Increased Activation of the Alternative “Backdoor” Pathway in Patients with 21-Hydroxylase Deficiency: Evidence from Urinary Steroid Hormone Analysis

17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative “backdoor” route that bypasses the conventional intermediates androstenedione and testosterone. In this backdoor pathway, 17-OHP is converted to 5α-pregnane-3α,17α-diol-20-one (pdiol), which is an excell...

Full description

Saved in:
Bibliographic Details
Published inThe journal of clinical endocrinology and metabolism Vol. 97; no. 3; pp. E367 - E375
Main Authors Kamrath, Clemens, Hochberg, Ze'ev, Hartmann, Michaela F., Remer, Thomas, Wudy, Stefan A.
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.03.2012
Copyright by The Endocrine Society
Subjects
Online AccessGet full text
ISSN0021-972X
1945-7197
1945-7197
DOI10.1210/jc.2011-1997

Cover

Abstract 17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative “backdoor” route that bypasses the conventional intermediates androstenedione and testosterone. In this backdoor pathway, 17-OHP is converted to 5α-pregnane-3α,17α-diol-20-one (pdiol), which is an excellent substrate for the 17,20 lyase activity of CYP17A1 to produce androsterone.Objective and Hypotheses:The objective of this study was to obtain evidence for the presence of the backdoor pathway in patients with 21-hydroxylase deficiency (21-OHD).Methods:We compared urinary steroid hormone profiles determined by gas chromatography-mass spectrometry of 142 untreated 21-OHD patients (age range, 1 d to 25.4 yr; 51 males) with 138 control subjects. The activity of the backdoor pathway was assessed using the ratios of the urinary concentrations of pdiol to those of the metabolites of the classic Δ4 and Δ5 pathways. In contrast to etiocholanolone, which originates almost exclusively from the classic pathways, androsterone may be derived additionally from the backdoor pathway. Therefore, the androsterone to etiocholanolone ratio can be used as an indicator for the presence of the backdoor pathway.Results:Untreated 21-OHD subjects showed increased urinary ratios of pdiol to the Δ4 and Δ5 pathway metabolites and a higher androsterone to etiocholanolone ratio.Conclusions:The elevated ratios of pdiol to the Δ4 and Δ5 pathway metabolites as well as the higher androsterone to etiocholanolone ratio in patients with 21-OHD indicate postnatal activity of the backdoor pathway with maximum activity during early infancy. Our data provide new insights into the pathophysiology of androgen biosynthesis of 21-OHD.
AbstractList 17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative “backdoor” route that bypasses the conventional intermediates androstenedione and testosterone. In this backdoor pathway, 17-OHP is converted to 5α-pregnane-3α,17α-diol-20-one (pdiol), which is an excellent substrate for the 17,20 lyase activity of CYP17A1 to produce androsterone.Objective and Hypotheses:The objective of this study was to obtain evidence for the presence of the backdoor pathway in patients with 21-hydroxylase deficiency (21-OHD).Methods:We compared urinary steroid hormone profiles determined by gas chromatography-mass spectrometry of 142 untreated 21-OHD patients (age range, 1 d to 25.4 yr; 51 males) with 138 control subjects. The activity of the backdoor pathway was assessed using the ratios of the urinary concentrations of pdiol to those of the metabolites of the classic Δ4 and Δ5 pathways. In contrast to etiocholanolone, which originates almost exclusively from the classic pathways, androsterone may be derived additionally from the backdoor pathway. Therefore, the androsterone to etiocholanolone ratio can be used as an indicator for the presence of the backdoor pathway.Results:Untreated 21-OHD subjects showed increased urinary ratios of pdiol to the Δ4 and Δ5 pathway metabolites and a higher androsterone to etiocholanolone ratio.Conclusions:The elevated ratios of pdiol to the Δ4 and Δ5 pathway metabolites as well as the higher androsterone to etiocholanolone ratio in patients with 21-OHD indicate postnatal activity of the backdoor pathway with maximum activity during early infancy. Our data provide new insights into the pathophysiology of androgen biosynthesis of 21-OHD.
17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative "backdoor" route that bypasses the conventional intermediates androstenedione and testosterone. In this backdoor pathway, 17-OHP is converted to 5α-pregnane-3α,17α-diol-20-one (pdiol), which is an excellent substrate for the 17,20 lyase activity of CYP17A1 to produce androsterone. OBJECTIVE AND HYPOTHESES: The objective of this study was to obtain evidence for the presence of the backdoor pathway in patients with 21-hydroxylase deficiency (21-OHD).BACKGROUND17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative "backdoor" route that bypasses the conventional intermediates androstenedione and testosterone. In this backdoor pathway, 17-OHP is converted to 5α-pregnane-3α,17α-diol-20-one (pdiol), which is an excellent substrate for the 17,20 lyase activity of CYP17A1 to produce androsterone. OBJECTIVE AND HYPOTHESES: The objective of this study was to obtain evidence for the presence of the backdoor pathway in patients with 21-hydroxylase deficiency (21-OHD).We compared urinary steroid hormone profiles determined by gas chromatography-mass spectrometry of 142 untreated 21-OHD patients (age range, 1 d to 25.4 yr; 51 males) with 138 control subjects. The activity of the backdoor pathway was assessed using the ratios of the urinary concentrations of pdiol to those of the metabolites of the classic Δ4 and Δ5 pathways. In contrast to etiocholanolone, which originates almost exclusively from the classic pathways, androsterone may be derived additionally from the backdoor pathway. Therefore, the androsterone to etiocholanolone ratio can be used as an indicator for the presence of the backdoor pathway.METHODSWe compared urinary steroid hormone profiles determined by gas chromatography-mass spectrometry of 142 untreated 21-OHD patients (age range, 1 d to 25.4 yr; 51 males) with 138 control subjects. The activity of the backdoor pathway was assessed using the ratios of the urinary concentrations of pdiol to those of the metabolites of the classic Δ4 and Δ5 pathways. In contrast to etiocholanolone, which originates almost exclusively from the classic pathways, androsterone may be derived additionally from the backdoor pathway. Therefore, the androsterone to etiocholanolone ratio can be used as an indicator for the presence of the backdoor pathway.Untreated 21-OHD subjects showed increased urinary ratios of pdiol to the Δ4 and Δ5 pathway metabolites and a higher androsterone to etiocholanolone ratio.RESULTSUntreated 21-OHD subjects showed increased urinary ratios of pdiol to the Δ4 and Δ5 pathway metabolites and a higher androsterone to etiocholanolone ratio.The elevated ratios of pdiol to the Δ4 and Δ5 pathway metabolites as well as the higher androsterone to etiocholanolone ratio in patients with 21-OHD indicate postnatal activity of the backdoor pathway with maximum activity during early infancy. Our data provide new insights into the pathophysiology of androgen biosynthesis of 21-OHD.CONCLUSIONSThe elevated ratios of pdiol to the Δ4 and Δ5 pathway metabolites as well as the higher androsterone to etiocholanolone ratio in patients with 21-OHD indicate postnatal activity of the backdoor pathway with maximum activity during early infancy. Our data provide new insights into the pathophysiology of androgen biosynthesis of 21-OHD.
Background:17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative “backdoor” route that bypasses the conventional intermediates androstenedione and testosterone. In this backdoor pathway, 17-OHP is converted to 5α-pregnane-3α,17α-diol-20-one (pdiol), which is an excellent substrate for the 17,20 lyase activity of CYP17A1 to produce androsterone.Objective and Hypotheses:The objective of this study was to obtain evidence for the presence of the backdoor pathway in patients with 21-hydroxylase deficiency (21-OHD).Methods:We compared urinary steroid hormone profiles determined by gas chromatography-mass spectrometry of 142 untreated 21-OHD patients (age range, 1 d to 25.4 yr; 51 males) with 138 control subjects. The activity of the backdoor pathway was assessed using the ratios of the urinary concentrations of pdiol to those of the metabolites of the classic Δ4 and Δ5 pathways. In contrast to etiocholanolone, which originates almost exclusively from the classic pathways, androsterone may be derived additionally from the backdoor pathway. Therefore, the androsterone to etiocholanolone ratio can be used as an indicator for the presence of the backdoor pathway.Results:Untreated 21-OHD subjects showed increased urinary ratios of pdiol to the Δ4 and Δ5 pathway metabolites and a higher androsterone to etiocholanolone ratio.Conclusions:The elevated ratios of pdiol to the Δ4 and Δ5 pathway metabolites as well as the higher androsterone to etiocholanolone ratio in patients with 21-OHD indicate postnatal activity of the backdoor pathway with maximum activity during early infancy. Our data provide new insights into the pathophysiology of androgen biosynthesis of 21-OHD.
BACKGROUND:17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative “backdoor” route that bypasses the conventional intermediates androstenedione and testosterone. In this backdoor pathway, 17-OHP is converted to 5α-pregnane-3α,17α-diol-20-one (pdiol), which is an excellent substrate for the 17,20 lyase activity of CYP17A1 to produce androsterone. OBJECTIVE AND HYPOTHESES:The objective of this study was to obtain evidence for the presence of the backdoor pathway in patients with 21-hydroxylase deficiency (21-OHD). METHODS:We compared urinary steroid hormone profiles determined by gas chromatography-mass spectrometry of 142 untreated 21-OHD patients (age range, 1 d to 25.4 yr; 51 males) with 138 control subjects. The activity of the backdoor pathway was assessed using the ratios of the urinary concentrations of pdiol to those of the metabolites of the classic Δ and Δ pathways. In contrast to etiocholanolone, which originates almost exclusively from the classic pathways, androsterone may be derived additionally from the backdoor pathway. Therefore, the androsterone to etiocholanolone ratio can be used as an indicator for the presence of the backdoor pathway. RESULTS:Untreated 21-OHD subjects showed increased urinary ratios of pdiol to the Δ and Δ pathway metabolites and a higher androsterone to etiocholanolone ratio. CONCLUSIONS:The elevated ratios of pdiol to the Δ and Δ pathway metabolites as well as the higher androsterone to etiocholanolone ratio in patients with 21-OHD indicate postnatal activity of the backdoor pathway with maximum activity during early infancy. Our data provide new insights into the pathophysiology of androgen biosynthesis of 21-OHD.
17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative "backdoor" route that bypasses the conventional intermediates androstenedione and testosterone. In this backdoor pathway, 17-OHP is converted to 5α-pregnane-3α,17α-diol-20-one (pdiol), which is an excellent substrate for the 17,20 lyase activity of CYP17A1 to produce androsterone. OBJECTIVE AND HYPOTHESES: The objective of this study was to obtain evidence for the presence of the backdoor pathway in patients with 21-hydroxylase deficiency (21-OHD). We compared urinary steroid hormone profiles determined by gas chromatography-mass spectrometry of 142 untreated 21-OHD patients (age range, 1 d to 25.4 yr; 51 males) with 138 control subjects. The activity of the backdoor pathway was assessed using the ratios of the urinary concentrations of pdiol to those of the metabolites of the classic Δ4 and Δ5 pathways. In contrast to etiocholanolone, which originates almost exclusively from the classic pathways, androsterone may be derived additionally from the backdoor pathway. Therefore, the androsterone to etiocholanolone ratio can be used as an indicator for the presence of the backdoor pathway. Untreated 21-OHD subjects showed increased urinary ratios of pdiol to the Δ4 and Δ5 pathway metabolites and a higher androsterone to etiocholanolone ratio. The elevated ratios of pdiol to the Δ4 and Δ5 pathway metabolites as well as the higher androsterone to etiocholanolone ratio in patients with 21-OHD indicate postnatal activity of the backdoor pathway with maximum activity during early infancy. Our data provide new insights into the pathophysiology of androgen biosynthesis of 21-OHD.
Author Wudy, Stefan A.
Hochberg, Ze'ev
Hartmann, Michaela F.
Kamrath, Clemens
Remer, Thomas
AuthorAffiliation Division of Pediatric Endocrinology and Diabetology (C.K., S.A.W.), Steroid Research and Mass Spectromity Unit (C.K., M.F.H., S.A.W.), Center of Child and Adolescent Medicine, Justus Liebig University, 35385 Giessen, Germany; Department of Nutrition and Health (T.R.), Research Institute of Child Nutrition, 45711 Dortmund, Germany; and Rambam Medical Center (Z.H.), Faculty of Medicine and Research Institute, Technion Israel, Institute of Technology, Division of Pediatric Endocrinology, Meyer Childrenʼs Hospital, Haifa 31096, Israel
AuthorAffiliation_xml – name: Division of Pediatric Endocrinology and Diabetology (C.K., S.A.W.), Steroid Research and Mass Spectromity Unit (C.K., M.F.H., S.A.W.), Center of Child and Adolescent Medicine, Justus Liebig University, 35385 Giessen, Germany; Department of Nutrition and Health (T.R.), Research Institute of Child Nutrition, 45711 Dortmund, Germany; and Rambam Medical Center (Z.H.), Faculty of Medicine and Research Institute, Technion Israel, Institute of Technology, Division of Pediatric Endocrinology, Meyer Childrenʼs Hospital, Haifa 31096, Israel
Author_xml – sequence: 1
  givenname: Clemens
  surname: Kamrath
  fullname: Kamrath, Clemens
  email: Clemens.kamrath@paediat.med.uni-giessen.de
  organization: 1Division of Pediatric Endocrinology and Diabetology (C.K., S.A.W.), 35385 Giessen, Germany
– sequence: 2
  givenname: Ze'ev
  surname: Hochberg
  fullname: Hochberg, Ze'ev
  organization: 4Rambam Medical Center (Z.H.), Faculty of Medicine and Research Institute, Technion Israel, Institute of Technology, Division of Pediatric Endocrinology, Meyer Children's Hospital, Haifa 31096, Israel
– sequence: 3
  givenname: Michaela F.
  surname: Hartmann
  fullname: Hartmann, Michaela F.
  organization: 2Steroid Research and Mass Spectromity Unit (C.K., M.F.H., S.A.W.), Center of Child and Adolescent Medicine, Justus Liebig University, 35385 Giessen, Germany
– sequence: 4
  givenname: Thomas
  surname: Remer
  fullname: Remer, Thomas
  organization: 3Department of Nutrition and Health (T.R.), Research Institute of Child Nutrition, 45711 Dortmund, Germany
– sequence: 5
  givenname: Stefan A.
  surname: Wudy
  fullname: Wudy, Stefan A.
  organization: 1Division of Pediatric Endocrinology and Diabetology (C.K., S.A.W.), 35385 Giessen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22170725$$D View this record in MEDLINE/PubMed
BookMark eNp1kt1qFDEUx4NU7LZ657UEvPDGqUnmIxvv1lrdQkFBC96FbD6YbDOTNcnsOnd9DUFfrk9iptsiFBoIOTn5nXM4_5MjcND7XgPwEqMTTDB6t5YnBGFcYMboEzDDrKoLihk9ADOECC4YJT8OwVGMa4RwVdXlM3BICKaIknoGfp_3MmgRtYILmexWJOt76A1MrYYLl3Tos2ur4c31nw9CXinvw831X_hVpHYnRmj7ybS6TxHubGphrrgcVfC_Rpezwo_aWJmf5fgenm2typaGJvgOXgbbizDCb7mGtwoufehyZ3DRCzdGG5-Dp0a4qF_cncfg8tPZ99NlcfHl8_np4qKQJatZoZBRK0OpoU0ty6yIqSuFZBZgvqoZXeE5VhJLpHSZ3QzhhmSKacMEMXNalsfgzT7vJvifg46JdzZK7ZzotR8iZ6RpqrpGVSZfPyDXfsj6uMhL3FQVLRGdqFd31LDqtOKbYLvcJ7_XPANkD8jgYwzacGnTre4pCOs4RnwaLF9LPg2WT4PNQW8fBN3nfQSv9vjOTzOMV27Y6cBbLVxqOcqraui8yAEElflW5F2z_1r4YfNYgduPVv4DeZnB8w
CitedBy_id crossref_primary_10_1016_j_mce_2016_08_014
crossref_primary_10_1016_j_mce_2017_08_016
crossref_primary_10_3389_fendo_2023_1114211
crossref_primary_10_1016_j_jsbmb_2020_105614
crossref_primary_10_1016_j_jsbmb_2019_105439
crossref_primary_10_3389_fendo_2023_1226284
crossref_primary_10_1016_j_jsbmb_2017_12_008
crossref_primary_10_1210_jc_2016_3989
crossref_primary_10_1016_j_jchromb_2018_02_023
crossref_primary_10_3390_ijms21134622
crossref_primary_10_3892_etm_2018_6772
crossref_primary_10_3389_fendo_2022_1074209
crossref_primary_10_1016_j_ecl_2015_02_002
crossref_primary_10_1530_EJE_15_0064
crossref_primary_10_3390_ijms222010983
crossref_primary_10_1093_humupd_dmx014
crossref_primary_10_1210_er_2018_00262
crossref_primary_10_1016_j_jsbmb_2017_12_014
crossref_primary_10_1371_journal_pone_0203903
crossref_primary_10_1186_1741_7015_11_152
crossref_primary_10_1210_clinem_dgaa852
crossref_primary_10_1016_j_jsbmb_2014_10_006
crossref_primary_10_1016_j_beem_2022_101665
crossref_primary_10_1016_j_clinbiochem_2014_07_017
crossref_primary_10_1016_j_jsbmb_2017_12_016
crossref_primary_10_1590_S0004_27302013000200005
crossref_primary_10_1016_j_clinms_2018_12_003
crossref_primary_10_1016_j_mce_2021_111189
crossref_primary_10_1210_jendso_bvz016
crossref_primary_10_1016_j_jpurol_2012_10_002
crossref_primary_10_1210_clinem_dgae535
crossref_primary_10_1093_ejendo_lvae112
crossref_primary_10_3390_cancers8120108
crossref_primary_10_1016_j_ando_2014_03_002
crossref_primary_10_1016_j_jchromb_2020_122243
crossref_primary_10_1016_j_fertnstert_2022_09_011
crossref_primary_10_1038_nrendo_2014_108
crossref_primary_10_1002_mnfr_201600522
crossref_primary_10_1210_er_2016_1067
crossref_primary_10_1177_2042018820934319
crossref_primary_10_1038_s41398_021_01393_9
crossref_primary_10_3390_ijms20184605
crossref_primary_10_1007_s40619_021_00838_z
crossref_primary_10_1016_j_jsbmb_2019_105497
crossref_primary_10_1016_j_jsbmb_2017_07_034
crossref_primary_10_1136_archdischild_2016_311910
crossref_primary_10_1016_j_jsbmb_2019_105412
crossref_primary_10_1097_MED_0000000000000545
crossref_primary_10_1016_j_jsbmb_2016_02_010
crossref_primary_10_1097_MED_0b013e32835a1a2e
crossref_primary_10_1371_journal_pone_0151860
crossref_primary_10_1515_jpem_2018_0260
crossref_primary_10_1517_14728222_2015_1075511
crossref_primary_10_1016_j_jsbmb_2013_04_010
crossref_primary_10_1210_jc_2016_1754
crossref_primary_10_1016_j_bcp_2015_10_010
crossref_primary_10_1210_clinem_dgab446
crossref_primary_10_3389_fendo_2019_00681
crossref_primary_10_1016_j_jsbmb_2014_03_008
crossref_primary_10_1016_j_mce_2017_05_014
crossref_primary_10_3389_fendo_2021_759971
crossref_primary_10_1016_j_jsbmb_2015_05_013
crossref_primary_10_1210_jc_2019_00438
crossref_primary_10_1097_MED_0000000000000411
crossref_primary_10_1016_j_tox_2015_01_003
crossref_primary_10_33667_2078_5631_2020_4_16_26
crossref_primary_10_1016_S2213_8587_13_70138_4
crossref_primary_10_1073_pnas_1906623116
crossref_primary_10_1016_j_beem_2021_101593
crossref_primary_10_1016_j_jpag_2017_04_001
crossref_primary_10_1016_j_urology_2022_07_051
crossref_primary_10_4137_CMRH_S35567
crossref_primary_10_1016_j_uroco_2015_11_002
crossref_primary_10_1016_j_tem_2017_09_002
crossref_primary_10_1371_journal_pbio_3000002
crossref_primary_10_3803_EnM_2022_1549
crossref_primary_10_1159_000488034
crossref_primary_10_1111_cge_12016
crossref_primary_10_1016_j_jsbmb_2013_07_013
crossref_primary_10_1210_endrev_bnab016
crossref_primary_10_1136_archdischild_2017_313873
crossref_primary_10_7759_cureus_78074
crossref_primary_10_1016_j_jsbmb_2016_07_009
crossref_primary_10_1258_acb_2012_012159
crossref_primary_10_1530_EJE_16_0953
crossref_primary_10_1016_j_beem_2015_01_005
crossref_primary_10_1371_journal_pbio_3000198
crossref_primary_10_1038_pr_2014_21
crossref_primary_10_1159_000487995
crossref_primary_10_1016_j_mce_2019_02_018
crossref_primary_10_1016_j_jchromb_2022_123413
crossref_primary_10_1093_humrep_deaa221
crossref_primary_10_1016_S0140_6736_22_01330_7
crossref_primary_10_1016_j_mce_2021_111261
crossref_primary_10_1016_j_clp_2021_11_013
crossref_primary_10_1016_j_mce_2024_112293
crossref_primary_10_1210_endrev_bnab009
crossref_primary_10_1159_000369458
crossref_primary_10_3390_nu15071734
crossref_primary_10_1016_S0140_6736_17_31431_9
crossref_primary_10_1210_clinem_dgae008
crossref_primary_10_1111_cen_14967
crossref_primary_10_1297_cpe_24_77
crossref_primary_10_1210_js_2019_00078
crossref_primary_10_1210_jc_2018_01865
crossref_primary_10_1016_j_jsbmb_2016_08_006
crossref_primary_10_1016_j_jsbmb_2018_02_013
crossref_primary_10_6065_apem_2244124_062
crossref_primary_10_1016_S0003_4266_17_30922_8
crossref_primary_10_1186_s12916_018_1009_7
crossref_primary_10_1016_j_jsbmb_2013_05_017
crossref_primary_10_1002_dvdy_23892
crossref_primary_10_1515_almed_2021_0042
crossref_primary_10_1111_jne_12066
crossref_primary_10_1016_j_yfrne_2014_08_005
crossref_primary_10_1016_j_mce_2016_09_025
crossref_primary_10_1530_EJE_18_0279
crossref_primary_10_15347_WJM_2023_003
crossref_primary_10_1097_MED_0000000000000334
crossref_primary_10_1016_j_mce_2016_07_029
crossref_primary_10_3390_diagnostics11081379
crossref_primary_10_1097_MOP_0000000000000780
crossref_primary_10_1016_j_steroids_2012_08_012
crossref_primary_10_1210_jc_2014_1258
crossref_primary_10_1515_almed_2020_0119
Cites_doi 10.1016/S0140-6736(04)16503-3
10.1677/joe.0.1650679
10.1159/000073561
10.1071/RD01074
10.1016/S0303-7207(00)00425-1
10.1016/S0021-9258(18)62328-2
10.1210/jc.2005-2460
10.1016/j.jsbmb.2010.04.010
10.1359/jbmr.2003.18.8.1539
10.1210/endo.140.2.6531
10.1210/en.2006-1491
10.1016/j.tem.2004.09.004
10.1210/jc.2003-030143
10.1016/0960-0760(93)90132-G
10.1016/j.steroids.2008.02.001
10.1074/jbc.M414673200
10.1016/j.ajhg.2011.06.009
10.1042/bj3510067
10.1016/j.mce.2004.04.009
10.1172/JCI116665
10.1210/en.2002-220721
10.1016/j.abb.2003.07.003
10.1074/jbc.273.6.3158
10.1210/jc.2004-1571
10.1677/joe.0.1640161
10.1210/jc.2009-2631
ContentType Journal Article
Copyright Copyright © 2012 by The Endocrine Society 2012
Copyright © 2012 by The Endocrine Society
Copyright_xml – notice: Copyright © 2012 by The Endocrine Society 2012
– notice: Copyright © 2012 by The Endocrine Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T5
7TM
H94
K9.
7X8
DOI 10.1210/jc.2011-1997
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Calcium & Calcified Tissue Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
AIDS and Cancer Research Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1945-7197
EndPage E375
ExternalDocumentID 22170725
10_1210_jc_2011_1997
00004678-201203000-00059
10.1210/jc.2011-1997
Genre Journal Article
GroupedDBID ---
-~X
.55
.XZ
08P
0R~
18M
1TH
29K
2WC
34G
354
39C
4.4
48X
53G
5GY
5RS
5YH
8F7
AABZA
AACZT
AAIMJ
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAWTL
ABBLC
ABDFA
ABEJV
ABGNP
ABJNI
ABLJU
ABMNT
ABNHQ
ABOCM
ABPMR
ABPPZ
ABPQP
ABPTD
ABQNK
ABVGC
ABWST
ABXVV
ACGFO
ACGFS
ACPRK
ACUTJ
ACYHN
ADBBV
ADGKP
ADGZP
ADHKW
ADQBN
ADRTK
ADVEK
AELWJ
AEMDU
AENEX
AENZO
AETBJ
AEWNT
AFCHL
AFFZL
AFGWE
AFOFC
AFRAH
AFXAL
AGINJ
AGKRT
AGQXC
AGUTN
AHMBA
AHMMS
AJEEA
ALMA_UNASSIGNED_HOLDINGS
APIBT
ARIXL
ASPBG
ATGXG
AVWKF
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BSWAC
BTRTY
C45
CDBKE
CS3
D-I
DAKXR
DIK
E3Z
EBS
EJD
EMOBN
ENERS
F5P
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
HZ~
H~9
KBUDW
KOP
KQ8
KSI
KSN
L7B
M5~
MHKGH
MJL
N9A
NLBLG
NOMLY
NOYVH
NVLIB
O9-
OAUYM
OBH
OCB
ODMLO
OFXIZ
OGEVE
OHH
OJZSN
OK1
OPAEJ
OVD
OVIDX
P2P
P6G
REU
ROX
ROZ
TEORI
TJX
TLC
TR2
TWZ
VVN
W8F
WOQ
X7M
YBU
YFH
YHG
YOC
YSK
ZY1
~02
~H1
.GJ
3O-
7X7
88E
8FI
8FJ
AAJQQ
AAKAS
AAPGJ
AAQQT
AAUQX
AAWDT
AAYJJ
ABDPE
ABUWG
ABXZS
ACFRR
ACVCV
ACZBC
ADMTO
ADNBA
ADZCM
AEMQT
AEOTA
AERZD
AFFNX
AFFQV
AFKRA
AFYAG
AGMDO
AGORE
AHGBF
AI.
AJBYB
AJDVS
ALXQX
APJGH
AQDSO
AQKUS
AVNTJ
BENPR
BPHCQ
BVXVI
CCPQU
EIHJH
FEDTE
FYUFA
HMCUK
HVGLF
IAO
IHR
INH
ITC
J5H
M1P
MBLQV
N4W
NU-
OBFPC
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
TMA
UKHRP
VH1
WHG
X52
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
7QP
7T5
7TM
AEHZK
H94
K9.
7X8
ID FETCH-LOGICAL-c3959-d0fdbf77f765c3121f54d0c1978b597b181dc1c0de3d0c901623129ef9a2f8733
ISSN 0021-972X
1945-7197
IngestDate Sun Sep 28 09:53:57 EDT 2025
Fri Sep 19 20:56:22 EDT 2025
Mon Jul 21 06:02:05 EDT 2025
Thu Apr 24 23:06:51 EDT 2025
Tue Jul 01 00:49:54 EDT 2025
Fri May 16 04:03:20 EDT 2025
Fri Feb 07 10:35:20 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3959-d0fdbf77f765c3121f54d0c1978b597b181dc1c0de3d0c901623129ef9a2f8733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 22170725
PQID 3164473074
PQPubID 2046206
ParticipantIDs proquest_miscellaneous_926645504
proquest_journals_3164473074
pubmed_primary_22170725
crossref_citationtrail_10_1210_jc_2011_1997
crossref_primary_10_1210_jc_2011_1997
wolterskluwer_health_00004678-201203000-00059
oup_primary_10_1210_jc_2011-1997
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20120301
2012-March
2012-03-01
2012-Mar
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 20120301
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle The journal of clinical endocrinology and metabolism
PublicationTitleAlternate J Clin Endocrinol Metab
PublicationYear 2012
Publisher Oxford University Press
Copyright by The Endocrine Society
Publisher_xml – name: Oxford University Press
– name: Copyright by The Endocrine Society
References Mahendroo ( key 2019041113225286200_B7) 2004; 222
Wilson ( key 2019041113225286200_B3) 2001; 13
Speiser ( key 2019041113225286200_B11) 2010; 95
Shackleton ( key 2019041113225286200_B16) 1993; 45
Auchus ( key 2019041113225286200_B1) 1998; 273
Frederiksen ( key 2019041113225286200_B8) 1971; 246
Remer ( key 2019041113225286200_B17) 2003; 18
Flück ( key 2019041113225286200_B2) 2003; 88
Dufort ( key 2019041113225286200_B25) 1999; 140
Auchus ( key 2019041113225286200_B4) 2004; 15
Homma ( key 2019041113225286200_B20) 2006; 91
Schmidt ( key 2019041113225286200_B18) 2000; 164
White ( key 2019041113225286200_B9) 2000; 21
Wudy ( key 2019041113225286200_B14) 2003
Dufort ( key 2019041113225286200_B24) 2001; 86
Penning ( key 2019041113225286200_B23) 2000; 351
Remer ( key 2019041113225286200_B15) 2005; 90
Gupta ( key 2019041113225286200_B6) 2003; 418
Krone ( key 2019041113225286200_B13) 2010; 121
Arlt ( key 2019041113225286200_B10) 2004; 363
Belyaeva ( key 2019041113225286200_B27) 2007; 148
Wilson ( key 2019041113225286200_B5) 2003; 144
Thigpen ( key 2019041113225286200_B21) 1993; 92
Flück ( key 2019041113225286200_B22) 2011; 89
Shackleton ( key 2019041113225286200_B19) 2008; 73
Wudy ( key 2019041113225286200_B12) 2000; 165
Pandey ( key 2019041113225286200_B28) 2005; 280
Luu-The ( key 2019041113225286200_B26) 2001; 171
22392955 - J Clin Endocrinol Metab. 2012 Mar;97(3):772-5
References_xml – volume: 363
  start-page: 2128
  year: 2004
  ident: key 2019041113225286200_B10
  article-title: Congenital adrenal hyperplasia caused by mutant P450 oxidoreductase and human androgen synthesis: analytical study.
  publication-title: Lancet
  doi: 10.1016/S0140-6736(04)16503-3
– volume: 165
  start-page: 679
  year: 2000
  ident: key 2019041113225286200_B12
  article-title: Hormonal diagnosis of 21-hydroxylase deficiency in plasma and urine of neonates using bench top gas chromatography-mass spectrometry.
  publication-title: J Endocrinol
  doi: 10.1677/joe.0.1650679
– start-page: 427
  volume-title: Diagnostics of endocrine function in children and adolescents
  year: 2003
  ident: key 2019041113225286200_B14
  article-title: Profiling steroids by gas chromatography-mass spectrometry: clinical applications
  doi: 10.1159/000073561
– volume: 21
  start-page: 245
  year: 2000
  ident: key 2019041113225286200_B9
  article-title: Congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
  publication-title: Endocr Rev
– volume: 13
  start-page: 673
  year: 2001
  ident: key 2019041113225286200_B3
  article-title: The role of 5α-reduction in steroid hormone physiology.
  publication-title: Reprod Fertil Dev
  doi: 10.1071/RD01074
– volume: 171
  start-page: 77
  year: 2001
  ident: key 2019041113225286200_B26
  article-title: Type 5 17β-hydroxysteroid dehydrogenase: its role in the formation of androgens in women.
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/S0303-7207(00)00425-1
– volume: 246
  start-page: 2584
  year: 1971
  ident: key 2019041113225286200_B8
  article-title: Partial characterization of the nuclear reduced nicotinamide adenine dinucleotide phosphate: Δ 4–3-ketosteroid 5α-oxidoreductase of rat prostate.
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)62328-2
– volume: 91
  start-page: 2643
  year: 2006
  ident: key 2019041113225286200_B20
  article-title: Urine steroid hormone profile analysis in cytochrome P450 oxidoreductase deficiency: implication for the backdoor pathway to dihydrotestosterone.
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2005-2460
– volume: 121
  start-page: 496
  year: 2010
  ident: key 2019041113225286200_B13
  article-title: Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS).
  publication-title: J Steroid Biochem Mol Biol
  doi: 10.1016/j.jsbmb.2010.04.010
– volume: 18
  start-page: 1539
  year: 2003
  ident: key 2019041113225286200_B17
  article-title: Adrenarche and bone modeling and remodeling at the proximal radius: weak androgens make stronger cortical bone in healthy children.
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.2003.18.8.1539
– volume: 140
  start-page: 568
  year: 1999
  ident: key 2019041113225286200_B25
  article-title: Characteristics of a highly labile human type 5 17β-hydroxysteroid dehydrogenase.
  publication-title: Endocrinology
  doi: 10.1210/endo.140.2.6531
– volume: 148
  start-page: 2148
  year: 2007
  ident: key 2019041113225286200_B27
  article-title: Role of microsomal retinol/sterol dehydrogenase-like short-chain dehydrogenases/reductases in the oxidation and epimerization of 3α-hydroxysteroids in human tissues.
  publication-title: Endocrinology
  doi: 10.1210/en.2006-1491
– volume: 15
  start-page: 432
  year: 2004
  ident: key 2019041113225286200_B4
  article-title: The backdoor pathway to dihydrotestosterone.
  publication-title: Trends Endocrinol Metab
  doi: 10.1016/j.tem.2004.09.004
– volume: 88
  start-page: 3762
  year: 2003
  ident: key 2019041113225286200_B2
  article-title: The 17, 20-lyase activity of cytochrome P450c17 from human fetal testis favors the Δ5 steroidogenic pathway.
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2003-030143
– volume: 45
  start-page: 127
  year: 1993
  ident: key 2019041113225286200_B16
  article-title: Mass spectrometry in the diagnosis of steroid related disorders and in hypertension research.
  publication-title: J Steroid Biochem Molec Biol
  doi: 10.1016/0960-0760(93)90132-G
– volume: 73
  start-page: 652
  year: 2008
  ident: key 2019041113225286200_B19
  article-title: 17-Hydroxylase/C17,20-lyase (CYP17) is not the enzyme responsible for side-chain cleavage of cortisol and its metabolites.
  publication-title: Steroids
  doi: 10.1016/j.steroids.2008.02.001
– volume: 280
  start-page: 13265
  year: 2005
  ident: key 2019041113225286200_B28
  article-title: Regulation of 17,20 lyase activity by cytochrome b5 and by serine phosphorylation of P450c17.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M414673200
– volume: 89
  start-page: 201
  year: 2011
  ident: key 2019041113225286200_B22
  article-title: Why boys will be boys: two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation.
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2011.06.009
– volume: 351
  start-page: 67
  year: 2000
  ident: key 2019041113225286200_B23
  article-title: Human 3α-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones.
  publication-title: Biochem J
  doi: 10.1042/bj3510067
– volume: 222
  start-page: 113
  year: 2004
  ident: key 2019041113225286200_B7
  article-title: Steroid 5α-reductase 1 promotes 5α-androstane-3α,17β-diol synthesis in immature mouse testes by two pathways.
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/j.mce.2004.04.009
– volume: 92
  start-page: 903
  year: 1993
  ident: key 2019041113225286200_B21
  article-title: Tissue distribution and ontogeny of steroid 5α-reductase isozyme expression.
  publication-title: J Clin Invest
  doi: 10.1172/JCI116665
– volume: 144
  start-page: 575
  year: 2003
  ident: key 2019041113225286200_B5
  article-title: 5α-Androstane-3α,17β-diol is formed in tammar wallaby pouch young testes by a pathway involving 5α-pregnane-3α,17α-diol-20-one as a key intermediate.
  publication-title: Endocrinology
  doi: 10.1210/en.2002-220721
– volume: 418
  start-page: 151
  year: 2003
  ident: key 2019041113225286200_B6
  article-title: 5α-Reduced C21 steroids are substrates for human cytochrome P450c17.
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2003.07.003
– volume: 273
  start-page: 3158
  year: 1998
  ident: key 2019041113225286200_B1
  article-title: Cytochrome b5 augments the 17,20 lyase activity of human P450c17 without direct electron transfer.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.6.3158
– volume: 90
  start-page: 2015
  year: 2005
  ident: key 2019041113225286200_B15
  article-title: Urinary markers of adrenarche: reference values in healthy subjects, aged 3–18 years.
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2004-1571
– volume: 164
  start-page: 161
  year: 2000
  ident: key 2019041113225286200_B18
  article-title: Conversion of dehydroepiandrosterone to downstream steroid hormones in macrophages.
  publication-title: J Endocrinol
  doi: 10.1677/joe.0.1640161
– volume: 86
  start-page: 841
  year: 2001
  ident: key 2019041113225286200_B24
  article-title: Human types 1 and 3 3α-hydroxysteroid dehydrogenases: differential lability and tissue distribution.
  publication-title: J Clin Endocrinol Metab
– volume: 95
  start-page: 4133
  year: 2010
  ident: key 2019041113225286200_B11
  article-title: Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society Clinical Practice Guideline.
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2009-2631
– reference: 22392955 - J Clin Endocrinol Metab. 2012 Mar;97(3):772-5
SSID ssj0014453
Score 2.468241
Snippet 17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative “backdoor” route that bypasses the conventional intermediates...
BACKGROUND:17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative “backdoor” route that bypasses the conventional...
17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative "backdoor" route that bypasses the conventional intermediates...
Background:17-Hydroxyprogesterone (17-OHP) can be converted to dihydrotestosterone (DHT) via an alternative “backdoor” route that bypasses the conventional...
SourceID proquest
pubmed
crossref
wolterskluwer
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E367
SubjectTerms Adolescent
Adrenal Hyperplasia, Congenital - enzymology
Adrenal Hyperplasia, Congenital - metabolism
Adrenal Hyperplasia, Congenital - urine
Adult
Androstenedione
Androstenedione - metabolism
Androsterone - metabolism
Child
Child, Preschool
Dihydrotestosterone
Dihydrotestosterone - metabolism
Etiocholanolone - metabolism
Female
Gas chromatography
Gonadal Steroid Hormones - biosynthesis
Humans
Infant
Infant, Newborn
Intermediates
Male
Mass spectroscopy
Metabolites
Ratios
Steroid 17-alpha-Hydroxylase - metabolism
Steroids
Testosterone
Title Increased Activation of the Alternative “Backdoor” Pathway in Patients with 21-Hydroxylase Deficiency: Evidence from Urinary Steroid Hormone Analysis
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00004678-201203000-00059
https://www.ncbi.nlm.nih.gov/pubmed/22170725
https://www.proquest.com/docview/3164473074
https://www.proquest.com/docview/926645504
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1945-7197
  dateEnd: 20240929
  omitProxy: true
  ssIdentifier: ssj0014453
  issn: 0021-972X
  databaseCode: DIK
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1945-7197
  dateEnd: 20240929
  omitProxy: true
  ssIdentifier: ssj0014453
  issn: 0021-972X
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtNAFB21QUIghNgKgYLmgT5FrhwvmZi30qYKoCIkGqnixbLHYzU0sVGWVvDU30CCn-uXcK5nvEQ0YnmJksnETnLPzD33zl0Ye-mAgkpfSSuF9WFhl8Q-2BeOpaJYpQ4otIrINXD0vjcceW9P_JONzVYjamm5iHflt2vzSv5HqhiDXClL9h8kW10UA3gO-eIREsbjX8kYi5tiysEZ92TZpqw89N-bGFffOVikiWjYfx3JsySHhW4GDqhE_-lFVCT_fdAlVk2-m9O1hl8TCnIBv6bgIio1QXma5EMoe5Hq7JTRTCf1fsQd83HSGYIH51ld8KRJgAmWjWoVVWKmypIcG1hWl4SaqgUAOilLHJJSiKbAqz4TKqLeK3tgmMvTMlDtk9pxhDqvt9bZYmo6QZscgahzuFsdNCnTPqYRKWWcIBRN4jadIGuSK5sbP0WiiKJzO9Se3usDz7dEV4cHl8rAvBo3fQXFzj5wddsQwxIGrm748psGgglNGkgW1WGLMJ5a01bxj9dP3GQ3HNHrUR-OgzfvqrMwzzO1VM1PMOkblHvV_PQKsVpJ1mzYTLfZnYuc8Dc_K7IwGlzq-B67a4wgvqcRfZ9tqOwBu3lkwjwesu8VsHkNbJ6nHMDmDWDzq8sfJaSvLn9yA2Y-zngJZk5g5qtg5jWYX_ESypygzA2UuYEyN1DmJZQfsdHh4Hh_aJkeIpZ0ycOd2GkSp0KkoudLF39a6nuJLSH1fgxbOgbBTWRX2olyMQxyDHMAFFilQeSkfeG6W6yV4T5PGI_i1PO8HmwWW5La60tcwE6iIPKFIwPZZp1SAKE0Bfapz8skJEMb4go_y5DEFZK42mynmv1FF5ZZM49DluumWHrKdino0Kzgeeh2YelAfQsPV6jehu6gA8EoU_lyHgZg51TVAFMea3xU93GcrrCF47eZtQKYUKdnh4VvAUTXotUIoqDrU_jB0z9_3WfsVr2Et1lrMVuq52D2i_hFAfxfK_H3Jg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+Activation+of+the+Alternative+%E2%80%9CBackdoor%E2%80%9D+Pathway+in+Patients+with+21-Hydroxylase+Deficiency%3A+Evidence+from+Urinary+Steroid+Hormone+Analysis&rft.jtitle=The+journal+of+clinical+endocrinology+and+metabolism&rft.au=Kamrath%2C+Clemens&rft.au=Hochberg%2C+Ze%27ev&rft.au=Hartmann%2C+Michaela+F.&rft.au=Remer%2C+Thomas&rft.date=2012-03-01&rft.pub=Oxford+University+Press&rft.issn=0021-972X&rft.eissn=1945-7197&rft.volume=97&rft.issue=3&rft.spage=E367&rft.epage=E375&rft_id=info:doi/10.1210%2Fjc.2011-1997&rft.externalDocID=10.1210%2Fjc.2011-1997
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-972X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-972X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-972X&client=summon