10:59:24 EDT 2025 Thu Apr 24 23:04:13 EDT 2025 Tue Jul 01 03:30:25 EDT 2025 Wed Dec 25 09:05:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c395t-17f657c8cd34fe4f35f7412e224692fd8c9bd302f48370068191eddfd59502e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4921-9647 |
PQID | 2917706980 |
PQPubID | 30924 |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1080_00207543_2023_2179346 informaworld_taylorfrancis_310_1080_00207543_2023_2179346 proquest_journals_2917706980 crossref_citationtrail_10_1080_00207543_2023_2179346 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-16 |
PublicationDateYYYYMMDD | 2024-02-16 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | International journal of production research |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis LLC |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
References | e_1_3_3_50_1 e_1_3_3_77_1 e_1_3_3_117_1 e_1_3_3_39_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_58_1 e_1_3_3_92_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_54_1 e_1_3_3_73_1 e_1_3_3_96_1 e_1_3_3_113_1 e_1_3_3_61_1 e_1_3_3_88_1 e_1_3_3_9_1 e_1_3_3_105_1 e_1_3_3_109_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_69_1 e_1_3_3_80_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_65_1 e_1_3_3_84_1 e_1_3_3_101_1 e_1_3_3_30_1 e_1_3_3_76_1 e_1_3_3_99_1 e_1_3_3_116_1 e_1_3_3_19_1 e_1_3_3_38_1 e_1_3_3_91_1 e_1_3_3_15_1 e_1_3_3_57_1 e_1_3_3_34_1 e_1_3_3_72_1 e_1_3_3_95_1 e_1_3_3_112_1 e_1_3_3_11_1 e_1_3_3_53_1 e_1_3_3_41_1 e_1_3_3_87_1 e_1_3_3_60_1 e_1_3_3_108_1 e_1_3_3_8_1 e_1_3_3_49_1 e_1_3_3_100_1 e_1_3_3_26_1 e_1_3_3_68_1 Kerdpitak C. (e_1_3_3_55_1) 2019; 8 e_1_3_3_45_1 e_1_3_3_83_1 e_1_3_3_104_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_64_1 e_1_3_3_52_1 e_1_3_3_75_1 e_1_3_3_98_1 e_1_3_3_71_1 e_1_3_3_79_1 e_1_3_3_119_1 Leung K. H. (e_1_3_3_62_1) 2018 e_1_3_3_18_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_90_1 e_1_3_3_111_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_56_1 e_1_3_3_94_1 e_1_3_3_115_1 e_1_3_3_40_1 e_1_3_3_63_1 e_1_3_3_86_1 e_1_3_3_7_1 e_1_3_3_107_1 e_1_3_3_29_1 e_1_3_3_25_1 e_1_3_3_48_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_67_1 e_1_3_3_82_1 e_1_3_3_103_1 e_1_3_3_97_1 e_1_3_3_51_1 e_1_3_3_78_1 e_1_3_3_70_1 e_1_3_3_118_1 e_1_3_3_17_1 e_1_3_3_110_1 e_1_3_3_13_1 e_1_3_3_59_1 e_1_3_3_36_1 e_1_3_3_93_1 e_1_3_3_114_1 e_1_3_3_32_1 e_1_3_3_74_1 Gough D. (e_1_3_3_43_1) 2017 e_1_3_3_89_1 e_1_3_3_6_1 e_1_3_3_106_1 e_1_3_3_28_1 e_1_3_3_24_1 e_1_3_3_47_1 e_1_3_3_81_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_66_1 e_1_3_3_85_1 e_1_3_3_102_1 |
References_xml | – ident: e_1_3_3_8_1 doi: 10.3390/su132112181 – ident: e_1_3_3_90_1 doi: 10.1016/j.ijpe.2019.107571 – ident: e_1_3_3_44_1 doi: 10.1016/j.jclepro.2018.02.302 – ident: e_1_3_3_41_1 – ident: e_1_3_3_67_1 doi: 10.3390/su9040608 – ident: e_1_3_3_97_1 doi: 10.1016/j.wep.2019.08.001 – ident: e_1_3_3_69_1 doi: 10.1111/ijcs.12617 – ident: e_1_3_3_72_1 doi: 10.1080/07421222.2018.1451955 – ident: e_1_3_3_26_1 doi: 10.1177/09722629211022520 – ident: e_1_3_3_16_1 doi: 10.1016/j.techfore.2020.120420 – ident: e_1_3_3_59_1 doi: 10.1016/j.ijpe.2021.108205 – volume-title: An Introduction to Systematic Reviews year: 2017 ident: e_1_3_3_43_1 – ident: e_1_3_3_11_1 doi: 10.3390/su13105495 – start-page: 141 volume-title: Progress in Economics Research year: 2018 ident: e_1_3_3_62_1 – ident: e_1_3_3_65_1 doi: 10.1016/J.TIFS.2022.01.015 – ident: e_1_3_3_17_1 doi: 10.1016/J.RESCONREC.2019.104559 – ident: e_1_3_3_21_1 doi: 10.3390/su10030639 – ident: e_1_3_3_92_1 doi: 10.1109/SMART50582.2020.9337064 – ident: e_1_3_3_34_1 doi: 10.3390/su131911068 – ident: e_1_3_3_93_1 doi: 10.1080/00207543.2022.2088426 – ident: e_1_3_3_77_1 doi: 10.17323/2587-814X.2021.1.78.96 – ident: e_1_3_3_35_1 doi: 10.1080/00207543.2021.1976859 – ident: e_1_3_3_64_1 doi: 10.3390/su13137101 – ident: e_1_3_3_22_1 – ident: e_1_3_3_114_1 doi: 10.1016/j.compind.2020.103280 – ident: e_1_3_3_99_1 doi: 10.1016/j.jclepro.2012.02.021 – ident: e_1_3_3_100_1 doi: 10.1016/j.tre.2021.102510 – ident: e_1_3_3_40_1 doi: 10.3390/su13031530 – ident: e_1_3_3_82_1 doi: 10.1108/APJML-10-2019-0611 – ident: e_1_3_3_96_1 doi: 10.3390/su12051984 – ident: e_1_3_3_70_1 doi: 10.1371/journal.pmed.1000097 – ident: e_1_3_3_6_1 doi: 10.13106/jafeb.2020.vol7.no7.001 – ident: e_1_3_3_87_1 doi: 10.1016/j.omega.2020.102388 – ident: e_1_3_3_103_1 doi: 10.1016/j.scs.2020.102383 – ident: e_1_3_3_51_1 doi: 10.3390/su10103778 – ident: e_1_3_3_109_1 doi: 10.3390/su13126702 – ident: e_1_3_3_94_1 doi: 10.1080/13602381.2021.1859748 – ident: e_1_3_3_84_1 doi: 10.1016/j.ijpe.2021.108405 – ident: e_1_3_3_49_1 doi: 10.1016/J.SCITOTENV.2020.138177 – ident: e_1_3_3_4_1 doi: 10.1111/1467-8551.12233 – ident: e_1_3_3_88_1 doi: 10.3390/SU12124826 – ident: e_1_3_3_13_1 doi: 10.1016/j.techfore.2021.120766 – ident: e_1_3_3_29_1 doi: 10.1108/IJPPM-12-2020-0678 – ident: e_1_3_3_115_1 doi: 10.1007/S00500-021-06477-8 – ident: e_1_3_3_81_1 doi: 10.1111/IJCS.12695 – ident: e_1_3_3_68_1 doi: 10.1108/IJLM-01-2022-0016 – ident: e_1_3_3_31_1 doi: 10.5755/j01.ee.31.4.24565 – ident: e_1_3_3_42_1 doi: 10.1108/IJOPM-05-2017-0306 – ident: e_1_3_3_85_1 doi: 10.1016/j.tre.2020.102170 – ident: e_1_3_3_45_1 doi: 10.1016/j.cie.2021.107676 – ident: e_1_3_3_89_1 doi: 10.1108/13598541211258609 – ident: e_1_3_3_104_1 doi: 10.22381/EMFM15420205 – ident: e_1_3_3_25_1 doi: 10.3390/su13137004 – ident: e_1_3_3_91_1 doi: 10.1016/j.jclepro.2019.06.172 – ident: e_1_3_3_107_1 doi: 10.1080/00207543.2022.2062580 – ident: e_1_3_3_12_1 doi: 10.1108/JSTPM-03-2021-0047 – ident: e_1_3_3_15_1 doi: 10.1108/IJOA-04-2020-2120 – ident: e_1_3_3_71_1 doi: 10.1504/IJDATS.2021.114671 – ident: e_1_3_3_76_1 doi: 10.3390/su13020530 – ident: e_1_3_3_7_1 doi: 10.1016/j.techfore.2021.120808 – ident: e_1_3_3_24_1 doi: 10.1080/10580530.2021.1900464 – ident: e_1_3_3_117_1 doi: 10.1016/j.im.2019.103231 – ident: e_1_3_3_108_1 doi: 10.1108/IMDS-09-2020-0521 – ident: e_1_3_3_53_1 doi: 10.1108/BIJ-12-2018-0431 – ident: e_1_3_3_98_1 doi: 10.1016/j.cie.2021.107452 – ident: e_1_3_3_10_1 doi: 10.3390/su13020751 – ident: e_1_3_3_32_1 – ident: e_1_3_3_60_1 doi: 10.1016/j.techfore.2021.120957 – ident: e_1_3_3_74_1 doi: 10.1108/BIJ-04-2020-0137 – ident: e_1_3_3_37_1 doi: 10.1111/jscm.12145 – ident: e_1_3_3_48_1 doi: 10.17645/pag.v7i1.1731 – ident: e_1_3_3_66_1 doi: 10.1108/JEIM-12-2019-0394 – ident: e_1_3_3_73_1 doi: 10.1186/s12874-017-0458-6 – ident: e_1_3_3_47_1 doi: 10.1108/IJPDLM-11-2019-399 – ident: e_1_3_3_57_1 doi: 10.1007/S10479-021-04275-X – ident: e_1_3_3_112_1 doi: 10.1016/j.jclepro.2021.128998 – ident: e_1_3_3_75_1 doi: 10.3390/su10103491 – ident: e_1_3_3_2_1 doi: 10.3390/su13126812 – ident: e_1_3_3_83_1 doi: 10.1002/bse.2905 – ident: e_1_3_3_101_1 doi: 10.3390/su13084409 – ident: e_1_3_3_110_1 doi: 10.1016/j.jclepro.2019.06.330 – ident: e_1_3_3_52_1 doi: 10.1111/ijcs.12633 – ident: e_1_3_3_54_1 doi: 10.1108/JEIM-12-2020-0521 – ident: e_1_3_3_95_1 – ident: e_1_3_3_5_1 doi: 10.3390/joitmc6040190 – ident: e_1_3_3_80_1 doi: 10.1016/j.ibusrev.2020.101717 – ident: e_1_3_3_78_1 doi: 10.1016/j.ijinfomgt.2021.102448 – ident: e_1_3_3_50_1 doi: 10.1186/s13643-019-1259-2 – ident: e_1_3_3_113_1 – ident: e_1_3_3_36_1 – ident: e_1_3_3_79_1 doi: 10.1108/IJPPM-04-2020-0196 – ident: e_1_3_3_38_1 doi: 10.3390/su9122317 – ident: e_1_3_3_86_1 doi: 10.1016/j.jclepro.2019.03.181 – ident: e_1_3_3_119_1 doi: 10.21078/JSSI-2021-175-17 – ident: e_1_3_3_105_1 doi: 10.1108/BIJ-12-2018-0442 – ident: e_1_3_3_39_1 doi: 10.1080/09537287.2020.1712487 – ident: e_1_3_3_30_1 doi: 10.1016/j.tre.2021.102455 – ident: e_1_3_3_3_1 doi: 10.1007/s12063-021-00212-0 – volume: 8 start-page: 189 issue: 6 year: 2019 ident: e_1_3_3_55_1 article-title: Assisting Tourism Supply Chain Performance in Thailand Through Big Data Analytics: Moderating Role of IT Capability publication-title: International Journal of Supply Chain Management – ident: e_1_3_3_56_1 doi: 10.3390/su13137160 – ident: e_1_3_3_23_1 – ident: e_1_3_3_106_1 doi: 10.1016/j.jclepro.2020.120783 – ident: e_1_3_3_9_1 doi: 10.1080/00207543.2022.2044085 – ident: e_1_3_3_33_1 doi: 10.5772/INTECHOPEN.89426 – ident: e_1_3_3_46_1 doi: 10.1016/j.techfore.2018.06.030 – ident: e_1_3_3_19_1 doi: 10.1016/j.techfore.2020.120557 – ident: e_1_3_3_102_1 doi: 10.1109/iSPEC48194.2019.8975114 – ident: e_1_3_3_118_1 doi: 10.3390/su12030949 – ident: e_1_3_3_18_1 doi: 10.1016/j.jclepro.2020.125233 – ident: e_1_3_3_61_1 doi: 10.1109/EMR.2019.2951559 – ident: e_1_3_3_20_1 doi: 10.1080/00207543.2020.1832274 – ident: e_1_3_3_111_1 doi: 10.1080/00207543.2022.2063088 – ident: e_1_3_3_27_1 doi: 10.1111/poms.13272 – ident: e_1_3_3_58_1 doi: 10.1016/j.jbusres.2020.07.044 – ident: e_1_3_3_63_1 doi: 10.1080/00207543.2019.1677961 – ident: e_1_3_3_116_1 doi: 10.3390/su13052460 – ident: e_1_3_3_14_1 doi: 10.1108/IJLM-06-2020-0237 – ident: e_1_3_3_28_1 doi: 10.1080/00207543.2021.1906971 |
SSID | ssj0000584 |
Score | 2.555888 |
SecondaryResourceType | review_article |
Snippet | Supply chain decarbonisation has become a strategic requirement in the era of a net-zero economy. Despite the significant role of Big Data Analytics (BDA) in... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1489 |
SubjectTerms | antecedent-decision-outcomes Big Data Big data analytics Data analysis decarbonisation Energy transition Literature reviews Mathematical analysis net zero economy Supply chains System theory systematic literature review Systematic review |
Title | Big data analytics in supply chain decarbonisation: a systematic literature review and future research directions |
URI | https://www.tandfonline.com/doi/abs/10.1080/00207543.2023.2179346 https://www.proquest.com/docview/2917706980 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWW7QUOiE9RKMgHblGixImdmFuhoBUSHFALFZcocRw21Sotu-kBfiC_i5nYcbJlRSmXaBWtJ9mdl5nxZOYNIS9ZpFQmtPKjIuR-Igvml6yIffi2LDNw0WWFvcMfPorFSfL-lJ_OZr8mVUuXXRmonzv7Sv5Hq3AO9IpdsjfQrBMKJ-Az6BeOoGE4_pOOXzffPCzx9AqkFukJl5vW2-Cgzh_Y0ttXuqpiXZ63tmrH9DZP6JtXjlZ56GLBTLphGvEsE9DSM47PpfbOxvL3MZs44aC4MDSyiKxBxPjKyJZ0H8HVsLHGpXjAh_Ypnk_Fmd4swfo4LDSb5drEuDi5ZTj9eYWDXoyRWzXFVv6CJVjybNorXT9B6KfckDUF2pjhWAifZ_3QYWenBZvgMZkYXdjRyYkDhxBX7nQOQzUlC_FyAQ6ODxgaqGQHGfcVJ-lKFyPHqWrE5Cgmt2JukT2WCsHmZO9wcfT1yxgT8MzygZvfOvSSIcv7rvvZipK2OHT_iBn6QOj4HrlrdzD00MDxPpnp9gG5M-G1fEi-AzApApM6YNKmpQaYtAcmvQLMV7SgIyzpCEtqYAmSKmpgSQdM0RGWj8jJu7fHbxa-ne3hq1jyzo_SWvBUZaqKk1ondcxriG2ZRn5DyeoqA1NRxSGrceIB9jFFMtJVVVdc8pBpHj8m8_a81U8IFeCGlI6LitchbC-yEusnVZnhC_ZMS71PkuG_zJUlvsf5K6v8r7rcJ4FbdmGYX65bIKeKyrs-5Vab-Th5fM3ag0GruX1cNzmTUZqGQmbh05veyzNye3zWDsi8W1_q5xA9d-ULC83fyZTALg |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEIAtHgMw8EaUpwfWRIkdpw4bIKryaCeQulmJH7SiSqFNB_j1-OKkFBBiYIySsxLnfHdO7r5D6IyEUvJYSy9MA-ZFSUq8jKTUs1cnGbcuOlNQO9zpxu3H6LbHenO1MJBWCXto40ARpa2GxQ0fo-uUOCjhtp4uoj70_vYJ6FgUL6JlBqQRKOMIup_WmPGKxBx4IFNX8fw2zBf_9IVe-sNaly6otYFkffMu8-TZnxaZL9-_cR3_93SbaL2KUPGFU6kttKDzbbQ2xy3cQa-XgycMuaU4BaYJkJ7xIMcT6BD6hmU_tQdKy3ScjfIqXegcp_iTGo2HM5ozdsUzdiSFHeAEVwCiPnb-FhbGLnpsXT9ctb2qd4MnacIKL2yamDUll4pGRkeGMmNjF6KBX5cQo7hVBUUDYoBoD3Uqdt-olTKKJSwgmtE9tJSPcr2PcGzNjNQ0VcwENnzkGeTHyYzDD1SuE91AUf3GhKzA5tBfYyjCGf_UzaiAGRXVjDaQPxN7cWSPvwSSeXUQRflJxbj-J4L-IXtU646ojMREELtVbgZxwoODfwx9ilbaD517cX_TvTtEq_ZUBFnlYXyElorxVB_boKnITspV8QEuJAjG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT4QwEIAbH4nRg2_j-uzBKwRayhZvvjY-Nx408dbQl2s0qLt40F9vZ1vWV4wHjwSmgTKdmcLMNwjtkFQpnhsVpWXCoqwoSSRJSSN3dSG5c9FSQ-3wRTc_vs5Ob1iTTTgIaZWwh7YeFDG01bC4n7RtMuKggts5uozG0Po7JqBiWT6OJnOoM4UqjqT7YYwZDyDmJAKZpojnt2G-uKcv8NIfxnrogTpzSDb37hNP7uOXWsbq7RvW8V8PN49mQ3yK97xCLaAxUy2imU_UwiX0vH93iyGzFJdANAHOM76r8AD6g75i1SvdgTaq7MvHKiQL7eISfzCj8cOI5Yx96YwbSWOPN8EBP9TD3tvCslhG152jq4PjKHRuiBQtWB2lbZuztuJK08yazFJmXeRCDNDrCmI1d4qgaUIs8OyhSsXtGo3WVrOCJcQwuoImqsfKrCKcOyOjDC01s4kLHrmE7DglOfw-5aYwLZQ1L0yogDWH7hoPIh3RT_2MCphREWa0heKR2JPnevwlUHzWBlEPP6hY3_1E0D9kNxrVEcFEDARxG-V2khc8WfvH0Nto6vKwI85PumfraNqdySClPM030ETdfzGbLmKq5dZwTbwD9rQHcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+data+analytics+in+supply+chain+decarbonisation%3A+a+systematic+literature+review+and+future+research+directions&rft.jtitle=International+journal+of+production+research&rft.au=Kumar%2C+Devinder&rft.au=Singh%2C+Rajesh+Kr&rft.au=Mishra%2C+Ruchi&rft.au=Vlachos%2C+Ilias&rft.date=2024-02-16&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=62&rft.issue=4&rft.spage=1489&rft.epage=1509&rft_id=info:doi/10.1080%2F00207543.2023.2179346&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207543_2023_2179346 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon |