Raman imaging of microplastics and nanoplastics generated by cutting PVC pipe

The characterisation of nanoplastics is much more difficult than that of microplastics. Herewith we employ Raman imaging to capture and visualise nanoplastics and microplastics, due to the increased signal-noise ratio from Raman spectrum matrix when compared with that from a single spectrum. The ima...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 298; p. 118857
Main Authors Luo, Yunlong, Al Amin, Md, Gibson, Christopher T., Chuah, Clarence, Tang, Youhong, Naidu, Ravi, Fang, Cheng
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2022
Subjects
Online AccessGet full text
ISSN0269-7491
1873-6424
1873-6424
DOI10.1016/j.envpol.2022.118857

Cover

Abstract The characterisation of nanoplastics is much more difficult than that of microplastics. Herewith we employ Raman imaging to capture and visualise nanoplastics and microplastics, due to the increased signal-noise ratio from Raman spectrum matrix when compared with that from a single spectrum. The images mapping multiple characteristic peaks can be merged into one using logic-based algorithm, in order to cross-check these images and to further increase the signal-noise ratio. We demonstrate how to capture and identify microplastics, and then zoom down gradually to visualise nanoplastics, in order to avoid the shielding effect of the microplastics to shadow and obscure the nanoplastics. We also carefully compare the advantages and disadvantages of Raman imaging, while giving recommendations for improvement. We validate our approach to capture the microplastics and nanoplastics as particles released when we cut and assemble PVC pipes in our garden. We estimate that, during a cutting process of the PVC pipe, thousands of microplastics in the range of 0.1–5 mm can be released, along with millions of small microplastics in the range of 1–100 μm, and billions of nanoplastics in the range of <1 μm. Overall, Raman imaging can effectively capture microplastics and nanoplastics. [Display omitted] •Raman imaging can increase the signal-noise ratio by mapping the scanning spectrum matrix.•Changing the height of focal plane by ∼50 μm notably affects the confocal Raman results.•Microplastics can easily mask and shield nanoplastics.•Gradual zooming-in is recommended, using objective lens with different magnifications.•Thousands microplastics, billions of nanoplastics might be released by one PVC pipe-cutting.
AbstractList The characterisation of nanoplastics is much more difficult than that of microplastics. Herewith we employ Raman imaging to capture and visualise nanoplastics and microplastics, due to the increased signal-noise ratio from Raman spectrum matrix when compared with that from a single spectrum. The images mapping multiple characteristic peaks can be merged into one using logic-based algorithm, in order to cross-check these images and to further increase the signal-noise ratio. We demonstrate how to capture and identify microplastics, and then zoom down gradually to visualise nanoplastics, in order to avoid the shielding effect of the microplastics to shadow and obscure the nanoplastics. We also carefully compare the advantages and disadvantages of Raman imaging, while giving recommendations for improvement. We validate our approach to capture the microplastics and nanoplastics as particles released when we cut and assemble PVC pipes in our garden. We estimate that, during a cutting process of the PVC pipe, thousands of microplastics in the range of 0.1–5 mm can be released, along with millions of small microplastics in the range of 1–100 μm, and billions of nanoplastics in the range of <1 μm. Overall, Raman imaging can effectively capture microplastics and nanoplastics.
The characterisation of nanoplastics is much more difficult than that of microplastics. Herewith we employ Raman imaging to capture and visualise nanoplastics and microplastics, due to the increased signal-noise ratio from Raman spectrum matrix when compared with that from a single spectrum. The images mapping multiple characteristic peaks can be merged into one using logic-based algorithm, in order to cross-check these images and to further increase the signal-noise ratio. We demonstrate how to capture and identify microplastics, and then zoom down gradually to visualise nanoplastics, in order to avoid the shielding effect of the microplastics to shadow and obscure the nanoplastics. We also carefully compare the advantages and disadvantages of Raman imaging, while giving recommendations for improvement. We validate our approach to capture the microplastics and nanoplastics as particles released when we cut and assemble PVC pipes in our garden. We estimate that, during a cutting process of the PVC pipe, thousands of microplastics in the range of 0.1–5 mm can be released, along with millions of small microplastics in the range of 1–100 μm, and billions of nanoplastics in the range of <1 μm. Overall, Raman imaging can effectively capture microplastics and nanoplastics. [Display omitted] •Raman imaging can increase the signal-noise ratio by mapping the scanning spectrum matrix.•Changing the height of focal plane by ∼50 μm notably affects the confocal Raman results.•Microplastics can easily mask and shield nanoplastics.•Gradual zooming-in is recommended, using objective lens with different magnifications.•Thousands microplastics, billions of nanoplastics might be released by one PVC pipe-cutting.
The characterisation of nanoplastics is much more difficult than that of microplastics. Herewith we employ Raman imaging to capture and visualise nanoplastics and microplastics, due to the increased signal-noise ratio from Raman spectrum matrix when compared with that from a single spectrum. The images mapping multiple characteristic peaks can be merged into one using logic-based algorithm, in order to cross-check these images and to further increase the signal-noise ratio. We demonstrate how to capture and identify microplastics, and then zoom down gradually to visualise nanoplastics, in order to avoid the shielding effect of the microplastics to shadow and obscure the nanoplastics. We also carefully compare the advantages and disadvantages of Raman imaging, while giving recommendations for improvement. We validate our approach to capture the microplastics and nanoplastics as particles released when we cut and assemble PVC pipes in our garden. We estimate that, during a cutting process of the PVC pipe, thousands of microplastics in the range of 0.1-5 mm can be released, along with millions of small microplastics in the range of 1-100 μm, and billions of nanoplastics in the range of <1 μm. Overall, Raman imaging can effectively capture microplastics and nanoplastics.The characterisation of nanoplastics is much more difficult than that of microplastics. Herewith we employ Raman imaging to capture and visualise nanoplastics and microplastics, due to the increased signal-noise ratio from Raman spectrum matrix when compared with that from a single spectrum. The images mapping multiple characteristic peaks can be merged into one using logic-based algorithm, in order to cross-check these images and to further increase the signal-noise ratio. We demonstrate how to capture and identify microplastics, and then zoom down gradually to visualise nanoplastics, in order to avoid the shielding effect of the microplastics to shadow and obscure the nanoplastics. We also carefully compare the advantages and disadvantages of Raman imaging, while giving recommendations for improvement. We validate our approach to capture the microplastics and nanoplastics as particles released when we cut and assemble PVC pipes in our garden. We estimate that, during a cutting process of the PVC pipe, thousands of microplastics in the range of 0.1-5 mm can be released, along with millions of small microplastics in the range of 1-100 μm, and billions of nanoplastics in the range of <1 μm. Overall, Raman imaging can effectively capture microplastics and nanoplastics.
The characterisation of nanoplastics is much more difficult than that of microplastics. Herewith we employ Raman imaging to capture and visualise nanoplastics and microplastics, due to the increased signal-noise ratio from Raman spectrum matrix when compared with that from a single spectrum. The images mapping multiple characteristic peaks can be merged into one using logic-based algorithm, in order to cross-check these images and to further increase the signal-noise ratio. We demonstrate how to capture and identify microplastics, and then zoom down gradually to visualise nanoplastics, in order to avoid the shielding effect of the microplastics to shadow and obscure the nanoplastics. We also carefully compare the advantages and disadvantages of Raman imaging, while giving recommendations for improvement. We validate our approach to capture the microplastics and nanoplastics as particles released when we cut and assemble PVC pipes in our garden. We estimate that, during a cutting process of the PVC pipe, thousands of microplastics in the range of 0.1-5 mm can be released, along with millions of small microplastics in the range of 1-100 μm, and billions of nanoplastics in the range of <1 μm. Overall, Raman imaging can effectively capture microplastics and nanoplastics.
ArticleNumber 118857
Author Luo, Yunlong
Chuah, Clarence
Fang, Cheng
Tang, Youhong
Naidu, Ravi
Al Amin, Md
Gibson, Christopher T.
Author_xml – sequence: 1
  givenname: Yunlong
  orcidid: 0000-0001-7091-8368
  surname: Luo
  fullname: Luo, Yunlong
  organization: Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia
– sequence: 2
  givenname: Md
  orcidid: 0000-0002-5029-9296
  surname: Al Amin
  fullname: Al Amin, Md
  organization: Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia
– sequence: 3
  givenname: Christopher T.
  surname: Gibson
  fullname: Gibson, Christopher T.
  organization: Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia, 5042, Australia
– sequence: 4
  givenname: Clarence
  surname: Chuah
  fullname: Chuah, Clarence
  organization: Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Bedford Park, 5042, Australia
– sequence: 5
  givenname: Youhong
  orcidid: 0000-0003-2718-544X
  surname: Tang
  fullname: Tang, Youhong
  organization: Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Bedford Park, 5042, Australia
– sequence: 6
  givenname: Ravi
  surname: Naidu
  fullname: Naidu, Ravi
  organization: Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia
– sequence: 7
  givenname: Cheng
  orcidid: 0000-0002-3526-6613
  surname: Fang
  fullname: Fang, Cheng
  email: cheng.fang@newcastle.edu.au
  organization: Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35033619$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFq3DAQhkVISTZp3yAUH3vxRtJIst1DoSxJG0hpKW2vQpbGixZbdiVtIG8fL04TyKHtaWDm--bw_2fkOIwBCblgdM0oU5e7NYa7aezXnHK-ZqyuZXVEVqyuoFSCi2Oyolw1ZSUadkrOUtpRSgUAnJBTkBRAsWZFvnw3gwmFH8zWh20xdsXgbRyn3qTsbSpMcEUw4XmxxYDRZHRFe1_Yfc4H7duvTTH5CV-TV53pE755nOfk5_XVj83n8vbrp5vNx9vSQiNzyUQLynDbmlq1TiBWoJDX85qC7RR2naidAyk7yVEpAwLBuBa6FiUcLufk3fJ3iuPvPaasB58s9r0JOO6T5gqUBF5X_D9QTisJTdXM6NtHdN8O6PQU51jivf6T1gyIBZgTSili94Qwqg-l6J1eStGHUvRSyqy9f6FZn032Y8jR-P5f8odFxjnPO49RJ-sxWHQ-os3ajf7vDx4AK7iqWw
CitedBy_id crossref_primary_10_1016_j_envint_2023_108134
crossref_primary_10_1038_s41545_024_00397_4
crossref_primary_10_3390_pr12071401
crossref_primary_10_1016_j_aca_2023_342069
crossref_primary_10_3390_jmse11050983
crossref_primary_10_1016_j_scitotenv_2023_169347
crossref_primary_10_1021_acssensors_3c01406
crossref_primary_10_3390_toxics11090774
crossref_primary_10_1016_j_envpol_2023_122510
crossref_primary_10_1016_j_jhazmat_2025_137642
crossref_primary_10_1016_j_jssc_2023_124300
crossref_primary_10_1039_D3AY01176C
crossref_primary_10_1016_j_jhazmat_2024_134865
crossref_primary_10_1016_j_envadv_2023_100437
crossref_primary_10_1016_j_jhazmat_2023_132897
crossref_primary_10_1016_j_jhazmat_2023_133246
crossref_primary_10_1016_j_jhazmat_2022_129621
crossref_primary_10_1016_j_conbuildmat_2024_138331
crossref_primary_10_1016_j_trac_2023_117158
crossref_primary_10_3390_pathogens12070888
crossref_primary_10_1016_j_envres_2023_115926
crossref_primary_10_1016_j_trac_2024_117750
Cites_doi 10.1016/j.chemosphere.2021.131736
10.1038/s41565-020-0707-4
10.1021/acs.chemrev.6b00337
10.1016/j.watres.2020.116046
10.1016/j.aca.2019.05.021
10.1016/j.devcel.2012.10.003
10.1038/s41893-020-0567-9
10.3390/ma13051111
10.14419/ijh.v6i1.8655
10.1021/acs.analchem.9b05336
10.1016/j.marpolbul.2015.09.026
10.1016/j.scitotenv.2020.143936
10.1016/j.scitotenv.2020.139690
10.3389/fmars.2018.00313
10.1021/acs.chemrev.1c00178
10.1016/j.oneear.2020.10.020
10.1016/j.envpol.2020.114422
10.1021/acsomega.9b00222
10.1002/vnl.10072
10.1016/j.watres.2018.05.060
10.1016/j.marenvres.2010.05.006
10.1016/j.watres.2021.116913
10.1038/s41559-016-0051
10.1038/s41467-020-20347-1
10.1016/j.watres.2019.02.054
10.1038/s41565-021-00886-4
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2022.118857
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 35033619
10_1016_j_envpol_2022_118857
S0269749122000719
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
4.4
457
5GY
5VS
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
XPP
ZMT
~G-
29G
53G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
OHT
R2-
SEN
SEW
VH1
WUQ
XJT
XOL
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-14b36a2cba86bd4ee736e2814b03cf6eff48dd355f52e66a34e3adb3fbe538dd3
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Sun Sep 28 12:22:48 EDT 2025
Thu Oct 02 10:16:42 EDT 2025
Wed Feb 19 02:28:21 EST 2025
Thu Apr 24 23:10:00 EDT 2025
Thu Oct 09 00:37:00 EDT 2025
Fri Feb 23 02:40:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Logic-based algorithm
Microplastics
PVC pipe
Raman imaging
Nanoplastics
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-14b36a2cba86bd4ee736e2814b03cf6eff48dd355f52e66a34e3adb3fbe538dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7091-8368
0000-0002-3526-6613
0000-0003-2718-544X
0000-0002-5029-9296
PMID 35033619
PQID 2620753979
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636532872
proquest_miscellaneous_2620753979
pubmed_primary_35033619
crossref_primary_10_1016_j_envpol_2022_118857
crossref_citationtrail_10_1016_j_envpol_2022_118857
elsevier_sciencedirect_doi_10_1016_j_envpol_2022_118857
PublicationCentury 2000
PublicationDate 2022-04-01
2022-04-00
2022-Apr-01
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Araujo, Nolasco, Ribeiro, Ribeiro-Claro (bib1) 2018; 142
Kaczorek-Chrobak, Fangrat (bib12) 2020; 13
Sun, Yuan, Jia, Feng, Zhu, Dong, Liu, Kong, Tian, Duan, Ding, Wang, Xing (bib27) 2020; 15
Kohli (bib15) 2012
Schwaferts, Sogne, Welz, Meier, Klein, Niessner, Elsner, Ivleva (bib24) 2020; 92
Zanacchi, Diaspro (bib29) 2013
Kamiyama, Huang (bib13) 2012; 23
Fang, Sobhani, Zhang, McCourt, Routley, Gibson, Naidu (bib8) 2021; 194
Picó, Barceló (bib21) 2019; 4
Buranyi (bib4) 2020
Sobhani, Al Amin, Naidu, Megharaj, Fang (bib25) 2019; 1077
Lenz, Enders, Stedmon, Mackenzie, Nielsen (bib16) 2015; 100
Barnes, Walters, Gonçalves (bib2) 2010; 70
Koelmans, Mohamed Nor, Hermsen, Kooi, Mintenig, De France (bib14) 2019; 155
Proshad, Kormoker, Islam, Haque, Rahman, Mithu (bib22) 2018; 6
Petersen, Hubbart (bib20) 2021; 758
Li, Luo, Li, Zhou, Peijnenburg, Yin, Yang, Tu, Zhang (bib17) 2020; 3
Zhang, Fang, Zhu (bib30) 2017; 117
Gigault, El Hadri, Nguyen, Grassl, Rowenczyk, Tufenkji, Feng, Wiesner (bib9) 2021; 16
Ross, Chastain, Vassilenko, Etemadifar, Zimmermann, Quesnel, Eert, Solomon, Patankar, Posacka, Williams (bib23) 2021; 12
Boyle, Catarino, Clark, Henry (bib3) 2020; 263
Fang, Sobhani, Zhang, Gibson, Tang, Naidu (bib7) 2020; 183
Fang, Luo, Zhang, Zhang, Nolan, Naidu (bib6) 2021; 286
William Coaker (bib28) 2003; 9
Naik, Rowles, Hossain, Yen, Aldossary, Apul, Conkle, Saleh (bib18) 2020; 736
Napper, Davies, Clifford, Elvin, Koldewey, Mayewski, Miner, Potocki, Elmore, Gajurel, Thompson (bib19) 2020; 3
Sobhani, Zhang, Gibson, Naidu, Mallavarapu, Fang (bib26) 2020
Jamieson, Malkocs, Piertney, Fujii, Zhang (bib11) 2017; 1
Efimova, Bagaeva, Bagaev, Kileso, Chubarenko (bib5) 2018; 5
Ivleva (bib10) 2021; 121
Sun (10.1016/j.envpol.2022.118857_bib27) 2020; 15
Fang (10.1016/j.envpol.2022.118857_bib7) 2020; 183
William Coaker (10.1016/j.envpol.2022.118857_bib28) 2003; 9
Boyle (10.1016/j.envpol.2022.118857_bib3) 2020; 263
Kamiyama (10.1016/j.envpol.2022.118857_bib13) 2012; 23
Zhang (10.1016/j.envpol.2022.118857_bib30) 2017; 117
Napper (10.1016/j.envpol.2022.118857_bib19) 2020; 3
Jamieson (10.1016/j.envpol.2022.118857_bib11) 2017; 1
Sobhani (10.1016/j.envpol.2022.118857_bib25) 2019; 1077
Li (10.1016/j.envpol.2022.118857_bib17) 2020; 3
Sobhani (10.1016/j.envpol.2022.118857_bib26) 2020
Buranyi (10.1016/j.envpol.2022.118857_bib4) 2020
Ross (10.1016/j.envpol.2022.118857_bib23) 2021; 12
Ivleva (10.1016/j.envpol.2022.118857_bib10) 2021; 121
Naik (10.1016/j.envpol.2022.118857_bib18) 2020; 736
Schwaferts (10.1016/j.envpol.2022.118857_bib24) 2020; 92
Koelmans (10.1016/j.envpol.2022.118857_bib14) 2019; 155
Efimova (10.1016/j.envpol.2022.118857_bib5) 2018; 5
Barnes (10.1016/j.envpol.2022.118857_bib2) 2010; 70
Kohli (10.1016/j.envpol.2022.118857_bib15) 2012
Proshad (10.1016/j.envpol.2022.118857_bib22) 2018; 6
Zanacchi (10.1016/j.envpol.2022.118857_bib29) 2013
Fang (10.1016/j.envpol.2022.118857_bib8) 2021; 194
Picó (10.1016/j.envpol.2022.118857_bib21) 2019; 4
Gigault (10.1016/j.envpol.2022.118857_bib9) 2021; 16
Petersen (10.1016/j.envpol.2022.118857_bib20) 2021; 758
Lenz (10.1016/j.envpol.2022.118857_bib16) 2015; 100
Fang (10.1016/j.envpol.2022.118857_bib6) 2021; 286
Kaczorek-Chrobak (10.1016/j.envpol.2022.118857_bib12) 2020; 13
Araujo (10.1016/j.envpol.2022.118857_bib1) 2018; 142
References_xml – volume: 13
  start-page: 1111
  year: 2020
  ident: bib12
  article-title: PVC-based copper electric wires under various fire conditions: toxicity of fire effluents
  publication-title: Materials
– volume: 5
  year: 2018
  ident: bib5
  article-title: Secondary microplastics generation in the sea swash zone with coarse bottom sediments: laboratory experiments
  publication-title: Front. Mar. Sci.
– volume: 16
  start-page: 501
  year: 2021
  end-page: 507
  ident: bib9
  article-title: Nanoplastics are neither microplastics nor engineered nanoparticles
  publication-title: Nat. Nanotechnol.
– volume: 142
  start-page: 426
  year: 2018
  end-page: 440
  ident: bib1
  article-title: Identification of microplastics using Raman spectroscopy: latest developments and future prospects
  publication-title: Water Res.
– volume: 183
  start-page: 116046
  year: 2020
  ident: bib7
  article-title: Identification and visualisation of microplastics/nanoplastics by Raman imaging (ii): smaller than the diffraction limit of laser?
  publication-title: Water Res.
– start-page: 2475
  year: 2013
  end-page: 2476
  ident: bib29
  article-title: Stochastic optical reconstruction microscopy
  publication-title: Encyclopedia of Biophysics
– volume: 3
  start-page: 621
  year: 2020
  end-page: 630
  ident: bib19
  article-title: Reaching new heights in plastic pollution—preliminary findings of microplastics on Mount Everest
  publication-title: One Earth
– volume: 4
  start-page: 6709
  year: 2019
  end-page: 6719
  ident: bib21
  article-title: Analysis and prevention of microplastics pollution in water: current perspectives and future directions
  publication-title: ACS Omega
– volume: 286
  start-page: 131736
  year: 2021
  ident: bib6
  article-title: Identification and visualisation of microplastics via PCA to decode Raman spectrum matrix towards imaging
  publication-title: Chemosphere
– volume: 194
  start-page: 116913
  year: 2021
  ident: bib8
  article-title: Identification and visualisation of microplastics/nanoplastics by Raman imaging (iii): algorithm to cross-check multi-images
  publication-title: Water Res.
– year: 2020
  ident: bib4
  article-title: The Missing 99%: Why Can't We Find the Vast Majority of Ocean Plastic?
– volume: 100
  start-page: 82
  year: 2015
  end-page: 91
  ident: bib16
  article-title: A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement
  publication-title: Mar. Pollut. Bull.
– volume: 3
  start-page: 929
  year: 2020
  end-page: 937
  ident: bib17
  article-title: Effective uptake of submicrometre plastics by crop plants via a crack-entry mode
  publication-title: Nat. Sustain.
– volume: 12
  start-page: 106
  year: 2021
  ident: bib23
  article-title: Pervasive distribution of polyester fibres in the Arctic Ocean is driven by Atlantic inputs
  publication-title: Nat. Commun.
– volume: 155
  start-page: 410
  year: 2019
  end-page: 422
  ident: bib14
  article-title: Microplastics in freshwaters and drinking water: critical review and assessment of data quality
  publication-title: Water Res.
– volume: 23
  start-page: 1103
  year: 2012
  end-page: 1110
  ident: bib13
  article-title: Development in the STORM
  publication-title: Dev. Cell
– volume: 263
  start-page: 114422
  year: 2020
  ident: bib3
  article-title: Polyvinyl chloride (PVC) plastic fragments release Pb additives that are bioavailable in zebrafish
  publication-title: Environ. Pollut.
– start-page: 215
  year: 2012
  end-page: 306
  ident: bib15
  article-title: Chapter 5 - developments in imaging and analysis techniques for micro- and nanosize particles and surface features
  publication-title: Developments in Surface Contamination and Cleaning
– volume: 736
  start-page: 139690
  year: 2020
  ident: bib18
  article-title: Microplastic particle versus fiber generation during photo-transformation in simulated seawater
  publication-title: Sci. Total Environ.
– volume: 70
  start-page: 250
  year: 2010
  end-page: 252
  ident: bib2
  article-title: Macroplastics at sea around Antarctica
  publication-title: Mar. Environ. Res.
– volume: 15
  start-page: 755
  year: 2020
  end-page: 760
  ident: bib27
  article-title: Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana
  publication-title: Nat. Nanotechnol.
– volume: 1
  year: 2017
  ident: bib11
  article-title: Bioaccumulation of persistent organic pollutants in the deepest ocean fauna
  publication-title: Nat. Ecol. Evol.
– volume: 758
  start-page: 143936
  year: 2021
  ident: bib20
  article-title: The occurrence and transport of microplastics: the state of the science
  publication-title: Sci. Total Environ.
– volume: 92
  start-page: 5813
  year: 2020
  end-page: 5820
  ident: bib24
  article-title: Nanoplastic analysis by online coupling of Raman microscopy and field-flow fractionation enabled by optical tweezers
  publication-title: Anal. Chem.
– volume: 6
  start-page: 1
  year: 2018
  end-page: 5
  ident: bib22
  article-title: Toxic effects of plastic on human health and environment: a consequences of health risk assessment in Bangladesh
  publication-title: Int. J. Health
– volume: 9
  start-page: 108
  year: 2003
  end-page: 115
  ident: bib28
  article-title: Fire and flame retardants for PVC
  publication-title: J. Vinyl Addit. Technol.
– volume: 121
  start-page: 11886
  year: 2021
  end-page: 11936
  ident: bib10
  article-title: Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives
  publication-title: Chem. Rev.
– start-page: 115658
  year: 2020
  ident: bib26
  article-title: Identification and Visualisation of Microplastics/nanoplastics by Raman Imaging (I): Down to 100 Nm
– volume: 117
  start-page: 5095
  year: 2017
  end-page: 5109
  ident: bib30
  article-title: Near-field Raman spectroscopy with aperture tips
  publication-title: Chem. Rev.
– volume: 1077
  start-page: 191
  year: 2019
  end-page: 199
  ident: bib25
  article-title: Identification and visualisation of microplastics by Raman mapping
  publication-title: Anal. Chim. Acta
– year: 2020
  ident: 10.1016/j.envpol.2022.118857_bib4
– volume: 286
  start-page: 131736
  year: 2021
  ident: 10.1016/j.envpol.2022.118857_bib6
  article-title: Identification and visualisation of microplastics via PCA to decode Raman spectrum matrix towards imaging
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131736
– volume: 15
  start-page: 755
  year: 2020
  ident: 10.1016/j.envpol.2022.118857_bib27
  article-title: Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0707-4
– volume: 117
  start-page: 5095
  year: 2017
  ident: 10.1016/j.envpol.2022.118857_bib30
  article-title: Near-field Raman spectroscopy with aperture tips
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00337
– volume: 183
  start-page: 116046
  year: 2020
  ident: 10.1016/j.envpol.2022.118857_bib7
  article-title: Identification and visualisation of microplastics/nanoplastics by Raman imaging (ii): smaller than the diffraction limit of laser?
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116046
– volume: 1077
  start-page: 191
  year: 2019
  ident: 10.1016/j.envpol.2022.118857_bib25
  article-title: Identification and visualisation of microplastics by Raman mapping
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2019.05.021
– volume: 23
  start-page: 1103
  year: 2012
  ident: 10.1016/j.envpol.2022.118857_bib13
  article-title: Development in the STORM
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2012.10.003
– volume: 3
  start-page: 929
  year: 2020
  ident: 10.1016/j.envpol.2022.118857_bib17
  article-title: Effective uptake of submicrometre plastics by crop plants via a crack-entry mode
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-020-0567-9
– volume: 13
  start-page: 1111
  year: 2020
  ident: 10.1016/j.envpol.2022.118857_bib12
  article-title: PVC-based copper electric wires under various fire conditions: toxicity of fire effluents
  publication-title: Materials
  doi: 10.3390/ma13051111
– volume: 6
  start-page: 1
  year: 2018
  ident: 10.1016/j.envpol.2022.118857_bib22
  article-title: Toxic effects of plastic on human health and environment: a consequences of health risk assessment in Bangladesh
  publication-title: Int. J. Health
  doi: 10.14419/ijh.v6i1.8655
– volume: 92
  start-page: 5813
  year: 2020
  ident: 10.1016/j.envpol.2022.118857_bib24
  article-title: Nanoplastic analysis by online coupling of Raman microscopy and field-flow fractionation enabled by optical tweezers
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b05336
– start-page: 115658
  year: 2020
  ident: 10.1016/j.envpol.2022.118857_bib26
– volume: 100
  start-page: 82
  year: 2015
  ident: 10.1016/j.envpol.2022.118857_bib16
  article-title: A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2015.09.026
– volume: 758
  start-page: 143936
  year: 2021
  ident: 10.1016/j.envpol.2022.118857_bib20
  article-title: The occurrence and transport of microplastics: the state of the science
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.143936
– volume: 736
  start-page: 139690
  year: 2020
  ident: 10.1016/j.envpol.2022.118857_bib18
  article-title: Microplastic particle versus fiber generation during photo-transformation in simulated seawater
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139690
– volume: 5
  year: 2018
  ident: 10.1016/j.envpol.2022.118857_bib5
  article-title: Secondary microplastics generation in the sea swash zone with coarse bottom sediments: laboratory experiments
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2018.00313
– volume: 121
  start-page: 11886
  year: 2021
  ident: 10.1016/j.envpol.2022.118857_bib10
  article-title: Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00178
– volume: 3
  start-page: 621
  year: 2020
  ident: 10.1016/j.envpol.2022.118857_bib19
  article-title: Reaching new heights in plastic pollution—preliminary findings of microplastics on Mount Everest
  publication-title: One Earth
  doi: 10.1016/j.oneear.2020.10.020
– volume: 263
  start-page: 114422
  year: 2020
  ident: 10.1016/j.envpol.2022.118857_bib3
  article-title: Polyvinyl chloride (PVC) plastic fragments release Pb additives that are bioavailable in zebrafish
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114422
– volume: 4
  start-page: 6709
  year: 2019
  ident: 10.1016/j.envpol.2022.118857_bib21
  article-title: Analysis and prevention of microplastics pollution in water: current perspectives and future directions
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b00222
– volume: 9
  start-page: 108
  year: 2003
  ident: 10.1016/j.envpol.2022.118857_bib28
  article-title: Fire and flame retardants for PVC
  publication-title: J. Vinyl Addit. Technol.
  doi: 10.1002/vnl.10072
– volume: 142
  start-page: 426
  year: 2018
  ident: 10.1016/j.envpol.2022.118857_bib1
  article-title: Identification of microplastics using Raman spectroscopy: latest developments and future prospects
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.05.060
– start-page: 215
  year: 2012
  ident: 10.1016/j.envpol.2022.118857_bib15
  article-title: Chapter 5 - developments in imaging and analysis techniques for micro- and nanosize particles and surface features
– volume: 70
  start-page: 250
  year: 2010
  ident: 10.1016/j.envpol.2022.118857_bib2
  article-title: Macroplastics at sea around Antarctica
  publication-title: Mar. Environ. Res.
  doi: 10.1016/j.marenvres.2010.05.006
– volume: 194
  start-page: 116913
  year: 2021
  ident: 10.1016/j.envpol.2022.118857_bib8
  article-title: Identification and visualisation of microplastics/nanoplastics by Raman imaging (iii): algorithm to cross-check multi-images
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.116913
– volume: 1
  year: 2017
  ident: 10.1016/j.envpol.2022.118857_bib11
  article-title: Bioaccumulation of persistent organic pollutants in the deepest ocean fauna
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-016-0051
– volume: 12
  start-page: 106
  year: 2021
  ident: 10.1016/j.envpol.2022.118857_bib23
  article-title: Pervasive distribution of polyester fibres in the Arctic Ocean is driven by Atlantic inputs
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20347-1
– start-page: 2475
  year: 2013
  ident: 10.1016/j.envpol.2022.118857_bib29
  article-title: Stochastic optical reconstruction microscopy
– volume: 155
  start-page: 410
  year: 2019
  ident: 10.1016/j.envpol.2022.118857_bib14
  article-title: Microplastics in freshwaters and drinking water: critical review and assessment of data quality
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.02.054
– volume: 16
  start-page: 501
  year: 2021
  ident: 10.1016/j.envpol.2022.118857_bib9
  article-title: Nanoplastics are neither microplastics nor engineered nanoparticles
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00886-4
SSID ssj0004333
Score 2.5176237
Snippet The characterisation of nanoplastics is much more difficult than that of microplastics. Herewith we employ Raman imaging to capture and visualise nanoplastics...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118857
SubjectTerms Algorithms
Gardens
Logic-based algorithm
Microplastics
Nanoplastics
Plastics
pollution
Polyvinyl Chloride
PVC pipe
Raman imaging
Water Pollutants, Chemical - analysis
Title Raman imaging of microplastics and nanoplastics generated by cutting PVC pipe
URI https://dx.doi.org/10.1016/j.envpol.2022.118857
https://www.ncbi.nlm.nih.gov/pubmed/35033619
https://www.proquest.com/docview/2620753979
https://www.proquest.com/docview/2636532872
Volume 298
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2025
  customDbUrl:
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: AKRWK
  dateStart: 19870101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5N4wUeEHQMyo_JSIg309bnuMljVW0qoE0IGNqbZTs2KqJuxFqkvfC3c3aSFSRgEo9x7Mjy2Xffxd_dAbxAN0E3VoajrQoua6G4Ed5wMXFKBhPqClNw8umZWpzLNxfFxR7M-1iYRKvsdH-r07O27lpG3WqOmuVy9IG8BwLD1USIbChTEJ-U01TF4NWPHc1DYltOnjrz1LsPn8scLx-_N-t0ASEE6Y6yTEbqz-bpb_Azm6GTe3C3w49s1k7xPuz5OICDWSTfeXXFXrLM6My_ygdw55dkgwM4PN7FtNEXukN9eQCn783KRLZc5YJFbB3YKrH0GsLVKYczM7Fm0cRdw-ecqpqgKrNXzG0zc5q9-zRnzbLxD-D85PjjfMG7KgvcYVVs-ERaVEY4a0pla-n9FJUXJTWP0QXlQ5BlXRMsCYXwShmUHk1tMVhPypLeHMJ-XEf_CJjDUOG4KlGWYylrQhd1sM6Lwhcp1ZcfAvaLq12XgjxVwviqe67ZF92KRCeR6FYkQ-DXo5o2BccN_ae93PRvW0mTlbhh5PNezJpOWbo6MdGvt5c6pe0nx66aVv_qg6pA8kDFEB62e-R6vphui8lXffzfc3sCt9NTSxp6Cvubb1v_jPDQxh7lDX8Et2av3y7OfgKTEQr7
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VcoAeEKQUwtNIiJtJ4vE6u8cqahWgqRC0qDfL67WrIOKs2gSpF347Y-9uAxJQiasfK8tjz3yz_mYG4DXaEdqhMhzLIuOyEoob4QwXI6ukN74qMAYnz47V9FS-P8vOtmDSxcJEWmWr-xudnrR12zJod3NQz-eDz-Q9EBguRkIkQ1ncgtsyE-Pogb39seF5SGzqydNoHod38XOJ5OXC93oZXyCEIOWR59FK_dk-_Q1_Jjt0eB_utQCS7TdrfABbLvRgdz-Q87y4Ym9YonSmf-U92Pkl22AP9g42QW30hfZWX-7C7JNZmMDmi1SxiC09W0SaXk3AOiZxZiZULJiwaThPuaoJq7Lyitl1ok6zj18mrJ7X7iGcHh6cTKa8LbPALRbZio9kicoIW5pclZV0bozKiZyah2i9ct7LvKoIl_hMOKUMSoemKtGXjrQl9ezBdlgG9xiYRV_gsMhR5kMpK4IXlS-tE5nLYq4v1wfsNlfbNgd5LIXxTXdks6-6EYmOItGNSPrAr2fVTQ6OG8aPO7np386SJjNxw8xXnZg1XbP4dmKCW64vdczbT55dMS7-NQZVhuSCij48as7I9XoxPheTs_rkv9f2Eu5MT2ZH-ujd8YencDf2NAyiZ7C9uli75wSOVuWLdPh_AqTTDJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Raman+imaging+of+microplastics+and+nanoplastics+generated+by+cutting+PVC+pipe&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Luo%2C+Yunlong&rft.au=Al+Amin%2C+Md&rft.au=Gibson%2C+Christopher+T.&rft.au=Chuah%2C+Clarence&rft.date=2022-04-01&rft.issn=0269-7491&rft.volume=298&rft.spage=118857&rft_id=info:doi/10.1016%2Fj.envpol.2022.118857&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envpol_2022_118857
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon