Comparison of three-dimensional pseudo-continuous arterial spin labeling perfusion imaging with gradient-echo and spin-echo dynamic susceptibility contrast MRI

Purpose To compare the relative cerebral blood flow (CBF) obtained by pseudo‐continuous arterial spin labeling sequence incorporated with volumetric fast spin‐echo readout (3D‐PCASL) with those by gradient‐echo (GE) and spin‐echo (SE) dynamic susceptibility contrast (DSC) MRI. Materials and Methods...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 39; no. 2; pp. 427 - 433
Main Authors Wong, Alex M., Yan, Feng-Xian, Liu, Ho-Ling
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.02.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.24178

Cover

Abstract Purpose To compare the relative cerebral blood flow (CBF) obtained by pseudo‐continuous arterial spin labeling sequence incorporated with volumetric fast spin‐echo readout (3D‐PCASL) with those by gradient‐echo (GE) and spin‐echo (SE) dynamic susceptibility contrast (DSC) MRI. Materials and Methods Thirty patients with various neurological diseases participated in this study. In addition to 3D‐PCASL, 15 patients received GE‐DSC and the others received SE‐DSC imaging on a 3 Tesla scanner. A cortical gray matter (GM) to white matter (WM) and a thalamus (TM) to WM CBF ratio were determined from each perfusion scan. In addition, histograms of relative CBF distributions were obtained from each method for comparison. Results Significant correlations of CBF ratios were found between 3D‐PCASL and the two DSC methods (P < 0.05). The 3D‐PCASL resulted in GM/WM CBF ratios similar to SE‐DSC but significantly smaller than GE‐DSC (P = 2.3 × 10−7). TM/WM CBF ratio obtained by 3D‐PCASL was significantly smaller than those by GE‐ and SE‐DSC (P = 4.1 × 10−7 and 1.2 × 10−6, respectively). The histogram of relative CBF maps obtained from SE‐DSC, after applied spatial smoothing, agreed well with that from 3D‐PCASL. Conclusion This study suggested that perfusion images obtained from 3D‐PCASL exhibited significant correlations with DSC‐MRI, with greater microvascular weighting like SE‐DSC. J. Magn. Reson. Imaging 2014;39:427–433. © 2013 Wiley Periodicals, Inc.
AbstractList Purpose To compare the relative cerebral blood flow (CBF) obtained by pseudo‐continuous arterial spin labeling sequence incorporated with volumetric fast spin‐echo readout (3D‐PCASL) with those by gradient‐echo (GE) and spin‐echo (SE) dynamic susceptibility contrast (DSC) MRI. Materials and Methods Thirty patients with various neurological diseases participated in this study. In addition to 3D‐PCASL, 15 patients received GE‐DSC and the others received SE‐DSC imaging on a 3 Tesla scanner. A cortical gray matter (GM) to white matter (WM) and a thalamus (TM) to WM CBF ratio were determined from each perfusion scan. In addition, histograms of relative CBF distributions were obtained from each method for comparison. Results Significant correlations of CBF ratios were found between 3D‐PCASL and the two DSC methods (P < 0.05). The 3D‐PCASL resulted in GM/WM CBF ratios similar to SE‐DSC but significantly smaller than GE‐DSC (P = 2.3 × 10−7). TM/WM CBF ratio obtained by 3D‐PCASL was significantly smaller than those by GE‐ and SE‐DSC (P = 4.1 × 10−7 and 1.2 × 10−6, respectively). The histogram of relative CBF maps obtained from SE‐DSC, after applied spatial smoothing, agreed well with that from 3D‐PCASL. Conclusion This study suggested that perfusion images obtained from 3D‐PCASL exhibited significant correlations with DSC‐MRI, with greater microvascular weighting like SE‐DSC. J. Magn. Reson. Imaging 2014;39:427–433. © 2013 Wiley Periodicals, Inc.
Purpose To compare the relative cerebral blood flow (CBF) obtained by pseudo-continuous arterial spin labeling sequence incorporated with volumetric fast spin-echo readout (3D-PCASL) with those by gradient-echo (GE) and spin-echo (SE) dynamic susceptibility contrast (DSC) MRI. Materials and Methods Thirty patients with various neurological diseases participated in this study. In addition to 3D-PCASL, 15 patients received GE-DSC and the others received SE-DSC imaging on a 3 Tesla scanner. A cortical gray matter (GM) to white matter (WM) and a thalamus (TM) to WM CBF ratio were determined from each perfusion scan. In addition, histograms of relative CBF distributions were obtained from each method for comparison. Results Significant correlations of CBF ratios were found between 3D-PCASL and the two DSC methods (P<0.05). The 3D-PCASL resulted in GM/WM CBF ratios similar to SE-DSC but significantly smaller than GE-DSC (P=2.3 × 10-7). TM/WM CBF ratio obtained by 3D-PCASL was significantly smaller than those by GE- and SE-DSC (P=4.1 × 10-7 and 1.2 × 10-6, respectively). The histogram of relative CBF maps obtained from SE-DSC, after applied spatial smoothing, agreed well with that from 3D-PCASL. Conclusion This study suggested that perfusion images obtained from 3D-PCASL exhibited significant correlations with DSC-MRI, with greater microvascular weighting like SE-DSC. J. Magn. Reson. Imaging 2014;39:427-433. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
To compare the relative cerebral blood flow (CBF) obtained by pseudo-continuous arterial spin labeling sequence incorporated with volumetric fast spin-echo readout (3D-PCASL) with those by gradient-echo (GE) and spin-echo (SE) dynamic susceptibility contrast (DSC) MRI.PURPOSETo compare the relative cerebral blood flow (CBF) obtained by pseudo-continuous arterial spin labeling sequence incorporated with volumetric fast spin-echo readout (3D-PCASL) with those by gradient-echo (GE) and spin-echo (SE) dynamic susceptibility contrast (DSC) MRI.Thirty patients with various neurological diseases participated in this study. In addition to 3D-PCASL, 15 patients received GE-DSC and the others received SE-DSC imaging on a 3 Tesla scanner. A cortical gray matter (GM) to white matter (WM) and a thalamus (TM) to WM CBF ratio were determined from each perfusion scan. In addition, histograms of relative CBF distributions were obtained from each method for comparison.MATERIALS AND METHODSThirty patients with various neurological diseases participated in this study. In addition to 3D-PCASL, 15 patients received GE-DSC and the others received SE-DSC imaging on a 3 Tesla scanner. A cortical gray matter (GM) to white matter (WM) and a thalamus (TM) to WM CBF ratio were determined from each perfusion scan. In addition, histograms of relative CBF distributions were obtained from each method for comparison.Significant correlations of CBF ratios were found between 3D-PCASL and the two DSC methods (P < 0.05). The 3D-PCASL resulted in GM/WM CBF ratios similar to SE-DSC but significantly smaller than GE-DSC (P = 2.3 × 10(-7) ). TM/WM CBF ratio obtained by 3D-PCASL was significantly smaller than those by GE- and SE-DSC (P = 4.1 × 10(-7) and 1.2 × 10(-6) , respectively). The histogram of relative CBF maps obtained from SE-DSC, after applied spatial smoothing, agreed well with that from 3D-PCASL.RESULTSSignificant correlations of CBF ratios were found between 3D-PCASL and the two DSC methods (P < 0.05). The 3D-PCASL resulted in GM/WM CBF ratios similar to SE-DSC but significantly smaller than GE-DSC (P = 2.3 × 10(-7) ). TM/WM CBF ratio obtained by 3D-PCASL was significantly smaller than those by GE- and SE-DSC (P = 4.1 × 10(-7) and 1.2 × 10(-6) , respectively). The histogram of relative CBF maps obtained from SE-DSC, after applied spatial smoothing, agreed well with that from 3D-PCASL.This study suggested that perfusion images obtained from 3D-PCASL exhibited significant correlations with DSC-MRI, with greater microvascular weighting like SE-DSC.CONCLUSIONThis study suggested that perfusion images obtained from 3D-PCASL exhibited significant correlations with DSC-MRI, with greater microvascular weighting like SE-DSC.
To compare the relative cerebral blood flow (CBF) obtained by pseudo-continuous arterial spin labeling sequence incorporated with volumetric fast spin-echo readout (3D-PCASL) with those by gradient-echo (GE) and spin-echo (SE) dynamic susceptibility contrast (DSC) MRI. Thirty patients with various neurological diseases participated in this study. In addition to 3D-PCASL, 15 patients received GE-DSC and the others received SE-DSC imaging on a 3 Tesla scanner. A cortical gray matter (GM) to white matter (WM) and a thalamus (TM) to WM CBF ratio were determined from each perfusion scan. In addition, histograms of relative CBF distributions were obtained from each method for comparison. Significant correlations of CBF ratios were found between 3D-PCASL and the two DSC methods (P < 0.05). The 3D-PCASL resulted in GM/WM CBF ratios similar to SE-DSC but significantly smaller than GE-DSC (P = 2.3 × 10(-7) ). TM/WM CBF ratio obtained by 3D-PCASL was significantly smaller than those by GE- and SE-DSC (P = 4.1 × 10(-7) and 1.2 × 10(-6) , respectively). The histogram of relative CBF maps obtained from SE-DSC, after applied spatial smoothing, agreed well with that from 3D-PCASL. This study suggested that perfusion images obtained from 3D-PCASL exhibited significant correlations with DSC-MRI, with greater microvascular weighting like SE-DSC.
Author Wong, Alex M.
Liu, Ho-Ling
Yan, Feng-Xian
Author_xml – sequence: 1
  givenname: Alex M.
  surname: Wong
  fullname: Wong, Alex M.
  organization: Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Keelung, Linkou Medical Center, Taiwan
– sequence: 2
  givenname: Feng-Xian
  surname: Yan
  fullname: Yan, Feng-Xian
  organization: Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
– sequence: 3
  givenname: Ho-Ling
  surname: Liu
  fullname: Liu, Ho-Ling
  email: hlaliu@mail.cgu.edu.tw
  organization: Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Keelung, Linkou Medical Center, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23677620$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URNuFCz8AWeKCKqXYzofjI11oKSrfII6W40x2vSR2sB2V_TX8VZzdtocKcRjZYz_v2PPOMTqwzgJCTyk5pYSwl5vBm1NWUF4_QEe0ZCxjZV0dpD0p84zWhB-i4xA2hBAhivIROmR5xXnFyBH6s3TDqLwJzmLX4bj2AFlrBrDBOKt6PAaYWpdpZ6Oxk5sCVj6CN-kqjMbiXjXQG7vCI_humkXYDGo1n1ybuMYrr1oDNmag1w4r2-5k-6zdWjUYjcMUNIzRNKY3cYvnt7wKEb__cvkYPexUH-DJzbpA38_ffFu-za4-XlwuX11lOhdlnaWuW0o72gna5BSI0AWogulO1S3VrGWCQyVolbdQdlA2RcOhKCBFDazQPF-gF_u6o3e_JghRDiZ9qu-VhdS0pIUgnLEUCX1-D924ySevZorzWuQs-b5Az26oqRmglaNPtvitvLU-ASd7QHsXgofuDqFEznOV81zlbq4JJvdgbaKKZueU6f8toXvJtelh-5_i8l3y-VaT7TUmRPh9p1H-p6x4zkv548OF_MS_npHPr5kU-V9NuMfu
CitedBy_id crossref_primary_10_3348_kjr_2018_0300
crossref_primary_10_1002_jmri_24920
crossref_primary_10_1007_s00062_017_0623_7
crossref_primary_10_1007_s00234_018_2062_9
crossref_primary_10_1038_jcbfm_2015_55
crossref_primary_10_13104_imri_2022_26_1_10
crossref_primary_10_1016_j_neurad_2017_02_003
crossref_primary_10_1016_j_jad_2022_04_099
crossref_primary_10_3171_2015_8_JNS151211
crossref_primary_10_1016_j_neuroimage_2018_10_035
crossref_primary_10_1007_s00381_015_2858_4
crossref_primary_10_1007_s00234_017_1863_6
crossref_primary_10_1016_j_neurad_2019_08_006
crossref_primary_10_1016_j_wneu_2015_09_048
crossref_primary_10_1155_2015_234245
crossref_primary_10_1259_bjr_20160495
crossref_primary_10_1177_0284185119891694
crossref_primary_10_1155_2015_697402
crossref_primary_10_1016_j_ejrad_2018_08_001
crossref_primary_10_1177_0271678X16653134
crossref_primary_10_3389_fnana_2022_893953
crossref_primary_10_1002_jmri_24637
crossref_primary_10_1002_nbm_3297
crossref_primary_10_1016_j_wneu_2020_07_039
crossref_primary_10_1016_j_neurad_2018_11_003
crossref_primary_10_1007_s11060_014_1586_z
crossref_primary_10_1002_mrm_25463
crossref_primary_10_1259_bjr_20201311
crossref_primary_10_1371_journal_pone_0149109
crossref_primary_10_1073_pnas_1807983116
crossref_primary_10_1002_jmri_25022
crossref_primary_10_1002_mrm_30091
Cites_doi 10.1161/STROKEAHA.110.589234
10.1016/j.neuroimage.2011.02.080
10.1002/mrm.1910140211
10.1161/STROKEAHA.111.631929
10.1002/mrm.1910360510
10.1002/mrm.1910360511
10.1161/STROKEAHA.111.635979
10.3174/ajnr.A2725
10.1002/mrm.20759
10.1002/mrm.1910370215
10.1161/01.STR.31.3.680
10.1007/s00234-009-0616-6
10.1002/jmri.1880070313
10.1002/mrm.1910340412
10.1097/00004647-199611000-00019
10.1148/radiol.2282020409
10.1002/1522-2594(200011)44:5<680::AID-MRM4>3.0.CO;2-Q
10.1097/01.rli.0000084890.57197.54
10.1016/j.mri.2009.06.006
10.1002/mrm.1910310103
10.1007/s00062-011-0126-x
10.3174/ajnr.A0831
10.1097/01.rli.0000119195.50515.04
10.1002/jmri.23613
10.1002/mrm.22002
10.1002/nbm.1792
10.1002/mrm.21790
10.1002/1522-2586(200009)12:3<381::AID-JMRI2>3.0.CO;2-Y
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.24178
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 433
ExternalDocumentID 3183659841
23677620
10_1002_jmri_24178
JMRI24178
ark_67375_WNG_P7SB0QD2_9
Genre article
Comparative Study
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Council of Taiwan
  funderid: NSC101–2314‐B‐182‐063‐MY3.
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3958-152d11f1f91b31e09c4ea42cfa8d1c2d297e69163de5fe5b4b7e44ee448e24c73
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 05:21:11 EDT 2025
Fri Jul 25 10:38:59 EDT 2025
Thu Apr 03 07:06:27 EDT 2025
Wed Oct 01 04:36:47 EDT 2025
Thu Apr 24 22:57:00 EDT 2025
Sun Sep 21 06:20:14 EDT 2025
Sun Sep 21 06:17:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords dynamic susceptibility contrast (DSC)
perfusion
MRI
arterial spin labeling (ASL)
pseudo-continuous ASL (PCASL)
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3958-152d11f1f91b31e09c4ea42cfa8d1c2d297e69163de5fe5b4b7e44ee448e24c73
Notes National Science Council of Taiwan - No. NSC101-2314-B-182-063-MY3.
ark:/67375/WNG-P7SB0QD2-9
istex:711589040189F084798A12946072FAF5ABDB4471
ArticleID:JMRI24178
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
PMID 23677620
PQID 1477893205
PQPubID 1006400
PageCount 7
ParticipantIDs proquest_miscellaneous_1490722072
proquest_journals_1477893205
pubmed_primary_23677620
crossref_primary_10_1002_jmri_24178
crossref_citationtrail_10_1002_jmri_24178
wiley_primary_10_1002_jmri_24178_JMRI24178
istex_primary_ark_67375_WNG_P7SB0QD2_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02
February 2014
2014-02-00
2014-Feb
20140201
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Boxerman JL, Rosen BR, Weisskoff RM. Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies. J Magn Reson Imaging 1997;7:528-537.
Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of arterial input function using cluster analysis. Magn Reson Med 2006;55:524-531.
Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 1996;16:1236-1249.
Warmuth C, Gunther M, Zimmer C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 2003;228:523-532.
Hirai T, Kitajima M, Nakamura H, et al. Quantitative blood flow measurements in gliomas using arterial spin-labeling at 3T: intermodality agreement and inter- and intraobserver reproducibility study. AJNR Am J Neuroradiol 2011;32:2073-2079.
Sugahara T, Korogi Y, Kochi M, Ushio Y, Takahashi M. Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. AJNR Am J Neuroradiol 2001;22:1306-1315.
Yang Y, Engelien W, Xu S, Gu H, Silbersweiq DA, Stern E. Transit time, trailing time, and cerebral blood flow during brain activation: measurement using multislice, pulsed spin-labeling perfusion imaging. Magn Reson Med 2000;44:680-685.
Zaharchuk G. Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. AJNR Am J Neuroradiol 2007;28:1850-1858.
Speck O, Chang L, DeSilva NM, Ernst T. Perfusion MRI of the human brain with dynamic susceptibility contrast: gradient-echo versus spin-echo techniques. J Magn Reson Imaging 2000;12:381-387.
van Osch MJ, Teeuwisse WM, van Walderveen MA, Hendrikse J, Kies DA, van Buchem MA. Can arterial spin labeling detect white matter perfusion signal? Magn Reson Med 2009;62:165-173.
Kennan RP, Zhong J, Gore JC. Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med 1994;31:9-21.
Hernandez DA, Bokkers RP, Mirasol RV, et al. Pseudocontinuous arterial spin labeling quantifies relative cerebral blood flow in acute stroke. Stroke 2012;43:753-758.
Wu WC, Jiang SF, Yang SC, Lien SH. Pseudocontinuous arterial spin labeling perfusion magnetic resonance imaging--a normative study of reproducibility in the human brain. Neuroimage 2011;56:1244-1250.
Qiu D, Straka M, Zun Z, Bammer R, Moseley ME, Zaharchuk G. CBF measurements using multidelay pseudocontinuous and velocity-selective arterial spin labeling in patients with long arterial transit delays: comparison with xenon CT CBF. J Magn Reson Imaging 2012;36:110-119.
Huck S, Kerl HU, Al-Zghloul M, Groden C, Nolte I. Arterial spin labeling at 3.0 Tesla in subacute ischemia: comparison to dynamic susceptibility perfusion. Clin Neuroradiol 2012;22:29-37.
Jarnum H, Steffensen EG, Knutsson L, et al. Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. Neuroradiology 2010;52:307-317.
Liu P, Uh J, Devous MD, Adinoff B, Lu H. Comparison of relative cerebral blood flow maps using pseudo-continuous arterial spin labeling and single photon emission computed tomography. NMR Biomed 2012;25:779-786.
Weber MA, Thilmann C, Lichy MP, et al. Assessment of irradiated brain metastases by means of arterial spin-labeling and dynamic susceptibility-weighted contrast-enhanced perfusion MRI: initial results. Invest Radiol 2004;39:277-287.
Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249-265.
Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 1995;34:555-566.
Knutsson L, van Westen D, Petersen ET, et al. Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and model-free arterial spin labeling. Magn Reson Imaging 2010;28:1-7.
Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 2000;31:680-687.
Wolf RL, Alsop DC, Levy-Reis I, et al. Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. AJNR Am J Neuroradiol 2001;22:1334-1341.
Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008;60:1488-1497.
Weber MA, Gunther M, Lichy MP, et al. Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue. Invest Radiol 2003;38:712-718.
Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I. Mathematical approach and statistical analysis. Magn Reson Med 1996;36:715-725.
Wang DJ, Alger JR, Qiao JX, et al. The value of arterial spin-labeled perfusion imaging in acute ischemic stroke: comparison with dynamic susceptibility contrast-enhanced MRI. Stroke 2012;43:1018-1024.
Ye FQ, Mattay VS, Jezzard P, Frank JA, Weinberger DR, McLaughlin AC. Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques. Magn Reson Med 1997;37:226-235.
Bokkers RP, Hernandez DA, Merino JG, et al. Whole-brain arterial spin labeling perfusion MRI in patients with acute stroke. Stroke 2012;43:1290-1294.
Ostergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II. Experimental comparison and preliminary results. Magn Reson Med 1996;36:726-736.
2009; 62
1990; 14
2006; 55
1995; 34
2000; 44
2003; 38
2011; 32
2011; 56
1996; 36
2001; 22
2012; 36
1996; 16
1997; 7
2007; 28
2003; 228
2000; 12
2004; 39
2010; 28
1997; 37
2000; 31
2012; 25
2008; 60
2012; 22
2010; 52
2012; 43
1994; 31
Wolf RL (e_1_2_6_11_1) 2001; 22
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
Sugahara T (e_1_2_6_27_1) 2001; 22
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_26_1
References_xml – reference: Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I. Mathematical approach and statistical analysis. Magn Reson Med 1996;36:715-725.
– reference: Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of arterial input function using cluster analysis. Magn Reson Med 2006;55:524-531.
– reference: Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 2000;31:680-687.
– reference: Jarnum H, Steffensen EG, Knutsson L, et al. Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. Neuroradiology 2010;52:307-317.
– reference: Weber MA, Gunther M, Lichy MP, et al. Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue. Invest Radiol 2003;38:712-718.
– reference: Knutsson L, van Westen D, Petersen ET, et al. Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and model-free arterial spin labeling. Magn Reson Imaging 2010;28:1-7.
– reference: Zaharchuk G. Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. AJNR Am J Neuroradiol 2007;28:1850-1858.
– reference: Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 1996;16:1236-1249.
– reference: Huck S, Kerl HU, Al-Zghloul M, Groden C, Nolte I. Arterial spin labeling at 3.0 Tesla in subacute ischemia: comparison to dynamic susceptibility perfusion. Clin Neuroradiol 2012;22:29-37.
– reference: Warmuth C, Gunther M, Zimmer C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 2003;228:523-532.
– reference: Kennan RP, Zhong J, Gore JC. Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med 1994;31:9-21.
– reference: Wu WC, Jiang SF, Yang SC, Lien SH. Pseudocontinuous arterial spin labeling perfusion magnetic resonance imaging--a normative study of reproducibility in the human brain. Neuroimage 2011;56:1244-1250.
– reference: Yang Y, Engelien W, Xu S, Gu H, Silbersweiq DA, Stern E. Transit time, trailing time, and cerebral blood flow during brain activation: measurement using multislice, pulsed spin-labeling perfusion imaging. Magn Reson Med 2000;44:680-685.
– reference: Speck O, Chang L, DeSilva NM, Ernst T. Perfusion MRI of the human brain with dynamic susceptibility contrast: gradient-echo versus spin-echo techniques. J Magn Reson Imaging 2000;12:381-387.
– reference: Liu P, Uh J, Devous MD, Adinoff B, Lu H. Comparison of relative cerebral blood flow maps using pseudo-continuous arterial spin labeling and single photon emission computed tomography. NMR Biomed 2012;25:779-786.
– reference: Boxerman JL, Rosen BR, Weisskoff RM. Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies. J Magn Reson Imaging 1997;7:528-537.
– reference: Ye FQ, Mattay VS, Jezzard P, Frank JA, Weinberger DR, McLaughlin AC. Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques. Magn Reson Med 1997;37:226-235.
– reference: Wolf RL, Alsop DC, Levy-Reis I, et al. Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. AJNR Am J Neuroradiol 2001;22:1334-1341.
– reference: Sugahara T, Korogi Y, Kochi M, Ushio Y, Takahashi M. Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. AJNR Am J Neuroradiol 2001;22:1306-1315.
– reference: Wang DJ, Alger JR, Qiao JX, et al. The value of arterial spin-labeled perfusion imaging in acute ischemic stroke: comparison with dynamic susceptibility contrast-enhanced MRI. Stroke 2012;43:1018-1024.
– reference: Bokkers RP, Hernandez DA, Merino JG, et al. Whole-brain arterial spin labeling perfusion MRI in patients with acute stroke. Stroke 2012;43:1290-1294.
– reference: Hernandez DA, Bokkers RP, Mirasol RV, et al. Pseudocontinuous arterial spin labeling quantifies relative cerebral blood flow in acute stroke. Stroke 2012;43:753-758.
– reference: Qiu D, Straka M, Zun Z, Bammer R, Moseley ME, Zaharchuk G. CBF measurements using multidelay pseudocontinuous and velocity-selective arterial spin labeling in patients with long arterial transit delays: comparison with xenon CT CBF. J Magn Reson Imaging 2012;36:110-119.
– reference: Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249-265.
– reference: Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008;60:1488-1497.
– reference: Hirai T, Kitajima M, Nakamura H, et al. Quantitative blood flow measurements in gliomas using arterial spin-labeling at 3T: intermodality agreement and inter- and intraobserver reproducibility study. AJNR Am J Neuroradiol 2011;32:2073-2079.
– reference: Weber MA, Thilmann C, Lichy MP, et al. Assessment of irradiated brain metastases by means of arterial spin-labeling and dynamic susceptibility-weighted contrast-enhanced perfusion MRI: initial results. Invest Radiol 2004;39:277-287.
– reference: Ostergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II. Experimental comparison and preliminary results. Magn Reson Med 1996;36:726-736.
– reference: Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 1995;34:555-566.
– reference: van Osch MJ, Teeuwisse WM, van Walderveen MA, Hendrikse J, Kies DA, van Buchem MA. Can arterial spin labeling detect white matter perfusion signal? Magn Reson Med 2009;62:165-173.
– volume: 36
  start-page: 110
  year: 2012
  end-page: 119
  article-title: CBF measurements using multidelay pseudocontinuous and velocity‐selective arterial spin labeling in patients with long arterial transit delays: comparison with xenon CT CBF
  publication-title: J Magn Reson Imaging
– volume: 14
  start-page: 249
  year: 1990
  end-page: 265
  article-title: Perfusion imaging with NMR contrast agents
  publication-title: Magn Reson Med
– volume: 16
  start-page: 1236
  year: 1996
  end-page: 1249
  article-title: Reduced transit‐time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow
  publication-title: J Cereb Blood Flow Metab
– volume: 31
  start-page: 9
  year: 1994
  end-page: 21
  article-title: Intravascular susceptibility contrast mechanisms in tissues
  publication-title: Magn Reson Med
– volume: 22
  start-page: 29
  year: 2012
  end-page: 37
  article-title: Arterial spin labeling at 3.0 Tesla in subacute ischemia: comparison to dynamic susceptibility perfusion
  publication-title: Clin Neuroradiol
– volume: 28
  start-page: 1850
  year: 2007
  end-page: 1858
  article-title: Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability
  publication-title: AJNR Am J Neuroradiol
– volume: 7
  start-page: 528
  year: 1997
  end-page: 537
  article-title: Signal‐to‐noise analysis of cerebral blood volume maps from dynamic NMR imaging studies
  publication-title: J Magn Reson Imaging
– volume: 52
  start-page: 307
  year: 2010
  end-page: 317
  article-title: Perfusion MRI of brain tumours: a comparative study of pseudo‐continuous arterial spin labelling and dynamic susceptibility contrast imaging
  publication-title: Neuroradiology
– volume: 43
  start-page: 1018
  year: 2012
  end-page: 1024
  article-title: The value of arterial spin‐labeled perfusion imaging in acute ischemic stroke: comparison with dynamic susceptibility contrast‐enhanced MRI
  publication-title: Stroke
– volume: 25
  start-page: 779
  year: 2012
  end-page: 786
  article-title: Comparison of relative cerebral blood flow maps using pseudo‐continuous arterial spin labeling and single photon emission computed tomography
  publication-title: NMR Biomed
– volume: 22
  start-page: 1334
  year: 2001
  end-page: 1341
  article-title: Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging
  publication-title: AJNR Am J Neuroradiol
– volume: 32
  start-page: 2073
  year: 2011
  end-page: 2079
  article-title: Quantitative blood flow measurements in gliomas using arterial spin‐labeling at 3T: intermodality agreement and inter‐ and intraobserver reproducibility study
  publication-title: AJNR Am J Neuroradiol
– volume: 39
  start-page: 277
  year: 2004
  end-page: 287
  article-title: Assessment of irradiated brain metastases by means of arterial spin‐labeling and dynamic susceptibility‐weighted contrast‐enhanced perfusion MRI: initial results
  publication-title: Invest Radiol
– volume: 36
  start-page: 715
  year: 1996
  end-page: 725
  article-title: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I. Mathematical approach and statistical analysis
  publication-title: Magn Reson Med
– volume: 28
  start-page: 1
  year: 2010
  end-page: 7
  article-title: Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and model‐free arterial spin labeling
  publication-title: Magn Reson Imaging
– volume: 38
  start-page: 712
  year: 2003
  end-page: 718
  article-title: Comparison of arterial spin‐labeling techniques and dynamic susceptibility‐weighted contrast‐enhanced MRI in perfusion imaging of normal brain tissue
  publication-title: Invest Radiol
– volume: 31
  start-page: 680
  year: 2000
  end-page: 687
  article-title: Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling
  publication-title: Stroke
– volume: 56
  start-page: 1244
  year: 2011
  end-page: 1250
  article-title: Pseudocontinuous arterial spin labeling perfusion magnetic resonance imaging--a normative study of reproducibility in the human brain
  publication-title: Neuroimage
– volume: 12
  start-page: 381
  year: 2000
  end-page: 387
  article-title: Perfusion MRI of the human brain with dynamic susceptibility contrast: gradient‐echo versus spin‐echo techniques
  publication-title: J Magn Reson Imaging
– volume: 228
  start-page: 523
  year: 2003
  end-page: 532
  article-title: Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility‐weighted contrast‐enhanced MR imaging
  publication-title: Radiology
– volume: 60
  start-page: 1488
  year: 2008
  end-page: 1497
  article-title: Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields
  publication-title: Magn Reson Med
– volume: 55
  start-page: 524
  year: 2006
  end-page: 531
  article-title: Automatic selection of arterial input function using cluster analysis
  publication-title: Magn Reson Med
– volume: 36
  start-page: 726
  year: 1996
  end-page: 736
  article-title: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II. Experimental comparison and preliminary results
  publication-title: Magn Reson Med
– volume: 37
  start-page: 226
  year: 1997
  end-page: 235
  article-title: Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques
  publication-title: Magn Reson Med
– volume: 43
  start-page: 753
  year: 2012
  end-page: 758
  article-title: Pseudocontinuous arterial spin labeling quantifies relative cerebral blood flow in acute stroke
  publication-title: Stroke
– volume: 62
  start-page: 165
  year: 2009
  end-page: 173
  article-title: Can arterial spin labeling detect white matter perfusion signal?
  publication-title: Magn Reson Med
– volume: 44
  start-page: 680
  year: 2000
  end-page: 685
  article-title: Transit time, trailing time, and cerebral blood flow during brain activation: measurement using multislice, pulsed spin‐labeling perfusion imaging
  publication-title: Magn Reson Med
– volume: 22
  start-page: 1306
  year: 2001
  end-page: 1315
  article-title: Perfusion‐sensitive MR imaging of gliomas: comparison between gradient‐echo and spin‐echo echo‐planar imaging techniques
  publication-title: AJNR Am J Neuroradiol
– volume: 34
  start-page: 555
  year: 1995
  end-page: 566
  article-title: MR contrast due to intravascular magnetic susceptibility perturbations
  publication-title: Magn Reson Med
– volume: 43
  start-page: 1290
  year: 2012
  end-page: 1294
  article-title: Whole‐brain arterial spin labeling perfusion MRI in patients with acute stroke
  publication-title: Stroke
– ident: e_1_2_6_21_1
  doi: 10.1161/STROKEAHA.110.589234
– ident: e_1_2_6_31_1
  doi: 10.1016/j.neuroimage.2011.02.080
– ident: e_1_2_6_2_1
  doi: 10.1002/mrm.1910140211
– ident: e_1_2_6_20_1
  doi: 10.1161/STROKEAHA.111.631929
– volume: 22
  start-page: 1306
  year: 2001
  ident: e_1_2_6_27_1
  article-title: Perfusion‐sensitive MR imaging of gliomas: comparison between gradient‐echo and spin‐echo echo‐planar imaging techniques
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_6_3_1
  doi: 10.1002/mrm.1910360510
– ident: e_1_2_6_4_1
  doi: 10.1002/mrm.1910360511
– ident: e_1_2_6_19_1
  doi: 10.1161/STROKEAHA.111.635979
– ident: e_1_2_6_17_1
  doi: 10.3174/ajnr.A2725
– ident: e_1_2_6_22_1
  doi: 10.1002/mrm.20759
– ident: e_1_2_6_25_1
  doi: 10.1002/mrm.1910370215
– ident: e_1_2_6_9_1
  doi: 10.1161/01.STR.31.3.680
– ident: e_1_2_6_13_1
  doi: 10.1007/s00234-009-0616-6
– ident: e_1_2_6_7_1
  doi: 10.1002/jmri.1880070313
– ident: e_1_2_6_6_1
  doi: 10.1002/mrm.1910340412
– ident: e_1_2_6_23_1
  doi: 10.1097/00004647-199611000-00019
– ident: e_1_2_6_10_1
  doi: 10.1148/radiol.2282020409
– ident: e_1_2_6_24_1
  doi: 10.1002/1522-2594(200011)44:5<680::AID-MRM4>3.0.CO;2-Q
– ident: e_1_2_6_14_1
  doi: 10.1097/01.rli.0000084890.57197.54
– ident: e_1_2_6_16_1
  doi: 10.1016/j.mri.2009.06.006
– ident: e_1_2_6_26_1
  doi: 10.1002/mrm.1910310103
– ident: e_1_2_6_18_1
  doi: 10.1007/s00062-011-0126-x
– ident: e_1_2_6_5_1
  doi: 10.3174/ajnr.A0831
– ident: e_1_2_6_15_1
  doi: 10.1097/01.rli.0000119195.50515.04
– ident: e_1_2_6_30_1
  doi: 10.1002/jmri.23613
– ident: e_1_2_6_28_1
  doi: 10.1002/mrm.22002
– ident: e_1_2_6_29_1
  doi: 10.1002/nbm.1792
– volume: 22
  start-page: 1334
  year: 2001
  ident: e_1_2_6_11_1
  article-title: Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_6_12_1
  doi: 10.1002/mrm.21790
– ident: e_1_2_6_8_1
  doi: 10.1002/1522-2586(200009)12:3<381::AID-JMRI2>3.0.CO;2-Y
SSID ssj0009945
Score 2.2714305
Snippet Purpose To compare the relative cerebral blood flow (CBF) obtained by pseudo‐continuous arterial spin labeling sequence incorporated with volumetric fast...
To compare the relative cerebral blood flow (CBF) obtained by pseudo-continuous arterial spin labeling sequence incorporated with volumetric fast spin-echo...
Purpose To compare the relative cerebral blood flow (CBF) obtained by pseudo-continuous arterial spin labeling sequence incorporated with volumetric fast...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 427
SubjectTerms Adult
Algorithms
arterial spin labeling (ASL)
Blood Flow Velocity
Brain Diseases - diagnosis
Brain Diseases - physiopathology
Cerebral Arteries - physiopathology
Cerebrovascular Circulation
Child
Contrast Media
dynamic susceptibility contrast (DSC)
Female
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Magnetic Resonance Angiography - methods
Magnetic resonance imaging
Male
Middle Aged
MRI
perfusion
pseudo-continuous ASL (PCASL)
Reproducibility of Results
Sensitivity and Specificity
Spin Labels
Young Adult
Title Comparison of three-dimensional pseudo-continuous arterial spin labeling perfusion imaging with gradient-echo and spin-echo dynamic susceptibility contrast MRI
URI https://api.istex.fr/ark:/67375/WNG-P7SB0QD2-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.24178
https://www.ncbi.nlm.nih.gov/pubmed/23677620
https://www.proquest.com/docview/1477893205
https://www.proquest.com/docview/1490722072
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1053-1807
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009945
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ra9UwGA5jgvjF-6XblIgiKPSsTdOmAb_odM7BGTod7ouU3CrddnoOvcC2T_4E_4X_y1_im_RymAxBPxR6edNL8iZ50jx5XoSeMpEknBjiK6pTn4qE-2mSGj9IOQ0UIGjpYgNO95KdA7p7GB-uoJfDWphOH2L84WZrhmuvbQUXst5cioYezapiAv0Psyt9wyh2c7T7S-0ozl2EYsAPkR-mARu1ScnmMumF3uiKzdjTy6DmReTqup7tG-jr8NId4-R40jZyos7_0HP836-6ia73mBS_6pzoFlox5W10ddrPut9BP7fGYIV4nuMGit_8-v5D28AAnagHXtSm1XM4aanvRdnO2xo7tii4N64XRYnB29zSd7wwVd7aZLiYuRBJ2P4Lxt8qRz5r4B4GmmQsSu0SDsf6rBSzQuG6rR0Tx5F6z7Cj2ou6wdP993fRwfbbz1s7fh_gwVcRj2H0GhMdhnmY81BGoQm4okZQonKR6lARTTgzCeDXSJs4N7GkkhlKDWypIVSx6B5aLeeleYAw4Jg8YYnOmeEUUkoRSJlLq98WRzLiHno-FHSmevVzG4TjJOt0m0lmcz5zOe-hJ6PtotP8uNTqmfOX0URUx5Ylx-Lsy9677AP79Dr4-IZk8OiNwaGyvoGoYcTFGEBFEsQeejxehqpt52tEaaCYwIYHjBDYPHS_c8TxYVZ4D_qxwEMvnDv95UWzXSgBt7f2L8br6BpkKu0Y6htotala8xAAWCMfuYr2GzN5Mxo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLZgk4Ab_mGBAUYgJCalSxwnji9hY3RjrWBsYneR_zKF0bRqEolxxSPwFrwXT8Kxk6YampDgIlKbHiepfY792f7yHYSeM5EknBjiK6pTn4qE-2mSGj9IOQ0UIGjpcgOOxsnwiO4dx8cdN8e-C9PqQ_QLbjYyXH9tA9wuSG8uVUM_T-bFAAYgll5Gq3aDzsbl9sFSPYpzl6MYEETkh2nAenVSsrkse248WrVV-_UisHkeu7rBZ-dGm2G1cpqFlnNyOmhqOVDf_lB0_O__dRNd72ApftX60S10yZS30ZVRt_F-B_3c6vMV4mmOa_AA8-v7D21zA7S6HnhWmUZP4aRlvxdlM20q7Aij4OG4mhUlBodzb7_jmZnnjS2Gi4nLkoTtcjA-mTv-WQ3XMNArY1FqV3DxXZ-VYlIoXDWVI-M4Xu8Zdmx7UdV4dLB7Fx3tvDncGvpdjgdfRTyGCWxMdBjmYc5DGYUm4IoaQYnKRapDRTThzCQAYSNt4tzEkkpmKDVwpIZQxaJ7aKWclmYNYYAyecISnTPDKZSUIpAyl1bCLY5kxD30ctHSmeoE0G0eji9ZK91MMlvzmat5Dz3rbWet7MeFVi-cw_QmYn5qiXIszj6N32bv2cfXwYdtksGt1xcelXV9RAWTLsYALZIg9tDT_meIbrtlI0oDzQQ2PGCEwOGh-60n9jez2nswlAUe2nD-9JcHzfagBdynB_9i_ARdHR6O9rP93fG7h-gaVDBtCevraKWeN-YR4LFaPnZR9xsqZDc2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtQwFLVKK1W8sC-BAkYgJJAyTRwnjiVeoGVoCzMqpRV9QVG8BIUymVEWifLEJ_AX_BdfwrWzjIoqJHiIlOU6cexr-zg-ORehxyyNIk40cSVVsUvTiLtxFGvXizn1JCBoYWMDTqbRzhHdOw6PV9Dz_l-YVh9i-OBmWobtr00DX6hscyka-nlW5iMYf1h8Aa3RCKZXBhIdLMWjOLchigFABK4fe2wQJyWby7RnhqM1U7Jfz8OaZ6GrHXvGl9HHPtct5eRk1NRiJL_9Iej4v691BV3qQCl-0XrRVbSii2tofdItu19HP7eGaIV4nuEa6l__-v5DmcgAraoHXlS6UXM4abjvedHMmwpbuij4N64WeYHB3ey_73ihy6wxyXA-szGSsPkYjD-Vln1Wwz009Mk4LZRN2B-r0yKd5RJXTWWpOJbVe4ot1z6tajw52L2BjsavDrd23C7CgysDHsL0NSTK9zM_474IfO1xSXVKiczSWPmSKMKZjgDABkqHmQ4FFUxTqmGLNaGSBTfRajEv9G2EAchkEYtUxjSnkFKknhCZMAJuYSAC7qCnfUUnspM_N1E4viStcDNJTMkntuQd9GiwXbSiH-daPbH-Mpik5YmhybEw-TB9neyz9y-9d9skgUdv9A6VdD1EBVMuxgArEi900MPhMrRts2CTFhqqCWy4xwiBzUG3WkccHmaU92Ag8xz0zLrTXzKa7EEN2L07_2L8AK3vb4-Tt7vTN3fRRShf2rLVN9BqXTb6HoCxWty3be43cjE15Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+three-dimensional+pseudo-continuous+arterial+spin+labeling+perfusion+imaging+with+gradient-echo+and+spin-echo+dynamic+susceptibility+contrast+MRI&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Wong%2C+Alex+M.&rft.au=Yan%2C+Feng-Xian&rft.au=Liu%2C+Ho-Ling&rft.date=2014-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=39&rft.issue=2&rft.spage=427&rft.epage=433&rft_id=info:doi/10.1002%2Fjmri.24178&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_P7SB0QD2_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon