Comparison of three-dimensional pseudo-continuous arterial spin labeling perfusion imaging with gradient-echo and spin-echo dynamic susceptibility contrast MRI
Purpose To compare the relative cerebral blood flow (CBF) obtained by pseudo‐continuous arterial spin labeling sequence incorporated with volumetric fast spin‐echo readout (3D‐PCASL) with those by gradient‐echo (GE) and spin‐echo (SE) dynamic susceptibility contrast (DSC) MRI. Materials and Methods...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 39; no. 2; pp. 427 - 433 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.02.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1053-1807 1522-2586 1522-2586 |
DOI | 10.1002/jmri.24178 |
Cover
Abstract | Purpose
To compare the relative cerebral blood flow (CBF) obtained by pseudo‐continuous arterial spin labeling sequence incorporated with volumetric fast spin‐echo readout (3D‐PCASL) with those by gradient‐echo (GE) and spin‐echo (SE) dynamic susceptibility contrast (DSC) MRI.
Materials and Methods
Thirty patients with various neurological diseases participated in this study. In addition to 3D‐PCASL, 15 patients received GE‐DSC and the others received SE‐DSC imaging on a 3 Tesla scanner. A cortical gray matter (GM) to white matter (WM) and a thalamus (TM) to WM CBF ratio were determined from each perfusion scan. In addition, histograms of relative CBF distributions were obtained from each method for comparison.
Results
Significant correlations of CBF ratios were found between 3D‐PCASL and the two DSC methods (P < 0.05). The 3D‐PCASL resulted in GM/WM CBF ratios similar to SE‐DSC but significantly smaller than GE‐DSC (P = 2.3 × 10−7). TM/WM CBF ratio obtained by 3D‐PCASL was significantly smaller than those by GE‐ and SE‐DSC (P = 4.1 × 10−7 and 1.2 × 10−6, respectively). The histogram of relative CBF maps obtained from SE‐DSC, after applied spatial smoothing, agreed well with that from 3D‐PCASL.
Conclusion
This study suggested that perfusion images obtained from 3D‐PCASL exhibited significant correlations with DSC‐MRI, with greater microvascular weighting like SE‐DSC. J. Magn. Reson. Imaging 2014;39:427–433. © 2013 Wiley Periodicals, Inc. |
---|---|
AbstractList | Purpose
To compare the relative cerebral blood flow (CBF) obtained by pseudo‐continuous arterial spin labeling sequence incorporated with volumetric fast spin‐echo readout (3D‐PCASL) with those by gradient‐echo (GE) and spin‐echo (SE) dynamic susceptibility contrast (DSC) MRI.
Materials and Methods
Thirty patients with various neurological diseases participated in this study. In addition to 3D‐PCASL, 15 patients received GE‐DSC and the others received SE‐DSC imaging on a 3 Tesla scanner. A cortical gray matter (GM) to white matter (WM) and a thalamus (TM) to WM CBF ratio were determined from each perfusion scan. In addition, histograms of relative CBF distributions were obtained from each method for comparison.
Results
Significant correlations of CBF ratios were found between 3D‐PCASL and the two DSC methods (P < 0.05). The 3D‐PCASL resulted in GM/WM CBF ratios similar to SE‐DSC but significantly smaller than GE‐DSC (P = 2.3 × 10−7). TM/WM CBF ratio obtained by 3D‐PCASL was significantly smaller than those by GE‐ and SE‐DSC (P = 4.1 × 10−7 and 1.2 × 10−6, respectively). The histogram of relative CBF maps obtained from SE‐DSC, after applied spatial smoothing, agreed well with that from 3D‐PCASL.
Conclusion
This study suggested that perfusion images obtained from 3D‐PCASL exhibited significant correlations with DSC‐MRI, with greater microvascular weighting like SE‐DSC. J. Magn. Reson. Imaging 2014;39:427–433. © 2013 Wiley Periodicals, Inc. Purpose To compare the relative cerebral blood flow (CBF) obtained by pseudo-continuous arterial spin labeling sequence incorporated with volumetric fast spin-echo readout (3D-PCASL) with those by gradient-echo (GE) and spin-echo (SE) dynamic susceptibility contrast (DSC) MRI. Materials and Methods Thirty patients with various neurological diseases participated in this study. In addition to 3D-PCASL, 15 patients received GE-DSC and the others received SE-DSC imaging on a 3 Tesla scanner. A cortical gray matter (GM) to white matter (WM) and a thalamus (TM) to WM CBF ratio were determined from each perfusion scan. In addition, histograms of relative CBF distributions were obtained from each method for comparison. Results Significant correlations of CBF ratios were found between 3D-PCASL and the two DSC methods (P<0.05). The 3D-PCASL resulted in GM/WM CBF ratios similar to SE-DSC but significantly smaller than GE-DSC (P=2.3 × 10-7). TM/WM CBF ratio obtained by 3D-PCASL was significantly smaller than those by GE- and SE-DSC (P=4.1 × 10-7 and 1.2 × 10-6, respectively). The histogram of relative CBF maps obtained from SE-DSC, after applied spatial smoothing, agreed well with that from 3D-PCASL. Conclusion This study suggested that perfusion images obtained from 3D-PCASL exhibited significant correlations with DSC-MRI, with greater microvascular weighting like SE-DSC. J. Magn. Reson. Imaging 2014;39:427-433. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] To compare the relative cerebral blood flow (CBF) obtained by pseudo-continuous arterial spin labeling sequence incorporated with volumetric fast spin-echo readout (3D-PCASL) with those by gradient-echo (GE) and spin-echo (SE) dynamic susceptibility contrast (DSC) MRI.PURPOSETo compare the relative cerebral blood flow (CBF) obtained by pseudo-continuous arterial spin labeling sequence incorporated with volumetric fast spin-echo readout (3D-PCASL) with those by gradient-echo (GE) and spin-echo (SE) dynamic susceptibility contrast (DSC) MRI.Thirty patients with various neurological diseases participated in this study. In addition to 3D-PCASL, 15 patients received GE-DSC and the others received SE-DSC imaging on a 3 Tesla scanner. A cortical gray matter (GM) to white matter (WM) and a thalamus (TM) to WM CBF ratio were determined from each perfusion scan. In addition, histograms of relative CBF distributions were obtained from each method for comparison.MATERIALS AND METHODSThirty patients with various neurological diseases participated in this study. In addition to 3D-PCASL, 15 patients received GE-DSC and the others received SE-DSC imaging on a 3 Tesla scanner. A cortical gray matter (GM) to white matter (WM) and a thalamus (TM) to WM CBF ratio were determined from each perfusion scan. In addition, histograms of relative CBF distributions were obtained from each method for comparison.Significant correlations of CBF ratios were found between 3D-PCASL and the two DSC methods (P < 0.05). The 3D-PCASL resulted in GM/WM CBF ratios similar to SE-DSC but significantly smaller than GE-DSC (P = 2.3 × 10(-7) ). TM/WM CBF ratio obtained by 3D-PCASL was significantly smaller than those by GE- and SE-DSC (P = 4.1 × 10(-7) and 1.2 × 10(-6) , respectively). The histogram of relative CBF maps obtained from SE-DSC, after applied spatial smoothing, agreed well with that from 3D-PCASL.RESULTSSignificant correlations of CBF ratios were found between 3D-PCASL and the two DSC methods (P < 0.05). The 3D-PCASL resulted in GM/WM CBF ratios similar to SE-DSC but significantly smaller than GE-DSC (P = 2.3 × 10(-7) ). TM/WM CBF ratio obtained by 3D-PCASL was significantly smaller than those by GE- and SE-DSC (P = 4.1 × 10(-7) and 1.2 × 10(-6) , respectively). The histogram of relative CBF maps obtained from SE-DSC, after applied spatial smoothing, agreed well with that from 3D-PCASL.This study suggested that perfusion images obtained from 3D-PCASL exhibited significant correlations with DSC-MRI, with greater microvascular weighting like SE-DSC.CONCLUSIONThis study suggested that perfusion images obtained from 3D-PCASL exhibited significant correlations with DSC-MRI, with greater microvascular weighting like SE-DSC. To compare the relative cerebral blood flow (CBF) obtained by pseudo-continuous arterial spin labeling sequence incorporated with volumetric fast spin-echo readout (3D-PCASL) with those by gradient-echo (GE) and spin-echo (SE) dynamic susceptibility contrast (DSC) MRI. Thirty patients with various neurological diseases participated in this study. In addition to 3D-PCASL, 15 patients received GE-DSC and the others received SE-DSC imaging on a 3 Tesla scanner. A cortical gray matter (GM) to white matter (WM) and a thalamus (TM) to WM CBF ratio were determined from each perfusion scan. In addition, histograms of relative CBF distributions were obtained from each method for comparison. Significant correlations of CBF ratios were found between 3D-PCASL and the two DSC methods (P < 0.05). The 3D-PCASL resulted in GM/WM CBF ratios similar to SE-DSC but significantly smaller than GE-DSC (P = 2.3 × 10(-7) ). TM/WM CBF ratio obtained by 3D-PCASL was significantly smaller than those by GE- and SE-DSC (P = 4.1 × 10(-7) and 1.2 × 10(-6) , respectively). The histogram of relative CBF maps obtained from SE-DSC, after applied spatial smoothing, agreed well with that from 3D-PCASL. This study suggested that perfusion images obtained from 3D-PCASL exhibited significant correlations with DSC-MRI, with greater microvascular weighting like SE-DSC. |
Author | Wong, Alex M. Liu, Ho-Ling Yan, Feng-Xian |
Author_xml | – sequence: 1 givenname: Alex M. surname: Wong fullname: Wong, Alex M. organization: Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Keelung, Linkou Medical Center, Taiwan – sequence: 2 givenname: Feng-Xian surname: Yan fullname: Yan, Feng-Xian organization: Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan – sequence: 3 givenname: Ho-Ling surname: Liu fullname: Liu, Ho-Ling email: hlaliu@mail.cgu.edu.tw organization: Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Keelung, Linkou Medical Center, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23677620$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1URNuFCz8AWeKCKqXYzofjI11oKSrfII6W40x2vSR2sB2V_TX8VZzdtocKcRjZYz_v2PPOMTqwzgJCTyk5pYSwl5vBm1NWUF4_QEe0ZCxjZV0dpD0p84zWhB-i4xA2hBAhivIROmR5xXnFyBH6s3TDqLwJzmLX4bj2AFlrBrDBOKt6PAaYWpdpZ6Oxk5sCVj6CN-kqjMbiXjXQG7vCI_humkXYDGo1n1ybuMYrr1oDNmag1w4r2-5k-6zdWjUYjcMUNIzRNKY3cYvnt7wKEb__cvkYPexUH-DJzbpA38_ffFu-za4-XlwuX11lOhdlnaWuW0o72gna5BSI0AWogulO1S3VrGWCQyVolbdQdlA2RcOhKCBFDazQPF-gF_u6o3e_JghRDiZ9qu-VhdS0pIUgnLEUCX1-D924ySevZorzWuQs-b5Az26oqRmglaNPtvitvLU-ASd7QHsXgofuDqFEznOV81zlbq4JJvdgbaKKZueU6f8toXvJtelh-5_i8l3y-VaT7TUmRPh9p1H-p6x4zkv548OF_MS_npHPr5kU-V9NuMfu |
CitedBy_id | crossref_primary_10_3348_kjr_2018_0300 crossref_primary_10_1002_jmri_24920 crossref_primary_10_1007_s00062_017_0623_7 crossref_primary_10_1007_s00234_018_2062_9 crossref_primary_10_1038_jcbfm_2015_55 crossref_primary_10_13104_imri_2022_26_1_10 crossref_primary_10_1016_j_neurad_2017_02_003 crossref_primary_10_1016_j_jad_2022_04_099 crossref_primary_10_3171_2015_8_JNS151211 crossref_primary_10_1016_j_neuroimage_2018_10_035 crossref_primary_10_1007_s00381_015_2858_4 crossref_primary_10_1007_s00234_017_1863_6 crossref_primary_10_1016_j_neurad_2019_08_006 crossref_primary_10_1016_j_wneu_2015_09_048 crossref_primary_10_1155_2015_234245 crossref_primary_10_1259_bjr_20160495 crossref_primary_10_1177_0284185119891694 crossref_primary_10_1155_2015_697402 crossref_primary_10_1016_j_ejrad_2018_08_001 crossref_primary_10_1177_0271678X16653134 crossref_primary_10_3389_fnana_2022_893953 crossref_primary_10_1002_jmri_24637 crossref_primary_10_1002_nbm_3297 crossref_primary_10_1016_j_wneu_2020_07_039 crossref_primary_10_1016_j_neurad_2018_11_003 crossref_primary_10_1007_s11060_014_1586_z crossref_primary_10_1002_mrm_25463 crossref_primary_10_1259_bjr_20201311 crossref_primary_10_1371_journal_pone_0149109 crossref_primary_10_1073_pnas_1807983116 crossref_primary_10_1002_jmri_25022 crossref_primary_10_1002_mrm_30091 |
Cites_doi | 10.1161/STROKEAHA.110.589234 10.1016/j.neuroimage.2011.02.080 10.1002/mrm.1910140211 10.1161/STROKEAHA.111.631929 10.1002/mrm.1910360510 10.1002/mrm.1910360511 10.1161/STROKEAHA.111.635979 10.3174/ajnr.A2725 10.1002/mrm.20759 10.1002/mrm.1910370215 10.1161/01.STR.31.3.680 10.1007/s00234-009-0616-6 10.1002/jmri.1880070313 10.1002/mrm.1910340412 10.1097/00004647-199611000-00019 10.1148/radiol.2282020409 10.1002/1522-2594(200011)44:5<680::AID-MRM4>3.0.CO;2-Q 10.1097/01.rli.0000084890.57197.54 10.1016/j.mri.2009.06.006 10.1002/mrm.1910310103 10.1007/s00062-011-0126-x 10.3174/ajnr.A0831 10.1097/01.rli.0000119195.50515.04 10.1002/jmri.23613 10.1002/mrm.22002 10.1002/nbm.1792 10.1002/mrm.21790 10.1002/1522-2586(200009)12:3<381::AID-JMRI2>3.0.CO;2-Y |
ContentType | Journal Article |
Copyright | Copyright © 2013 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2013 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/jmri.24178 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 433 |
ExternalDocumentID | 3183659841 23677620 10_1002_jmri_24178 JMRI24178 ark_67375_WNG_P7SB0QD2_9 |
Genre | article Comparative Study Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Council of Taiwan funderid: NSC101–2314‐B‐182‐063‐MY3. |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAYXX CITATION AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c3958-152d11f1f91b31e09c4ea42cfa8d1c2d297e69163de5fe5b4b7e44ee448e24c73 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Fri Jul 11 05:21:11 EDT 2025 Fri Jul 25 10:38:59 EDT 2025 Thu Apr 03 07:06:27 EDT 2025 Wed Oct 01 04:36:47 EDT 2025 Thu Apr 24 22:57:00 EDT 2025 Sun Sep 21 06:20:14 EDT 2025 Sun Sep 21 06:17:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | dynamic susceptibility contrast (DSC) perfusion MRI arterial spin labeling (ASL) pseudo-continuous ASL (PCASL) |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2013 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3958-152d11f1f91b31e09c4ea42cfa8d1c2d297e69163de5fe5b4b7e44ee448e24c73 |
Notes | National Science Council of Taiwan - No. NSC101-2314-B-182-063-MY3. ark:/67375/WNG-P7SB0QD2-9 istex:711589040189F084798A12946072FAF5ABDB4471 ArticleID:JMRI24178 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
PMID | 23677620 |
PQID | 1477893205 |
PQPubID | 1006400 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1490722072 proquest_journals_1477893205 pubmed_primary_23677620 crossref_primary_10_1002_jmri_24178 crossref_citationtrail_10_1002_jmri_24178 wiley_primary_10_1002_jmri_24178_JMRI24178 istex_primary_ark_67375_WNG_P7SB0QD2_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02 February 2014 2014-02-00 2014-Feb 20140201 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Nashville |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J. Magn. Reson. Imaging |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Boxerman JL, Rosen BR, Weisskoff RM. Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies. J Magn Reson Imaging 1997;7:528-537. Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of arterial input function using cluster analysis. Magn Reson Med 2006;55:524-531. Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 1996;16:1236-1249. Warmuth C, Gunther M, Zimmer C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 2003;228:523-532. Hirai T, Kitajima M, Nakamura H, et al. Quantitative blood flow measurements in gliomas using arterial spin-labeling at 3T: intermodality agreement and inter- and intraobserver reproducibility study. AJNR Am J Neuroradiol 2011;32:2073-2079. Sugahara T, Korogi Y, Kochi M, Ushio Y, Takahashi M. Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. AJNR Am J Neuroradiol 2001;22:1306-1315. Yang Y, Engelien W, Xu S, Gu H, Silbersweiq DA, Stern E. Transit time, trailing time, and cerebral blood flow during brain activation: measurement using multislice, pulsed spin-labeling perfusion imaging. Magn Reson Med 2000;44:680-685. Zaharchuk G. Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. AJNR Am J Neuroradiol 2007;28:1850-1858. Speck O, Chang L, DeSilva NM, Ernst T. Perfusion MRI of the human brain with dynamic susceptibility contrast: gradient-echo versus spin-echo techniques. J Magn Reson Imaging 2000;12:381-387. van Osch MJ, Teeuwisse WM, van Walderveen MA, Hendrikse J, Kies DA, van Buchem MA. Can arterial spin labeling detect white matter perfusion signal? Magn Reson Med 2009;62:165-173. Kennan RP, Zhong J, Gore JC. Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med 1994;31:9-21. Hernandez DA, Bokkers RP, Mirasol RV, et al. Pseudocontinuous arterial spin labeling quantifies relative cerebral blood flow in acute stroke. Stroke 2012;43:753-758. Wu WC, Jiang SF, Yang SC, Lien SH. Pseudocontinuous arterial spin labeling perfusion magnetic resonance imaging--a normative study of reproducibility in the human brain. Neuroimage 2011;56:1244-1250. Qiu D, Straka M, Zun Z, Bammer R, Moseley ME, Zaharchuk G. CBF measurements using multidelay pseudocontinuous and velocity-selective arterial spin labeling in patients with long arterial transit delays: comparison with xenon CT CBF. J Magn Reson Imaging 2012;36:110-119. Huck S, Kerl HU, Al-Zghloul M, Groden C, Nolte I. Arterial spin labeling at 3.0 Tesla in subacute ischemia: comparison to dynamic susceptibility perfusion. Clin Neuroradiol 2012;22:29-37. Jarnum H, Steffensen EG, Knutsson L, et al. Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. Neuroradiology 2010;52:307-317. Liu P, Uh J, Devous MD, Adinoff B, Lu H. Comparison of relative cerebral blood flow maps using pseudo-continuous arterial spin labeling and single photon emission computed tomography. NMR Biomed 2012;25:779-786. Weber MA, Thilmann C, Lichy MP, et al. Assessment of irradiated brain metastases by means of arterial spin-labeling and dynamic susceptibility-weighted contrast-enhanced perfusion MRI: initial results. Invest Radiol 2004;39:277-287. Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249-265. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 1995;34:555-566. Knutsson L, van Westen D, Petersen ET, et al. Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and model-free arterial spin labeling. Magn Reson Imaging 2010;28:1-7. Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 2000;31:680-687. Wolf RL, Alsop DC, Levy-Reis I, et al. Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. AJNR Am J Neuroradiol 2001;22:1334-1341. Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008;60:1488-1497. Weber MA, Gunther M, Lichy MP, et al. Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue. Invest Radiol 2003;38:712-718. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I. Mathematical approach and statistical analysis. Magn Reson Med 1996;36:715-725. Wang DJ, Alger JR, Qiao JX, et al. The value of arterial spin-labeled perfusion imaging in acute ischemic stroke: comparison with dynamic susceptibility contrast-enhanced MRI. Stroke 2012;43:1018-1024. Ye FQ, Mattay VS, Jezzard P, Frank JA, Weinberger DR, McLaughlin AC. Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques. Magn Reson Med 1997;37:226-235. Bokkers RP, Hernandez DA, Merino JG, et al. Whole-brain arterial spin labeling perfusion MRI in patients with acute stroke. Stroke 2012;43:1290-1294. Ostergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II. Experimental comparison and preliminary results. Magn Reson Med 1996;36:726-736. 2009; 62 1990; 14 2006; 55 1995; 34 2000; 44 2003; 38 2011; 32 2011; 56 1996; 36 2001; 22 2012; 36 1996; 16 1997; 7 2007; 28 2003; 228 2000; 12 2004; 39 2010; 28 1997; 37 2000; 31 2012; 25 2008; 60 2012; 22 2010; 52 2012; 43 1994; 31 Wolf RL (e_1_2_6_11_1) 2001; 22 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 Sugahara T (e_1_2_6_27_1) 2001; 22 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_26_1 |
References_xml | – reference: Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I. Mathematical approach and statistical analysis. Magn Reson Med 1996;36:715-725. – reference: Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of arterial input function using cluster analysis. Magn Reson Med 2006;55:524-531. – reference: Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 2000;31:680-687. – reference: Jarnum H, Steffensen EG, Knutsson L, et al. Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. Neuroradiology 2010;52:307-317. – reference: Weber MA, Gunther M, Lichy MP, et al. Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue. Invest Radiol 2003;38:712-718. – reference: Knutsson L, van Westen D, Petersen ET, et al. Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and model-free arterial spin labeling. Magn Reson Imaging 2010;28:1-7. – reference: Zaharchuk G. Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. AJNR Am J Neuroradiol 2007;28:1850-1858. – reference: Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 1996;16:1236-1249. – reference: Huck S, Kerl HU, Al-Zghloul M, Groden C, Nolte I. Arterial spin labeling at 3.0 Tesla in subacute ischemia: comparison to dynamic susceptibility perfusion. Clin Neuroradiol 2012;22:29-37. – reference: Warmuth C, Gunther M, Zimmer C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 2003;228:523-532. – reference: Kennan RP, Zhong J, Gore JC. Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med 1994;31:9-21. – reference: Wu WC, Jiang SF, Yang SC, Lien SH. Pseudocontinuous arterial spin labeling perfusion magnetic resonance imaging--a normative study of reproducibility in the human brain. Neuroimage 2011;56:1244-1250. – reference: Yang Y, Engelien W, Xu S, Gu H, Silbersweiq DA, Stern E. Transit time, trailing time, and cerebral blood flow during brain activation: measurement using multislice, pulsed spin-labeling perfusion imaging. Magn Reson Med 2000;44:680-685. – reference: Speck O, Chang L, DeSilva NM, Ernst T. Perfusion MRI of the human brain with dynamic susceptibility contrast: gradient-echo versus spin-echo techniques. J Magn Reson Imaging 2000;12:381-387. – reference: Liu P, Uh J, Devous MD, Adinoff B, Lu H. Comparison of relative cerebral blood flow maps using pseudo-continuous arterial spin labeling and single photon emission computed tomography. NMR Biomed 2012;25:779-786. – reference: Boxerman JL, Rosen BR, Weisskoff RM. Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies. J Magn Reson Imaging 1997;7:528-537. – reference: Ye FQ, Mattay VS, Jezzard P, Frank JA, Weinberger DR, McLaughlin AC. Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques. Magn Reson Med 1997;37:226-235. – reference: Wolf RL, Alsop DC, Levy-Reis I, et al. Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. AJNR Am J Neuroradiol 2001;22:1334-1341. – reference: Sugahara T, Korogi Y, Kochi M, Ushio Y, Takahashi M. Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. AJNR Am J Neuroradiol 2001;22:1306-1315. – reference: Wang DJ, Alger JR, Qiao JX, et al. The value of arterial spin-labeled perfusion imaging in acute ischemic stroke: comparison with dynamic susceptibility contrast-enhanced MRI. Stroke 2012;43:1018-1024. – reference: Bokkers RP, Hernandez DA, Merino JG, et al. Whole-brain arterial spin labeling perfusion MRI in patients with acute stroke. Stroke 2012;43:1290-1294. – reference: Hernandez DA, Bokkers RP, Mirasol RV, et al. Pseudocontinuous arterial spin labeling quantifies relative cerebral blood flow in acute stroke. Stroke 2012;43:753-758. – reference: Qiu D, Straka M, Zun Z, Bammer R, Moseley ME, Zaharchuk G. CBF measurements using multidelay pseudocontinuous and velocity-selective arterial spin labeling in patients with long arterial transit delays: comparison with xenon CT CBF. J Magn Reson Imaging 2012;36:110-119. – reference: Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249-265. – reference: Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008;60:1488-1497. – reference: Hirai T, Kitajima M, Nakamura H, et al. Quantitative blood flow measurements in gliomas using arterial spin-labeling at 3T: intermodality agreement and inter- and intraobserver reproducibility study. AJNR Am J Neuroradiol 2011;32:2073-2079. – reference: Weber MA, Thilmann C, Lichy MP, et al. Assessment of irradiated brain metastases by means of arterial spin-labeling and dynamic susceptibility-weighted contrast-enhanced perfusion MRI: initial results. Invest Radiol 2004;39:277-287. – reference: Ostergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II. Experimental comparison and preliminary results. Magn Reson Med 1996;36:726-736. – reference: Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 1995;34:555-566. – reference: van Osch MJ, Teeuwisse WM, van Walderveen MA, Hendrikse J, Kies DA, van Buchem MA. Can arterial spin labeling detect white matter perfusion signal? Magn Reson Med 2009;62:165-173. – volume: 36 start-page: 110 year: 2012 end-page: 119 article-title: CBF measurements using multidelay pseudocontinuous and velocity‐selective arterial spin labeling in patients with long arterial transit delays: comparison with xenon CT CBF publication-title: J Magn Reson Imaging – volume: 14 start-page: 249 year: 1990 end-page: 265 article-title: Perfusion imaging with NMR contrast agents publication-title: Magn Reson Med – volume: 16 start-page: 1236 year: 1996 end-page: 1249 article-title: Reduced transit‐time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow publication-title: J Cereb Blood Flow Metab – volume: 31 start-page: 9 year: 1994 end-page: 21 article-title: Intravascular susceptibility contrast mechanisms in tissues publication-title: Magn Reson Med – volume: 22 start-page: 29 year: 2012 end-page: 37 article-title: Arterial spin labeling at 3.0 Tesla in subacute ischemia: comparison to dynamic susceptibility perfusion publication-title: Clin Neuroradiol – volume: 28 start-page: 1850 year: 2007 end-page: 1858 article-title: Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability publication-title: AJNR Am J Neuroradiol – volume: 7 start-page: 528 year: 1997 end-page: 537 article-title: Signal‐to‐noise analysis of cerebral blood volume maps from dynamic NMR imaging studies publication-title: J Magn Reson Imaging – volume: 52 start-page: 307 year: 2010 end-page: 317 article-title: Perfusion MRI of brain tumours: a comparative study of pseudo‐continuous arterial spin labelling and dynamic susceptibility contrast imaging publication-title: Neuroradiology – volume: 43 start-page: 1018 year: 2012 end-page: 1024 article-title: The value of arterial spin‐labeled perfusion imaging in acute ischemic stroke: comparison with dynamic susceptibility contrast‐enhanced MRI publication-title: Stroke – volume: 25 start-page: 779 year: 2012 end-page: 786 article-title: Comparison of relative cerebral blood flow maps using pseudo‐continuous arterial spin labeling and single photon emission computed tomography publication-title: NMR Biomed – volume: 22 start-page: 1334 year: 2001 end-page: 1341 article-title: Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging publication-title: AJNR Am J Neuroradiol – volume: 32 start-page: 2073 year: 2011 end-page: 2079 article-title: Quantitative blood flow measurements in gliomas using arterial spin‐labeling at 3T: intermodality agreement and inter‐ and intraobserver reproducibility study publication-title: AJNR Am J Neuroradiol – volume: 39 start-page: 277 year: 2004 end-page: 287 article-title: Assessment of irradiated brain metastases by means of arterial spin‐labeling and dynamic susceptibility‐weighted contrast‐enhanced perfusion MRI: initial results publication-title: Invest Radiol – volume: 36 start-page: 715 year: 1996 end-page: 725 article-title: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I. Mathematical approach and statistical analysis publication-title: Magn Reson Med – volume: 28 start-page: 1 year: 2010 end-page: 7 article-title: Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and model‐free arterial spin labeling publication-title: Magn Reson Imaging – volume: 38 start-page: 712 year: 2003 end-page: 718 article-title: Comparison of arterial spin‐labeling techniques and dynamic susceptibility‐weighted contrast‐enhanced MRI in perfusion imaging of normal brain tissue publication-title: Invest Radiol – volume: 31 start-page: 680 year: 2000 end-page: 687 article-title: Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling publication-title: Stroke – volume: 56 start-page: 1244 year: 2011 end-page: 1250 article-title: Pseudocontinuous arterial spin labeling perfusion magnetic resonance imaging--a normative study of reproducibility in the human brain publication-title: Neuroimage – volume: 12 start-page: 381 year: 2000 end-page: 387 article-title: Perfusion MRI of the human brain with dynamic susceptibility contrast: gradient‐echo versus spin‐echo techniques publication-title: J Magn Reson Imaging – volume: 228 start-page: 523 year: 2003 end-page: 532 article-title: Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility‐weighted contrast‐enhanced MR imaging publication-title: Radiology – volume: 60 start-page: 1488 year: 2008 end-page: 1497 article-title: Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields publication-title: Magn Reson Med – volume: 55 start-page: 524 year: 2006 end-page: 531 article-title: Automatic selection of arterial input function using cluster analysis publication-title: Magn Reson Med – volume: 36 start-page: 726 year: 1996 end-page: 736 article-title: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II. Experimental comparison and preliminary results publication-title: Magn Reson Med – volume: 37 start-page: 226 year: 1997 end-page: 235 article-title: Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques publication-title: Magn Reson Med – volume: 43 start-page: 753 year: 2012 end-page: 758 article-title: Pseudocontinuous arterial spin labeling quantifies relative cerebral blood flow in acute stroke publication-title: Stroke – volume: 62 start-page: 165 year: 2009 end-page: 173 article-title: Can arterial spin labeling detect white matter perfusion signal? publication-title: Magn Reson Med – volume: 44 start-page: 680 year: 2000 end-page: 685 article-title: Transit time, trailing time, and cerebral blood flow during brain activation: measurement using multislice, pulsed spin‐labeling perfusion imaging publication-title: Magn Reson Med – volume: 22 start-page: 1306 year: 2001 end-page: 1315 article-title: Perfusion‐sensitive MR imaging of gliomas: comparison between gradient‐echo and spin‐echo echo‐planar imaging techniques publication-title: AJNR Am J Neuroradiol – volume: 34 start-page: 555 year: 1995 end-page: 566 article-title: MR contrast due to intravascular magnetic susceptibility perturbations publication-title: Magn Reson Med – volume: 43 start-page: 1290 year: 2012 end-page: 1294 article-title: Whole‐brain arterial spin labeling perfusion MRI in patients with acute stroke publication-title: Stroke – ident: e_1_2_6_21_1 doi: 10.1161/STROKEAHA.110.589234 – ident: e_1_2_6_31_1 doi: 10.1016/j.neuroimage.2011.02.080 – ident: e_1_2_6_2_1 doi: 10.1002/mrm.1910140211 – ident: e_1_2_6_20_1 doi: 10.1161/STROKEAHA.111.631929 – volume: 22 start-page: 1306 year: 2001 ident: e_1_2_6_27_1 article-title: Perfusion‐sensitive MR imaging of gliomas: comparison between gradient‐echo and spin‐echo echo‐planar imaging techniques publication-title: AJNR Am J Neuroradiol – ident: e_1_2_6_3_1 doi: 10.1002/mrm.1910360510 – ident: e_1_2_6_4_1 doi: 10.1002/mrm.1910360511 – ident: e_1_2_6_19_1 doi: 10.1161/STROKEAHA.111.635979 – ident: e_1_2_6_17_1 doi: 10.3174/ajnr.A2725 – ident: e_1_2_6_22_1 doi: 10.1002/mrm.20759 – ident: e_1_2_6_25_1 doi: 10.1002/mrm.1910370215 – ident: e_1_2_6_9_1 doi: 10.1161/01.STR.31.3.680 – ident: e_1_2_6_13_1 doi: 10.1007/s00234-009-0616-6 – ident: e_1_2_6_7_1 doi: 10.1002/jmri.1880070313 – ident: e_1_2_6_6_1 doi: 10.1002/mrm.1910340412 – ident: e_1_2_6_23_1 doi: 10.1097/00004647-199611000-00019 – ident: e_1_2_6_10_1 doi: 10.1148/radiol.2282020409 – ident: e_1_2_6_24_1 doi: 10.1002/1522-2594(200011)44:5<680::AID-MRM4>3.0.CO;2-Q – ident: e_1_2_6_14_1 doi: 10.1097/01.rli.0000084890.57197.54 – ident: e_1_2_6_16_1 doi: 10.1016/j.mri.2009.06.006 – ident: e_1_2_6_26_1 doi: 10.1002/mrm.1910310103 – ident: e_1_2_6_18_1 doi: 10.1007/s00062-011-0126-x – ident: e_1_2_6_5_1 doi: 10.3174/ajnr.A0831 – ident: e_1_2_6_15_1 doi: 10.1097/01.rli.0000119195.50515.04 – ident: e_1_2_6_30_1 doi: 10.1002/jmri.23613 – ident: e_1_2_6_28_1 doi: 10.1002/mrm.22002 – ident: e_1_2_6_29_1 doi: 10.1002/nbm.1792 – volume: 22 start-page: 1334 year: 2001 ident: e_1_2_6_11_1 article-title: Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging publication-title: AJNR Am J Neuroradiol – ident: e_1_2_6_12_1 doi: 10.1002/mrm.21790 – ident: e_1_2_6_8_1 doi: 10.1002/1522-2586(200009)12:3<381::AID-JMRI2>3.0.CO;2-Y |
SSID | ssj0009945 |
Score | 2.2714305 |
Snippet | Purpose
To compare the relative cerebral blood flow (CBF) obtained by pseudo‐continuous arterial spin labeling sequence incorporated with volumetric fast... To compare the relative cerebral blood flow (CBF) obtained by pseudo-continuous arterial spin labeling sequence incorporated with volumetric fast spin-echo... Purpose To compare the relative cerebral blood flow (CBF) obtained by pseudo-continuous arterial spin labeling sequence incorporated with volumetric fast... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 427 |
SubjectTerms | Adult Algorithms arterial spin labeling (ASL) Blood Flow Velocity Brain Diseases - diagnosis Brain Diseases - physiopathology Cerebral Arteries - physiopathology Cerebrovascular Circulation Child Contrast Media dynamic susceptibility contrast (DSC) Female Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Magnetic Resonance Angiography - methods Magnetic resonance imaging Male Middle Aged MRI perfusion pseudo-continuous ASL (PCASL) Reproducibility of Results Sensitivity and Specificity Spin Labels Young Adult |
Title | Comparison of three-dimensional pseudo-continuous arterial spin labeling perfusion imaging with gradient-echo and spin-echo dynamic susceptibility contrast MRI |
URI | https://api.istex.fr/ark:/67375/WNG-P7SB0QD2-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.24178 https://www.ncbi.nlm.nih.gov/pubmed/23677620 https://www.proquest.com/docview/1477893205 https://www.proquest.com/docview/1490722072 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1053-1807 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2586 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009945 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ra9UwGA5jgvjF-6XblIgiKPSsTdOmAb_odM7BGTod7ouU3CrddnoOvcC2T_4E_4X_y1_im_RymAxBPxR6edNL8iZ50jx5XoSeMpEknBjiK6pTn4qE-2mSGj9IOQ0UIGjpYgNO95KdA7p7GB-uoJfDWphOH2L84WZrhmuvbQUXst5cioYezapiAv0Psyt9wyh2c7T7S-0ozl2EYsAPkR-mARu1ScnmMumF3uiKzdjTy6DmReTqup7tG-jr8NId4-R40jZyos7_0HP836-6ia73mBS_6pzoFlox5W10ddrPut9BP7fGYIV4nuMGit_8-v5D28AAnagHXtSm1XM4aanvRdnO2xo7tii4N64XRYnB29zSd7wwVd7aZLiYuRBJ2P4Lxt8qRz5r4B4GmmQsSu0SDsf6rBSzQuG6rR0Tx5F6z7Cj2ou6wdP993fRwfbbz1s7fh_gwVcRj2H0GhMdhnmY81BGoQm4okZQonKR6lARTTgzCeDXSJs4N7GkkhlKDWypIVSx6B5aLeeleYAw4Jg8YYnOmeEUUkoRSJlLq98WRzLiHno-FHSmevVzG4TjJOt0m0lmcz5zOe-hJ6PtotP8uNTqmfOX0URUx5Ylx-Lsy9677AP79Dr4-IZk8OiNwaGyvoGoYcTFGEBFEsQeejxehqpt52tEaaCYwIYHjBDYPHS_c8TxYVZ4D_qxwEMvnDv95UWzXSgBt7f2L8br6BpkKu0Y6htotala8xAAWCMfuYr2GzN5Mxo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLZgk4Ab_mGBAUYgJCalSxwnji9hY3RjrWBsYneR_zKF0bRqEolxxSPwFrwXT8Kxk6YampDgIlKbHiepfY792f7yHYSeM5EknBjiK6pTn4qE-2mSGj9IOQ0UIGjpcgOOxsnwiO4dx8cdN8e-C9PqQ_QLbjYyXH9tA9wuSG8uVUM_T-bFAAYgll5Gq3aDzsbl9sFSPYpzl6MYEETkh2nAenVSsrkse248WrVV-_UisHkeu7rBZ-dGm2G1cpqFlnNyOmhqOVDf_lB0_O__dRNd72ApftX60S10yZS30ZVRt_F-B_3c6vMV4mmOa_AA8-v7D21zA7S6HnhWmUZP4aRlvxdlM20q7Aij4OG4mhUlBodzb7_jmZnnjS2Gi4nLkoTtcjA-mTv-WQ3XMNArY1FqV3DxXZ-VYlIoXDWVI-M4Xu8Zdmx7UdV4dLB7Fx3tvDncGvpdjgdfRTyGCWxMdBjmYc5DGYUm4IoaQYnKRapDRTThzCQAYSNt4tzEkkpmKDVwpIZQxaJ7aKWclmYNYYAyecISnTPDKZSUIpAyl1bCLY5kxD30ctHSmeoE0G0eji9ZK91MMlvzmat5Dz3rbWet7MeFVi-cw_QmYn5qiXIszj6N32bv2cfXwYdtksGt1xcelXV9RAWTLsYALZIg9tDT_meIbrtlI0oDzQQ2PGCEwOGh-60n9jez2nswlAUe2nD-9JcHzfagBdynB_9i_ARdHR6O9rP93fG7h-gaVDBtCevraKWeN-YR4LFaPnZR9xsqZDc2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtQwFLVKK1W8sC-BAkYgJJAyTRwnjiVeoGVoCzMqpRV9QVG8BIUymVEWifLEJ_AX_BdfwrWzjIoqJHiIlOU6cexr-zg-ORehxyyNIk40cSVVsUvTiLtxFGvXizn1JCBoYWMDTqbRzhHdOw6PV9Dz_l-YVh9i-OBmWobtr00DX6hscyka-nlW5iMYf1h8Aa3RCKZXBhIdLMWjOLchigFABK4fe2wQJyWby7RnhqM1U7Jfz8OaZ6GrHXvGl9HHPtct5eRk1NRiJL_9Iej4v691BV3qQCl-0XrRVbSii2tofdItu19HP7eGaIV4nuEa6l__-v5DmcgAraoHXlS6UXM4abjvedHMmwpbuij4N64WeYHB3ey_73ihy6wxyXA-szGSsPkYjD-Vln1Wwz009Mk4LZRN2B-r0yKd5RJXTWWpOJbVe4ot1z6tajw52L2BjsavDrd23C7CgysDHsL0NSTK9zM_474IfO1xSXVKiczSWPmSKMKZjgDABkqHmQ4FFUxTqmGLNaGSBTfRajEv9G2EAchkEYtUxjSnkFKknhCZMAJuYSAC7qCnfUUnspM_N1E4viStcDNJTMkntuQd9GiwXbSiH-daPbH-Mpik5YmhybEw-TB9neyz9y-9d9skgUdv9A6VdD1EBVMuxgArEi900MPhMrRts2CTFhqqCWy4xwiBzUG3WkccHmaU92Ag8xz0zLrTXzKa7EEN2L07_2L8AK3vb4-Tt7vTN3fRRShf2rLVN9BqXTb6HoCxWty3be43cjE15Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+three-dimensional+pseudo-continuous+arterial+spin+labeling+perfusion+imaging+with+gradient-echo+and+spin-echo+dynamic+susceptibility+contrast+MRI&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Wong%2C+Alex+M.&rft.au=Yan%2C+Feng-Xian&rft.au=Liu%2C+Ho-Ling&rft.date=2014-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=39&rft.issue=2&rft.spage=427&rft.epage=433&rft_id=info:doi/10.1002%2Fjmri.24178&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_P7SB0QD2_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |