Harnessing Novel Data‐Driven Techniques for Precise Rainfall–Runoff Modeling

ABSTRACT Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource management, particularly for reservoir operation. Developing an accurate model to capture the dynamic connection between rainfall and runoff rem...

Full description

Saved in:
Bibliographic Details
Published inJournal of flood risk management Vol. 18; no. 1
Main Authors Sammen, Saad Sh, Mohammadpour, Reza, AlSafadi, Karam, Mokhtar, Ali, Shahid, Shamsuddin
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.03.2025
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN1753-318X
1753-318X
DOI10.1111/jfr3.70013

Cover

Abstract ABSTRACT Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource management, particularly for reservoir operation. Developing an accurate model to capture the dynamic connection between rainfall and runoff remains problematic and challenging in water resource management due to the nonstationary characteristics of hydrologic processes and the effects of noise. In this study, data‐driven techniques, such as the group method of data handling (GMDH), extreme learning machine (ELM), and two hybrids of artificial neural network (ANN) with Cuckoo search algorithm (ANN + Cuckoo) and genetic algorithm (ANN + GA) were used to model the rainfall–runoff relationship. For a comprehensive analysis, four scenarios were examined based on the different input combinations to test and select the best scenario and best model performance. The results indicated that the performance of ELM and GMDH in predicting runoff was more accurate than that of ANN + Cuckoo and ANN + GA. Although the GMDH predicts runoff with higher accuracy, ELM provides reliable performance in simulating both low and high values. The models' performance can be ranked based on the testing data in the following order: GMDH, ELM, ANN + GA, and ANN + CUKOO. The root mean squared error (RMSE) was recorded as 56.7 and 69.7 m3/s for the GMDH and ELM models, respectively. These low RMSE values highlight the potential of these models in effectively addressing the challenges associated with the complexity of rainfall–runoff simulations. Moreover, the results demonstrate that the machine learning models could be used as a simple, rapid, and inexpensive approach for timely and reliable runoff prediction that is expected to benefit reservoir management.
AbstractList Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource management, particularly for reservoir operation. Developing an accurate model to capture the dynamic connection between rainfall and runoff remains problematic and challenging in water resource management due to the nonstationary characteristics of hydrologic processes and the effects of noise. In this study, data‐driven techniques, such as the group method of data handling (GMDH), extreme learning machine (ELM), and two hybrids of artificial neural network (ANN) with Cuckoo search algorithm (ANN + Cuckoo) and genetic algorithm (ANN + GA) were used to model the rainfall–runoff relationship. For a comprehensive analysis, four scenarios were examined based on the different input combinations to test and select the best scenario and best model performance. The results indicated that the performance of ELM and GMDH in predicting runoff was more accurate than that of ANN + Cuckoo and ANN + GA. Although the GMDH predicts runoff with higher accuracy, ELM provides reliable performance in simulating both low and high values. The models' performance can be ranked based on the testing data in the following order: GMDH, ELM, ANN + GA, and ANN + CUKOO. The root mean squared error (RMSE) was recorded as 56.7 and 69.7 m³/s for the GMDH and ELM models, respectively. These low RMSE values highlight the potential of these models in effectively addressing the challenges associated with the complexity of rainfall–runoff simulations. Moreover, the results demonstrate that the machine learning models could be used as a simple, rapid, and inexpensive approach for timely and reliable runoff prediction that is expected to benefit reservoir management.
ABSTRACT Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource management, particularly for reservoir operation. Developing an accurate model to capture the dynamic connection between rainfall and runoff remains problematic and challenging in water resource management due to the nonstationary characteristics of hydrologic processes and the effects of noise. In this study, data‐driven techniques, such as the group method of data handling (GMDH), extreme learning machine (ELM), and two hybrids of artificial neural network (ANN) with Cuckoo search algorithm (ANN + Cuckoo) and genetic algorithm (ANN + GA) were used to model the rainfall–runoff relationship. For a comprehensive analysis, four scenarios were examined based on the different input combinations to test and select the best scenario and best model performance. The results indicated that the performance of ELM and GMDH in predicting runoff was more accurate than that of ANN + Cuckoo and ANN + GA. Although the GMDH predicts runoff with higher accuracy, ELM provides reliable performance in simulating both low and high values. The models' performance can be ranked based on the testing data in the following order: GMDH, ELM, ANN + GA, and ANN + CUKOO. The root mean squared error (RMSE) was recorded as 56.7 and 69.7 m3/s for the GMDH and ELM models, respectively. These low RMSE values highlight the potential of these models in effectively addressing the challenges associated with the complexity of rainfall–runoff simulations. Moreover, the results demonstrate that the machine learning models could be used as a simple, rapid, and inexpensive approach for timely and reliable runoff prediction that is expected to benefit reservoir management.
ABSTRACT Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource management, particularly for reservoir operation. Developing an accurate model to capture the dynamic connection between rainfall and runoff remains problematic and challenging in water resource management due to the nonstationary characteristics of hydrologic processes and the effects of noise. In this study, data‐driven techniques, such as the group method of data handling (GMDH), extreme learning machine (ELM), and two hybrids of artificial neural network (ANN) with Cuckoo search algorithm (ANN + Cuckoo) and genetic algorithm (ANN + GA) were used to model the rainfall–runoff relationship. For a comprehensive analysis, four scenarios were examined based on the different input combinations to test and select the best scenario and best model performance. The results indicated that the performance of ELM and GMDH in predicting runoff was more accurate than that of ANN + Cuckoo and ANN + GA. Although the GMDH predicts runoff with higher accuracy, ELM provides reliable performance in simulating both low and high values. The models' performance can be ranked based on the testing data in the following order: GMDH, ELM, ANN + GA, and ANN + CUKOO. The root mean squared error (RMSE) was recorded as 56.7 and 69.7 m3/s for the GMDH and ELM models, respectively. These low RMSE values highlight the potential of these models in effectively addressing the challenges associated with the complexity of rainfall–runoff simulations. Moreover, the results demonstrate that the machine learning models could be used as a simple, rapid, and inexpensive approach for timely and reliable runoff prediction that is expected to benefit reservoir management.
Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource management, particularly for reservoir operation. Developing an accurate model to capture the dynamic connection between rainfall and runoff remains problematic and challenging in water resource management due to the nonstationary characteristics of hydrologic processes and the effects of noise. In this study, data‐driven techniques, such as the group method of data handling (GMDH), extreme learning machine (ELM), and two hybrids of artificial neural network (ANN) with Cuckoo search algorithm (ANN + Cuckoo) and genetic algorithm (ANN + GA) were used to model the rainfall–runoff relationship. For a comprehensive analysis, four scenarios were examined based on the different input combinations to test and select the best scenario and best model performance. The results indicated that the performance of ELM and GMDH in predicting runoff was more accurate than that of ANN + Cuckoo and ANN + GA. Although the GMDH predicts runoff with higher accuracy, ELM provides reliable performance in simulating both low and high values. The models' performance can be ranked based on the testing data in the following order: GMDH, ELM, ANN + GA, and ANN + CUKOO. The root mean squared error (RMSE) was recorded as 56.7 and 69.7 m 3 /s for the GMDH and ELM models, respectively. These low RMSE values highlight the potential of these models in effectively addressing the challenges associated with the complexity of rainfall–runoff simulations. Moreover, the results demonstrate that the machine learning models could be used as a simple, rapid, and inexpensive approach for timely and reliable runoff prediction that is expected to benefit reservoir management.
Author Mohammadpour, Reza
Mokhtar, Ali
AlSafadi, Karam
Sammen, Saad Sh
Shahid, Shamsuddin
Author_xml – sequence: 1
  givenname: Saad Sh
  orcidid: 0000-0002-1708-0612
  surname: Sammen
  fullname: Sammen, Saad Sh
  email: saad123engineer@yahoo.com
  organization: University of Diyala
– sequence: 2
  givenname: Reza
  orcidid: 0000-0002-7940-5101
  surname: Mohammadpour
  fullname: Mohammadpour, Reza
  organization: Islamic Azad University of Estahban Branch
– sequence: 3
  givenname: Karam
  orcidid: 0000-0001-8925-7918
  surname: AlSafadi
  fullname: AlSafadi, Karam
  organization: Xiamen University
– sequence: 4
  givenname: Ali
  surname: Mokhtar
  fullname: Mokhtar, Ali
  organization: Cairo University
– sequence: 5
  givenname: Shamsuddin
  orcidid: 0000-0001-9621-6452
  surname: Shahid
  fullname: Shahid, Shamsuddin
  organization: National Center of Meteodology
BookMark eNp9kctKJDEUhoMo2OpsfIICN-LQTlJJV6qWouNlUEcaB2YXTlVONE2ZtEmX0jsfQfANfRLTloi46Gxy-_In58sGWXXeISHbjO6z1H5NTOD7klLGV8iAyREfclb-X_0yXicbMU4oLWQpxYBcnUJwGKN1N9mlf8A2O4IZvD49HwX7gC67xubW2fsOY2Z8yK4CNjZiNgbrDLTt69PLuHPemOzCa2xTyhZZSxsRf3z0m-Tf8e_rw9Ph-d-Ts8OD82HDq_QUBNR1QQ0rGtBpwlBQITUTOauZBlOC1NRUo7rkJZMGmChrY7BhJueiECXfJGd9rvYwUdNg7yDMlQer3hd8uFEQZrZpURVVKhcp5PmoEEg11BqKKh9VWOpKIk9ZP_uszk1h_pjq-gxkVC3EqoVY9S420bs9PQ1-IWam7mxssG3Boe-i4jmluUwkTejON3Tiu-CSF5X-gglZcFElaq-nmuBjDGiW3856-NG2OF9Cqj_HY96feQPGjaZ5
Cites_doi 10.1016/j.jhydrol.2019.03.101
10.2166/nh.2017.163
10.1016/j.asej.2024.102854
10.1016/j.ijhydene.2020.05.033
10.1016/j.asoc.2016.12.052
10.1016/j.jhydrol.2015.07.057
10.1002/2016WR020187
10.1007/s11269-019-02305-9
10.1002/wrcr.20218
10.2166/hydro.2013.134
10.1186/1472-6750-7-53
10.1016/j.jhydrol.2004.03.027
10.2478/v10104-009-0015-y
10.1016/j.jhydrol.2020.125133
10.1016/j.amc.2017.06.012
10.1016/j.ejrh.2022.101202
10.1016/j.jhydrol.2012.09.014
10.1007/s11269-011-9833-y
10.1016/j.jhydrol.2017.03.032
10.1016/j.jhydrol.2010.07.023
10.1016/0022-1694(93)90073-I
10.3390/su14116620
10.1016/j.jhydrol.2014.01.023
10.1002/2015WR017780
10.18280/isi.250311
10.1016/j.jhydrol.2016.12.024
10.1016/j.renene.2018.07.142
10.1504/IJMMNO.2010.035430
10.1007/s11356‐021‐12792‐2
10.1016/j.ejrh.2021.100859
10.3390/w9030153
10.1007/s12517‐017‐3203‐x
10.2166/ws.2021.161
10.5194/hess-25-4373-2021
10.1007/s11269-015-1188-3
10.1016/j.jhydrol.2020.125014
10.1016/j.jhydrol.2016.06.026
10.1016/j.jhydrol.2016.11.033
10.1016/j.envsoft.2021.105094
10.1029/2019WR026933
10.1007/s00704‐023‐04426‐z
10.36334/modsim.2023.tang300
10.1016/j.ins.2010.05.021
10.2166/hydro.2013.042
10.1007/978-981-16-8484-5_6
10.2166/hydro.2013.141
10.1016/j.jhydrol.2018.07.004
10.1061/(ASCE)1084-0699(1999)4:3(232)
10.1111/j.1752-1688.1998.tb05961.x
10.1029/2020WR028091
10.1016/j.cirpj.2020.05.009
10.1080/09715010.2019.1607783
10.2166/ws.2021.047
10.1016/S0022-1694(00)00344-9
10.5194/hess-26-1673-2022
10.2166/hydro.2013.075
10.2166/nh.2015.069
10.1016/j.heliyon.2021.e06764
10.1016/j.jhydrol.2011.01.017
10.1016/j.aej.2018.05.002
10.3390/w12092529
10.1007/s40808-018-0509-y
10.1016/j.jhydrol.2014.06.050
10.1007/s11629-018-5010-6
10.1139/s03-071
10.3390/w14182858
10.1007/978-3-319-96133-0_28
10.1029/2018WR022587
10.3390/w7084144
10.1088/1755-1315/880/1/012021
10.3390/app10155160
10.1016/j.cscm.2022.e00991
10.1016/0022-1694(85)90207-0
10.1007/s11269-015-0962-6
10.1515/ijfe-2013-0068
10.1002/hyp.10594
10.1007/s11356‐021‐15223‐4
10.1029/2018WR022643
10.1007/978-981-15-1971-0_61
10.1080/02626669009492442
10.1007/s40808-020-00833-7
10.1177/030913330102500104
10.1007/s12517‐018‐3804‐z
10.1016/S0022-1694(00)00279-1
10.1111/nyas.14335
10.3390/w9010009
10.1016/j.advwatres.2015.06.012
10.1016/j.wri.2014.10.003
10.1016/j.mex.2021.101310
10.1007/s10040-018-1909-9
10.1029/2019WR026226
10.11113/elektrika.v21n2.367
10.3390/w14142210
10.3390/w14050697
10.2166/wcc.2021.064
10.1016/j.jhydrol.2020.125359
10.1016/0022-1694(86)90114-9
10.1016/j.fuel.2020.117472
10.1016/j.asoc.2016.01.017
10.3390/cli10100147
10.1002/wat2.1471
ContentType Journal Article
Copyright 2025 The Author(s). published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd.
2025. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QH
7TG
7UA
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
H97
HCIFZ
KL.
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.1111/jfr3.70013
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1753-318X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_69006e0a22564e0dabda69259e8d97e3
10.1111/jfr3.70013
10_1111_jfr3_70013
JFR370013
Genre article
GroupedDBID 05W
0R~
1OC
24P
29K
31~
4.4
5DZ
5GY
6KP
8-1
AAESR
AAMMB
AANHP
AAYCA
AAZKR
ABCUV
ABJCF
ACBWZ
ACCMX
ACGFO
ACGFS
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADEOM
ADMGS
ADNMO
ADPDF
ADXAS
AEFGJ
AENEX
AEUYN
AFBPY
AFGKR
AFKRA
AFRAH
AGQPQ
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ASPBG
ATCPS
AVWKF
AZFZN
AZVAB
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BRXPI
CAG
CCPQU
COF
CS3
D-I
DCZOG
EBS
EJD
FEDTE
G-S
GODZA
GROUPED_DOAJ
HCIFZ
HVGLF
HZ~
LH4
LITHE
LOXES
LUTES
LW6
LYRES
M7S
MSFUL
MSSTM
MXFUL
MXSTM
MY~
M~E
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
PUEGO
PYCSY
ROL
SUPJJ
TEORI
WBKPD
WIN
WOHZO
XV2
ZZTAW
AAYXX
CITATION
7QH
7TG
7UA
8FE
8FG
ABUWG
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
H97
KL.
L.G
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c3953-eaedb60f16cadeae1e4047d1421b1daf8a7d0f95b83817fa148bffec1f2346483
IEDL.DBID 24P
ISSN 1753-318X
IngestDate Tue Oct 14 18:57:14 EDT 2025
Sun Sep 07 10:56:09 EDT 2025
Fri Sep 05 17:15:32 EDT 2025
Sat Aug 23 13:30:26 EDT 2025
Wed Oct 01 06:38:00 EDT 2025
Tue Sep 09 05:10:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3953-eaedb60f16cadeae1e4047d1421b1daf8a7d0f95b83817fa148bffec1f2346483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9621-6452
0000-0002-7940-5101
0000-0002-1708-0612
0000-0001-8925-7918
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfr3.70013
PQID 3181476349
PQPubID 1006409
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_69006e0a22564e0dabda69259e8d97e3
unpaywall_primary_10_1111_jfr3_70013
proquest_miscellaneous_3200270130
proquest_journals_3181476349
crossref_primary_10_1111_jfr3_70013
wiley_primary_10_1111_jfr3_70013_JFR370013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
20250301
2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: London
PublicationTitle Journal of flood risk management
PublicationYear 2025
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
– name: Wiley
References 2018; 564
2019; 16
2004; 3
2016; 540
2016; 30
1973
2022; 26
2019; 18
2020; 12
2020; 10
2010; 180
2018; 49
2017; 313
2020; 1472
2010; 1
2018; 4
1986; 87
2015; 83
2000; 10
2004; 295
2014; 16
2019; 27
2016; 42
2007; 7
2016; 47
2014; 10
2021; 46
1990; 35
2000; 235
2019; 33
2015; 51
2000; 239
2020; 269
2015; 529
2021; 143
2024; 15
2001; 25
2017; 548
2021; 57
2017; 53
2012; 472
2020; 31
2023; 152
2022; 14
2020; 25
2022; 10
1985; 77
2018; 11
2022; 16
2017; 544
2019; 573
2017; 545
2016; 9
2017; 5
2021; 25
2021; 27
2011; 399
2021; 21
2021; 28
2008; 8
2020; 56
2021; 880
2017; 9
2021; 36
2020; 7
2020; 6
1968; 13
2013; 15
2022a; 21
2010; 391
2011; 25
2014; 7
2021; 8
2021; 7
2014; 519
2013; 49
2011
2020; 589
1999; 4
2004
2020; 587
2022; 44
1993; 147
2015; 7
2014; 511
2021; 12
2015; 29
2023
2021
2020
2017; 10
2018
2022b
2018; 54
1998; 34
1966
2018; 57
2019; 132
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_94_1
Mohammadpour R. (e_1_2_7_60_1) 2019; 18
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_48_1
e_1_2_7_29_1
Burnash R. J. (e_1_2_7_18_1) 1973
Crawford N. H. (e_1_2_7_26_1) 1966
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_102_1
Neitsch S. L. (e_1_2_7_67_1) 2004
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
Babovic V. (e_1_2_7_9_1) 2017
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
Ivakhnenko A. G. (e_1_2_7_41_1) 2000; 10
e_1_2_7_57_1
e_1_2_7_38_1
Ivakhnenko A. G. (e_1_2_7_40_1) 1968; 13
References_xml – year: 2011
– volume: 511
  start-page: 72
  year: 2014
  end-page: 81
  article-title: Monthly Streamflow Forecasting Using Gaussian Process Regression
  publication-title: Journal of Hydrology
– volume: 147
  start-page: 1
  issue: 1–4
  year: 1993
  end-page: 36
  article-title: Comparison of Six Rainfall–Runoff Modelling Approaches
  publication-title: Journal of Hydrology
– volume: 4
  start-page: 1577
  year: 2018
  end-page: 1605
  article-title: Review of Studies on Hydrological Modelling in Malaysia
  publication-title: Modelling Earth Systems and Environment
– volume: 313
  start-page: 271
  year: 2017
  end-page: 286
  article-title: Comparative Analysis of GMDH Neural Network Based on Genetic Algorithm and Particle Swarm Optimization in Stable Channel Design
  publication-title: Applied Mathematics and Computation
– year: 1966
– volume: 31
  start-page: 189
  year: 2020
  end-page: 199
  article-title: Exercising Hybrid Statistical Tools GA‐RSM, GA‐ANN and GA‐ANFIS to Optimize FDM Process Parameters for Tensile Strength Improvement
  publication-title: CIRP Journal of Manufacturing Science and Technology
– volume: 519
  start-page: 2822
  year: 2014
  end-page: 2831
  article-title: Evaluating a Coupled Discrete Wavelet Transform and Support Vector Regression for Daily and Monthly Streamflow Forecasting
  publication-title: Journal of Hydrology
– volume: 18
  start-page: 1
  year: 2019
  end-page: 13
  article-title: Manning's Roughness Coefficient for Ecological Subsurface Channel With Modules
  publication-title: International Journal of River Basin Management
– volume: 83
  start-page: 405
  year: 2015
  end-page: 420
  article-title: Uncertainty Based Modelling of Rainfall–Runoff: Combined Differential Evolution Adaptive Metropolis (DREAM) and ‐Means Clustering
  publication-title: Advances in Water Resources
– volume: 49
  start-page: 27
  year: 2018
  end-page: 40
  article-title: Intermittent Stream Flow Forecasting and Modelling With Hybrid Wavelet Neuro‐Fuzzy Model
  publication-title: Hydrology Research
– volume: 56
  year: 2020
  article-title: Data Assimilation for Streamflow Forecasting Using Extreme Learning Machines and Multilayer Perceptrons
  publication-title: Water Resources Research
– volume: 14
  start-page: 697
  issue: 5
  year: 2022
  article-title: A New Rainfall–Runoff Model Using Improved LSTM With Attentive Long and Short Lag‐Time
  publication-title: Water
– volume: 1472
  start-page: 21
  issue: 1
  year: 2020
  end-page: 48
  article-title: Hydrological Cycle Changes Under Global Warming and Their Effects on Multiscale Climate Variability
  publication-title: Annals of the New York Academy of Sciences
– volume: 12
  start-page: 2529
  issue: 9
  year: 2020
  article-title: Soil Management Effects on Soil Water Erosion and Runoff in Central Syria—A Comparative Evaluation of General Linear Model and Random Forest Regression
  publication-title: Water
– volume: 27
  start-page: 1401
  year: 2019
  end-page: 1417
  article-title: Prediction of the Subsurface Flow of Hillslopes Using a Subsurface Time‐Area Model
  publication-title: Hydrogeology Journal
– volume: 21
  start-page: 4068
  year: 2021
  end-page: 4085
  article-title: Prediction of Aeration Efficiency of Parshall and Modified Venturi Flumes: Application of Soft Computing Versus Regression Models
  publication-title: Water Supply
– volume: 25
  start-page: 4373
  issue: 8
  year: 2021
  end-page: 4401
  article-title: Hydrologically Informed Machine Learning for Rainfall–Runoff Modelling: Towards Distributed Modelling
  publication-title: Hydrology and Earth System Sciences
– volume: 8
  start-page: 195
  issue: 2–4
  year: 2008
  end-page: 203
  article-title: Climate Change Impacts on the Hydrological Cycle
  publication-title: Ecohydrology & Hydrobiology
– volume: 564
  start-page: 266
  year: 2018
  end-page: 282
  article-title: Simulation and Forecasting of Streamflows Using Machine Learning Models Coupled With Base Flow Separation
  publication-title: Journal of Hydrology
– volume: 16
  start-page: 529
  issue: 3
  year: 2019
  end-page: 541
  article-title: Using Uncertainty and Sensitivity Analysis for Finding the Best Rainfall–Runoff Model in Mountainous Watersheds (Case Study: The Navrood Watershed in Iran)
  publication-title: Journal of Mountain Science
– volume: 33
  start-page: 3321
  year: 2019
  end-page: 3338
  article-title: Combination of Multiple Data‐Driven Models for Long‐Term Monthly Runoff Predictions Based on Bayesian Model Averaging
  publication-title: Water Resources Management
– volume: 10
  issue: 15
  year: 2020
  article-title: Enhanced Artificial Neural Network With Harris Hawks Optimization for Predicting Scour Depth Downstream of Ski‐Jump Spillway
  publication-title: Applied Sciences
– volume: 235
  start-page: 276
  year: 2000
  end-page: 288
  article-title: Automatic Calibration of a Conceptual Rainfall–Runoff Model Using Multiple Objectives
  publication-title: Journal of Hydrology
– volume: 25
  start-page: 2683
  year: 2011
  end-page: 2703
  article-title: Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting
  publication-title: Water Resources Management
– volume: 8
  year: 2021
  article-title: A Novel Hybrid Method Based on Cuckoo Optimization Algorithm and Artificial Neural Network to Forecast World's Carbon Dioxide Emission
  publication-title: MethodsX
– volume: 180
  start-page: 3402
  year: 2010
  end-page: 3421
  article-title: A Dynamic Classifier Ensemble Selection Approach for Noise Data
  publication-title: Information Sciences
– volume: 14
  start-page: 6620
  issue: 11
  year: 2022
  article-title: Distributed Hydrological Model Based on Machine Learning Algorithm: Assessment of Climate Change Impact on Floods
  publication-title: Sustainability
– volume: 29
  start-page: 2655
  year: 2015
  end-page: 2675
  article-title: Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition
  publication-title: Water Resources Management
– volume: 53
  start-page: 205
  year: 2017
  end-page: 216
  article-title: A Physically Based and Machine Learning Hybrid Approach for Accurate Rainfall–Runoff Modelling During Extreme Typhoon Events
  publication-title: Applied Soft Computing
– volume: 545
  start-page: 100
  year: 2017
  end-page: 108
  article-title: Choice of Rainfall Inputs for Event‐Based Rainfall–Runoff Modelling in a Catchment With Multiple Rainfall Stations Using Data‐Driven Techniques
  publication-title: Journal of Hydrology
– volume: 9
  start-page: 9
  year: 2016
  article-title: Long‐Term Streamflow Forecasting Based on Relevance Vector Machine Model
  publication-title: Water
– volume: 51
  start-page: 7090
  year: 2015
  end-page: 7129
  article-title: Physically Based Modelling in Catchment Hydrology at 50: Survey and Outlook
  publication-title: Water Resources Research
– volume: 1
  start-page: 330
  year: 2010
  end-page: 343
  article-title: Engineering Optimization by Cuckoo Search
  publication-title: International Journal of Mathematical Modelling and Numerical Optimisation
– volume: 132
  start-page: 243
  year: 2019
  end-page: 254
  article-title: Artificial Neural Network Approach for the Steam Gasification of Palm Oil Waste Using Bottom Ash and CaO
  publication-title: Renewable Energy
– volume: 47
  start-page: 701
  issue: 4
  year: 2016
  end-page: 717
  article-title: Feasibility and Uncertainty of Using Conceptual Rainfall–Runoff Models in Design Flood Estimation
  publication-title: Hydrology Research
– volume: 7
  start-page: 1
  year: 2007
  end-page: 14
  article-title: Comparison of Estimation Capabilities of Response Surface Methodology (RSM) With Artificial Neural Network (ANN) in Lipase‐Catalyzed Synthesis of Palm‐Based Wax Ester
  publication-title: BMC Biotechnology
– volume: 16
  year: 2022
  article-title: Introducing Mathematical Modelling to Estimate Pavement Quality Index of Flexible Pavements Based on Genetic Algorithm and Artificial Neural Networks
  publication-title: Case Studies in Construction Materials
– volume: 10
  start-page: 757
  year: 2014
  end-page: 766
  article-title: Modelling of Furfural and 5‐Hydroxymethylfurfural Content of Fermented Lotus Root: Artificial Neural Networks and a Genetic Algorithm Approach
  publication-title: International Journal of Food Engineering
– volume: 239
  start-page: 132
  issue: 1–4
  year: 2000
  end-page: 147
  article-title: Comparison of Short‐Term Rainfall Prediction Models for Real‐Time Flood Forecasting
  publication-title: Journal of Hydrology
– start-page: 369
  year: 2018
  end-page: 382
– volume: 143
  year: 2021
  article-title: A Novel Ensemble‐Based Conceptual‐Data‐Driven Approach for Improved Streamflow Simulations
  publication-title: Environmental Modelling & Software
– year: 1973
– volume: 21
  start-page: 54
  issue: 2
  year: 2022a
  end-page: 63
  article-title: Intelligent Vibration Analysis of Industrial Cooling Fans
  publication-title: ELEKTRIKA‐Journal of Electrical Engineering
– volume: 21
  start-page: 2583
  issue: 6
  year: 2021
  end-page: 2595
  article-title: Predicting the Infiltration Characteristics for Semi‐Arid Regions Using Regression Trees
  publication-title: Water Supply
– volume: 14
  start-page: 2858
  issue: 18
  year: 2022
  article-title: Development of a Temperature‐Based Model Using Machine Learning Algorithms for the Projection of Evapotranspiration of Peninsular Malaysia
  publication-title: Water
– volume: 57
  year: 2021
  article-title: What Role Does Hydrological Science Play in the Age of Machine Learning?
  publication-title: Water Resources Research
– volume: 7
  start-page: 38
  year: 2014
  end-page: 48
  article-title: Modelling of Monthly Rainfall and Runoff of Urmia Lake Basin Using “Feedforward Neural Network” and “Time Series Analysis” Model
  publication-title: Water Resources and Industry
– volume: 540
  start-page: 623
  year: 2016
  end-page: 640
  article-title: A Hybrid Approach to Monthly Streamflow Forecasting: Integrating Hydrological Model Outputs Into a Bayesian Artificial Neural Network
  publication-title: Journal of Hydrology
– volume: 4
  start-page: 232
  year: 1999
  end-page: 239
  article-title: Rainfall–Runoff Modelling Using Artificial Neural Networks
  publication-title: Journal of Hydrologic Engineering
– volume: 152
  start-page: 535
  year: 2023
  end-page: 558
  article-title: Combination of Data‐Driven Models and Best Subset Regression for Predicting the Standardized Precipitation Index (SPI) at the Upper Godavari Basin in India
  publication-title: Oretical and Applied Climatology
– volume: 36
  year: 2021
  article-title: Regionalization of Hydrological Models for Flow Estimation in Ungauged Catchments in Ireland
  publication-title: Journal of Hydrology: Regional Studies
– volume: 13
  start-page: 43
  year: 1968
  end-page: 55
  article-title: The Group Method of Data Handling A Rival of Stochastic Approximation
  publication-title: Soviet Automatic Control
– volume: 11
  start-page: 533
  issue: 18
  year: 2018
  article-title: A Hybrid of ANN and CLA to Predict Rainfall
  publication-title: Arabian Journal of Geosciences
– volume: 14
  start-page: 2210
  issue: 14
  year: 2022
  article-title: Assessment of Uncertainty in Grid‐Based Rainfall–Runoff Model Based on Formal and Informal Likelihood Measures
  publication-title: Water
– volume: 44
  year: 2022
  article-title: Climate Induced Changes in Streamflow and Water Temperature in Basins Across the Atlantic Coast of the United States: An Opportunity for Nature‐Based Regional Management
  publication-title: Journal of Hydrology: Regional Studies
– volume: 7
  issue: 5
  year: 2020
  article-title: Historical Development of Rainfall–Runoff Modelling
  publication-title: Wiley Interdisciplinary Reviews: Water
– volume: 42
  start-page: 53
  year: 2016
  end-page: 65
  article-title: Evaluation of E‐Commerce Websites Using Fuzzy Hierarchical TOPSIS Based on ES‐QUAL
  publication-title: Applied Soft Computing
– volume: 472
  start-page: 36
  year: 2012
  end-page: 52
  article-title: A Formal Statistical Approach to Representing Uncertainty in Rainfall–Runoff Modelling With Focus on Residual Analysis and Probabilistic Output Evaluation–Distinguishing Simulation and Prediction
  publication-title: Journal of Hydrology
– volume: 25
  start-page: 365
  issue: 3
  year: 2020
  end-page: 370
  article-title: Deep Learning‐Based Forecast and Warning of Floods in Klang River, Malaysia
  publication-title: Ingénierie des Systèmes d'Information
– volume: 7
  issue: 4
  year: 2021
  article-title: Assessing the WEPP Model Performance for Predicting Daily Runoff in Three Terrestrial Ecosystems in Western Syria
  publication-title: Heliyon
– volume: 3
  start-page: S121
  year: 2004
  end-page: S128
  article-title: An Exploration of Artificial Neural Network Rainfall–Runoff Forecasting Combined With Wavelet Decomposition
  publication-title: Journal of Environmental Engineering and Science
– volume: 10
  start-page: 187
  year: 2000
  end-page: 194
  article-title: Problems of Further Development of the Group Method of Data Handling Algorithms. Part I
  publication-title: Pattern Recognition and Image Analysis c/c of Raspoznavaniye Obrazov i Analiz Izobrazhenii
– volume: 6
  start-page: 2177
  year: 2020
  end-page: 2188
  article-title: Modelling Rainfall–Runoff Process Using Artificial Neural Network With Emphasis on Parameter Sensitivity
  publication-title: Modelling Earth Systems and Environment
– volume: 30
  start-page: 747
  year: 2016
  end-page: 766
  article-title: Improving Forecasting Accuracy of Streamflow Time Series Using Least Squares Support Vector Machine Coupled With Data‐Preprocessing Techniques
  publication-title: Water Resources Management
– start-page: 625
  year: 2020
  end-page: 632
– volume: 46
  start-page: 24632
  year: 2021
  end-page: 24651
  article-title: Optimization of Hydrogen Production via Toluene Steam Reforming Over Ni–Co Supported Modified‐Activated Carbon Using ANN Coupled GA and RSM
  publication-title: International Journal of Hydrogen Energy
– volume: 29
  start-page: 5227
  issue: 25
  year: 2015
  end-page: 5240
  article-title: Advancing Tracer‐Aided Rainfall–Runoff Modelling: A Review of Progress, Problems and Unrealized Potential
  publication-title: Hydrological Processes
– year: 2021
– volume: 26
  start-page: 1673
  issue: 6
  year: 2022
  end-page: 1693
  article-title: Uncertainty Estimation With Deep Learning for Rainfall–Runoff Modelling
  publication-title: Hydrology and Earth System Sciences
– volume: 57
  start-page: 3019
  year: 2018
  end-page: 3032
  article-title: Comparative Studies on Modelling and Optimization of Hydrodynamic Parameters on Inverse Fluidized Bed Reactor Using ANN‐GA and RSM
  publication-title: Alexandria Engineering Journal
– volume: 399
  start-page: 394
  year: 2011
  end-page: 409
  article-title: Rainfall–Runoff Modelling Using Artificial Neural Network Coupled With Singular Spectrum Analysis
  publication-title: Journal of Hydrology
– volume: 589
  year: 2020
  article-title: The Importance of Short Lag‐Time in the Runoff Forecasting Model Based on Long Short‐Term Memory
  publication-title: Journal of Hydrology
– volume: 27
  start-page: 165
  year: 2021
  end-page: 173
  article-title: Local Scour Around Complex Abutments
  publication-title: ISH Journal of Hydraulic Engineering
– volume: 589
  year: 2020
  article-title: Rainfall–Runoff Modelling Using Improved Machine Learning Methods: Harris Hawks Optimizer vs. Particle Swarm Optimization
  publication-title: Journal of Hydrology
– volume: 548
  start-page: 588
  year: 2017
  end-page: 597
  article-title: A New Approach for Simulating and Forecasting the Rainfall–Runoff Process Within the Next Two Months
  publication-title: Journal of Hydrology
– start-page: 73
  year: 2022b
  end-page: 80
– year: 2004
– volume: 16
  start-page: 973
  year: 2014
  end-page: 988
  article-title: Real‐Time Flood Forecast Using the Coupling Support Vector Machine and Data Assimilation Method
  publication-title: Journal of Hydroinformatics
– volume: 573
  start-page: 733
  year: 2019
  end-page: 745
  article-title: Improving the Prediction Accuracy of Monthly Streamflow Using a Data‐Driven Model Based on a Double‐Processing Strategy
  publication-title: Journal of Hydrology
– volume: 15
  start-page: 829
  year: 2013
  end-page: 848
  article-title: Conjunction of SOM‐Based Feature Extraction Method and Hybrid Wavelet‐ANN Approach for Rainfall–Runoff Modelling
  publication-title: Journal of Hydroinformatics
– volume: 391
  start-page: 248
  year: 2010
  end-page: 262
  article-title: Evaluation of Rainfall and Discharge Inputs Used by Adaptive Network‐Based Fuzzy Inference Systems (ANFIS) in Rainfall–Runoff Modelling
  publication-title: Journal of Hydrology
– volume: 10
  start-page: 416
  issue: 18
  year: 2017
  article-title: Prediction of Local Scour Around Complex Piers Using GEP and M5‐Tree
  publication-title: Arabian Journal of Geosciences
– volume: 880
  issue: 1
  year: 2021
  article-title: River‐Flood Forecasting Methods: The Context of the Kelantan River in Malaysia
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 54
  start-page: 7711
  year: 2018
  end-page: 7732
  article-title: Exploring Controls on Rainfall–Runoff Events: 1. Time Series‐Based Event Separation and Temporal Dynamics of Event Runoff Response in Germany
  publication-title: Water Resources Research
– volume: 9
  start-page: 153
  year: 2017
  article-title: An EMD‐Based Chaotic Least Squares Support Vector Machine Hybrid Model for Annual Runoff Forecasting
  publication-title: Water
– volume: 12
  start-page: 3308
  issue: 7
  year: 2021
  end-page: 3329
  article-title: Improving the Performance of Rainfall–Runoff Models Using the Gene Expression Programming Approach
  publication-title: Journal of Water and Climate Change
– volume: 56
  year: 2020
  article-title: Hydrologically Informed Machine Learning for Rainfall–Runoff Modelling: A Genetic Programming‐Based Toolkit for Automatic Model Induction
  publication-title: Water Resources Research
– volume: 28
  start-page: 32564
  year: 2021
  end-page: 32579
  article-title: A New Hybrid Model Based on Relevance Vector Machine With Flower Pollination Algorithm for Phycocyanin Pigment Concentration Estimation
  publication-title: Environmental Science and Pollution Research
– volume: 25
  start-page: 80
  year: 2001
  end-page: 108
  article-title: Hydrological Modelling Using Artificial Neural Networks
  publication-title: Progress in Physical Geography
– volume: 77
  start-page: 209
  year: 1985
  end-page: 226
  article-title: Multiple Nonlinear Statistical Models for Runoff Simulation and Prediction
  publication-title: Journal of Hydrology
– volume: 53
  start-page: 5998
  year: 2017
  end-page: 6017
  article-title: Temporal Dynamics in Dominant Runoff Sources and Flow Paths in the Andean Páramo
  publication-title: Water Resources Research
– volume: 295
  start-page: 246
  year: 2004
  end-page: 262
  article-title: Improved Streamflow Forecasting Using Self‐Organizing Radial Basis Function Artificial Neural Networks
  publication-title: Journal of Hydrology
– volume: 269
  year: 2020
  article-title: Performance and Emission Prediction of a Compression Ignition Engine Fueled With Biodiesel‐Diesel Blends: A Combined Application of ANN and RSM Based Optimization
  publication-title: Fuel
– volume: 587
  year: 2020
  article-title: Rainfall–Runoff Modelling Through Regression in the Reproducing Kernel Hilbert Space Algorithm
  publication-title: Journal of Hydrology
– volume: 35
  start-page: 395
  issue: 4
  year: 1990
  end-page: 410
  article-title: Stochastic Models of Streamflow: Some Case Studies
  publication-title: Hydrological Sciences Journal
– volume: 5
  start-page: 1081
  year: 2017
  end-page: 1096
– volume: 15
  start-page: 1377
  year: 2013
  end-page: 1390
  article-title: Improved Annual Rainfall–Runoff Forecasting Using PSO–SVM Model Based on EEMD
  publication-title: Journal of Hydroinformatics
– volume: 87
  start-page: 45
  year: 1986
  end-page: 59
  article-title: An Introduction to the European Hydrological System—Systeme Hydrologique Europeen, ‘SHE’, 1: History and Philosophy of a Physically‐Based, Distributed Modelling System
  publication-title: Journal of Hydrology
– volume: 34
  start-page: 73
  issue: 1
  year: 1998
  end-page: 89
  article-title: Large‐Area Hydrologic Modelling and Assessment: Part I. Model Development
  publication-title: Journal of the American Water Resources Association
– volume: 10
  start-page: 147
  issue: 10
  year: 2022
  article-title: Comprehensive Review: Advancements in Rainfall–Runoff Modelling for Flood Mitigation
  publication-title: Climate
– year: 2023
– volume: 529
  start-page: 1633
  year: 2015
  end-page: 1643
  article-title: Hourly Runoff Forecasting for Flood Risk Management: Application of Various Computational Intelligence Models
  publication-title: Journal of Hydrology
– volume: 7
  start-page: 4144
  year: 2015
  end-page: 4160
  article-title: Daily Runoff Forecasting Model Based on ANN and Data Preprocessing Techniques
  publication-title: Water
– volume: 54
  start-page: 8558
  year: 2018
  end-page: 8593
  article-title: A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists
  publication-title: Water Resources Research
– volume: 49
  start-page: 2987
  year: 2013
  end-page: 3006
  article-title: How Runoff Begins (and Ends): Characterizing Hydrologic Response at the Catchment Scale
  publication-title: Water Resources Research
– volume: 28
  start-page: 66171
  year: 2021
  end-page: 66192
  article-title: A Hybrid Novel SVM Model for Predicting CO Emissions Using Multiobjective Seagull Optimization
  publication-title: Environmental Science and Pollution Research
– volume: 15
  issue: 7
  year: 2024
  article-title: Comparative Assessment of Rainfall‐Based Water Level Prediction Using Machine Learning (ML) Techniques
  publication-title: Ain Shams Engineering Journal
– volume: 16
  start-page: 671
  year: 2014
  end-page: 689
  article-title: Multi‐Step Streamflow Forecasting Using Data‐Driven Non‐Linear Methods in Contrasting Climate Regimes
  publication-title: Journal of Hydroinformatics
– volume: 544
  start-page: 267
  year: 2017
  end-page: 277
  article-title: An Emotional ANN (EANN) Approach to Modelling Rainfall–Runoff Process
  publication-title: Journal of Hydrology
– ident: e_1_2_7_98_1
  doi: 10.1016/j.jhydrol.2019.03.101
– ident: e_1_2_7_10_1
  doi: 10.2166/nh.2017.163
– ident: e_1_2_7_72_1
  doi: 10.1016/j.asej.2024.102854
– ident: e_1_2_7_105_1
  doi: 10.1016/j.ijhydene.2020.05.033
– ident: e_1_2_7_107_1
  doi: 10.1016/j.asoc.2016.12.052
– ident: e_1_2_7_11_1
  doi: 10.1016/j.jhydrol.2015.07.057
– ident: e_1_2_7_25_1
  doi: 10.1002/2016WR020187
– ident: e_1_2_7_37_1
  doi: 10.1007/s11269-019-02305-9
– ident: e_1_2_7_55_1
  doi: 10.1002/wrcr.20218
– ident: e_1_2_7_100_1
  doi: 10.2166/hydro.2013.134
– ident: e_1_2_7_13_1
  doi: 10.1186/1472-6750-7-53
– ident: e_1_2_7_63_1
  doi: 10.1016/j.jhydrol.2004.03.027
– ident: e_1_2_7_48_1
  doi: 10.2478/v10104-009-0015-y
– ident: e_1_2_7_92_1
  doi: 10.1016/j.jhydrol.2020.125133
– ident: e_1_2_7_79_1
  doi: 10.1016/j.amc.2017.06.012
– ident: e_1_2_7_15_1
  doi: 10.1016/j.ejrh.2022.101202
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jhydrol.2012.09.014
– ident: e_1_2_7_110_1
  doi: 10.1007/s11269-011-9833-y
– ident: e_1_2_7_5_1
  doi: 10.1016/j.jhydrol.2017.03.032
– volume: 18
  start-page: 1
  year: 2019
  ident: e_1_2_7_60_1
  article-title: Manning's Roughness Coefficient for Ecological Subsurface Channel With Modules
  publication-title: International Journal of River Basin Management
– ident: e_1_2_7_89_1
  doi: 10.1016/j.jhydrol.2010.07.023
– ident: e_1_2_7_23_1
  doi: 10.1016/0022-1694(93)90073-I
– ident: e_1_2_7_39_1
  doi: 10.3390/su14116620
– ident: e_1_2_7_88_1
  doi: 10.1016/j.jhydrol.2014.01.023
– ident: e_1_2_7_71_1
  doi: 10.1002/2015WR017780
– ident: e_1_2_7_33_1
  doi: 10.18280/isi.250311
– ident: e_1_2_7_20_1
  doi: 10.1016/j.jhydrol.2016.12.024
– ident: e_1_2_7_80_1
  doi: 10.1016/j.renene.2018.07.142
– ident: e_1_2_7_106_1
  doi: 10.1504/IJMMNO.2010.035430
– ident: e_1_2_7_74_1
  doi: 10.1007/s11356‐021‐12792‐2
– ident: e_1_2_7_34_1
  doi: 10.1016/j.ejrh.2021.100859
– ident: e_1_2_7_111_1
  doi: 10.3390/w9030153
– ident: e_1_2_7_56_1
  doi: 10.1007/s12517‐017‐3203‐x
– ident: e_1_2_7_85_1
  doi: 10.2166/ws.2021.161
– ident: e_1_2_7_36_1
  doi: 10.5194/hess-25-4373-2021
– ident: e_1_2_7_44_1
  doi: 10.1007/s11269-015-1188-3
– ident: e_1_2_7_76_1
  doi: 10.1016/j.jhydrol.2020.125014
– ident: e_1_2_7_38_1
  doi: 10.1016/j.jhydrol.2016.06.026
– ident: e_1_2_7_68_1
  doi: 10.1016/j.jhydrol.2016.11.033
– ident: e_1_2_7_87_1
  doi: 10.1016/j.envsoft.2021.105094
– ident: e_1_2_7_19_1
  doi: 10.1029/2019WR026933
– ident: e_1_2_7_58_1
– ident: e_1_2_7_70_1
  doi: 10.1007/s00704‐023‐04426‐z
– ident: e_1_2_7_90_1
  doi: 10.36334/modsim.2023.tang300
– ident: e_1_2_7_103_1
  doi: 10.1016/j.ins.2010.05.021
– ident: e_1_2_7_46_1
  doi: 10.2166/hydro.2013.042
– ident: e_1_2_7_83_1
  doi: 10.1007/978-981-16-8484-5_6
– ident: e_1_2_7_69_1
  doi: 10.2166/hydro.2013.141
– ident: e_1_2_7_94_1
  doi: 10.1016/j.jhydrol.2018.07.004
– ident: e_1_2_7_93_1
  doi: 10.1061/(ASCE)1084-0699(1999)4:3(232)
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1752-1688.1998.tb05961.x
– volume-title: Digital Simulation in Hydrology' Stanford Watershed Model 4
  year: 1966
  ident: e_1_2_7_26_1
– ident: e_1_2_7_66_1
  doi: 10.1029/2020WR028091
– ident: e_1_2_7_28_1
  doi: 10.1016/j.cirpj.2020.05.009
– ident: e_1_2_7_59_1
  doi: 10.1080/09715010.2019.1607783
– ident: e_1_2_7_86_1
  doi: 10.2166/ws.2021.047
– ident: e_1_2_7_95_1
  doi: 10.1016/S0022-1694(00)00344-9
– ident: e_1_2_7_47_1
  doi: 10.5194/hess-26-1673-2022
– ident: e_1_2_7_49_1
  doi: 10.2166/hydro.2013.075
– ident: e_1_2_7_109_1
  doi: 10.2166/nh.2015.069
– ident: e_1_2_7_62_1
  doi: 10.1016/j.heliyon.2021.e06764
– ident: e_1_2_7_102_1
  doi: 10.1016/j.jhydrol.2011.01.017
– ident: e_1_2_7_75_1
  doi: 10.1016/j.aej.2018.05.002
– ident: e_1_2_7_61_1
  doi: 10.3390/w12092529
– ident: e_1_2_7_3_1
  doi: 10.1007/s40808-018-0509-y
– ident: e_1_2_7_51_1
  doi: 10.1016/j.jhydrol.2014.06.050
– ident: e_1_2_7_4_1
  doi: 10.1007/s11629-018-5010-6
– ident: e_1_2_7_6_1
  doi: 10.1139/s03-071
– ident: e_1_2_7_64_1
  doi: 10.3390/w14182858
– ident: e_1_2_7_24_1
  doi: 10.1007/978-3-319-96133-0_28
– ident: e_1_2_7_91_1
  doi: 10.1029/2018WR022587
– volume: 10
  start-page: 187
  year: 2000
  ident: e_1_2_7_41_1
  article-title: Problems of Further Development of the Group Method of Data Handling Algorithms. Part I
  publication-title: Pattern Recognition and Image Analysis c/c of Raspoznavaniye Obrazov i Analiz Izobrazhenii
– ident: e_1_2_7_101_1
  doi: 10.3390/w7084144
– ident: e_1_2_7_54_1
  doi: 10.1088/1755-1315/880/1/012021
– ident: e_1_2_7_77_1
  doi: 10.3390/app10155160
– ident: e_1_2_7_35_1
  doi: 10.1016/j.cscm.2022.e00991
– ident: e_1_2_7_96_1
  doi: 10.1016/0022-1694(85)90207-0
– ident: e_1_2_7_99_1
  doi: 10.1007/s11269-015-0962-6
– ident: e_1_2_7_104_1
  doi: 10.1515/ijfe-2013-0068
– ident: e_1_2_7_14_1
  doi: 10.1002/hyp.10594
– ident: e_1_2_7_29_1
  doi: 10.1007/s11356‐021‐15223‐4
– ident: e_1_2_7_84_1
  doi: 10.1029/2018WR022643
– ident: e_1_2_7_12_1
  doi: 10.1007/978-981-15-1971-0_61
– ident: e_1_2_7_65_1
  doi: 10.1080/02626669009492442
– ident: e_1_2_7_81_1
– ident: e_1_2_7_97_1
  doi: 10.1007/s40808-020-00833-7
– ident: e_1_2_7_27_1
  doi: 10.1177/030913330102500104
– ident: e_1_2_7_57_1
  doi: 10.1007/s12517‐018‐3804‐z
– ident: e_1_2_7_53_1
  doi: 10.1016/S0022-1694(00)00279-1
– ident: e_1_2_7_52_1
  doi: 10.1111/nyas.14335
– ident: e_1_2_7_50_1
  doi: 10.3390/w9010009
– start-page: 1081
  volume-title: Encyclopedia of Water: Science, Technology, and Society
  year: 2017
  ident: e_1_2_7_9_1
– ident: e_1_2_7_108_1
  doi: 10.1016/j.advwatres.2015.06.012
– volume-title: Soil and Water Assessment Tool Input/Output File Documentation. Ver. 2005
  year: 2004
  ident: e_1_2_7_67_1
– ident: e_1_2_7_31_1
  doi: 10.1016/j.wri.2014.10.003
– volume-title: A Generalized Streamflow Simulation System: Conceptual Modelling for Digital Computers
  year: 1973
  ident: e_1_2_7_18_1
– ident: e_1_2_7_42_1
  doi: 10.1016/j.mex.2021.101310
– ident: e_1_2_7_32_1
  doi: 10.1007/s10040-018-1909-9
– ident: e_1_2_7_16_1
  doi: 10.1029/2019WR026226
– volume: 13
  start-page: 43
  year: 1968
  ident: e_1_2_7_40_1
  article-title: The Group Method of Data Handling A Rival of Stochastic Approximation
  publication-title: Soviet Automatic Control
– ident: e_1_2_7_82_1
  doi: 10.11113/elektrika.v21n2.367
– ident: e_1_2_7_78_1
  doi: 10.3390/w14142210
– ident: e_1_2_7_22_1
  doi: 10.3390/w14050697
– ident: e_1_2_7_30_1
  doi: 10.2166/wcc.2021.064
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jhydrol.2020.125359
– ident: e_1_2_7_2_1
  doi: 10.1016/0022-1694(86)90114-9
– ident: e_1_2_7_8_1
  doi: 10.1016/j.fuel.2020.117472
– ident: e_1_2_7_45_1
  doi: 10.1016/j.asoc.2016.01.017
– ident: e_1_2_7_43_1
  doi: 10.3390/cli10100147
– ident: e_1_2_7_73_1
  doi: 10.1002/wat2.1471
SSID ssj0067874
Score 2.3336594
Snippet ABSTRACT Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource...
Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource management,...
ABSTRACT Rainfall and runoff are considered the main components of the hydrological cycle, and their forecasting is of great significance in water resource...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
ANN + Cuckoo
Artificial neural networks
Climate change
Cuculidae
Decision making
Forecasting
Genetic algorithms
GMDH
Group method of data handling
hybrid models
Hybrids
Hydrologic cycle
Hydrologic models
Hydrologic processes
Hydrological cycle
Hydrology
Land use
Learning algorithms
Machine learning
Mathematical functions
model validation
Neural networks
Noise
Optimization
Precipitation
prediction
rain
Rainfall
Rainfall simulators
Rainfall-runoff modeling
Rainfall-runoff relationships
Reservoir management
Reservoir operation
Resource management
risk management
Root-mean-square errors
Runoff
Search algorithms
Simulation
Stream flow
Time series
water management
Water resources
Water resources management
Watersheds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLm0PCNoiUh4yKqdKoc7GcZwjBVYrJBBCIHGLxnh8WmXRPoq48ROQ-If8Emac7Iq9wKW3PEaKM2OPv8lMvhFi3zHzra00t0m1qS6cSUFpSPMCmX0sUMjAH_TPzs3gWp_eFDdvWn1xTVhLD9wq7g9Fb8qgApp3RqPy4DyYikA7Wl-VGHk-la3mwVTrg8kDl7ojI411O2GcH3CGNV_afiJL_xK0_Dxr7uDhHobDZbAad5v-mljtYKI8bIe3Lj5h8018fUMe-F1cDGDMfopO5PnoHw7lMUzh5fHpeMweTF7N2VknkoCpvGAaiwlKTugEevLL4_PlrBmFILkdGv-U_kNc90-ujgZp1x8hvc2rIk8R0DujQma4lB4wQ6106TPdy1zmIVgovQpV4SzT8AWgyMdxkUgWerk22uYbYqUZNbgppAtoKmvRBNvTt4UGbSwpPXMEIL03KhG_5mqr71oajHoRPpBy66jcRPxljS4kmLo6XiCD1p1B648MmojtuT3qbj1NavI8mSZXqKtE7C1u00rg9AY0OJqRDNeblJyJTcT-wo7vDvd3NPE7IvVp_zKPRz__x7ttiS897h8ca9i2xcp0PMMdAjVTtxvn7ysv9fQh
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NjtMwEB4t3QNwQPyKwoKM2BNSID-O4xwQYtmtqpWoqmpX2ls0rm0uVVLSFsRtHwGJN9wnYcabFHrpLYktx5rxjGc8428Ajg0j3-pScplUHcncqAhjiVGWO0Yf8-Qy8IH-14kaX8rzq_zqACb9XRhOq-x1YlDUtpnzGfkHWnuJJGGQ5afl94irRnF0tS-hgV1pBfsxQIzdgcOUkbEGcHhyNpnOet1MmrmQHUhpyOfxbfaeI6_ZzrYU0Pt3TM67m3qJv37iYrFrxIZdaPQQHnTmo_h8y-9HcODqx3D_P1DBJzAdY8v6i17EpPnhFuIU13hz_fu0Zc0mLnrU1pUgg1VMGd5i5QQHejz9-eb6z2xTN94LLpPGl9WfwuXo7OLLOOrqJkTzrMyzyKGzRsU-UZxijy5xMpaFTWSamMSi11jY2Je50QzP55E8IsPJI4lPM6mkzp7BoG5q9xyE8U6VWjvldSrnuUSptIsxMWRYWqviIbztyVYtb-Exqq1bQcStAnGHcMIU3fZgSOvwoWm_VZ2EVOSmx4rGJgWjpIstGouqJO_MaVsWjgY56vlRdXK2qv6tiiG82TaThHDYA2vXbKgP56EUHKEdwvGWj3un-y6weE-X6nw0y8LTi_3Tegn3Uq4YHLLWjmCwbjfuFZkxa_O6W5t_AV2w8mg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCa69DDssK57oCnaQd16GuDAjmVFPvaxICjQICgaIDsZVCRdFjhFEq9oT_0JBfoP-0tKOnbQ7BD05gctEBRFkSb5CeDYMPKtTiUfk6oDmRgVYCgxiBPH6GOeQgb-oX_ZV72hvBgloy34UffCvM7flxU3fha3ODcav4NtlZC_3YDtYX9w8qfsdEy4OUyPKtzR9Q_WdpoSkH_Ni3xf5Dd4d4uTybpfWm4s3R04q1la1pP8bRUL0xrf_4fWuJnnT_Cx8ivFyVIRdmHL5Z_hwyu0wS8w6OGMDRvdiP70n5uIc1zg88Pj-YxNnriu4VzngjxZMWDci7kTnAHyxP_zw9NVkU-9F3x-Gnexf4Vh9_f1WS-oDlQIxnFKonLorFGhjxTX3qOLnAxlx0ayHZnIotfYsaFPE6MZt88jhUqGq0oi346lkjr-Bo18mrs9EMY7lWrtlNdtOU4kSqVdiJEhj9NaFTbhZy387GaJm5Gt4g2ST1bKpwmnPC8rCsa6Lh-QOLNq6WQUv4eKxibLo6QLLRqLKqWwzWmbdhwNclDPalYtwHlGWhFJsp0ybcLR6jUtHc6HYO6mBdFwgUqHU7dNOF5pw0Z2f5WKsoEku-hexeXV_tvGPIDGYla4Q3JtFuZ7pdsv7UH3Dg
  priority: 102
  providerName: Unpaywall
Title Harnessing Novel Data‐Driven Techniques for Precise Rainfall–Runoff Modeling
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfr3.70013
https://www.proquest.com/docview/3181476349
https://www.proquest.com/docview/3200270130
https://doi.org/10.1111/jfr3.70013
https://doaj.org/article/69006e0a22564e0dabda69259e8d97e3
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1753-318X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067874
  issn: 1753-318X
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1753-318X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067874
  issn: 1753-318X
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1753-318X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067874
  issn: 1753-318X
  databaseCode: OVEED
  dateStart: 20080501
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1753-318X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067874
  issn: 1753-318X
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1753-318X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067874
  issn: 1753-318X
  databaseCode: 24P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swEBdd-7DtYewvS9cFjfVp4GHZsiLDXtq1WSgsmNBA9mROlbSXYBcnWdlbP8Jg37CfZHeKbZqXwl6MZZ9l-053upNOPzF2bAj5VueStknVkcyMiiCWEKWZI_QxjyEDDeh_n6rJXF4sssUe-9KthdniQ_QDbqQZwV6TgoNZ3Vdy36SfadY0fcQOBDoy1L4TWXR2GK1wwGAmKEpaI7xowUlDHk__7E53FFD7d1zNx5vqGn7fwHK567yG3mf8nD1r3UZ-spXzC7bnqpfs6T0wwVesmEBDdgsLfFr_ckt-Bmu4u_1z1pBF45cdWuuKo6PKC4K1WDlOEzwe33x3-3e2qWrvOW2PRovUX7P5-Pzy6yRq90uIrtIcf9KBs0bFXihKrQcnnIzlyAqZCCMseA0jG_s8M5pg-TxgJGQoaUT4JJVK6vQN26_qyr1l3Hincq2d8jqRV5kEqbSLQRh0KK1V8YB97NhWXm9hMco-nEDmloG5A3ZKHO0pCMo6XKibn2WrGSWG57HCutGwKOliC8aCyjEqc9rmI4eVHHXyKFv9WpUoTyHRNMp8wD70t1EzaLoDKldvkIbyT0Y0Mztgx70cH_zcT0HED5CUF-NZGs4O_4f4HXuS0L7BIXftiO2vm417j87M2gxDm8WjHn8bsoPT82kxG4aBASzNp8XJj38ZZ_Od
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9lA4IJ4iUMCIckFa2IfX8R4qREmj9BVFUSr1trVjm0u0GzYJVW_9CUj8H35Mfwkz7m4gl9x624flteblmZ3xNwC7mpBvZcapTaoMeKpFoEKugiS1hD7mMGSgH_qnfdE740fn6fkG_GnOwlBZZWMTvaE25Zj-kX9G2Ys4KgPPvkx_BNQ1irKrTQsNVbdWMHseYqw-2HFsry4xhJvtHXaQ3x_iuHsw-tYL6i4DwTjJ0iSwyhotQhcJKkhXNrI85G0T8TjSkVFOqrYJXZZqSWB2TmH8oKnUInJxwgWXCc57D7Y4rgyDv639g_5g2OwFuBO0eQ2K6uuHXJV8okxvsrIN-m4BKy7u9qKYqqtLNZmsOs1-1-s-goe1u8q-3srXY9iwxRN48B-I4VMY9FRF9hJvWL_8aSeso-bq5vpXpyJLykYNSuyMoYPMBgSnMbOMEksOv3xz_Xu4KErnGLVlo8Pxz-DsTij4HDaLsrAvgGlnRSalFU7GfJxyxYW0oYo0OrLGiLAF7xuy5dNbOI58GcYgcXNP3BbsE0WXIwhC2z8oq-95rZG5yJA_ODcaNMFtaJQ2SmQYDVppsrbFSXYafuS1Xs_yf1LYgnfL16iRlGZRhS0XOIbqXtqUEW7B7pKPa5f70bN4zZD8qDtM_NXL9ct6C9u90elJfnLYP34F92PqVuwr5nZgc14t7Gt0oeb6TS2nDC7uWjX-AtatMOE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIvE4IJ4iUMCIckHadh9er_eAEBBC2kIUVa3U22LHdi_RbrpJqHrrT0Di3_Bz-kuYcXYDueTW2z4s72penvGMvwHY1oR8K3NObVJlwFMtAhVyFSSpJfQxhyEDbeh_H4j-Md8_SU824E97FobKKlub6A21qUa0R76LshdxVAae77qmLGLY7X2YnAXUQYoyrW07jYWIHNiLcwzfpu_3usjrt3Hc-3L0uR80HQaCUZKnSWCVNVqELhJUjK5sZHnIMxPxONKRUU6qzIQuT7UkIDunMHbQVGYRuTjhgssE570BNzNCcadT6r2v7SqAa0DGGzhUXznk6mSHcrzJygLo-wSsOLe35-VEXZyr8XjVXfbrXe8-3GscVfZxIVkPYMOWD-Huf_CFj2DYVzVZSrxhg-qnHbOumqmry1_dmmwoO2rxYacMXWM2JCCNqWWUUnL45avL34fzsnKOUUM2Ohb_GI6vhX5PYLOsSvsUmHZW5FJa4WTMRylXXEgbqkijC2uMCDvwpiVbMVkAcRTLAAaJW3jiduATUXQ5gsCz_YOqPi0aXSxEjvzBudGUCW5Do7RRIsc40EqTZxYn2Wr5UTQaPS3-yV8HXi9foy5SgkWVtprjGKp4ySgX3IHtJR_X_u47z-I1Q4r93mHir56t_61XcAsVovi2Nzh4DndialPsS-W2YHNWz-0L9J1m-qUXUgY_rlsr_gKR-y57
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCa69DDssK57oCnaQd16GuDAjmVFPvaxICjQICgaIDsZVCRdFjhFEq9oT_0JBfoP-0tKOnbQ7BD05gctEBRFkSb5CeDYMPKtTiUfk6oDmRgVYCgxiBPH6GOeQgb-oX_ZV72hvBgloy34UffCvM7flxU3fha3ODcav4NtlZC_3YDtYX9w8qfsdEy4OUyPKtzR9Q_WdpoSkH_Ni3xf5Dd4d4uTybpfWm4s3R04q1la1pP8bRUL0xrf_4fWuJnnT_Cx8ivFyVIRdmHL5Z_hwyu0wS8w6OGMDRvdiP70n5uIc1zg88Pj-YxNnriu4VzngjxZMWDci7kTnAHyxP_zw9NVkU-9F3x-Gnexf4Vh9_f1WS-oDlQIxnFKonLorFGhjxTX3qOLnAxlx0ayHZnIotfYsaFPE6MZt88jhUqGq0oi346lkjr-Bo18mrs9EMY7lWrtlNdtOU4kSqVdiJEhj9NaFTbhZy387GaJm5Gt4g2ST1bKpwmnPC8rCsa6Lh-QOLNq6WQUv4eKxibLo6QLLRqLKqWwzWmbdhwNclDPalYtwHlGWhFJsp0ybcLR6jUtHc6HYO6mBdFwgUqHU7dNOF5pw0Z2f5WKsoEku-hexeXV_tvGPIDGYla4Q3JtFuZ7pdsv7UH3Dg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+Novel+Data%E2%80%90Driven+Techniques+for+Precise+Rainfall%E2%80%93Runoff+Modeling&rft.jtitle=Journal+of+flood+risk+management&rft.au=Sammen%2C+Saad+Sh&rft.au=Mohammadpour%2C+Reza&rft.au=AlSafadi%2C+Karam&rft.au=Mokhtar%2C+Ali&rft.date=2025-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1753-318X&rft.eissn=1753-318X&rft.volume=18&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fjfr3.70013&rft.externalDBID=10.1111%252Fjfr3.70013&rft.externalDocID=JFR370013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1753-318X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1753-318X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1753-318X&client=summon