Harnessing Novel Data‐Driven Techniques for Precise Rainfall–Runoff Modeling
ABSTRACT Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource management, particularly for reservoir operation. Developing an accurate model to capture the dynamic connection between rainfall and runoff rem...
Saved in:
| Published in | Journal of flood risk management Vol. 18; no. 1 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford, UK
Blackwell Publishing Ltd
01.03.2025
John Wiley & Sons, Inc Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1753-318X 1753-318X |
| DOI | 10.1111/jfr3.70013 |
Cover
| Abstract | ABSTRACT
Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource management, particularly for reservoir operation. Developing an accurate model to capture the dynamic connection between rainfall and runoff remains problematic and challenging in water resource management due to the nonstationary characteristics of hydrologic processes and the effects of noise. In this study, data‐driven techniques, such as the group method of data handling (GMDH), extreme learning machine (ELM), and two hybrids of artificial neural network (ANN) with Cuckoo search algorithm (ANN + Cuckoo) and genetic algorithm (ANN + GA) were used to model the rainfall–runoff relationship. For a comprehensive analysis, four scenarios were examined based on the different input combinations to test and select the best scenario and best model performance. The results indicated that the performance of ELM and GMDH in predicting runoff was more accurate than that of ANN + Cuckoo and ANN + GA. Although the GMDH predicts runoff with higher accuracy, ELM provides reliable performance in simulating both low and high values. The models' performance can be ranked based on the testing data in the following order: GMDH, ELM, ANN + GA, and ANN + CUKOO. The root mean squared error (RMSE) was recorded as 56.7 and 69.7 m3/s for the GMDH and ELM models, respectively. These low RMSE values highlight the potential of these models in effectively addressing the challenges associated with the complexity of rainfall–runoff simulations. Moreover, the results demonstrate that the machine learning models could be used as a simple, rapid, and inexpensive approach for timely and reliable runoff prediction that is expected to benefit reservoir management. |
|---|---|
| AbstractList | Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource management, particularly for reservoir operation. Developing an accurate model to capture the dynamic connection between rainfall and runoff remains problematic and challenging in water resource management due to the nonstationary characteristics of hydrologic processes and the effects of noise. In this study, data‐driven techniques, such as the group method of data handling (GMDH), extreme learning machine (ELM), and two hybrids of artificial neural network (ANN) with Cuckoo search algorithm (ANN + Cuckoo) and genetic algorithm (ANN + GA) were used to model the rainfall–runoff relationship. For a comprehensive analysis, four scenarios were examined based on the different input combinations to test and select the best scenario and best model performance. The results indicated that the performance of ELM and GMDH in predicting runoff was more accurate than that of ANN + Cuckoo and ANN + GA. Although the GMDH predicts runoff with higher accuracy, ELM provides reliable performance in simulating both low and high values. The models' performance can be ranked based on the testing data in the following order: GMDH, ELM, ANN + GA, and ANN + CUKOO. The root mean squared error (RMSE) was recorded as 56.7 and 69.7 m³/s for the GMDH and ELM models, respectively. These low RMSE values highlight the potential of these models in effectively addressing the challenges associated with the complexity of rainfall–runoff simulations. Moreover, the results demonstrate that the machine learning models could be used as a simple, rapid, and inexpensive approach for timely and reliable runoff prediction that is expected to benefit reservoir management. ABSTRACT Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource management, particularly for reservoir operation. Developing an accurate model to capture the dynamic connection between rainfall and runoff remains problematic and challenging in water resource management due to the nonstationary characteristics of hydrologic processes and the effects of noise. In this study, data‐driven techniques, such as the group method of data handling (GMDH), extreme learning machine (ELM), and two hybrids of artificial neural network (ANN) with Cuckoo search algorithm (ANN + Cuckoo) and genetic algorithm (ANN + GA) were used to model the rainfall–runoff relationship. For a comprehensive analysis, four scenarios were examined based on the different input combinations to test and select the best scenario and best model performance. The results indicated that the performance of ELM and GMDH in predicting runoff was more accurate than that of ANN + Cuckoo and ANN + GA. Although the GMDH predicts runoff with higher accuracy, ELM provides reliable performance in simulating both low and high values. The models' performance can be ranked based on the testing data in the following order: GMDH, ELM, ANN + GA, and ANN + CUKOO. The root mean squared error (RMSE) was recorded as 56.7 and 69.7 m3/s for the GMDH and ELM models, respectively. These low RMSE values highlight the potential of these models in effectively addressing the challenges associated with the complexity of rainfall–runoff simulations. Moreover, the results demonstrate that the machine learning models could be used as a simple, rapid, and inexpensive approach for timely and reliable runoff prediction that is expected to benefit reservoir management. ABSTRACT Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource management, particularly for reservoir operation. Developing an accurate model to capture the dynamic connection between rainfall and runoff remains problematic and challenging in water resource management due to the nonstationary characteristics of hydrologic processes and the effects of noise. In this study, data‐driven techniques, such as the group method of data handling (GMDH), extreme learning machine (ELM), and two hybrids of artificial neural network (ANN) with Cuckoo search algorithm (ANN + Cuckoo) and genetic algorithm (ANN + GA) were used to model the rainfall–runoff relationship. For a comprehensive analysis, four scenarios were examined based on the different input combinations to test and select the best scenario and best model performance. The results indicated that the performance of ELM and GMDH in predicting runoff was more accurate than that of ANN + Cuckoo and ANN + GA. Although the GMDH predicts runoff with higher accuracy, ELM provides reliable performance in simulating both low and high values. The models' performance can be ranked based on the testing data in the following order: GMDH, ELM, ANN + GA, and ANN + CUKOO. The root mean squared error (RMSE) was recorded as 56.7 and 69.7 m3/s for the GMDH and ELM models, respectively. These low RMSE values highlight the potential of these models in effectively addressing the challenges associated with the complexity of rainfall–runoff simulations. Moreover, the results demonstrate that the machine learning models could be used as a simple, rapid, and inexpensive approach for timely and reliable runoff prediction that is expected to benefit reservoir management. Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource management, particularly for reservoir operation. Developing an accurate model to capture the dynamic connection between rainfall and runoff remains problematic and challenging in water resource management due to the nonstationary characteristics of hydrologic processes and the effects of noise. In this study, data‐driven techniques, such as the group method of data handling (GMDH), extreme learning machine (ELM), and two hybrids of artificial neural network (ANN) with Cuckoo search algorithm (ANN + Cuckoo) and genetic algorithm (ANN + GA) were used to model the rainfall–runoff relationship. For a comprehensive analysis, four scenarios were examined based on the different input combinations to test and select the best scenario and best model performance. The results indicated that the performance of ELM and GMDH in predicting runoff was more accurate than that of ANN + Cuckoo and ANN + GA. Although the GMDH predicts runoff with higher accuracy, ELM provides reliable performance in simulating both low and high values. The models' performance can be ranked based on the testing data in the following order: GMDH, ELM, ANN + GA, and ANN + CUKOO. The root mean squared error (RMSE) was recorded as 56.7 and 69.7 m 3 /s for the GMDH and ELM models, respectively. These low RMSE values highlight the potential of these models in effectively addressing the challenges associated with the complexity of rainfall–runoff simulations. Moreover, the results demonstrate that the machine learning models could be used as a simple, rapid, and inexpensive approach for timely and reliable runoff prediction that is expected to benefit reservoir management. |
| Author | Mohammadpour, Reza Mokhtar, Ali AlSafadi, Karam Sammen, Saad Sh Shahid, Shamsuddin |
| Author_xml | – sequence: 1 givenname: Saad Sh orcidid: 0000-0002-1708-0612 surname: Sammen fullname: Sammen, Saad Sh email: saad123engineer@yahoo.com organization: University of Diyala – sequence: 2 givenname: Reza orcidid: 0000-0002-7940-5101 surname: Mohammadpour fullname: Mohammadpour, Reza organization: Islamic Azad University of Estahban Branch – sequence: 3 givenname: Karam orcidid: 0000-0001-8925-7918 surname: AlSafadi fullname: AlSafadi, Karam organization: Xiamen University – sequence: 4 givenname: Ali surname: Mokhtar fullname: Mokhtar, Ali organization: Cairo University – sequence: 5 givenname: Shamsuddin orcidid: 0000-0001-9621-6452 surname: Shahid fullname: Shahid, Shamsuddin organization: National Center of Meteodology |
| BookMark | eNp9kctKJDEUhoMo2OpsfIICN-LQTlJJV6qWouNlUEcaB2YXTlVONE2ZtEmX0jsfQfANfRLTloi46Gxy-_In58sGWXXeISHbjO6z1H5NTOD7klLGV8iAyREfclb-X_0yXicbMU4oLWQpxYBcnUJwGKN1N9mlf8A2O4IZvD49HwX7gC67xubW2fsOY2Z8yK4CNjZiNgbrDLTt69PLuHPemOzCa2xTyhZZSxsRf3z0m-Tf8e_rw9Ph-d-Ts8OD82HDq_QUBNR1QQ0rGtBpwlBQITUTOauZBlOC1NRUo7rkJZMGmChrY7BhJueiECXfJGd9rvYwUdNg7yDMlQer3hd8uFEQZrZpURVVKhcp5PmoEEg11BqKKh9VWOpKIk9ZP_uszk1h_pjq-gxkVC3EqoVY9S420bs9PQ1-IWam7mxssG3Boe-i4jmluUwkTejON3Tiu-CSF5X-gglZcFElaq-nmuBjDGiW3856-NG2OF9Cqj_HY96feQPGjaZ5 |
| Cites_doi | 10.1016/j.jhydrol.2019.03.101 10.2166/nh.2017.163 10.1016/j.asej.2024.102854 10.1016/j.ijhydene.2020.05.033 10.1016/j.asoc.2016.12.052 10.1016/j.jhydrol.2015.07.057 10.1002/2016WR020187 10.1007/s11269-019-02305-9 10.1002/wrcr.20218 10.2166/hydro.2013.134 10.1186/1472-6750-7-53 10.1016/j.jhydrol.2004.03.027 10.2478/v10104-009-0015-y 10.1016/j.jhydrol.2020.125133 10.1016/j.amc.2017.06.012 10.1016/j.ejrh.2022.101202 10.1016/j.jhydrol.2012.09.014 10.1007/s11269-011-9833-y 10.1016/j.jhydrol.2017.03.032 10.1016/j.jhydrol.2010.07.023 10.1016/0022-1694(93)90073-I 10.3390/su14116620 10.1016/j.jhydrol.2014.01.023 10.1002/2015WR017780 10.18280/isi.250311 10.1016/j.jhydrol.2016.12.024 10.1016/j.renene.2018.07.142 10.1504/IJMMNO.2010.035430 10.1007/s11356‐021‐12792‐2 10.1016/j.ejrh.2021.100859 10.3390/w9030153 10.1007/s12517‐017‐3203‐x 10.2166/ws.2021.161 10.5194/hess-25-4373-2021 10.1007/s11269-015-1188-3 10.1016/j.jhydrol.2020.125014 10.1016/j.jhydrol.2016.06.026 10.1016/j.jhydrol.2016.11.033 10.1016/j.envsoft.2021.105094 10.1029/2019WR026933 10.1007/s00704‐023‐04426‐z 10.36334/modsim.2023.tang300 10.1016/j.ins.2010.05.021 10.2166/hydro.2013.042 10.1007/978-981-16-8484-5_6 10.2166/hydro.2013.141 10.1016/j.jhydrol.2018.07.004 10.1061/(ASCE)1084-0699(1999)4:3(232) 10.1111/j.1752-1688.1998.tb05961.x 10.1029/2020WR028091 10.1016/j.cirpj.2020.05.009 10.1080/09715010.2019.1607783 10.2166/ws.2021.047 10.1016/S0022-1694(00)00344-9 10.5194/hess-26-1673-2022 10.2166/hydro.2013.075 10.2166/nh.2015.069 10.1016/j.heliyon.2021.e06764 10.1016/j.jhydrol.2011.01.017 10.1016/j.aej.2018.05.002 10.3390/w12092529 10.1007/s40808-018-0509-y 10.1016/j.jhydrol.2014.06.050 10.1007/s11629-018-5010-6 10.1139/s03-071 10.3390/w14182858 10.1007/978-3-319-96133-0_28 10.1029/2018WR022587 10.3390/w7084144 10.1088/1755-1315/880/1/012021 10.3390/app10155160 10.1016/j.cscm.2022.e00991 10.1016/0022-1694(85)90207-0 10.1007/s11269-015-0962-6 10.1515/ijfe-2013-0068 10.1002/hyp.10594 10.1007/s11356‐021‐15223‐4 10.1029/2018WR022643 10.1007/978-981-15-1971-0_61 10.1080/02626669009492442 10.1007/s40808-020-00833-7 10.1177/030913330102500104 10.1007/s12517‐018‐3804‐z 10.1016/S0022-1694(00)00279-1 10.1111/nyas.14335 10.3390/w9010009 10.1016/j.advwatres.2015.06.012 10.1016/j.wri.2014.10.003 10.1016/j.mex.2021.101310 10.1007/s10040-018-1909-9 10.1029/2019WR026226 10.11113/elektrika.v21n2.367 10.3390/w14142210 10.3390/w14050697 10.2166/wcc.2021.064 10.1016/j.jhydrol.2020.125359 10.1016/0022-1694(86)90114-9 10.1016/j.fuel.2020.117472 10.1016/j.asoc.2016.01.017 10.3390/cli10100147 10.1002/wat2.1471 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd. 2025. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd. – notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7QH 7TG 7UA 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 H97 HCIFZ KL. L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.1111/jfr3.70013 |
| DatabaseName | Wiley Online Library Open Access CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest SciTech Collection ProQuest Technology Collection SciTech Premium Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1753-318X |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_69006e0a22564e0dabda69259e8d97e3 10.1111/jfr3.70013 10_1111_jfr3_70013 JFR370013 |
| Genre | article |
| GroupedDBID | 05W 0R~ 1OC 24P 29K 31~ 4.4 5DZ 5GY 6KP 8-1 AAESR AAMMB AANHP AAYCA AAZKR ABCUV ABJCF ACBWZ ACCMX ACGFO ACGFS ACPOU ACRPL ACXQS ACYXJ ADBBV ADEOM ADMGS ADNMO ADPDF ADXAS AEFGJ AENEX AEUYN AFBPY AFGKR AFKRA AFRAH AGQPQ AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ASPBG ATCPS AVWKF AZFZN AZVAB BDRZF BENPR BFHJK BGLVJ BHPHI BKSAR BMXJE BRXPI CAG CCPQU COF CS3 D-I DCZOG EBS EJD FEDTE G-S GODZA GROUPED_DOAJ HCIFZ HVGLF HZ~ LH4 LITHE LOXES LUTES LW6 LYRES M7S MSFUL MSSTM MXFUL MXSTM MY~ M~E O9- OIG OK1 OVD OVEED P2P P2W PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PTHSS PUEGO PYCSY ROL SUPJJ TEORI WBKPD WIN WOHZO XV2 ZZTAW AAYXX CITATION 7QH 7TG 7UA 8FE 8FG ABUWG AZQEC C1K DWQXO F1W GNUQQ H96 H97 KL. L.G L6V PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3953-eaedb60f16cadeae1e4047d1421b1daf8a7d0f95b83817fa148bffec1f2346483 |
| IEDL.DBID | 24P |
| ISSN | 1753-318X |
| IngestDate | Tue Oct 14 18:57:14 EDT 2025 Sun Sep 07 10:56:09 EDT 2025 Fri Sep 05 17:15:32 EDT 2025 Sat Aug 23 13:30:26 EDT 2025 Wed Oct 01 06:38:00 EDT 2025 Tue Sep 09 05:10:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Attribution-NonCommercial |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3953-eaedb60f16cadeae1e4047d1421b1daf8a7d0f95b83817fa148bffec1f2346483 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9621-6452 0000-0002-7940-5101 0000-0002-1708-0612 0000-0001-8925-7918 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfr3.70013 |
| PQID | 3181476349 |
| PQPubID | 1006409 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_69006e0a22564e0dabda69259e8d97e3 unpaywall_primary_10_1111_jfr3_70013 proquest_miscellaneous_3200270130 proquest_journals_3181476349 crossref_primary_10_1111_jfr3_70013 wiley_primary_10_1111_jfr3_70013_JFR370013 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2025 2025-03-00 20250301 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: London |
| PublicationTitle | Journal of flood risk management |
| PublicationYear | 2025 |
| Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2018; 564 2019; 16 2004; 3 2016; 540 2016; 30 1973 2022; 26 2019; 18 2020; 12 2020; 10 2010; 180 2018; 49 2017; 313 2020; 1472 2010; 1 2018; 4 1986; 87 2015; 83 2000; 10 2004; 295 2014; 16 2019; 27 2016; 42 2007; 7 2016; 47 2014; 10 2021; 46 1990; 35 2000; 235 2019; 33 2015; 51 2000; 239 2020; 269 2015; 529 2021; 143 2024; 15 2001; 25 2017; 548 2021; 57 2017; 53 2012; 472 2020; 31 2023; 152 2022; 14 2020; 25 2022; 10 1985; 77 2018; 11 2022; 16 2017; 544 2019; 573 2017; 545 2016; 9 2017; 5 2021; 25 2021; 27 2011; 399 2021; 21 2021; 28 2008; 8 2020; 56 2021; 880 2017; 9 2021; 36 2020; 7 2020; 6 1968; 13 2013; 15 2022a; 21 2010; 391 2011; 25 2014; 7 2021; 8 2021; 7 2014; 519 2013; 49 2011 2020; 589 1999; 4 2004 2020; 587 2022; 44 1993; 147 2015; 7 2014; 511 2021; 12 2015; 29 2023 2021 2020 2017; 10 2018 2022b 2018; 54 1998; 34 1966 2018; 57 2019; 132 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_49_1 e_1_2_7_90_1 e_1_2_7_94_1 Mohammadpour R. (e_1_2_7_60_1) 2019; 18 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_48_1 e_1_2_7_29_1 Burnash R. J. (e_1_2_7_18_1) 1973 Crawford N. H. (e_1_2_7_26_1) 1966 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_102_1 Neitsch S. L. (e_1_2_7_67_1) 2004 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 Babovic V. (e_1_2_7_9_1) 2017 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 Ivakhnenko A. G. (e_1_2_7_41_1) 2000; 10 e_1_2_7_57_1 e_1_2_7_38_1 Ivakhnenko A. G. (e_1_2_7_40_1) 1968; 13 |
| References_xml | – year: 2011 – volume: 511 start-page: 72 year: 2014 end-page: 81 article-title: Monthly Streamflow Forecasting Using Gaussian Process Regression publication-title: Journal of Hydrology – volume: 147 start-page: 1 issue: 1–4 year: 1993 end-page: 36 article-title: Comparison of Six Rainfall–Runoff Modelling Approaches publication-title: Journal of Hydrology – volume: 4 start-page: 1577 year: 2018 end-page: 1605 article-title: Review of Studies on Hydrological Modelling in Malaysia publication-title: Modelling Earth Systems and Environment – volume: 313 start-page: 271 year: 2017 end-page: 286 article-title: Comparative Analysis of GMDH Neural Network Based on Genetic Algorithm and Particle Swarm Optimization in Stable Channel Design publication-title: Applied Mathematics and Computation – year: 1966 – volume: 31 start-page: 189 year: 2020 end-page: 199 article-title: Exercising Hybrid Statistical Tools GA‐RSM, GA‐ANN and GA‐ANFIS to Optimize FDM Process Parameters for Tensile Strength Improvement publication-title: CIRP Journal of Manufacturing Science and Technology – volume: 519 start-page: 2822 year: 2014 end-page: 2831 article-title: Evaluating a Coupled Discrete Wavelet Transform and Support Vector Regression for Daily and Monthly Streamflow Forecasting publication-title: Journal of Hydrology – volume: 18 start-page: 1 year: 2019 end-page: 13 article-title: Manning's Roughness Coefficient for Ecological Subsurface Channel With Modules publication-title: International Journal of River Basin Management – volume: 83 start-page: 405 year: 2015 end-page: 420 article-title: Uncertainty Based Modelling of Rainfall–Runoff: Combined Differential Evolution Adaptive Metropolis (DREAM) and ‐Means Clustering publication-title: Advances in Water Resources – volume: 49 start-page: 27 year: 2018 end-page: 40 article-title: Intermittent Stream Flow Forecasting and Modelling With Hybrid Wavelet Neuro‐Fuzzy Model publication-title: Hydrology Research – volume: 56 year: 2020 article-title: Data Assimilation for Streamflow Forecasting Using Extreme Learning Machines and Multilayer Perceptrons publication-title: Water Resources Research – volume: 14 start-page: 697 issue: 5 year: 2022 article-title: A New Rainfall–Runoff Model Using Improved LSTM With Attentive Long and Short Lag‐Time publication-title: Water – volume: 1472 start-page: 21 issue: 1 year: 2020 end-page: 48 article-title: Hydrological Cycle Changes Under Global Warming and Their Effects on Multiscale Climate Variability publication-title: Annals of the New York Academy of Sciences – volume: 12 start-page: 2529 issue: 9 year: 2020 article-title: Soil Management Effects on Soil Water Erosion and Runoff in Central Syria—A Comparative Evaluation of General Linear Model and Random Forest Regression publication-title: Water – volume: 27 start-page: 1401 year: 2019 end-page: 1417 article-title: Prediction of the Subsurface Flow of Hillslopes Using a Subsurface Time‐Area Model publication-title: Hydrogeology Journal – volume: 21 start-page: 4068 year: 2021 end-page: 4085 article-title: Prediction of Aeration Efficiency of Parshall and Modified Venturi Flumes: Application of Soft Computing Versus Regression Models publication-title: Water Supply – volume: 25 start-page: 4373 issue: 8 year: 2021 end-page: 4401 article-title: Hydrologically Informed Machine Learning for Rainfall–Runoff Modelling: Towards Distributed Modelling publication-title: Hydrology and Earth System Sciences – volume: 8 start-page: 195 issue: 2–4 year: 2008 end-page: 203 article-title: Climate Change Impacts on the Hydrological Cycle publication-title: Ecohydrology & Hydrobiology – volume: 564 start-page: 266 year: 2018 end-page: 282 article-title: Simulation and Forecasting of Streamflows Using Machine Learning Models Coupled With Base Flow Separation publication-title: Journal of Hydrology – volume: 16 start-page: 529 issue: 3 year: 2019 end-page: 541 article-title: Using Uncertainty and Sensitivity Analysis for Finding the Best Rainfall–Runoff Model in Mountainous Watersheds (Case Study: The Navrood Watershed in Iran) publication-title: Journal of Mountain Science – volume: 33 start-page: 3321 year: 2019 end-page: 3338 article-title: Combination of Multiple Data‐Driven Models for Long‐Term Monthly Runoff Predictions Based on Bayesian Model Averaging publication-title: Water Resources Management – volume: 10 issue: 15 year: 2020 article-title: Enhanced Artificial Neural Network With Harris Hawks Optimization for Predicting Scour Depth Downstream of Ski‐Jump Spillway publication-title: Applied Sciences – volume: 235 start-page: 276 year: 2000 end-page: 288 article-title: Automatic Calibration of a Conceptual Rainfall–Runoff Model Using Multiple Objectives publication-title: Journal of Hydrology – volume: 25 start-page: 2683 year: 2011 end-page: 2703 article-title: Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting publication-title: Water Resources Management – volume: 8 year: 2021 article-title: A Novel Hybrid Method Based on Cuckoo Optimization Algorithm and Artificial Neural Network to Forecast World's Carbon Dioxide Emission publication-title: MethodsX – volume: 180 start-page: 3402 year: 2010 end-page: 3421 article-title: A Dynamic Classifier Ensemble Selection Approach for Noise Data publication-title: Information Sciences – volume: 14 start-page: 6620 issue: 11 year: 2022 article-title: Distributed Hydrological Model Based on Machine Learning Algorithm: Assessment of Climate Change Impact on Floods publication-title: Sustainability – volume: 29 start-page: 2655 year: 2015 end-page: 2675 article-title: Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition publication-title: Water Resources Management – volume: 53 start-page: 205 year: 2017 end-page: 216 article-title: A Physically Based and Machine Learning Hybrid Approach for Accurate Rainfall–Runoff Modelling During Extreme Typhoon Events publication-title: Applied Soft Computing – volume: 545 start-page: 100 year: 2017 end-page: 108 article-title: Choice of Rainfall Inputs for Event‐Based Rainfall–Runoff Modelling in a Catchment With Multiple Rainfall Stations Using Data‐Driven Techniques publication-title: Journal of Hydrology – volume: 9 start-page: 9 year: 2016 article-title: Long‐Term Streamflow Forecasting Based on Relevance Vector Machine Model publication-title: Water – volume: 51 start-page: 7090 year: 2015 end-page: 7129 article-title: Physically Based Modelling in Catchment Hydrology at 50: Survey and Outlook publication-title: Water Resources Research – volume: 1 start-page: 330 year: 2010 end-page: 343 article-title: Engineering Optimization by Cuckoo Search publication-title: International Journal of Mathematical Modelling and Numerical Optimisation – volume: 132 start-page: 243 year: 2019 end-page: 254 article-title: Artificial Neural Network Approach for the Steam Gasification of Palm Oil Waste Using Bottom Ash and CaO publication-title: Renewable Energy – volume: 47 start-page: 701 issue: 4 year: 2016 end-page: 717 article-title: Feasibility and Uncertainty of Using Conceptual Rainfall–Runoff Models in Design Flood Estimation publication-title: Hydrology Research – volume: 7 start-page: 1 year: 2007 end-page: 14 article-title: Comparison of Estimation Capabilities of Response Surface Methodology (RSM) With Artificial Neural Network (ANN) in Lipase‐Catalyzed Synthesis of Palm‐Based Wax Ester publication-title: BMC Biotechnology – volume: 16 year: 2022 article-title: Introducing Mathematical Modelling to Estimate Pavement Quality Index of Flexible Pavements Based on Genetic Algorithm and Artificial Neural Networks publication-title: Case Studies in Construction Materials – volume: 10 start-page: 757 year: 2014 end-page: 766 article-title: Modelling of Furfural and 5‐Hydroxymethylfurfural Content of Fermented Lotus Root: Artificial Neural Networks and a Genetic Algorithm Approach publication-title: International Journal of Food Engineering – volume: 239 start-page: 132 issue: 1–4 year: 2000 end-page: 147 article-title: Comparison of Short‐Term Rainfall Prediction Models for Real‐Time Flood Forecasting publication-title: Journal of Hydrology – start-page: 369 year: 2018 end-page: 382 – volume: 143 year: 2021 article-title: A Novel Ensemble‐Based Conceptual‐Data‐Driven Approach for Improved Streamflow Simulations publication-title: Environmental Modelling & Software – year: 1973 – volume: 21 start-page: 54 issue: 2 year: 2022a end-page: 63 article-title: Intelligent Vibration Analysis of Industrial Cooling Fans publication-title: ELEKTRIKA‐Journal of Electrical Engineering – volume: 21 start-page: 2583 issue: 6 year: 2021 end-page: 2595 article-title: Predicting the Infiltration Characteristics for Semi‐Arid Regions Using Regression Trees publication-title: Water Supply – volume: 14 start-page: 2858 issue: 18 year: 2022 article-title: Development of a Temperature‐Based Model Using Machine Learning Algorithms for the Projection of Evapotranspiration of Peninsular Malaysia publication-title: Water – volume: 57 year: 2021 article-title: What Role Does Hydrological Science Play in the Age of Machine Learning? publication-title: Water Resources Research – volume: 7 start-page: 38 year: 2014 end-page: 48 article-title: Modelling of Monthly Rainfall and Runoff of Urmia Lake Basin Using “Feedforward Neural Network” and “Time Series Analysis” Model publication-title: Water Resources and Industry – volume: 540 start-page: 623 year: 2016 end-page: 640 article-title: A Hybrid Approach to Monthly Streamflow Forecasting: Integrating Hydrological Model Outputs Into a Bayesian Artificial Neural Network publication-title: Journal of Hydrology – volume: 4 start-page: 232 year: 1999 end-page: 239 article-title: Rainfall–Runoff Modelling Using Artificial Neural Networks publication-title: Journal of Hydrologic Engineering – volume: 152 start-page: 535 year: 2023 end-page: 558 article-title: Combination of Data‐Driven Models and Best Subset Regression for Predicting the Standardized Precipitation Index (SPI) at the Upper Godavari Basin in India publication-title: Oretical and Applied Climatology – volume: 36 year: 2021 article-title: Regionalization of Hydrological Models for Flow Estimation in Ungauged Catchments in Ireland publication-title: Journal of Hydrology: Regional Studies – volume: 13 start-page: 43 year: 1968 end-page: 55 article-title: The Group Method of Data Handling A Rival of Stochastic Approximation publication-title: Soviet Automatic Control – volume: 11 start-page: 533 issue: 18 year: 2018 article-title: A Hybrid of ANN and CLA to Predict Rainfall publication-title: Arabian Journal of Geosciences – volume: 14 start-page: 2210 issue: 14 year: 2022 article-title: Assessment of Uncertainty in Grid‐Based Rainfall–Runoff Model Based on Formal and Informal Likelihood Measures publication-title: Water – volume: 44 year: 2022 article-title: Climate Induced Changes in Streamflow and Water Temperature in Basins Across the Atlantic Coast of the United States: An Opportunity for Nature‐Based Regional Management publication-title: Journal of Hydrology: Regional Studies – volume: 7 issue: 5 year: 2020 article-title: Historical Development of Rainfall–Runoff Modelling publication-title: Wiley Interdisciplinary Reviews: Water – volume: 42 start-page: 53 year: 2016 end-page: 65 article-title: Evaluation of E‐Commerce Websites Using Fuzzy Hierarchical TOPSIS Based on ES‐QUAL publication-title: Applied Soft Computing – volume: 472 start-page: 36 year: 2012 end-page: 52 article-title: A Formal Statistical Approach to Representing Uncertainty in Rainfall–Runoff Modelling With Focus on Residual Analysis and Probabilistic Output Evaluation–Distinguishing Simulation and Prediction publication-title: Journal of Hydrology – volume: 25 start-page: 365 issue: 3 year: 2020 end-page: 370 article-title: Deep Learning‐Based Forecast and Warning of Floods in Klang River, Malaysia publication-title: Ingénierie des Systèmes d'Information – volume: 7 issue: 4 year: 2021 article-title: Assessing the WEPP Model Performance for Predicting Daily Runoff in Three Terrestrial Ecosystems in Western Syria publication-title: Heliyon – volume: 3 start-page: S121 year: 2004 end-page: S128 article-title: An Exploration of Artificial Neural Network Rainfall–Runoff Forecasting Combined With Wavelet Decomposition publication-title: Journal of Environmental Engineering and Science – volume: 10 start-page: 187 year: 2000 end-page: 194 article-title: Problems of Further Development of the Group Method of Data Handling Algorithms. Part I publication-title: Pattern Recognition and Image Analysis c/c of Raspoznavaniye Obrazov i Analiz Izobrazhenii – volume: 6 start-page: 2177 year: 2020 end-page: 2188 article-title: Modelling Rainfall–Runoff Process Using Artificial Neural Network With Emphasis on Parameter Sensitivity publication-title: Modelling Earth Systems and Environment – volume: 30 start-page: 747 year: 2016 end-page: 766 article-title: Improving Forecasting Accuracy of Streamflow Time Series Using Least Squares Support Vector Machine Coupled With Data‐Preprocessing Techniques publication-title: Water Resources Management – start-page: 625 year: 2020 end-page: 632 – volume: 46 start-page: 24632 year: 2021 end-page: 24651 article-title: Optimization of Hydrogen Production via Toluene Steam Reforming Over Ni–Co Supported Modified‐Activated Carbon Using ANN Coupled GA and RSM publication-title: International Journal of Hydrogen Energy – volume: 29 start-page: 5227 issue: 25 year: 2015 end-page: 5240 article-title: Advancing Tracer‐Aided Rainfall–Runoff Modelling: A Review of Progress, Problems and Unrealized Potential publication-title: Hydrological Processes – year: 2021 – volume: 26 start-page: 1673 issue: 6 year: 2022 end-page: 1693 article-title: Uncertainty Estimation With Deep Learning for Rainfall–Runoff Modelling publication-title: Hydrology and Earth System Sciences – volume: 57 start-page: 3019 year: 2018 end-page: 3032 article-title: Comparative Studies on Modelling and Optimization of Hydrodynamic Parameters on Inverse Fluidized Bed Reactor Using ANN‐GA and RSM publication-title: Alexandria Engineering Journal – volume: 399 start-page: 394 year: 2011 end-page: 409 article-title: Rainfall–Runoff Modelling Using Artificial Neural Network Coupled With Singular Spectrum Analysis publication-title: Journal of Hydrology – volume: 589 year: 2020 article-title: The Importance of Short Lag‐Time in the Runoff Forecasting Model Based on Long Short‐Term Memory publication-title: Journal of Hydrology – volume: 27 start-page: 165 year: 2021 end-page: 173 article-title: Local Scour Around Complex Abutments publication-title: ISH Journal of Hydraulic Engineering – volume: 589 year: 2020 article-title: Rainfall–Runoff Modelling Using Improved Machine Learning Methods: Harris Hawks Optimizer vs. Particle Swarm Optimization publication-title: Journal of Hydrology – volume: 548 start-page: 588 year: 2017 end-page: 597 article-title: A New Approach for Simulating and Forecasting the Rainfall–Runoff Process Within the Next Two Months publication-title: Journal of Hydrology – start-page: 73 year: 2022b end-page: 80 – year: 2004 – volume: 16 start-page: 973 year: 2014 end-page: 988 article-title: Real‐Time Flood Forecast Using the Coupling Support Vector Machine and Data Assimilation Method publication-title: Journal of Hydroinformatics – volume: 573 start-page: 733 year: 2019 end-page: 745 article-title: Improving the Prediction Accuracy of Monthly Streamflow Using a Data‐Driven Model Based on a Double‐Processing Strategy publication-title: Journal of Hydrology – volume: 15 start-page: 829 year: 2013 end-page: 848 article-title: Conjunction of SOM‐Based Feature Extraction Method and Hybrid Wavelet‐ANN Approach for Rainfall–Runoff Modelling publication-title: Journal of Hydroinformatics – volume: 391 start-page: 248 year: 2010 end-page: 262 article-title: Evaluation of Rainfall and Discharge Inputs Used by Adaptive Network‐Based Fuzzy Inference Systems (ANFIS) in Rainfall–Runoff Modelling publication-title: Journal of Hydrology – volume: 10 start-page: 416 issue: 18 year: 2017 article-title: Prediction of Local Scour Around Complex Piers Using GEP and M5‐Tree publication-title: Arabian Journal of Geosciences – volume: 880 issue: 1 year: 2021 article-title: River‐Flood Forecasting Methods: The Context of the Kelantan River in Malaysia publication-title: IOP Conference Series: Earth and Environmental Science – volume: 54 start-page: 7711 year: 2018 end-page: 7732 article-title: Exploring Controls on Rainfall–Runoff Events: 1. Time Series‐Based Event Separation and Temporal Dynamics of Event Runoff Response in Germany publication-title: Water Resources Research – volume: 9 start-page: 153 year: 2017 article-title: An EMD‐Based Chaotic Least Squares Support Vector Machine Hybrid Model for Annual Runoff Forecasting publication-title: Water – volume: 12 start-page: 3308 issue: 7 year: 2021 end-page: 3329 article-title: Improving the Performance of Rainfall–Runoff Models Using the Gene Expression Programming Approach publication-title: Journal of Water and Climate Change – volume: 56 year: 2020 article-title: Hydrologically Informed Machine Learning for Rainfall–Runoff Modelling: A Genetic Programming‐Based Toolkit for Automatic Model Induction publication-title: Water Resources Research – volume: 28 start-page: 32564 year: 2021 end-page: 32579 article-title: A New Hybrid Model Based on Relevance Vector Machine With Flower Pollination Algorithm for Phycocyanin Pigment Concentration Estimation publication-title: Environmental Science and Pollution Research – volume: 25 start-page: 80 year: 2001 end-page: 108 article-title: Hydrological Modelling Using Artificial Neural Networks publication-title: Progress in Physical Geography – volume: 77 start-page: 209 year: 1985 end-page: 226 article-title: Multiple Nonlinear Statistical Models for Runoff Simulation and Prediction publication-title: Journal of Hydrology – volume: 53 start-page: 5998 year: 2017 end-page: 6017 article-title: Temporal Dynamics in Dominant Runoff Sources and Flow Paths in the Andean Páramo publication-title: Water Resources Research – volume: 295 start-page: 246 year: 2004 end-page: 262 article-title: Improved Streamflow Forecasting Using Self‐Organizing Radial Basis Function Artificial Neural Networks publication-title: Journal of Hydrology – volume: 269 year: 2020 article-title: Performance and Emission Prediction of a Compression Ignition Engine Fueled With Biodiesel‐Diesel Blends: A Combined Application of ANN and RSM Based Optimization publication-title: Fuel – volume: 587 year: 2020 article-title: Rainfall–Runoff Modelling Through Regression in the Reproducing Kernel Hilbert Space Algorithm publication-title: Journal of Hydrology – volume: 35 start-page: 395 issue: 4 year: 1990 end-page: 410 article-title: Stochastic Models of Streamflow: Some Case Studies publication-title: Hydrological Sciences Journal – volume: 5 start-page: 1081 year: 2017 end-page: 1096 – volume: 15 start-page: 1377 year: 2013 end-page: 1390 article-title: Improved Annual Rainfall–Runoff Forecasting Using PSO–SVM Model Based on EEMD publication-title: Journal of Hydroinformatics – volume: 87 start-page: 45 year: 1986 end-page: 59 article-title: An Introduction to the European Hydrological System—Systeme Hydrologique Europeen, ‘SHE’, 1: History and Philosophy of a Physically‐Based, Distributed Modelling System publication-title: Journal of Hydrology – volume: 34 start-page: 73 issue: 1 year: 1998 end-page: 89 article-title: Large‐Area Hydrologic Modelling and Assessment: Part I. Model Development publication-title: Journal of the American Water Resources Association – volume: 10 start-page: 147 issue: 10 year: 2022 article-title: Comprehensive Review: Advancements in Rainfall–Runoff Modelling for Flood Mitigation publication-title: Climate – year: 2023 – volume: 529 start-page: 1633 year: 2015 end-page: 1643 article-title: Hourly Runoff Forecasting for Flood Risk Management: Application of Various Computational Intelligence Models publication-title: Journal of Hydrology – volume: 7 start-page: 4144 year: 2015 end-page: 4160 article-title: Daily Runoff Forecasting Model Based on ANN and Data Preprocessing Techniques publication-title: Water – volume: 54 start-page: 8558 year: 2018 end-page: 8593 article-title: A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists publication-title: Water Resources Research – volume: 49 start-page: 2987 year: 2013 end-page: 3006 article-title: How Runoff Begins (and Ends): Characterizing Hydrologic Response at the Catchment Scale publication-title: Water Resources Research – volume: 28 start-page: 66171 year: 2021 end-page: 66192 article-title: A Hybrid Novel SVM Model for Predicting CO Emissions Using Multiobjective Seagull Optimization publication-title: Environmental Science and Pollution Research – volume: 15 issue: 7 year: 2024 article-title: Comparative Assessment of Rainfall‐Based Water Level Prediction Using Machine Learning (ML) Techniques publication-title: Ain Shams Engineering Journal – volume: 16 start-page: 671 year: 2014 end-page: 689 article-title: Multi‐Step Streamflow Forecasting Using Data‐Driven Non‐Linear Methods in Contrasting Climate Regimes publication-title: Journal of Hydroinformatics – volume: 544 start-page: 267 year: 2017 end-page: 277 article-title: An Emotional ANN (EANN) Approach to Modelling Rainfall–Runoff Process publication-title: Journal of Hydrology – ident: e_1_2_7_98_1 doi: 10.1016/j.jhydrol.2019.03.101 – ident: e_1_2_7_10_1 doi: 10.2166/nh.2017.163 – ident: e_1_2_7_72_1 doi: 10.1016/j.asej.2024.102854 – ident: e_1_2_7_105_1 doi: 10.1016/j.ijhydene.2020.05.033 – ident: e_1_2_7_107_1 doi: 10.1016/j.asoc.2016.12.052 – ident: e_1_2_7_11_1 doi: 10.1016/j.jhydrol.2015.07.057 – ident: e_1_2_7_25_1 doi: 10.1002/2016WR020187 – ident: e_1_2_7_37_1 doi: 10.1007/s11269-019-02305-9 – ident: e_1_2_7_55_1 doi: 10.1002/wrcr.20218 – ident: e_1_2_7_100_1 doi: 10.2166/hydro.2013.134 – ident: e_1_2_7_13_1 doi: 10.1186/1472-6750-7-53 – ident: e_1_2_7_63_1 doi: 10.1016/j.jhydrol.2004.03.027 – ident: e_1_2_7_48_1 doi: 10.2478/v10104-009-0015-y – ident: e_1_2_7_92_1 doi: 10.1016/j.jhydrol.2020.125133 – ident: e_1_2_7_79_1 doi: 10.1016/j.amc.2017.06.012 – ident: e_1_2_7_15_1 doi: 10.1016/j.ejrh.2022.101202 – ident: e_1_2_7_17_1 doi: 10.1016/j.jhydrol.2012.09.014 – ident: e_1_2_7_110_1 doi: 10.1007/s11269-011-9833-y – ident: e_1_2_7_5_1 doi: 10.1016/j.jhydrol.2017.03.032 – volume: 18 start-page: 1 year: 2019 ident: e_1_2_7_60_1 article-title: Manning's Roughness Coefficient for Ecological Subsurface Channel With Modules publication-title: International Journal of River Basin Management – ident: e_1_2_7_89_1 doi: 10.1016/j.jhydrol.2010.07.023 – ident: e_1_2_7_23_1 doi: 10.1016/0022-1694(93)90073-I – ident: e_1_2_7_39_1 doi: 10.3390/su14116620 – ident: e_1_2_7_88_1 doi: 10.1016/j.jhydrol.2014.01.023 – ident: e_1_2_7_71_1 doi: 10.1002/2015WR017780 – ident: e_1_2_7_33_1 doi: 10.18280/isi.250311 – ident: e_1_2_7_20_1 doi: 10.1016/j.jhydrol.2016.12.024 – ident: e_1_2_7_80_1 doi: 10.1016/j.renene.2018.07.142 – ident: e_1_2_7_106_1 doi: 10.1504/IJMMNO.2010.035430 – ident: e_1_2_7_74_1 doi: 10.1007/s11356‐021‐12792‐2 – ident: e_1_2_7_34_1 doi: 10.1016/j.ejrh.2021.100859 – ident: e_1_2_7_111_1 doi: 10.3390/w9030153 – ident: e_1_2_7_56_1 doi: 10.1007/s12517‐017‐3203‐x – ident: e_1_2_7_85_1 doi: 10.2166/ws.2021.161 – ident: e_1_2_7_36_1 doi: 10.5194/hess-25-4373-2021 – ident: e_1_2_7_44_1 doi: 10.1007/s11269-015-1188-3 – ident: e_1_2_7_76_1 doi: 10.1016/j.jhydrol.2020.125014 – ident: e_1_2_7_38_1 doi: 10.1016/j.jhydrol.2016.06.026 – ident: e_1_2_7_68_1 doi: 10.1016/j.jhydrol.2016.11.033 – ident: e_1_2_7_87_1 doi: 10.1016/j.envsoft.2021.105094 – ident: e_1_2_7_19_1 doi: 10.1029/2019WR026933 – ident: e_1_2_7_58_1 – ident: e_1_2_7_70_1 doi: 10.1007/s00704‐023‐04426‐z – ident: e_1_2_7_90_1 doi: 10.36334/modsim.2023.tang300 – ident: e_1_2_7_103_1 doi: 10.1016/j.ins.2010.05.021 – ident: e_1_2_7_46_1 doi: 10.2166/hydro.2013.042 – ident: e_1_2_7_83_1 doi: 10.1007/978-981-16-8484-5_6 – ident: e_1_2_7_69_1 doi: 10.2166/hydro.2013.141 – ident: e_1_2_7_94_1 doi: 10.1016/j.jhydrol.2018.07.004 – ident: e_1_2_7_93_1 doi: 10.1061/(ASCE)1084-0699(1999)4:3(232) – ident: e_1_2_7_7_1 doi: 10.1111/j.1752-1688.1998.tb05961.x – volume-title: Digital Simulation in Hydrology' Stanford Watershed Model 4 year: 1966 ident: e_1_2_7_26_1 – ident: e_1_2_7_66_1 doi: 10.1029/2020WR028091 – ident: e_1_2_7_28_1 doi: 10.1016/j.cirpj.2020.05.009 – ident: e_1_2_7_59_1 doi: 10.1080/09715010.2019.1607783 – ident: e_1_2_7_86_1 doi: 10.2166/ws.2021.047 – ident: e_1_2_7_95_1 doi: 10.1016/S0022-1694(00)00344-9 – ident: e_1_2_7_47_1 doi: 10.5194/hess-26-1673-2022 – ident: e_1_2_7_49_1 doi: 10.2166/hydro.2013.075 – ident: e_1_2_7_109_1 doi: 10.2166/nh.2015.069 – ident: e_1_2_7_62_1 doi: 10.1016/j.heliyon.2021.e06764 – ident: e_1_2_7_102_1 doi: 10.1016/j.jhydrol.2011.01.017 – ident: e_1_2_7_75_1 doi: 10.1016/j.aej.2018.05.002 – ident: e_1_2_7_61_1 doi: 10.3390/w12092529 – ident: e_1_2_7_3_1 doi: 10.1007/s40808-018-0509-y – ident: e_1_2_7_51_1 doi: 10.1016/j.jhydrol.2014.06.050 – ident: e_1_2_7_4_1 doi: 10.1007/s11629-018-5010-6 – ident: e_1_2_7_6_1 doi: 10.1139/s03-071 – ident: e_1_2_7_64_1 doi: 10.3390/w14182858 – ident: e_1_2_7_24_1 doi: 10.1007/978-3-319-96133-0_28 – ident: e_1_2_7_91_1 doi: 10.1029/2018WR022587 – volume: 10 start-page: 187 year: 2000 ident: e_1_2_7_41_1 article-title: Problems of Further Development of the Group Method of Data Handling Algorithms. Part I publication-title: Pattern Recognition and Image Analysis c/c of Raspoznavaniye Obrazov i Analiz Izobrazhenii – ident: e_1_2_7_101_1 doi: 10.3390/w7084144 – ident: e_1_2_7_54_1 doi: 10.1088/1755-1315/880/1/012021 – ident: e_1_2_7_77_1 doi: 10.3390/app10155160 – ident: e_1_2_7_35_1 doi: 10.1016/j.cscm.2022.e00991 – ident: e_1_2_7_96_1 doi: 10.1016/0022-1694(85)90207-0 – ident: e_1_2_7_99_1 doi: 10.1007/s11269-015-0962-6 – ident: e_1_2_7_104_1 doi: 10.1515/ijfe-2013-0068 – ident: e_1_2_7_14_1 doi: 10.1002/hyp.10594 – ident: e_1_2_7_29_1 doi: 10.1007/s11356‐021‐15223‐4 – ident: e_1_2_7_84_1 doi: 10.1029/2018WR022643 – ident: e_1_2_7_12_1 doi: 10.1007/978-981-15-1971-0_61 – ident: e_1_2_7_65_1 doi: 10.1080/02626669009492442 – ident: e_1_2_7_81_1 – ident: e_1_2_7_97_1 doi: 10.1007/s40808-020-00833-7 – ident: e_1_2_7_27_1 doi: 10.1177/030913330102500104 – ident: e_1_2_7_57_1 doi: 10.1007/s12517‐018‐3804‐z – ident: e_1_2_7_53_1 doi: 10.1016/S0022-1694(00)00279-1 – ident: e_1_2_7_52_1 doi: 10.1111/nyas.14335 – ident: e_1_2_7_50_1 doi: 10.3390/w9010009 – start-page: 1081 volume-title: Encyclopedia of Water: Science, Technology, and Society year: 2017 ident: e_1_2_7_9_1 – ident: e_1_2_7_108_1 doi: 10.1016/j.advwatres.2015.06.012 – volume-title: Soil and Water Assessment Tool Input/Output File Documentation. Ver. 2005 year: 2004 ident: e_1_2_7_67_1 – ident: e_1_2_7_31_1 doi: 10.1016/j.wri.2014.10.003 – volume-title: A Generalized Streamflow Simulation System: Conceptual Modelling for Digital Computers year: 1973 ident: e_1_2_7_18_1 – ident: e_1_2_7_42_1 doi: 10.1016/j.mex.2021.101310 – ident: e_1_2_7_32_1 doi: 10.1007/s10040-018-1909-9 – ident: e_1_2_7_16_1 doi: 10.1029/2019WR026226 – volume: 13 start-page: 43 year: 1968 ident: e_1_2_7_40_1 article-title: The Group Method of Data Handling A Rival of Stochastic Approximation publication-title: Soviet Automatic Control – ident: e_1_2_7_82_1 doi: 10.11113/elektrika.v21n2.367 – ident: e_1_2_7_78_1 doi: 10.3390/w14142210 – ident: e_1_2_7_22_1 doi: 10.3390/w14050697 – ident: e_1_2_7_30_1 doi: 10.2166/wcc.2021.064 – ident: e_1_2_7_21_1 doi: 10.1016/j.jhydrol.2020.125359 – ident: e_1_2_7_2_1 doi: 10.1016/0022-1694(86)90114-9 – ident: e_1_2_7_8_1 doi: 10.1016/j.fuel.2020.117472 – ident: e_1_2_7_45_1 doi: 10.1016/j.asoc.2016.01.017 – ident: e_1_2_7_43_1 doi: 10.3390/cli10100147 – ident: e_1_2_7_73_1 doi: 10.1002/wat2.1471 |
| SSID | ssj0067874 |
| Score | 2.3336594 |
| Snippet | ABSTRACT
Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource... Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource management,... ABSTRACT Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource... |
| SourceID | doaj unpaywall proquest crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| SubjectTerms | Accuracy Algorithms ANN + Cuckoo Artificial neural networks Climate change Cuculidae Decision making Forecasting Genetic algorithms GMDH Group method of data handling hybrid models Hybrids Hydrologic cycle Hydrologic models Hydrologic processes Hydrological cycle Hydrology Land use Learning algorithms Machine learning Mathematical functions model validation Neural networks Noise Optimization Precipitation prediction rain Rainfall Rainfall simulators Rainfall-runoff modeling Rainfall-runoff relationships Reservoir management Reservoir operation Resource management risk management Root-mean-square errors Runoff Search algorithms Simulation Stream flow Time series water management Water resources Water resources management Watersheds |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLm0PCNoiUh4yKqdKoc7GcZwjBVYrJBBCIHGLxnh8WmXRPoq48ROQ-If8Emac7Iq9wKW3PEaKM2OPv8lMvhFi3zHzra00t0m1qS6cSUFpSPMCmX0sUMjAH_TPzs3gWp_eFDdvWn1xTVhLD9wq7g9Fb8qgApp3RqPy4DyYikA7Wl-VGHk-la3mwVTrg8kDl7ojI411O2GcH3CGNV_afiJL_xK0_Dxr7uDhHobDZbAad5v-mljtYKI8bIe3Lj5h8018fUMe-F1cDGDMfopO5PnoHw7lMUzh5fHpeMweTF7N2VknkoCpvGAaiwlKTugEevLL4_PlrBmFILkdGv-U_kNc90-ujgZp1x8hvc2rIk8R0DujQma4lB4wQ6106TPdy1zmIVgovQpV4SzT8AWgyMdxkUgWerk22uYbYqUZNbgppAtoKmvRBNvTt4UGbSwpPXMEIL03KhG_5mqr71oajHoRPpBy66jcRPxljS4kmLo6XiCD1p1B648MmojtuT3qbj1NavI8mSZXqKtE7C1u00rg9AY0OJqRDNeblJyJTcT-wo7vDvd3NPE7IvVp_zKPRz__x7ttiS897h8ca9i2xcp0PMMdAjVTtxvn7ysv9fQh priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NjtMwEB4t3QNwQPyKwoKM2BNSID-O4xwQYtmtqpWoqmpX2ls0rm0uVVLSFsRtHwGJN9wnYcabFHrpLYktx5rxjGc8428Ajg0j3-pScplUHcncqAhjiVGWO0Yf8-Qy8IH-14kaX8rzq_zqACb9XRhOq-x1YlDUtpnzGfkHWnuJJGGQ5afl94irRnF0tS-hgV1pBfsxQIzdgcOUkbEGcHhyNpnOet1MmrmQHUhpyOfxbfaeI6_ZzrYU0Pt3TM67m3qJv37iYrFrxIZdaPQQHnTmo_h8y-9HcODqx3D_P1DBJzAdY8v6i17EpPnhFuIU13hz_fu0Zc0mLnrU1pUgg1VMGd5i5QQHejz9-eb6z2xTN94LLpPGl9WfwuXo7OLLOOrqJkTzrMyzyKGzRsU-UZxijy5xMpaFTWSamMSi11jY2Je50QzP55E8IsPJI4lPM6mkzp7BoG5q9xyE8U6VWjvldSrnuUSptIsxMWRYWqviIbztyVYtb-Exqq1bQcStAnGHcMIU3fZgSOvwoWm_VZ2EVOSmx4rGJgWjpIstGouqJO_MaVsWjgY56vlRdXK2qv6tiiG82TaThHDYA2vXbKgP56EUHKEdwvGWj3un-y6weE-X6nw0y8LTi_3Tegn3Uq4YHLLWjmCwbjfuFZkxa_O6W5t_AV2w8mg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCa69DDssK57oCnaQd16GuDAjmVFPvaxICjQICgaIDsZVCRdFjhFEq9oT_0JBfoP-0tKOnbQ7BD05gctEBRFkSb5CeDYMPKtTiUfk6oDmRgVYCgxiBPH6GOeQgb-oX_ZV72hvBgloy34UffCvM7flxU3fha3ODcav4NtlZC_3YDtYX9w8qfsdEy4OUyPKtzR9Q_WdpoSkH_Ni3xf5Dd4d4uTybpfWm4s3R04q1la1pP8bRUL0xrf_4fWuJnnT_Cx8ivFyVIRdmHL5Z_hwyu0wS8w6OGMDRvdiP70n5uIc1zg88Pj-YxNnriu4VzngjxZMWDci7kTnAHyxP_zw9NVkU-9F3x-Gnexf4Vh9_f1WS-oDlQIxnFKonLorFGhjxTX3qOLnAxlx0ayHZnIotfYsaFPE6MZt88jhUqGq0oi346lkjr-Bo18mrs9EMY7lWrtlNdtOU4kSqVdiJEhj9NaFTbhZy387GaJm5Gt4g2ST1bKpwmnPC8rCsa6Lh-QOLNq6WQUv4eKxibLo6QLLRqLKqWwzWmbdhwNclDPalYtwHlGWhFJsp0ybcLR6jUtHc6HYO6mBdFwgUqHU7dNOF5pw0Z2f5WKsoEku-hexeXV_tvGPIDGYla4Q3JtFuZ7pdsv7UH3Dg priority: 102 providerName: Unpaywall |
| Title | Harnessing Novel Data‐Driven Techniques for Precise Rainfall–Runoff Modeling |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfr3.70013 https://www.proquest.com/docview/3181476349 https://www.proquest.com/docview/3200270130 https://doi.org/10.1111/jfr3.70013 https://doaj.org/article/69006e0a22564e0dabda69259e8d97e3 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1753-318X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0067874 issn: 1753-318X databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1753-318X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0067874 issn: 1753-318X databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1753-318X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0067874 issn: 1753-318X databaseCode: OVEED dateStart: 20080501 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1753-318X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0067874 issn: 1753-318X databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1753-318X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0067874 issn: 1753-318X databaseCode: 24P dateStart: 20200101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swEBdd-7DtYewvS9cFjfVp4GHZsiLDXtq1WSgsmNBA9mROlbSXYBcnWdlbP8Jg37CfZHeKbZqXwl6MZZ9l-053upNOPzF2bAj5VueStknVkcyMiiCWEKWZI_QxjyEDDeh_n6rJXF4sssUe-9KthdniQ_QDbqQZwV6TgoNZ3Vdy36SfadY0fcQOBDoy1L4TWXR2GK1wwGAmKEpaI7xowUlDHk__7E53FFD7d1zNx5vqGn7fwHK567yG3mf8nD1r3UZ-spXzC7bnqpfs6T0wwVesmEBDdgsLfFr_ckt-Bmu4u_1z1pBF45cdWuuKo6PKC4K1WDlOEzwe33x3-3e2qWrvOW2PRovUX7P5-Pzy6yRq90uIrtIcf9KBs0bFXihKrQcnnIzlyAqZCCMseA0jG_s8M5pg-TxgJGQoaUT4JJVK6vQN26_qyr1l3Hincq2d8jqRV5kEqbSLQRh0KK1V8YB97NhWXm9hMco-nEDmloG5A3ZKHO0pCMo6XKibn2WrGSWG57HCutGwKOliC8aCyjEqc9rmI4eVHHXyKFv9WpUoTyHRNMp8wD70t1EzaLoDKldvkIbyT0Y0Mztgx70cH_zcT0HED5CUF-NZGs4O_4f4HXuS0L7BIXftiO2vm417j87M2gxDm8WjHn8bsoPT82kxG4aBASzNp8XJj38ZZ_Od |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9lA4IJ4iUMCIckFa2IfX8R4qREmj9BVFUSr1trVjm0u0GzYJVW_9CUj8H35Mfwkz7m4gl9x624flteblmZ3xNwC7mpBvZcapTaoMeKpFoEKugiS1hD7mMGSgH_qnfdE740fn6fkG_GnOwlBZZWMTvaE25Zj-kX9G2Ys4KgPPvkx_BNQ1irKrTQsNVbdWMHseYqw-2HFsry4xhJvtHXaQ3x_iuHsw-tYL6i4DwTjJ0iSwyhotQhcJKkhXNrI85G0T8TjSkVFOqrYJXZZqSWB2TmH8oKnUInJxwgWXCc57D7Y4rgyDv639g_5g2OwFuBO0eQ2K6uuHXJV8okxvsrIN-m4BKy7u9qKYqqtLNZmsOs1-1-s-goe1u8q-3srXY9iwxRN48B-I4VMY9FRF9hJvWL_8aSeso-bq5vpXpyJLykYNSuyMoYPMBgSnMbOMEksOv3xz_Xu4KErnGLVlo8Pxz-DsTij4HDaLsrAvgGlnRSalFU7GfJxyxYW0oYo0OrLGiLAF7xuy5dNbOI58GcYgcXNP3BbsE0WXIwhC2z8oq-95rZG5yJA_ODcaNMFtaJQ2SmQYDVppsrbFSXYafuS1Xs_yf1LYgnfL16iRlGZRhS0XOIbqXtqUEW7B7pKPa5f70bN4zZD8qDtM_NXL9ct6C9u90elJfnLYP34F92PqVuwr5nZgc14t7Gt0oeb6TS2nDC7uWjX-AtatMOE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIvE4IJ4iUMCIckHadh9er_eAEBBC2kIUVa3U22LHdi_RbrpJqHrrT0Di3_Bz-kuYcXYDueTW2z4s72penvGMvwHY1oR8K3NObVJlwFMtAhVyFSSpJfQxhyEDbeh_H4j-Md8_SU824E97FobKKlub6A21qUa0R76LshdxVAae77qmLGLY7X2YnAXUQYoyrW07jYWIHNiLcwzfpu_3usjrt3Hc-3L0uR80HQaCUZKnSWCVNVqELhJUjK5sZHnIMxPxONKRUU6qzIQuT7UkIDunMHbQVGYRuTjhgssE570BNzNCcadT6r2v7SqAa0DGGzhUXznk6mSHcrzJygLo-wSsOLe35-VEXZyr8XjVXfbrXe8-3GscVfZxIVkPYMOWD-Huf_CFj2DYVzVZSrxhg-qnHbOumqmry1_dmmwoO2rxYacMXWM2JCCNqWWUUnL45avL34fzsnKOUUM2Ohb_GI6vhX5PYLOsSvsUmHZW5FJa4WTMRylXXEgbqkijC2uMCDvwpiVbMVkAcRTLAAaJW3jiduATUXQ5gsCz_YOqPi0aXSxEjvzBudGUCW5Do7RRIsc40EqTZxYn2Wr5UTQaPS3-yV8HXi9foy5SgkWVtprjGKp4ySgX3IHtJR_X_u47z-I1Q4r93mHir56t_61XcAsVovi2Nzh4DndialPsS-W2YHNWz-0L9J1m-qUXUgY_rlsr_gKR-y57 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCa69DDssK57oCnaQd16GuDAjmVFPvaxICjQICgaIDsZVCRdFjhFEq9oT_0JBfoP-0tKOnbQ7BD05gctEBRFkSb5CeDYMPKtTiUfk6oDmRgVYCgxiBPH6GOeQgb-oX_ZV72hvBgloy34UffCvM7flxU3fha3ODcav4NtlZC_3YDtYX9w8qfsdEy4OUyPKtzR9Q_WdpoSkH_Ni3xf5Dd4d4uTybpfWm4s3R04q1la1pP8bRUL0xrf_4fWuJnnT_Cx8ivFyVIRdmHL5Z_hwyu0wS8w6OGMDRvdiP70n5uIc1zg88Pj-YxNnriu4VzngjxZMWDci7kTnAHyxP_zw9NVkU-9F3x-Gnexf4Vh9_f1WS-oDlQIxnFKonLorFGhjxTX3qOLnAxlx0ayHZnIotfYsaFPE6MZt88jhUqGq0oi346lkjr-Bo18mrs9EMY7lWrtlNdtOU4kSqVdiJEhj9NaFTbhZy387GaJm5Gt4g2ST1bKpwmnPC8rCsa6Lh-QOLNq6WQUv4eKxibLo6QLLRqLKqWwzWmbdhwNclDPalYtwHlGWhFJsp0ybcLR6jUtHc6HYO6mBdFwgUqHU7dNOF5pw0Z2f5WKsoEku-hexeXV_tvGPIDGYla4Q3JtFuZ7pdsv7UH3Dg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+Novel+Data%E2%80%90Driven+Techniques+for+Precise+Rainfall%E2%80%93Runoff+Modeling&rft.jtitle=Journal+of+flood+risk+management&rft.au=Sammen%2C+Saad+Sh&rft.au=Mohammadpour%2C+Reza&rft.au=AlSafadi%2C+Karam&rft.au=Mokhtar%2C+Ali&rft.date=2025-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1753-318X&rft.eissn=1753-318X&rft.volume=18&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fjfr3.70013&rft.externalDBID=10.1111%252Fjfr3.70013&rft.externalDocID=JFR370013 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1753-318X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1753-318X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1753-318X&client=summon |