Increased Activation of the Alternative “Backdoor” Pathway in Patients with 21-Hydroxylase Deficiency: Evidence from Urinary Steroid Hormone Analysis
17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative “backdoor” route that bypasses the conventional intermediates androstenedione and testosterone. In this backdoor pathway, 17-OHP is converted to 5α-pregnane-3α,17α-diol-20-one (pdiol), which is an excell...
Saved in:
Published in | The journal of clinical endocrinology and metabolism Vol. 97; no. 3; pp. E367 - E375 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.03.2012
Copyright by The Endocrine Society |
Subjects | |
Online Access | Get full text |
ISSN | 0021-972X 1945-7197 1945-7197 |
DOI | 10.1210/jc.2011-1997 |
Cover
Abstract | 17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative “backdoor” route that bypasses the conventional intermediates androstenedione and testosterone. In this backdoor pathway, 17-OHP is converted to 5α-pregnane-3α,17α-diol-20-one (pdiol), which is an excellent substrate for the 17,20 lyase activity of CYP17A1 to produce androsterone.Objective and Hypotheses:The objective of this study was to obtain evidence for the presence of the backdoor pathway in patients with 21-hydroxylase deficiency (21-OHD).Methods:We compared urinary steroid hormone profiles determined by gas chromatography-mass spectrometry of 142 untreated 21-OHD patients (age range, 1 d to 25.4 yr; 51 males) with 138 control subjects. The activity of the backdoor pathway was assessed using the ratios of the urinary concentrations of pdiol to those of the metabolites of the classic Δ4 and Δ5 pathways. In contrast to etiocholanolone, which originates almost exclusively from the classic pathways, androsterone may be derived additionally from the backdoor pathway. Therefore, the androsterone to etiocholanolone ratio can be used as an indicator for the presence of the backdoor pathway.Results:Untreated 21-OHD subjects showed increased urinary ratios of pdiol to the Δ4 and Δ5 pathway metabolites and a higher androsterone to etiocholanolone ratio.Conclusions:The elevated ratios of pdiol to the Δ4 and Δ5 pathway metabolites as well as the higher androsterone to etiocholanolone ratio in patients with 21-OHD indicate postnatal activity of the backdoor pathway with maximum activity during early infancy. Our data provide new insights into the pathophysiology of androgen biosynthesis of 21-OHD. |
---|---|
AbstractList | 17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative “backdoor” route that bypasses the conventional intermediates androstenedione and testosterone. In this backdoor pathway, 17-OHP is converted to 5α-pregnane-3α,17α-diol-20-one (pdiol), which is an excellent substrate for the 17,20 lyase activity of CYP17A1 to produce androsterone.Objective and Hypotheses:The objective of this study was to obtain evidence for the presence of the backdoor pathway in patients with 21-hydroxylase deficiency (21-OHD).Methods:We compared urinary steroid hormone profiles determined by gas chromatography-mass spectrometry of 142 untreated 21-OHD patients (age range, 1 d to 25.4 yr; 51 males) with 138 control subjects. The activity of the backdoor pathway was assessed using the ratios of the urinary concentrations of pdiol to those of the metabolites of the classic Δ4 and Δ5 pathways. In contrast to etiocholanolone, which originates almost exclusively from the classic pathways, androsterone may be derived additionally from the backdoor pathway. Therefore, the androsterone to etiocholanolone ratio can be used as an indicator for the presence of the backdoor pathway.Results:Untreated 21-OHD subjects showed increased urinary ratios of pdiol to the Δ4 and Δ5 pathway metabolites and a higher androsterone to etiocholanolone ratio.Conclusions:The elevated ratios of pdiol to the Δ4 and Δ5 pathway metabolites as well as the higher androsterone to etiocholanolone ratio in patients with 21-OHD indicate postnatal activity of the backdoor pathway with maximum activity during early infancy. Our data provide new insights into the pathophysiology of androgen biosynthesis of 21-OHD. 17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative "backdoor" route that bypasses the conventional intermediates androstenedione and testosterone. In this backdoor pathway, 17-OHP is converted to 5α-pregnane-3α,17α-diol-20-one (pdiol), which is an excellent substrate for the 17,20 lyase activity of CYP17A1 to produce androsterone. OBJECTIVE AND HYPOTHESES: The objective of this study was to obtain evidence for the presence of the backdoor pathway in patients with 21-hydroxylase deficiency (21-OHD).BACKGROUND17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative "backdoor" route that bypasses the conventional intermediates androstenedione and testosterone. In this backdoor pathway, 17-OHP is converted to 5α-pregnane-3α,17α-diol-20-one (pdiol), which is an excellent substrate for the 17,20 lyase activity of CYP17A1 to produce androsterone. OBJECTIVE AND HYPOTHESES: The objective of this study was to obtain evidence for the presence of the backdoor pathway in patients with 21-hydroxylase deficiency (21-OHD).We compared urinary steroid hormone profiles determined by gas chromatography-mass spectrometry of 142 untreated 21-OHD patients (age range, 1 d to 25.4 yr; 51 males) with 138 control subjects. The activity of the backdoor pathway was assessed using the ratios of the urinary concentrations of pdiol to those of the metabolites of the classic Δ4 and Δ5 pathways. In contrast to etiocholanolone, which originates almost exclusively from the classic pathways, androsterone may be derived additionally from the backdoor pathway. Therefore, the androsterone to etiocholanolone ratio can be used as an indicator for the presence of the backdoor pathway.METHODSWe compared urinary steroid hormone profiles determined by gas chromatography-mass spectrometry of 142 untreated 21-OHD patients (age range, 1 d to 25.4 yr; 51 males) with 138 control subjects. The activity of the backdoor pathway was assessed using the ratios of the urinary concentrations of pdiol to those of the metabolites of the classic Δ4 and Δ5 pathways. In contrast to etiocholanolone, which originates almost exclusively from the classic pathways, androsterone may be derived additionally from the backdoor pathway. Therefore, the androsterone to etiocholanolone ratio can be used as an indicator for the presence of the backdoor pathway.Untreated 21-OHD subjects showed increased urinary ratios of pdiol to the Δ4 and Δ5 pathway metabolites and a higher androsterone to etiocholanolone ratio.RESULTSUntreated 21-OHD subjects showed increased urinary ratios of pdiol to the Δ4 and Δ5 pathway metabolites and a higher androsterone to etiocholanolone ratio.The elevated ratios of pdiol to the Δ4 and Δ5 pathway metabolites as well as the higher androsterone to etiocholanolone ratio in patients with 21-OHD indicate postnatal activity of the backdoor pathway with maximum activity during early infancy. Our data provide new insights into the pathophysiology of androgen biosynthesis of 21-OHD.CONCLUSIONSThe elevated ratios of pdiol to the Δ4 and Δ5 pathway metabolites as well as the higher androsterone to etiocholanolone ratio in patients with 21-OHD indicate postnatal activity of the backdoor pathway with maximum activity during early infancy. Our data provide new insights into the pathophysiology of androgen biosynthesis of 21-OHD. Background:17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative “backdoor” route that bypasses the conventional intermediates androstenedione and testosterone. In this backdoor pathway, 17-OHP is converted to 5α-pregnane-3α,17α-diol-20-one (pdiol), which is an excellent substrate for the 17,20 lyase activity of CYP17A1 to produce androsterone.Objective and Hypotheses:The objective of this study was to obtain evidence for the presence of the backdoor pathway in patients with 21-hydroxylase deficiency (21-OHD).Methods:We compared urinary steroid hormone profiles determined by gas chromatography-mass spectrometry of 142 untreated 21-OHD patients (age range, 1 d to 25.4 yr; 51 males) with 138 control subjects. The activity of the backdoor pathway was assessed using the ratios of the urinary concentrations of pdiol to those of the metabolites of the classic Δ4 and Δ5 pathways. In contrast to etiocholanolone, which originates almost exclusively from the classic pathways, androsterone may be derived additionally from the backdoor pathway. Therefore, the androsterone to etiocholanolone ratio can be used as an indicator for the presence of the backdoor pathway.Results:Untreated 21-OHD subjects showed increased urinary ratios of pdiol to the Δ4 and Δ5 pathway metabolites and a higher androsterone to etiocholanolone ratio.Conclusions:The elevated ratios of pdiol to the Δ4 and Δ5 pathway metabolites as well as the higher androsterone to etiocholanolone ratio in patients with 21-OHD indicate postnatal activity of the backdoor pathway with maximum activity during early infancy. Our data provide new insights into the pathophysiology of androgen biosynthesis of 21-OHD. BACKGROUND:17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative “backdoor” route that bypasses the conventional intermediates androstenedione and testosterone. In this backdoor pathway, 17-OHP is converted to 5α-pregnane-3α,17α-diol-20-one (pdiol), which is an excellent substrate for the 17,20 lyase activity of CYP17A1 to produce androsterone. OBJECTIVE AND HYPOTHESES:The objective of this study was to obtain evidence for the presence of the backdoor pathway in patients with 21-hydroxylase deficiency (21-OHD). METHODS:We compared urinary steroid hormone profiles determined by gas chromatography-mass spectrometry of 142 untreated 21-OHD patients (age range, 1 d to 25.4 yr; 51 males) with 138 control subjects. The activity of the backdoor pathway was assessed using the ratios of the urinary concentrations of pdiol to those of the metabolites of the classic Δ and Δ pathways. In contrast to etiocholanolone, which originates almost exclusively from the classic pathways, androsterone may be derived additionally from the backdoor pathway. Therefore, the androsterone to etiocholanolone ratio can be used as an indicator for the presence of the backdoor pathway. RESULTS:Untreated 21-OHD subjects showed increased urinary ratios of pdiol to the Δ and Δ pathway metabolites and a higher androsterone to etiocholanolone ratio. CONCLUSIONS:The elevated ratios of pdiol to the Δ and Δ pathway metabolites as well as the higher androsterone to etiocholanolone ratio in patients with 21-OHD indicate postnatal activity of the backdoor pathway with maximum activity during early infancy. Our data provide new insights into the pathophysiology of androgen biosynthesis of 21-OHD. 17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative "backdoor" route that bypasses the conventional intermediates androstenedione and testosterone. In this backdoor pathway, 17-OHP is converted to 5α-pregnane-3α,17α-diol-20-one (pdiol), which is an excellent substrate for the 17,20 lyase activity of CYP17A1 to produce androsterone. OBJECTIVE AND HYPOTHESES: The objective of this study was to obtain evidence for the presence of the backdoor pathway in patients with 21-hydroxylase deficiency (21-OHD). We compared urinary steroid hormone profiles determined by gas chromatography-mass spectrometry of 142 untreated 21-OHD patients (age range, 1 d to 25.4 yr; 51 males) with 138 control subjects. The activity of the backdoor pathway was assessed using the ratios of the urinary concentrations of pdiol to those of the metabolites of the classic Δ4 and Δ5 pathways. In contrast to etiocholanolone, which originates almost exclusively from the classic pathways, androsterone may be derived additionally from the backdoor pathway. Therefore, the androsterone to etiocholanolone ratio can be used as an indicator for the presence of the backdoor pathway. Untreated 21-OHD subjects showed increased urinary ratios of pdiol to the Δ4 and Δ5 pathway metabolites and a higher androsterone to etiocholanolone ratio. The elevated ratios of pdiol to the Δ4 and Δ5 pathway metabolites as well as the higher androsterone to etiocholanolone ratio in patients with 21-OHD indicate postnatal activity of the backdoor pathway with maximum activity during early infancy. Our data provide new insights into the pathophysiology of androgen biosynthesis of 21-OHD. |
Author | Wudy, Stefan A. Hochberg, Ze'ev Hartmann, Michaela F. Kamrath, Clemens Remer, Thomas |
AuthorAffiliation | Division of Pediatric Endocrinology and Diabetology (C.K., S.A.W.), Steroid Research and Mass Spectromity Unit (C.K., M.F.H., S.A.W.), Center of Child and Adolescent Medicine, Justus Liebig University, 35385 Giessen, Germany; Department of Nutrition and Health (T.R.), Research Institute of Child Nutrition, 45711 Dortmund, Germany; and Rambam Medical Center (Z.H.), Faculty of Medicine and Research Institute, Technion Israel, Institute of Technology, Division of Pediatric Endocrinology, Meyer Childrenʼs Hospital, Haifa 31096, Israel |
AuthorAffiliation_xml | – name: Division of Pediatric Endocrinology and Diabetology (C.K., S.A.W.), Steroid Research and Mass Spectromity Unit (C.K., M.F.H., S.A.W.), Center of Child and Adolescent Medicine, Justus Liebig University, 35385 Giessen, Germany; Department of Nutrition and Health (T.R.), Research Institute of Child Nutrition, 45711 Dortmund, Germany; and Rambam Medical Center (Z.H.), Faculty of Medicine and Research Institute, Technion Israel, Institute of Technology, Division of Pediatric Endocrinology, Meyer Childrenʼs Hospital, Haifa 31096, Israel |
Author_xml | – sequence: 1 givenname: Clemens surname: Kamrath fullname: Kamrath, Clemens email: Clemens.kamrath@paediat.med.uni-giessen.de organization: 1Division of Pediatric Endocrinology and Diabetology (C.K., S.A.W.), 35385 Giessen, Germany – sequence: 2 givenname: Ze'ev surname: Hochberg fullname: Hochberg, Ze'ev organization: 4Rambam Medical Center (Z.H.), Faculty of Medicine and Research Institute, Technion Israel, Institute of Technology, Division of Pediatric Endocrinology, Meyer Children's Hospital, Haifa 31096, Israel – sequence: 3 givenname: Michaela F. surname: Hartmann fullname: Hartmann, Michaela F. organization: 2Steroid Research and Mass Spectromity Unit (C.K., M.F.H., S.A.W.), Center of Child and Adolescent Medicine, Justus Liebig University, 35385 Giessen, Germany – sequence: 4 givenname: Thomas surname: Remer fullname: Remer, Thomas organization: 3Department of Nutrition and Health (T.R.), Research Institute of Child Nutrition, 45711 Dortmund, Germany – sequence: 5 givenname: Stefan A. surname: Wudy fullname: Wudy, Stefan A. organization: 1Division of Pediatric Endocrinology and Diabetology (C.K., S.A.W.), 35385 Giessen, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22170725$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kt1qFDEUx4NU7LZ657UEvPDGqUnmIxvv1lrdQkFBC96FbD6YbDOTNcnsOnd9DUFfrk9iptsiFBoIOTn5nXM4_5MjcND7XgPwEqMTTDB6t5YnBGFcYMboEzDDrKoLihk9ADOECC4YJT8OwVGMa4RwVdXlM3BICKaIknoGfp_3MmgRtYILmexWJOt76A1MrYYLl3Tos2ur4c31nw9CXinvw831X_hVpHYnRmj7ybS6TxHubGphrrgcVfC_Rpezwo_aWJmf5fgenm2typaGJvgOXgbbizDCb7mGtwoufehyZ3DRCzdGG5-Dp0a4qF_cncfg8tPZ99NlcfHl8_np4qKQJatZoZBRK0OpoU0ty6yIqSuFZBZgvqoZXeE5VhJLpHSZ3QzhhmSKacMEMXNalsfgzT7vJvifg46JdzZK7ZzotR8iZ6RpqrpGVSZfPyDXfsj6uMhL3FQVLRGdqFd31LDqtOKbYLvcJ7_XPANkD8jgYwzacGnTre4pCOs4RnwaLF9LPg2WT4PNQW8fBN3nfQSv9vjOTzOMV27Y6cBbLVxqOcqraui8yAEElflW5F2z_1r4YfNYgduPVv4DeZnB8w |
CitedBy_id | crossref_primary_10_1016_j_mce_2016_08_014 crossref_primary_10_1016_j_mce_2017_08_016 crossref_primary_10_3389_fendo_2023_1114211 crossref_primary_10_1016_j_jsbmb_2020_105614 crossref_primary_10_1016_j_jsbmb_2019_105439 crossref_primary_10_3389_fendo_2023_1226284 crossref_primary_10_1016_j_jsbmb_2017_12_008 crossref_primary_10_1210_jc_2016_3989 crossref_primary_10_1016_j_jchromb_2018_02_023 crossref_primary_10_3390_ijms21134622 crossref_primary_10_3892_etm_2018_6772 crossref_primary_10_3389_fendo_2022_1074209 crossref_primary_10_1016_j_ecl_2015_02_002 crossref_primary_10_1530_EJE_15_0064 crossref_primary_10_3390_ijms222010983 crossref_primary_10_1093_humupd_dmx014 crossref_primary_10_1210_er_2018_00262 crossref_primary_10_1016_j_jsbmb_2017_12_014 crossref_primary_10_1371_journal_pone_0203903 crossref_primary_10_1186_1741_7015_11_152 crossref_primary_10_1210_clinem_dgaa852 crossref_primary_10_1016_j_jsbmb_2014_10_006 crossref_primary_10_1016_j_beem_2022_101665 crossref_primary_10_1016_j_clinbiochem_2014_07_017 crossref_primary_10_1016_j_jsbmb_2017_12_016 crossref_primary_10_1590_S0004_27302013000200005 crossref_primary_10_1016_j_clinms_2018_12_003 crossref_primary_10_1016_j_mce_2021_111189 crossref_primary_10_1210_jendso_bvz016 crossref_primary_10_1016_j_jpurol_2012_10_002 crossref_primary_10_1210_clinem_dgae535 crossref_primary_10_1093_ejendo_lvae112 crossref_primary_10_3390_cancers8120108 crossref_primary_10_1016_j_ando_2014_03_002 crossref_primary_10_1016_j_jchromb_2020_122243 crossref_primary_10_1016_j_fertnstert_2022_09_011 crossref_primary_10_1038_nrendo_2014_108 crossref_primary_10_1002_mnfr_201600522 crossref_primary_10_1210_er_2016_1067 crossref_primary_10_1177_2042018820934319 crossref_primary_10_1038_s41398_021_01393_9 crossref_primary_10_3390_ijms20184605 crossref_primary_10_1007_s40619_021_00838_z crossref_primary_10_1016_j_jsbmb_2019_105497 crossref_primary_10_1016_j_jsbmb_2017_07_034 crossref_primary_10_1136_archdischild_2016_311910 crossref_primary_10_1016_j_jsbmb_2019_105412 crossref_primary_10_1097_MED_0000000000000545 crossref_primary_10_1016_j_jsbmb_2016_02_010 crossref_primary_10_1097_MED_0b013e32835a1a2e crossref_primary_10_1371_journal_pone_0151860 crossref_primary_10_1515_jpem_2018_0260 crossref_primary_10_1517_14728222_2015_1075511 crossref_primary_10_1016_j_jsbmb_2013_04_010 crossref_primary_10_1210_jc_2016_1754 crossref_primary_10_1016_j_bcp_2015_10_010 crossref_primary_10_1210_clinem_dgab446 crossref_primary_10_3389_fendo_2019_00681 crossref_primary_10_1016_j_jsbmb_2014_03_008 crossref_primary_10_1016_j_mce_2017_05_014 crossref_primary_10_3389_fendo_2021_759971 crossref_primary_10_1016_j_jsbmb_2015_05_013 crossref_primary_10_1210_jc_2019_00438 crossref_primary_10_1097_MED_0000000000000411 crossref_primary_10_1016_j_tox_2015_01_003 crossref_primary_10_33667_2078_5631_2020_4_16_26 crossref_primary_10_1016_S2213_8587_13_70138_4 crossref_primary_10_1073_pnas_1906623116 crossref_primary_10_1016_j_beem_2021_101593 crossref_primary_10_1016_j_jpag_2017_04_001 crossref_primary_10_1016_j_urology_2022_07_051 crossref_primary_10_4137_CMRH_S35567 crossref_primary_10_1016_j_uroco_2015_11_002 crossref_primary_10_1016_j_tem_2017_09_002 crossref_primary_10_1371_journal_pbio_3000002 crossref_primary_10_3803_EnM_2022_1549 crossref_primary_10_1159_000488034 crossref_primary_10_1111_cge_12016 crossref_primary_10_1016_j_jsbmb_2013_07_013 crossref_primary_10_1210_endrev_bnab016 crossref_primary_10_1136_archdischild_2017_313873 crossref_primary_10_7759_cureus_78074 crossref_primary_10_1016_j_jsbmb_2016_07_009 crossref_primary_10_1258_acb_2012_012159 crossref_primary_10_1530_EJE_16_0953 crossref_primary_10_1016_j_beem_2015_01_005 crossref_primary_10_1371_journal_pbio_3000198 crossref_primary_10_1038_pr_2014_21 crossref_primary_10_1159_000487995 crossref_primary_10_1016_j_mce_2019_02_018 crossref_primary_10_1016_j_jchromb_2022_123413 crossref_primary_10_1093_humrep_deaa221 crossref_primary_10_1016_S0140_6736_22_01330_7 crossref_primary_10_1016_j_mce_2021_111261 crossref_primary_10_1016_j_clp_2021_11_013 crossref_primary_10_1016_j_mce_2024_112293 crossref_primary_10_1210_endrev_bnab009 crossref_primary_10_1159_000369458 crossref_primary_10_3390_nu15071734 crossref_primary_10_1016_S0140_6736_17_31431_9 crossref_primary_10_1210_clinem_dgae008 crossref_primary_10_1111_cen_14967 crossref_primary_10_1297_cpe_24_77 crossref_primary_10_1210_js_2019_00078 crossref_primary_10_1210_jc_2018_01865 crossref_primary_10_1016_j_jsbmb_2016_08_006 crossref_primary_10_1016_j_jsbmb_2018_02_013 crossref_primary_10_6065_apem_2244124_062 crossref_primary_10_1016_S0003_4266_17_30922_8 crossref_primary_10_1186_s12916_018_1009_7 crossref_primary_10_1016_j_jsbmb_2013_05_017 crossref_primary_10_1002_dvdy_23892 crossref_primary_10_1515_almed_2021_0042 crossref_primary_10_1111_jne_12066 crossref_primary_10_1016_j_yfrne_2014_08_005 crossref_primary_10_1016_j_mce_2016_09_025 crossref_primary_10_1530_EJE_18_0279 crossref_primary_10_15347_WJM_2023_003 crossref_primary_10_1097_MED_0000000000000334 crossref_primary_10_1016_j_mce_2016_07_029 crossref_primary_10_3390_diagnostics11081379 crossref_primary_10_1097_MOP_0000000000000780 crossref_primary_10_1016_j_steroids_2012_08_012 crossref_primary_10_1210_jc_2014_1258 crossref_primary_10_1515_almed_2020_0119 |
Cites_doi | 10.1016/S0140-6736(04)16503-3 10.1677/joe.0.1650679 10.1159/000073561 10.1071/RD01074 10.1016/S0303-7207(00)00425-1 10.1016/S0021-9258(18)62328-2 10.1210/jc.2005-2460 10.1016/j.jsbmb.2010.04.010 10.1359/jbmr.2003.18.8.1539 10.1210/endo.140.2.6531 10.1210/en.2006-1491 10.1016/j.tem.2004.09.004 10.1210/jc.2003-030143 10.1016/0960-0760(93)90132-G 10.1016/j.steroids.2008.02.001 10.1074/jbc.M414673200 10.1016/j.ajhg.2011.06.009 10.1042/bj3510067 10.1016/j.mce.2004.04.009 10.1172/JCI116665 10.1210/en.2002-220721 10.1016/j.abb.2003.07.003 10.1074/jbc.273.6.3158 10.1210/jc.2004-1571 10.1677/joe.0.1640161 10.1210/jc.2009-2631 |
ContentType | Journal Article |
Copyright | Copyright © 2012 by The Endocrine Society 2012 Copyright © 2012 by The Endocrine Society |
Copyright_xml | – notice: Copyright © 2012 by The Endocrine Society 2012 – notice: Copyright © 2012 by The Endocrine Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7T5 7TM H94 K9. 7X8 |
DOI | 10.1210/jc.2011-1997 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Immunology Abstracts Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Calcium & Calcified Tissue Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1945-7197 |
EndPage | E375 |
ExternalDocumentID | 22170725 10_1210_jc_2011_1997 00004678-201203000-00059 10.1210/jc.2011-1997 |
Genre | Journal Article |
GroupedDBID | --- -~X .55 .XZ 08P 0R~ 18M 1TH 29K 2WC 34G 354 39C 4.4 48X 53G 5GY 5RS 5YH 8F7 AABZA AACZT AAIMJ AAPQZ AAPXW AARHZ AAUAY AAVAP AAWTL ABBLC ABDFA ABEJV ABGNP ABJNI ABLJU ABMNT ABNHQ ABOCM ABPMR ABPPZ ABPQP ABPTD ABQNK ABVGC ABWST ABXVV ACGFO ACGFS ACPRK ACUTJ ACYHN ADBBV ADGKP ADGZP ADHKW ADQBN ADRTK ADVEK AELWJ AEMDU AENEX AENZO AETBJ AEWNT AFCHL AFFZL AFGWE AFOFC AFRAH AFXAL AGINJ AGKRT AGQXC AGUTN AHMBA AHMMS AJEEA ALMA_UNASSIGNED_HOLDINGS APIBT ARIXL ASPBG ATGXG AVWKF AZFZN BAWUL BAYMD BCRHZ BEYMZ BSWAC BTRTY C45 CDBKE CS3 D-I DAKXR DIK E3Z EBS EJD EMOBN ENERS F5P FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 HZ~ H~9 KBUDW KOP KQ8 KSI KSN L7B M5~ MHKGH MJL N9A NLBLG NOMLY NOYVH NVLIB O9- OAUYM OBH OCB ODMLO OFXIZ OGEVE OHH OJZSN OK1 OPAEJ OVD OVIDX P2P P6G REU ROX ROZ TEORI TJX TLC TR2 TWZ VVN W8F WOQ X7M YBU YFH YHG YOC YSK ZY1 ~02 ~H1 .GJ 3O- 7X7 88E 8FI 8FJ AAJQQ AAKAS AAPGJ AAQQT AAUQX AAWDT AAYJJ ABDPE ABUWG ABXZS ACFRR ACVCV ACZBC ADMTO ADNBA ADZCM AEMQT AEOTA AERZD AFFNX AFFQV AFKRA AFYAG AGMDO AGORE AHGBF AI. AJBYB AJDVS ALXQX APJGH AQDSO AQKUS AVNTJ BENPR BPHCQ BVXVI CCPQU EIHJH FEDTE FYUFA HMCUK HVGLF IAO IHR INH ITC J5H M1P MBLQV N4W NU- OBFPC PHGZM PHGZT PQQKQ PROAC PSQYO TMA UKHRP VH1 WHG X52 ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM PJZUB PPXIY 7QP 7T5 7TM AEHZK H94 K9. 7X8 |
ID | FETCH-LOGICAL-c3959-d0fdbf77f765c3121f54d0c1978b597b181dc1c0de3d0c901623129ef9a2f8733 |
ISSN | 0021-972X 1945-7197 |
IngestDate | Sun Sep 28 09:53:57 EDT 2025 Fri Sep 19 20:56:22 EDT 2025 Mon Jul 21 06:02:05 EDT 2025 Thu Apr 24 23:06:51 EDT 2025 Tue Jul 01 00:49:54 EDT 2025 Fri May 16 04:03:20 EDT 2025 Fri Feb 07 10:35:20 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3959-d0fdbf77f765c3121f54d0c1978b597b181dc1c0de3d0c901623129ef9a2f8733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 22170725 |
PQID | 3164473074 |
PQPubID | 2046206 |
ParticipantIDs | proquest_miscellaneous_926645504 proquest_journals_3164473074 pubmed_primary_22170725 crossref_citationtrail_10_1210_jc_2011_1997 crossref_primary_10_1210_jc_2011_1997 wolterskluwer_health_00004678-201203000-00059 oup_primary_10_1210_jc_2011-1997 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20120301 2012-March 2012-03-01 2012-Mar |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: 20120301 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | The journal of clinical endocrinology and metabolism |
PublicationTitleAlternate | J Clin Endocrinol Metab |
PublicationYear | 2012 |
Publisher | Oxford University Press Copyright by The Endocrine Society |
Publisher_xml | – name: Oxford University Press – name: Copyright by The Endocrine Society |
References | Mahendroo ( key 2019041113225286200_B7) 2004; 222 Wilson ( key 2019041113225286200_B3) 2001; 13 Speiser ( key 2019041113225286200_B11) 2010; 95 Shackleton ( key 2019041113225286200_B16) 1993; 45 Auchus ( key 2019041113225286200_B1) 1998; 273 Frederiksen ( key 2019041113225286200_B8) 1971; 246 Remer ( key 2019041113225286200_B17) 2003; 18 Flück ( key 2019041113225286200_B2) 2003; 88 Dufort ( key 2019041113225286200_B25) 1999; 140 Auchus ( key 2019041113225286200_B4) 2004; 15 Homma ( key 2019041113225286200_B20) 2006; 91 Schmidt ( key 2019041113225286200_B18) 2000; 164 White ( key 2019041113225286200_B9) 2000; 21 Wudy ( key 2019041113225286200_B14) 2003 Dufort ( key 2019041113225286200_B24) 2001; 86 Penning ( key 2019041113225286200_B23) 2000; 351 Remer ( key 2019041113225286200_B15) 2005; 90 Gupta ( key 2019041113225286200_B6) 2003; 418 Krone ( key 2019041113225286200_B13) 2010; 121 Arlt ( key 2019041113225286200_B10) 2004; 363 Belyaeva ( key 2019041113225286200_B27) 2007; 148 Wilson ( key 2019041113225286200_B5) 2003; 144 Thigpen ( key 2019041113225286200_B21) 1993; 92 Flück ( key 2019041113225286200_B22) 2011; 89 Shackleton ( key 2019041113225286200_B19) 2008; 73 Wudy ( key 2019041113225286200_B12) 2000; 165 Pandey ( key 2019041113225286200_B28) 2005; 280 Luu-The ( key 2019041113225286200_B26) 2001; 171 22392955 - J Clin Endocrinol Metab. 2012 Mar;97(3):772-5 |
References_xml | – volume: 363 start-page: 2128 year: 2004 ident: key 2019041113225286200_B10 article-title: Congenital adrenal hyperplasia caused by mutant P450 oxidoreductase and human androgen synthesis: analytical study. publication-title: Lancet doi: 10.1016/S0140-6736(04)16503-3 – volume: 165 start-page: 679 year: 2000 ident: key 2019041113225286200_B12 article-title: Hormonal diagnosis of 21-hydroxylase deficiency in plasma and urine of neonates using bench top gas chromatography-mass spectrometry. publication-title: J Endocrinol doi: 10.1677/joe.0.1650679 – start-page: 427 volume-title: Diagnostics of endocrine function in children and adolescents year: 2003 ident: key 2019041113225286200_B14 article-title: Profiling steroids by gas chromatography-mass spectrometry: clinical applications doi: 10.1159/000073561 – volume: 21 start-page: 245 year: 2000 ident: key 2019041113225286200_B9 article-title: Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. publication-title: Endocr Rev – volume: 13 start-page: 673 year: 2001 ident: key 2019041113225286200_B3 article-title: The role of 5α-reduction in steroid hormone physiology. publication-title: Reprod Fertil Dev doi: 10.1071/RD01074 – volume: 171 start-page: 77 year: 2001 ident: key 2019041113225286200_B26 article-title: Type 5 17β-hydroxysteroid dehydrogenase: its role in the formation of androgens in women. publication-title: Mol Cell Endocrinol doi: 10.1016/S0303-7207(00)00425-1 – volume: 246 start-page: 2584 year: 1971 ident: key 2019041113225286200_B8 article-title: Partial characterization of the nuclear reduced nicotinamide adenine dinucleotide phosphate: Δ 4–3-ketosteroid 5α-oxidoreductase of rat prostate. publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)62328-2 – volume: 91 start-page: 2643 year: 2006 ident: key 2019041113225286200_B20 article-title: Urine steroid hormone profile analysis in cytochrome P450 oxidoreductase deficiency: implication for the backdoor pathway to dihydrotestosterone. publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2005-2460 – volume: 121 start-page: 496 year: 2010 ident: key 2019041113225286200_B13 article-title: Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). publication-title: J Steroid Biochem Mol Biol doi: 10.1016/j.jsbmb.2010.04.010 – volume: 18 start-page: 1539 year: 2003 ident: key 2019041113225286200_B17 article-title: Adrenarche and bone modeling and remodeling at the proximal radius: weak androgens make stronger cortical bone in healthy children. publication-title: J Bone Miner Res doi: 10.1359/jbmr.2003.18.8.1539 – volume: 140 start-page: 568 year: 1999 ident: key 2019041113225286200_B25 article-title: Characteristics of a highly labile human type 5 17β-hydroxysteroid dehydrogenase. publication-title: Endocrinology doi: 10.1210/endo.140.2.6531 – volume: 148 start-page: 2148 year: 2007 ident: key 2019041113225286200_B27 article-title: Role of microsomal retinol/sterol dehydrogenase-like short-chain dehydrogenases/reductases in the oxidation and epimerization of 3α-hydroxysteroids in human tissues. publication-title: Endocrinology doi: 10.1210/en.2006-1491 – volume: 15 start-page: 432 year: 2004 ident: key 2019041113225286200_B4 article-title: The backdoor pathway to dihydrotestosterone. publication-title: Trends Endocrinol Metab doi: 10.1016/j.tem.2004.09.004 – volume: 88 start-page: 3762 year: 2003 ident: key 2019041113225286200_B2 article-title: The 17, 20-lyase activity of cytochrome P450c17 from human fetal testis favors the Δ5 steroidogenic pathway. publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2003-030143 – volume: 45 start-page: 127 year: 1993 ident: key 2019041113225286200_B16 article-title: Mass spectrometry in the diagnosis of steroid related disorders and in hypertension research. publication-title: J Steroid Biochem Molec Biol doi: 10.1016/0960-0760(93)90132-G – volume: 73 start-page: 652 year: 2008 ident: key 2019041113225286200_B19 article-title: 17-Hydroxylase/C17,20-lyase (CYP17) is not the enzyme responsible for side-chain cleavage of cortisol and its metabolites. publication-title: Steroids doi: 10.1016/j.steroids.2008.02.001 – volume: 280 start-page: 13265 year: 2005 ident: key 2019041113225286200_B28 article-title: Regulation of 17,20 lyase activity by cytochrome b5 and by serine phosphorylation of P450c17. publication-title: J Biol Chem doi: 10.1074/jbc.M414673200 – volume: 89 start-page: 201 year: 2011 ident: key 2019041113225286200_B22 article-title: Why boys will be boys: two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation. publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2011.06.009 – volume: 351 start-page: 67 year: 2000 ident: key 2019041113225286200_B23 article-title: Human 3α-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. publication-title: Biochem J doi: 10.1042/bj3510067 – volume: 222 start-page: 113 year: 2004 ident: key 2019041113225286200_B7 article-title: Steroid 5α-reductase 1 promotes 5α-androstane-3α,17β-diol synthesis in immature mouse testes by two pathways. publication-title: Mol Cell Endocrinol doi: 10.1016/j.mce.2004.04.009 – volume: 92 start-page: 903 year: 1993 ident: key 2019041113225286200_B21 article-title: Tissue distribution and ontogeny of steroid 5α-reductase isozyme expression. publication-title: J Clin Invest doi: 10.1172/JCI116665 – volume: 144 start-page: 575 year: 2003 ident: key 2019041113225286200_B5 article-title: 5α-Androstane-3α,17β-diol is formed in tammar wallaby pouch young testes by a pathway involving 5α-pregnane-3α,17α-diol-20-one as a key intermediate. publication-title: Endocrinology doi: 10.1210/en.2002-220721 – volume: 418 start-page: 151 year: 2003 ident: key 2019041113225286200_B6 article-title: 5α-Reduced C21 steroids are substrates for human cytochrome P450c17. publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2003.07.003 – volume: 273 start-page: 3158 year: 1998 ident: key 2019041113225286200_B1 article-title: Cytochrome b5 augments the 17,20 lyase activity of human P450c17 without direct electron transfer. publication-title: J Biol Chem doi: 10.1074/jbc.273.6.3158 – volume: 90 start-page: 2015 year: 2005 ident: key 2019041113225286200_B15 article-title: Urinary markers of adrenarche: reference values in healthy subjects, aged 3–18 years. publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2004-1571 – volume: 164 start-page: 161 year: 2000 ident: key 2019041113225286200_B18 article-title: Conversion of dehydroepiandrosterone to downstream steroid hormones in macrophages. publication-title: J Endocrinol doi: 10.1677/joe.0.1640161 – volume: 86 start-page: 841 year: 2001 ident: key 2019041113225286200_B24 article-title: Human types 1 and 3 3α-hydroxysteroid dehydrogenases: differential lability and tissue distribution. publication-title: J Clin Endocrinol Metab – volume: 95 start-page: 4133 year: 2010 ident: key 2019041113225286200_B11 article-title: Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society Clinical Practice Guideline. publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2009-2631 – reference: 22392955 - J Clin Endocrinol Metab. 2012 Mar;97(3):772-5 |
SSID | ssj0014453 |
Score | 2.468241 |
Snippet | 17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative “backdoor” route that bypasses the conventional intermediates... BACKGROUND:17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative “backdoor” route that bypasses the conventional... 17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative "backdoor" route that bypasses the conventional intermediates... Background:17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative “backdoor” route that bypasses the conventional... |
SourceID | proquest pubmed crossref wolterskluwer oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E367 |
SubjectTerms | Adolescent Adrenal Hyperplasia, Congenital - enzymology Adrenal Hyperplasia, Congenital - metabolism Adrenal Hyperplasia, Congenital - urine Adult Androstenedione Androstenedione - metabolism Androsterone - metabolism Child Child, Preschool Dihydrotestosterone Dihydrotestosterone - metabolism Etiocholanolone - metabolism Female Gas chromatography Gonadal Steroid Hormones - biosynthesis Humans Infant Infant, Newborn Intermediates Male Mass spectroscopy Metabolites Ratios Steroid 17-alpha-Hydroxylase - metabolism Steroids Testosterone |
Title | Increased Activation of the Alternative “Backdoor” Pathway in Patients with 21-Hydroxylase Deficiency: Evidence from Urinary Steroid Hormone Analysis |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00004678-201203000-00059 https://www.ncbi.nlm.nih.gov/pubmed/22170725 https://www.proquest.com/docview/3164473074 https://www.proquest.com/docview/926645504 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1945-7197 dateEnd: 20240929 omitProxy: true ssIdentifier: ssj0014453 issn: 0021-972X databaseCode: DIK dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1945-7197 dateEnd: 20240929 omitProxy: true ssIdentifier: ssj0014453 issn: 0021-972X databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtNAFB21QUIghNgKgYLmgT5FrhwvmZi30qYKoCIkGqnixbLHYzU0sVGWVvDU30CCn-uXcK5nvEQ0YnmJksnETnLPzD33zl0Ye-mAgkpfSSuF9WFhl8Q-2BeOpaJYpQ4otIrINXD0vjcceW9P_JONzVYjamm5iHflt2vzSv5HqhiDXClL9h8kW10UA3gO-eIREsbjX8kYi5tiysEZ92TZpqw89N-bGFffOVikiWjYfx3JsySHhW4GDqhE_-lFVCT_fdAlVk2-m9O1hl8TCnIBv6bgIio1QXma5EMoe5Hq7JTRTCf1fsQd83HSGYIH51ld8KRJgAmWjWoVVWKmypIcG1hWl4SaqgUAOilLHJJSiKbAqz4TKqLeK3tgmMvTMlDtk9pxhDqvt9bZYmo6QZscgahzuFsdNCnTPqYRKWWcIBRN4jadIGuSK5sbP0WiiKJzO9Se3usDz7dEV4cHl8rAvBo3fQXFzj5wddsQwxIGrm748psGgglNGkgW1WGLMJ5a01bxj9dP3GQ3HNHrUR-OgzfvqrMwzzO1VM1PMOkblHvV_PQKsVpJ1mzYTLfZnYuc8Dc_K7IwGlzq-B67a4wgvqcRfZ9tqOwBu3lkwjwesu8VsHkNbJ6nHMDmDWDzq8sfJaSvLn9yA2Y-zngJZk5g5qtg5jWYX_ESypygzA2UuYEyN1DmJZQfsdHh4Hh_aJkeIpZ0ycOd2GkSp0KkoudLF39a6nuJLSH1fgxbOgbBTWRX2olyMQxyDHMAFFilQeSkfeG6W6yV4T5PGI_i1PO8HmwWW5La60tcwE6iIPKFIwPZZp1SAKE0Bfapz8skJEMb4go_y5DEFZK42mynmv1FF5ZZM49DluumWHrKdino0Kzgeeh2YelAfQsPV6jehu6gA8EoU_lyHgZg51TVAFMea3xU93GcrrCF47eZtQKYUKdnh4VvAUTXotUIoqDrU_jB0z9_3WfsVr2Et1lrMVuq52D2i_hFAfxfK_H3Jg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+Activation+of+the+Alternative+%E2%80%9CBackdoor%E2%80%9D+Pathway+in+Patients+with+21-Hydroxylase+Deficiency%3A+Evidence+from+Urinary+Steroid+Hormone+Analysis&rft.jtitle=The+journal+of+clinical+endocrinology+and+metabolism&rft.au=Kamrath%2C+Clemens&rft.au=Hochberg%2C+Ze%27ev&rft.au=Hartmann%2C+Michaela+F.&rft.au=Remer%2C+Thomas&rft.date=2012-03-01&rft.pub=Oxford+University+Press&rft.issn=0021-972X&rft.eissn=1945-7197&rft.volume=97&rft.issue=3&rft.spage=E367&rft.epage=E375&rft_id=info:doi/10.1210%2Fjc.2011-1997&rft.externalDocID=10.1210%2Fjc.2011-1997 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-972X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-972X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-972X&client=summon |