Which randomizations detect convergence and divergence in trait-based community assembly? A test of commonly used null models

Questions: Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the traits of existing species are more similar (trait convergence) or more dissimilar (trait divergence) than expected by chance, these tests rel...

Full description

Saved in:
Bibliographic Details
Published inJournal of vegetation science Vol. 27; no. 6; pp. 1275 - 1287
Main Authors Götzenberger, Lars, Botta-Dukát, Zoltán, Lepš, Jan, Pärtel, Meelis, Zobel, Martin, de Bello, Francesco
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.11.2016
John Wiley & Sons Ltd
Subjects
Online AccessGet full text
ISSN1100-9233
1654-1103
DOI10.1111/jvs.12452

Cover

Abstract Questions: Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the traits of existing species are more similar (trait convergence) or more dissimilar (trait divergence) than expected by chance, these tests relate observed patterns to different existence mechanisms. Do null models accurately detect trait convergence and divergence? Are different null models equally good at detecting these two opposing patterns? How important are the species pool and other constraints that are considered by different null models? Methods: We applied ten common randomizations to communities that were simulated in a process-based model. Results: Null models good at detecting biotic processes differed from those null models that revealed abiotic processes. In particular, limiting similarity (detected through divergence) was better detected by randomizations that release the link between species abundance and trait values, whereas environmental filtering (detected through convergence of an environmental response trait) was identified by randomizations that keep this link. In general, using species abundance data provided better results than using presence-absence data, particularly within given limited environmental conditions. Weaker competitor exclusion (detected through convergence of a competition-related trait) was only detected when no environmental filtering was acting on the simulated assembly, which points to difficulties in disentangling biotic and abiotic convergence in natural communities, especially when data are randomized across habitats. Conclusions: Overall the results manifest the importance of the pool of species over which randomizations are applied; in particular whether randomizations are conducted across or within given habitats. Taken together, our findings show that different null models must be combined and applied to a carefully chosen pool of species and species abundance data to ensure that co-existence mechanisms can be properly assessed. We utilize the results to (1) discuss how different constraints implied in the different null models affect the outcomes of our tests, and (2) provide some basic recommendations on how to choose null models, given the data available and questions being asked.
AbstractList Questions Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the traits of co-existing species are more similar (trait convergence) or more dissimilar (trait divergence) than expected by chance, these tests relate observed patterns to different co-existence mechanisms. Do null models accurately detect trait convergence and divergence? Are different null models equally good at detecting these two opposing patterns? How important are the species pool and other constraints that are considered by different null models? Methods We applied ten common randomizations to communities that were simulated in a process-based model. Results Null models good at detecting biotic processes differed from those null models that revealed abiotic processes. In particular, limiting similarity (detected through divergence) was better detected by randomizations that release the link between species abundance and trait values, whereas environmental filtering (detected through convergence of an environmental response trait) was identified by randomizations that keep this link. In general, using species abundance data provided better results than using presence-absence data, particularly within given limited environmental conditions. Weaker competitor exclusion (detected through convergence of a competition-related trait) was only detected when no environmental filtering was acting on the simulated assembly, which points to difficulties in disentangling biotic and abiotic convergence in natural communities, especially when data are randomized across habitats. Conclusions Overall the results manifest the importance of the pool of species over which randomizations are applied; in particular whether randomizations are conducted across or within given habitats. Taken together, our findings show that different null models must be combined and applied to a carefully chosen pool of species and species abundance data to ensure that co-existence mechanisms can be properly assessed. We utilize the results to (1) discuss how different constraints implied in the different null models affect the outcomes of our tests, and (2) provide some basic recommendations on how to choose null models, given the data available and questions being asked. Randomisations are often used to estimate trait divergence and convergence patterns and to infer community assembly mechanisms. Many different randomisations are available but a statistical assessment of these is missing. We fill this gap by providing Type I error rate and power tests for commonly used randomisations. These tests demonstrate which randomisations are best for detecting hypothesized assembly mechanisms.
Questions: Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the traits of existing species are more similar (trait convergence) or more dissimilar (trait divergence) than expected by chance, these tests relate observed patterns to different existence mechanisms. Do null models accurately detect trait convergence and divergence? Are different null models equally good at detecting these two opposing patterns? How important are the species pool and other constraints that are considered by different null models? Methods: We applied ten common randomizations to communities that were simulated in a process-based model. Results: Null models good at detecting biotic processes differed from those null models that revealed abiotic processes. In particular, limiting similarity (detected through divergence) was better detected by randomizations that release the link between species abundance and trait values, whereas environmental filtering (detected through convergence of an environmental response trait) was identified by randomizations that keep this link. In general, using species abundance data provided better results than using presence-absence data, particularly within given limited environmental conditions. Weaker competitor exclusion (detected through convergence of a competition-related trait) was only detected when no environmental filtering was acting on the simulated assembly, which points to difficulties in disentangling biotic and abiotic convergence in natural communities, especially when data are randomized across habitats. Conclusions: Overall the results manifest the importance of the pool of species over which randomizations are applied; in particular whether randomizations are conducted across or within given habitats. Taken together, our findings show that different null models must be combined and applied to a carefully chosen pool of species and species abundance data to ensure that co-existence mechanisms can be properly assessed. We utilize the results to (1) discuss how different constraints implied in the different null models affect the outcomes of our tests, and (2) provide some basic recommendations on how to choose null models, given the data available and questions being asked.
Questions Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the traits of co‐existing species are more similar (trait convergence) or more dissimilar (trait divergence) than expected by chance, these tests relate observed patterns to different co‐existence mechanisms. Do null models accurately detect trait convergence and divergence? Are different null models equally good at detecting these two opposing patterns? How important are the species pool and other constraints that are considered by different null models? Methods We applied ten common randomizations to communities that were simulated in a process‐based model. Results Null models good at detecting biotic processes differed from those null models that revealed abiotic processes. In particular, limiting similarity (detected through divergence) was better detected by randomizations that release the link between species abundance and trait values, whereas environmental filtering (detected through convergence of an environmental response trait) was identified by randomizations that keep this link. In general, using species abundance data provided better results than using presence–absence data, particularly within given limited environmental conditions. Weaker competitor exclusion (detected through convergence of a competition‐related trait) was only detected when no environmental filtering was acting on the simulated assembly, which points to difficulties in disentangling biotic and abiotic convergence in natural communities, especially when data are randomized across habitats. Conclusions Overall the results manifest the importance of the pool of species over which randomizations are applied; in particular whether randomizations are conducted across or within given habitats. Taken together, our findings show that different null models must be combined and applied to a carefully chosen pool of species and species abundance data to ensure that co‐existence mechanisms can be properly assessed. We utilize the results to (1) discuss how different constraints implied in the different null models affect the outcomes of our tests, and (2) provide some basic recommendations on how to choose null models, given the data available and questions being asked. Randomisations are often used to estimate trait divergence and convergence patterns and to infer community assembly mechanisms. Many different randomisations are available but a statistical assessment of these is missing. We fill this gap by providing Type I error rate and power tests for commonly used randomisations. These tests demonstrate which randomisations are best for detecting hypothesized assembly mechanisms.
QUESTIONS: Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the traits of co‐existing species are more similar (trait convergence) or more dissimilar (trait divergence) than expected by chance, these tests relate observed patterns to different co‐existence mechanisms. Do null models accurately detect trait convergence and divergence? Are different null models equally good at detecting these two opposing patterns? How important are the species pool and other constraints that are considered by different null models? METHODS: We applied ten common randomizations to communities that were simulated in a process‐based model. RESULTS: Null models good at detecting biotic processes differed from those null models that revealed abiotic processes. In particular, limiting similarity (detected through divergence) was better detected by randomizations that release the link between species abundance and trait values, whereas environmental filtering (detected through convergence of an environmental response trait) was identified by randomizations that keep this link. In general, using species abundance data provided better results than using presence–absence data, particularly within given limited environmental conditions. Weaker competitor exclusion (detected through convergence of a competition‐related trait) was only detected when no environmental filtering was acting on the simulated assembly, which points to difficulties in disentangling biotic and abiotic convergence in natural communities, especially when data are randomized across habitats. CONCLUSIONS: Overall the results manifest the importance of the pool of species over which randomizations are applied; in particular whether randomizations are conducted across or within given habitats. Taken together, our findings show that different null models must be combined and applied to a carefully chosen pool of species and species abundance data to ensure that co‐existence mechanisms can be properly assessed. We utilize the results to (1) discuss how different constraints implied in the different null models affect the outcomes of our tests, and (2) provide some basic recommendations on how to choose null models, given the data available and questions being asked.
Author Lepš, Jan
Botta-Dukát, Zoltán
de Bello, Francesco
Zobel, Martin
Götzenberger, Lars
Pärtel, Meelis
Author_xml – sequence: 1
  givenname: Lars
  surname: Götzenberger
  fullname: Götzenberger, Lars
  email: lars.goetzenberger@gmail.com, lars.goetzenberger@gmail.com
  organization: Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82, Třeboň, Czech Republic
– sequence: 2
  givenname: Zoltán
  surname: Botta-Dukát
  fullname: Botta-Dukát, Zoltán
  email: dukat.zoltan@okologia.mta.hu
  organization: MTA Centre for Ecological Research, Alkotmány 2-4, 2163, Vácrátót, Hungary
– sequence: 3
  givenname: Jan
  surname: Lepš
  fullname: Lepš, Jan
  email: suspa@prf.jcu.cz
  organization: Department of Botany, Faculty of Science, University of South Bohemia, Na Zlaté stoce 1, CZ-370 05, České Budějovice, Czech Republic
– sequence: 4
  givenname: Meelis
  surname: Pärtel
  fullname: Pärtel, Meelis
  email: meelis.partel@ut.ee
  organization: Department of Botany, University of Tartu, Lai 40, 51005, Tartu, Estonia
– sequence: 5
  givenname: Martin
  surname: Zobel
  fullname: Zobel, Martin
  email: martin.zobel@ut.ee
  organization: Department of Botany, University of Tartu, Lai 40, 51005, Tartu, Estonia
– sequence: 6
  givenname: Francesco
  surname: de Bello
  fullname: de Bello, Francesco
  email: fradebello@ctfc.es
  organization: Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82, Třeboň, Czech Republic
BookMark eNqFkV9rFDEUxYNUsF198AMIedSHafNvMjNPUoquyqIPFiu-hEzmjs2aSWqSrY7gdze7W_dBFAMhN5zfuQn3nKAjHzwg9JiSU1rW2fo2nVImanYPHVNZi4pSwo9KTQmpOsb5A3SS0poQ2nSSHqOfV9fWXOOo_RAm-0NnG3zCA2QwGZvgbyF-Bm8AFwAP9nC1Hueoba56nWAo5DRtvM0z1inB1Lv5OT7HGVLGYdypwbsZb7as3ziHpzCASw_R_VG7BI_uzgW6fPni8uJVtXq3fH1xvqoM72pW9UKObceBNnIwTGrRj7qvAbg21Ixy5FqXTTgZKQXGDBMtlx30fSsF6SlfoKf7tjcxfN2UT6nJJgPOaQ9hkxQjjLRd0zTsvyhtZcsF6coLC3S2R00MKUUYlbF5N8DtZJyiRG0jUSUStYukOJ794biJdtJx_it71_2bdTD_G1RvPrz_7Xiyd6xTDvHgEIJy1lBR9Gqv25Th-0HX8YuSDW9qdfV2qcSq6QT_9FEt-S8PkLhx
CitedBy_id crossref_primary_10_1002_ece3_8031
crossref_primary_10_1007_s00442_019_04386_0
crossref_primary_10_21425_fob_17_133819
crossref_primary_10_1002_ece3_9360
crossref_primary_10_1007_s00442_019_04555_1
crossref_primary_10_1111_jvs_13154
crossref_primary_10_1038_s41559_017_0426_x
crossref_primary_10_1016_j_scitotenv_2020_140459
crossref_primary_10_1111_jbi_14506
crossref_primary_10_1111_1365_2745_14117
crossref_primary_10_1002_ecy_2079
crossref_primary_10_1111_jvs_13277
crossref_primary_10_1111_jvs_12544
crossref_primary_10_1111_jvs_12789
crossref_primary_10_1111_jbi_14356
crossref_primary_10_1111_jvs_12986
crossref_primary_10_1111_jvs_12625
crossref_primary_10_1111_1365_2435_13882
crossref_primary_10_3389_fpls_2023_1088643
crossref_primary_10_1111_geb_13275
crossref_primary_10_1016_j_baae_2021_02_009
crossref_primary_10_3390_f10121055
crossref_primary_10_1111_1365_2435_14749
crossref_primary_10_1038_s41598_020_76645_7
crossref_primary_10_1111_ecog_05405
crossref_primary_10_1016_j_ecolind_2021_108229
crossref_primary_10_1038_s41396_021_00959_1
crossref_primary_10_1111_1440_1703_1002
crossref_primary_10_3390_land12051090
crossref_primary_10_1111_1365_2745_13177
crossref_primary_10_1111_1365_2745_13650
crossref_primary_10_1086_727471
crossref_primary_10_1111_ecog_05363
crossref_primary_10_1111_jvs_12632
crossref_primary_10_1002_ecy_3058
crossref_primary_10_1111_1365_2435_14186
crossref_primary_10_1111_jvs_12758
crossref_primary_10_1002_ecs2_2045
crossref_primary_10_1007_s10750_024_05781_2
crossref_primary_10_1111_fwb_14138
crossref_primary_10_1002_ecs2_2840
crossref_primary_10_1093_aob_mcaa162
crossref_primary_10_1007_s11258_023_01306_4
crossref_primary_10_1111_brv_12782
crossref_primary_10_1007_s10530_018_1883_0
crossref_primary_10_1111_1365_2664_12922
crossref_primary_10_3390_plants10112252
crossref_primary_10_1016_j_ppees_2017_01_004
crossref_primary_10_1017_S0266467424000014
crossref_primary_10_1002_ece3_5823
crossref_primary_10_1016_j_ppees_2021_125630
crossref_primary_10_1111_ecog_06287
crossref_primary_10_1002_ece3_9828
crossref_primary_10_1080_17550874_2019_1628112
crossref_primary_10_1111_1365_2745_14172
crossref_primary_10_3389_fpls_2022_993051
crossref_primary_10_1111_1365_2745_14171
crossref_primary_10_1111_geb_13098
crossref_primary_10_3390_d12030091
crossref_primary_10_1038_s41598_019_57278_x
crossref_primary_10_1093_jpe_rtz007
crossref_primary_10_1007_s11258_021_01142_4
crossref_primary_10_1111_een_13069
crossref_primary_10_1002_ece3_11644
crossref_primary_10_1111_1365_2435_12982
crossref_primary_10_1111_1365_2656_14060
crossref_primary_10_1093_aob_mcaa138
crossref_primary_10_1111_jvs_13260
crossref_primary_10_1002_ece3_8587
crossref_primary_10_1111_1365_2745_12986
crossref_primary_10_1111_icad_12805
crossref_primary_10_1111_1365_2745_13037
crossref_primary_10_1111_2041_210X_12735
crossref_primary_10_1111_jvs_13027
crossref_primary_10_1111_ecog_07122
crossref_primary_10_1007_s00442_020_04829_z
crossref_primary_10_1111_1365_2435_14683
crossref_primary_10_1111_geb_13840
crossref_primary_10_1007_s11104_020_04478_4
Cites_doi 10.1111/j.1461-0248.2004.00608.x
10.1111/j.1600-0587.2011.07259.x
10.1007/BF00045301
10.1111/j.1365-2435.2010.01695.x
10.1007/s00442-016-3546-0
10.1111/j.1365-2745.2012.01965.x
10.1890/09-2157.1
10.1098/rstb.2011.0063
10.1111/j.1600-0706.2011.20301.x
10.1111/j.1654-1103.2006.tb02444.x
10.1111/jvs.12031
10.1890/13-0269.1
10.1146/annurev.es.14.110183.001201
10.2307/4733
10.1111/j.1600-0587.2009.05975.x
10.2307/3545108
10.2307/1938672
10.1515/9781400857081
10.1111/j.1654-1103.2005.tb02393.x
10.1111/2041-210X.12364
10.1111/2041-210X.12450
10.1890/11-1394.1
10.1111/geb.12137
10.1016/j.tree.2006.02.002
10.1016/j.tree.2009.05.012
10.1111/j.1469-185X.2011.00187.x
10.1016/j.jtbi.2009.11.004
10.1890/09-1672.1
10.2307/2389796
10.2307/1936961
10.1111/j.1365-2745.2009.01610.x
10.1111/j.1365-2745.2008.01421.x
10.1034/j.1600-0706.2001.930112.x
10.1111/j.1600-0706.2012.20325.x
10.1007/s00442-009-1474-y
10.1086/652373
10.1111/j.1654-1103.2007.tb02557.x
10.1111/j.0022-0477.2004.00898.x
10.1111/jvs.12013
10.1111/j.1461-0248.2010.01509.x
10.1086/282505
10.1890/08-2225.1
10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2
10.1890/06-1208.1
10.1111/jvs.12008
10.1890/07-1134.1
10.1016/S0169-5347(01)02283-2
10.2307/3546047
10.1146/annurev-ecolsys-110411-160411
10.1111/jvs.12097
10.2307/3235896
ContentType Journal Article
Copyright Copyright © 2017 International Association for Vegetation Science
2016 International Association for Vegetation Science
Copyright_xml – notice: Copyright © 2017 International Association for Vegetation Science
– notice: 2016 International Association for Vegetation Science
DBID BSCLL
AAYXX
CITATION
7SN
7ST
C1K
SOI
7S9
L.6
DOI 10.1111/jvs.12452
DatabaseName Istex
CrossRef
Ecology Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Ecology Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Ecology Abstracts


AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1654-1103
Editor Mason, Norman
Editor_xml – sequence: 7
  givenname: Norman
  surname: Mason
  fullname: Mason, Norman
EndPage 1287
ExternalDocumentID 10_1111_jvs_12452
JVS12452
44132714
ark_67375_WNG_4L7943ZX_G
Genre article
GrantInformation_xml – fundername: European Union Seventh Framework Programme for research, technological development and demonstration
  funderid: GA‐2010‐267243
– fundername: Hungarian Science Fund
  funderid: K83595
– fundername: European Union through the European Regional Development Fund, Centre of Excellence EcolChange
– fundername: Czech Science Foundation (GACR)
  funderid: P505/12/1296
– fundername: Estonian Ministry of Education and Research, institutional research funding
GroupedDBID -JH
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
29L
2~F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AAPSS
AASGY
AAXRX
AAXTN
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPLY
ABPVW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCZN
ACGFS
ACHIC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADHSS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADULT
ADXAS
ADZMN
AEEJZ
AEFGJ
AEIGN
AEIMD
AENEX
AEPYG
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFFIJ
AFFPM
AFGKR
AFNWH
AFRAH
AFWVQ
AGHNM
AGQPQ
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AI.
AICQM
AIDQK
AIDYY
AITYG
AIURR
AJXKR
AKPMI
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CBGCD
COF
CS3
D-E
D-F
DATOO
DC7
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
H13
HF~
HGD
HGLYW
HTVGU
HVGLF
HZ~
IAG
IAO
IEP
IHR
IPSME
ITC
J0M
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PQ0
Q.N
Q11
Q5J
QB0
R.K
RBO
ROL
RX1
SA0
SUPJJ
TEORI
TUS
UB1
VH1
VOH
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~02
~8M
~IA
~KM
~WT
1OB
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
DOOOF
EQZMY
JSODD
RWI
WRC
AAYXX
CITATION
7SN
7ST
C1K
SOI
7S9
L.6
ID FETCH-LOGICAL-c3952-b46f893e176dc26a4bfab5ee3ac1cf6f3aaf3a030f11e22c248369ebb8640b13
IEDL.DBID DR2
ISSN 1100-9233
IngestDate Fri Jul 11 18:23:09 EDT 2025
Fri Jul 11 05:22:49 EDT 2025
Wed Oct 01 03:50:11 EDT 2025
Thu Apr 24 22:53:08 EDT 2025
Wed Jan 22 16:18:09 EST 2025
Thu Jul 03 22:16:25 EDT 2025
Sun Sep 21 06:18:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3952-b46f893e176dc26a4bfab5ee3ac1cf6f3aaf3a030f11e22c248369ebb8640b13
Notes ark:/67375/WNG-4L7943ZX-G
Appendix S1. Detailed description of the community simulation model used in the study.Appendix S2. Scheme of the data used for null model-based studies of community assembly.Appendix S3. Detailed description of the tested null models.Appendix S4. Tables of results of the Type I error and power analyses.Appendix S5. Rank-abundance curves for three selected simulated communities
European Union through the European Regional Development Fund, Centre of Excellence EcolChange
Czech Science Foundation (GACR) - No. P505/12/1296
European Union Seventh Framework Programme for research, technological development and demonstration - No. GA-2010-267243
Estonian Ministry of Education and Research, institutional research funding
istex:100E710053F5D6D780A46E95B0A9C27C6BC75110
Hungarian Science Fund - No. K83595
ArticleID:JVS12452
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1868340948
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_2020897772
proquest_miscellaneous_1868340948
crossref_citationtrail_10_1111_jvs_12452
crossref_primary_10_1111_jvs_12452
wiley_primary_10_1111_jvs_12452_JVS12452
jstor_primary_44132714
istex_primary_ark_67375_WNG_4L7943ZX_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11
20161101
November 2016
2016-11-00
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11
PublicationDecade 2010
PublicationTitle Journal of vegetation science
PublicationTitleAlternate J Veg Sci
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons Ltd
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons Ltd
References Hardy, O.J. 2008. Testing the spatial phylogenetic structure of local communities: statistical performances of different null models and test statistics on a locally neutral community. Journal of Ecology 96: 914-926.
Wilson, J.B. 1991. Methods for fitting dominance/diversity curves. Journal of Vegetation Science 2: 35-46.
Ulrich, W. & Gotelli, N.J. 2007. Null model analysis of species nestedness patterns. Ecology 88: 1824-1831.
McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178-185.
Mouchet, M.A., Villéger, S., Mason, N.W.H. & Mouillot, D. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24: 867-876.
Vellend, M. 2010. Conceptual synthesis in community ecology. The Quarterly Review of Biology 85: 183-206.
Aiba, M., Katabuchi, M., Takafumi, H., Matsuzaki, S.S., Sasaki, T. & Hiura, T. 2013. Robustness of trait distribution metrics for community assembly studies under the uncertainties of assembly processes. Ecology 94: 2873-2885.
Ulrich, W. & Gotelli, N.J. 2013. Pattern detection in null model analysis. Oikos 122: 2-18.
Wilson, J.B. 1993. Would we recognise a broken-stick community if we found one? Oikos 67: 181-183.
Chase, J.M. & Myers, J.A. 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 366: 2351-2363.
Strong, D.R.J., Simberloff, D., Abele, L.G. & Thistle, A.B. 1984. Ecological communities: conceptual issues and the evidence. Princeton University Press, Princeton, NJ, US.
Wilson, J.B., Gitay, H. & Agnew, A.D.Q. 1987. Does niche limitation exist? Functional Ecology 1: 391-397.
Hubbell, S.P. 2001. The unified theory of biodiversity and biogeography. Princeton University Press, Princeton, NJ, US.
Münkemüller, T., de Bello, F., Meynard, C.N., Gravel, D., Lavergne, S., Mouillot, D., Mouquet, N. & Thuiller, W. 2012. From diversity indices to community assembly processes: a test with simulated data. Ecography 35: 468-480.
Wilson, J.B. 2007. Trait-divergence assembly rules have been demonstrated: limiting similarity lives! A reply to Grime. Journal of Vegetation Science 18: 451-452.
Grime, J.P. 2006. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. Journal of Vegetation Science 17: 255-260.
Wilson, J.B. 1995. Null models for assembly rules: the Jack Horner effect is more insidious than the narcissus effect. Oikos 72: 139-144.
Mason, N.W.H. & De Bello, F. 2013. Functional diversity: a tool for answering challenging ecological questions. Journal of Vegetation Science 24: 777-780.
Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Holt, R.D., Shurin, J.B., Law, R., (...) & Gonzalez, A. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601-613.
Chalmandrier, L., Münkemüller, T., Gallien, L., de Bello, F., Mazel, F., Lavergne, S. & Thuiller, W. 2013. A family of null models to distinguish between environmental filtering and biotic interactions in functional diversity patterns. Journal of Vegetation Science 24: 853-864.
Hobbs, R.J., Higgs, E. & Harris, J.A. 2009. Novel ecosystems: implications for conservation and restoration. Trends in Ecology & Evolution 24: 599-605.
Connor, E.F. & Simberloff, D. 1979. The assembly of species communities: chance or competition? Ecology 60: 1132.
HilleRisLambers, J., Adler, P.B., Harpole, W.S., Levine, J.M. & Mayfield, M.M. 2012. Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics 43: 227-248.
de Bello, F., Carmona, C.P., Lepš, J., Szava-Kovats, R. & Pärtel, M. 2016. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia 180: 233-240.
Harvey, P.H., Colwell, R.K., Silvertown, J. & May, R.M. 1983. Null models in ecology. Annual Review of Ecology and Systematics 14: 189-211.
Mason, N.W.H., Richardson, S.J., Peltzer, D.A., de Bello, F., Wardle, D.A. & Allen, R.B. 2012. Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity. Journal of Ecology 100: 678-689.
ter Braak, C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167-1179.
Ulrich, W. & Gotelli, N.J. 2010. Null model analysis of species associations using abundance data. Ecology 91: 3384-3397.
De Bello, F., Carmona, C.P., Mason, N.W.H., Sebastià, M.-T. & Lepš, J. 2013. Which trait dissimilarity for functional diversity: trait means or trait overlap? Journal of Vegetation Science 24: 807-819.
Mayfield, M.M. & Levine, J.M. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13: 1085-1093.
Cornwell, W.K. & Ackerly, D.D. 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79: 109-126.
Gotelli, N.J. 2000. Null model analysis of species co-occurrence patterns. Ecology 81: 2606-2621.
Götzenberger, L., de Bello, F., Bråthen, K.A., Davison, J., Dubuis, A., Guisan, A., Lepš, J., Lindborg, R., Moora, M., (...) & Zobel, M. 2012. Ecological assembly rules in plant communities - approaches, patterns and prospects. Biological Reviews 87: 111-127.
Münkemüller, T., Gallien, L., Lavergne, S., Renaud, J., Roquet, C., Abdulhak, S., Dullinger, S., Garraud, L., Guisan, A., (...) & Thuiller, W. 2014. Scale decisions can reverse conclusions on community assembly processes. Global Ecology and Biogeography 23: 620-632.
Jabot, F. 2010. A stochastic dispersal limited trait-based model of community dynamics. Journal of Theoretical Biology 262: 650-661.
Münkemüller, T., Gallien, L. & Travis, J. 2015. VirtualCom: a simulation model for eco-evolutionary community assembly and invasion. Methods in Ecology and Evolution 6: 735-743.
Botta-Dukát, Z. 2005. Rao's quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16: 533-540.
Wilson, J.B. & Gitay, H. 1995. Community structure and assembly rules in a dune slack: variance in richness, guild proportionality, biomass constancy and dominance/diversity relations. Vegetatio 116: 93-106.
Peres-Neto, P.R., Olden, J.D. & Jackson, D.A. 2001. Environmentally constrained null models: site suitability as occupancy criterion. Oikos 93: 110-120.
De Bello, F., Price, J.N., Münkemüller, T., Liira, J., Zobel, M., Thuiller, W., Gerhold, P., Götzenberger, L., Lavergne, S., (...) & Pärtel, M. 2012. Functional species pool framework to test for biotic effects on community assembly. Ecology 93: 2263-2273.
Díaz, S. & Cabido, M. 2001. Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution 16: 646-655.
Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. 2010. A user's guide to functional diversity indices. Ecological Monographs 80: 469-484.
Gotelli, N.J. & Graves, G.R. 1996. Null models in ecology. Smithsonian Institution Press, Washington, DC, US.
MacArthur, R. & Levins, R. 1967. The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist 101: 377-385.
Tokeshi, M. 1986. Resource utilization, overlap and temporal community dynamics: a null model analysis of an epiphytic chironomid community. Journal of Animal Ecology 55: 491-506.
Mason, N.W.H., de Bello, F., Mouillot, D., Pavoine, S. & Dray, S. 2013. A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science 24: 794-806.
Gotelli, N.J. & Ulrich, W. 2012. Statistical challenges in null model analysis. Oikos 121: 171-180.
Thompson, K., Petchey, O.L., Askew, A.P., Dunnett, N.P., Beckerman, A.P. & Willis, A.J. 2010. Little evidence for limiting similarity in a long-term study of a roadside plant community. Journal of Ecology 98: 480-487.
Gotelli, N.J. & Ulrich, W. 2010. The empirical Bayes approach as a tool to identify non-random species associations. Oecologia 162: 463-477.
Kraft, N.J.B. & Ackerly, D.D. 2010. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs 80: 401-422.
Cohen, J. 1988. Statistical power analysis for the behavioral sciences. L. Erlbaum Associates. Mahwah, NJ, US.
Botta-Dukát, Z. & Czúcz, B. 2016. Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation. Methods in Ecology and Evolution 7: 114-126.
Willis, C.G., Halina, M., Lehman, C., Reich, P.B., Keen, A., McCarthy, S. & Cavender-Bares, J. 2009. Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography 33: 565-577.
Stubbs, W.J. & Wilson, J.B. 2004. Evidence for limiting similarity in a sand dune community. Journal of Ecology 92: 557-567.
1987; 1
2001; 93
2010; 98
1993; 67
1995; 72
2012; 121
2010; 13
2013; 24
2004; 7
1975
2013; 122
2010; 262
2016; 180
2014; 23
1983; 14
2011; 366
2010; 24
2001
2006; 21
2013; 94
1967; 101
1984
2001; 16
1979; 60
1988
2007; 18
1991; 2
2009; 24
2015; 6
2012; 100
2010
1986; 55
2006; 17
1996
1995; 116
2010; 162
2008; 96
2010; 80
2012; 35
2010; 85
2012; 93
2009; 33
2016; 7
2009; 79
2004; 92
1986; 67
2000; 81
2014
2005; 16
2010; 91
2007; 88
2012; 87
2012; 43
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Hubbell S.P. (e_1_2_7_25_1) 2001
e_1_2_7_50_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Cohen J. (e_1_2_7_7_1) 1988
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
Willis C.G. (e_1_2_7_52_1) 2009; 33
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
Gotelli N.J. (e_1_2_7_16_1) 1996
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
McGill B.J. (e_1_2_7_36_1) 2010
e_1_2_7_38_1
Diamond J.M. (e_1_2_7_13_1) 1975
References_xml – reference: Cohen, J. 1988. Statistical power analysis for the behavioral sciences. L. Erlbaum Associates. Mahwah, NJ, US.
– reference: Chase, J.M. & Myers, J.A. 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 366: 2351-2363.
– reference: Willis, C.G., Halina, M., Lehman, C., Reich, P.B., Keen, A., McCarthy, S. & Cavender-Bares, J. 2009. Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography 33: 565-577.
– reference: Kraft, N.J.B. & Ackerly, D.D. 2010. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs 80: 401-422.
– reference: Wilson, J.B. & Gitay, H. 1995. Community structure and assembly rules in a dune slack: variance in richness, guild proportionality, biomass constancy and dominance/diversity relations. Vegetatio 116: 93-106.
– reference: Mouchet, M.A., Villéger, S., Mason, N.W.H. & Mouillot, D. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24: 867-876.
– reference: Wilson, J.B. 1991. Methods for fitting dominance/diversity curves. Journal of Vegetation Science 2: 35-46.
– reference: Münkemüller, T., Gallien, L. & Travis, J. 2015. VirtualCom: a simulation model for eco-evolutionary community assembly and invasion. Methods in Ecology and Evolution 6: 735-743.
– reference: HilleRisLambers, J., Adler, P.B., Harpole, W.S., Levine, J.M. & Mayfield, M.M. 2012. Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics 43: 227-248.
– reference: Gotelli, N.J. & Ulrich, W. 2012. Statistical challenges in null model analysis. Oikos 121: 171-180.
– reference: Hardy, O.J. 2008. Testing the spatial phylogenetic structure of local communities: statistical performances of different null models and test statistics on a locally neutral community. Journal of Ecology 96: 914-926.
– reference: De Bello, F., Carmona, C.P., Mason, N.W.H., Sebastià, M.-T. & Lepš, J. 2013. Which trait dissimilarity for functional diversity: trait means or trait overlap? Journal of Vegetation Science 24: 807-819.
– reference: Wilson, J.B. 1993. Would we recognise a broken-stick community if we found one? Oikos 67: 181-183.
– reference: Wilson, J.B. 1995. Null models for assembly rules: the Jack Horner effect is more insidious than the narcissus effect. Oikos 72: 139-144.
– reference: Connor, E.F. & Simberloff, D. 1979. The assembly of species communities: chance or competition? Ecology 60: 1132.
– reference: Peres-Neto, P.R., Olden, J.D. & Jackson, D.A. 2001. Environmentally constrained null models: site suitability as occupancy criterion. Oikos 93: 110-120.
– reference: De Bello, F., Price, J.N., Münkemüller, T., Liira, J., Zobel, M., Thuiller, W., Gerhold, P., Götzenberger, L., Lavergne, S., (...) & Pärtel, M. 2012. Functional species pool framework to test for biotic effects on community assembly. Ecology 93: 2263-2273.
– reference: Díaz, S. & Cabido, M. 2001. Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution 16: 646-655.
– reference: Mason, N.W.H. & De Bello, F. 2013. Functional diversity: a tool for answering challenging ecological questions. Journal of Vegetation Science 24: 777-780.
– reference: Münkemüller, T., Gallien, L., Lavergne, S., Renaud, J., Roquet, C., Abdulhak, S., Dullinger, S., Garraud, L., Guisan, A., (...) & Thuiller, W. 2014. Scale decisions can reverse conclusions on community assembly processes. Global Ecology and Biogeography 23: 620-632.
– reference: Hubbell, S.P. 2001. The unified theory of biodiversity and biogeography. Princeton University Press, Princeton, NJ, US.
– reference: Ulrich, W. & Gotelli, N.J. 2013. Pattern detection in null model analysis. Oikos 122: 2-18.
– reference: Stubbs, W.J. & Wilson, J.B. 2004. Evidence for limiting similarity in a sand dune community. Journal of Ecology 92: 557-567.
– reference: Götzenberger, L., de Bello, F., Bråthen, K.A., Davison, J., Dubuis, A., Guisan, A., Lepš, J., Lindborg, R., Moora, M., (...) & Zobel, M. 2012. Ecological assembly rules in plant communities - approaches, patterns and prospects. Biological Reviews 87: 111-127.
– reference: Jabot, F. 2010. A stochastic dispersal limited trait-based model of community dynamics. Journal of Theoretical Biology 262: 650-661.
– reference: Wilson, J.B. 2007. Trait-divergence assembly rules have been demonstrated: limiting similarity lives! A reply to Grime. Journal of Vegetation Science 18: 451-452.
– reference: de Bello, F., Carmona, C.P., Lepš, J., Szava-Kovats, R. & Pärtel, M. 2016. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia 180: 233-240.
– reference: Chalmandrier, L., Münkemüller, T., Gallien, L., de Bello, F., Mazel, F., Lavergne, S. & Thuiller, W. 2013. A family of null models to distinguish between environmental filtering and biotic interactions in functional diversity patterns. Journal of Vegetation Science 24: 853-864.
– reference: Mason, N.W.H., de Bello, F., Mouillot, D., Pavoine, S. & Dray, S. 2013. A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science 24: 794-806.
– reference: McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178-185.
– reference: Ulrich, W. & Gotelli, N.J. 2007. Null model analysis of species nestedness patterns. Ecology 88: 1824-1831.
– reference: Aiba, M., Katabuchi, M., Takafumi, H., Matsuzaki, S.S., Sasaki, T. & Hiura, T. 2013. Robustness of trait distribution metrics for community assembly studies under the uncertainties of assembly processes. Ecology 94: 2873-2885.
– reference: Ulrich, W. & Gotelli, N.J. 2010. Null model analysis of species associations using abundance data. Ecology 91: 3384-3397.
– reference: Mason, N.W.H., Richardson, S.J., Peltzer, D.A., de Bello, F., Wardle, D.A. & Allen, R.B. 2012. Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity. Journal of Ecology 100: 678-689.
– reference: Thompson, K., Petchey, O.L., Askew, A.P., Dunnett, N.P., Beckerman, A.P. & Willis, A.J. 2010. Little evidence for limiting similarity in a long-term study of a roadside plant community. Journal of Ecology 98: 480-487.
– reference: Harvey, P.H., Colwell, R.K., Silvertown, J. & May, R.M. 1983. Null models in ecology. Annual Review of Ecology and Systematics 14: 189-211.
– reference: Gotelli, N.J. 2000. Null model analysis of species co-occurrence patterns. Ecology 81: 2606-2621.
– reference: Hobbs, R.J., Higgs, E. & Harris, J.A. 2009. Novel ecosystems: implications for conservation and restoration. Trends in Ecology & Evolution 24: 599-605.
– reference: Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Holt, R.D., Shurin, J.B., Law, R., (...) & Gonzalez, A. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601-613.
– reference: Gotelli, N.J. & Graves, G.R. 1996. Null models in ecology. Smithsonian Institution Press, Washington, DC, US.
– reference: Strong, D.R.J., Simberloff, D., Abele, L.G. & Thistle, A.B. 1984. Ecological communities: conceptual issues and the evidence. Princeton University Press, Princeton, NJ, US.
– reference: Münkemüller, T., de Bello, F., Meynard, C.N., Gravel, D., Lavergne, S., Mouillot, D., Mouquet, N. & Thuiller, W. 2012. From diversity indices to community assembly processes: a test with simulated data. Ecography 35: 468-480.
– reference: Botta-Dukát, Z. 2005. Rao's quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16: 533-540.
– reference: Botta-Dukát, Z. & Czúcz, B. 2016. Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation. Methods in Ecology and Evolution 7: 114-126.
– reference: Cornwell, W.K. & Ackerly, D.D. 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79: 109-126.
– reference: Mayfield, M.M. & Levine, J.M. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13: 1085-1093.
– reference: Vellend, M. 2010. Conceptual synthesis in community ecology. The Quarterly Review of Biology 85: 183-206.
– reference: ter Braak, C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167-1179.
– reference: Wilson, J.B., Gitay, H. & Agnew, A.D.Q. 1987. Does niche limitation exist? Functional Ecology 1: 391-397.
– reference: Grime, J.P. 2006. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. Journal of Vegetation Science 17: 255-260.
– reference: MacArthur, R. & Levins, R. 1967. The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist 101: 377-385.
– reference: Tokeshi, M. 1986. Resource utilization, overlap and temporal community dynamics: a null model analysis of an epiphytic chironomid community. Journal of Animal Ecology 55: 491-506.
– reference: Gotelli, N.J. & Ulrich, W. 2010. The empirical Bayes approach as a tool to identify non-random species associations. Oecologia 162: 463-477.
– reference: Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. 2010. A user's guide to functional diversity indices. Ecological Monographs 80: 469-484.
– volume: 43
  start-page: 227
  year: 2012
  end-page: 248
  article-title: Rethinking community assembly through the lens of coexistence theory
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 67
  start-page: 181
  year: 1993
  end-page: 183
  article-title: Would we recognise a broken‐stick community if we found one?
  publication-title: Oikos
– volume: 81
  start-page: 2606
  year: 2000
  end-page: 2621
  article-title: Null model analysis of species co‐occurrence patterns
  publication-title: Ecology
– volume: 24
  start-page: 794
  year: 2013
  end-page: 806
  article-title: A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients
  publication-title: Journal of Vegetation Science
– volume: 33
  start-page: 565
  year: 2009
  end-page: 577
  article-title: Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation
  publication-title: Ecography
– year: 2001
– volume: 2
  start-page: 35
  year: 1991
  end-page: 46
  article-title: Methods for fitting dominance/diversity curves
  publication-title: Journal of Vegetation Science
– volume: 72
  start-page: 139
  year: 1995
  end-page: 144
  article-title: Null models for assembly rules: the Jack Horner effect is more insidious than the narcissus effect
  publication-title: Oikos
– volume: 18
  start-page: 451
  year: 2007
  end-page: 452
  article-title: Trait‐divergence assembly rules have been demonstrated: limiting similarity lives! A reply to Grime
  publication-title: Journal of Vegetation Science
– volume: 16
  start-page: 533
  year: 2005
  end-page: 540
  article-title: Rao's quadratic entropy as a measure of functional diversity based on multiple traits
  publication-title: Journal of Vegetation Science
– volume: 55
  start-page: 491
  year: 1986
  end-page: 506
  article-title: Resource utilization, overlap and temporal community dynamics: a null model analysis of an epiphytic chironomid community
  publication-title: Journal of Animal Ecology
– volume: 93
  start-page: 110
  year: 2001
  end-page: 120
  article-title: Environmentally constrained null models: site suitability as occupancy criterion
  publication-title: Oikos
– volume: 98
  start-page: 480
  year: 2010
  end-page: 487
  article-title: Little evidence for limiting similarity in a long‐term study of a roadside plant community
  publication-title: Journal of Ecology
– volume: 94
  start-page: 2873
  year: 2013
  end-page: 2885
  article-title: Robustness of trait distribution metrics for community assembly studies under the uncertainties of assembly processes
  publication-title: Ecology
– volume: 13
  start-page: 1085
  year: 2010
  end-page: 1093
  article-title: Opposing effects of competitive exclusion on the phylogenetic structure of communities
  publication-title: Ecology Letters
– volume: 88
  start-page: 1824
  year: 2007
  end-page: 1831
  article-title: Null model analysis of species nestedness patterns
  publication-title: Ecology
– volume: 85
  start-page: 183
  year: 2010
  end-page: 206
  article-title: Conceptual synthesis in community ecology
  publication-title: The Quarterly Review of Biology
– volume: 79
  start-page: 109
  year: 2009
  end-page: 126
  article-title: Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California
  publication-title: Ecological Monographs
– volume: 23
  start-page: 620
  year: 2014
  end-page: 632
  article-title: Scale decisions can reverse conclusions on community assembly processes
  publication-title: Global Ecology and Biogeography
– volume: 24
  start-page: 853
  year: 2013
  end-page: 864
  article-title: A family of null models to distinguish between environmental filtering and biotic interactions in functional diversity patterns
  publication-title: Journal of Vegetation Science
– volume: 67
  start-page: 1167
  year: 1986
  end-page: 1179
  article-title: Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis
  publication-title: Ecology
– volume: 80
  start-page: 401
  year: 2010
  end-page: 422
  article-title: Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest
  publication-title: Ecological Monographs
– start-page: 342
  year: 1975
  end-page: 444
– volume: 16
  start-page: 646
  year: 2001
  end-page: 655
  article-title: Vive la différence: plant functional diversity matters to ecosystem processes
  publication-title: Trends in Ecology & Evolution
– volume: 1
  start-page: 391
  year: 1987
  end-page: 397
  article-title: Does niche limitation exist?
  publication-title: Functional Ecology
– volume: 87
  start-page: 111
  year: 2012
  end-page: 127
  article-title: Ecological assembly rules in plant communities – approaches, patterns and prospects
  publication-title: Biological Reviews
– volume: 7
  start-page: 601
  year: 2004
  end-page: 613
  article-title: The metacommunity concept: a framework for multi‐scale community ecology
  publication-title: Ecology Letters
– volume: 35
  start-page: 468
  year: 2012
  end-page: 480
  article-title: From diversity indices to community assembly processes: a test with simulated data
  publication-title: Ecography
– volume: 121
  start-page: 171
  year: 2012
  end-page: 180
  article-title: Statistical challenges in null model analysis
  publication-title: Oikos
– volume: 14
  start-page: 189
  year: 1983
  end-page: 211
  article-title: Null models in ecology
  publication-title: Annual Review of Ecology and Systematics
– volume: 6
  start-page: 735
  year: 2015
  end-page: 743
  article-title: VirtualCom: a simulation model for eco‐evolutionary community assembly and invasion
  publication-title: Methods in Ecology and Evolution
– volume: 93
  start-page: 2263
  year: 2012
  end-page: 2273
  article-title: Functional species pool framework to test for biotic effects on community assembly
  publication-title: Ecology
– year: 1996
– volume: 366
  start-page: 2351
  year: 2011
  end-page: 2363
  article-title: Disentangling the importance of ecological niches from stochastic processes across scales
  publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
– volume: 24
  start-page: 807
  year: 2013
  end-page: 819
  article-title: Which trait dissimilarity for functional diversity: trait means or trait overlap?
  publication-title: Journal of Vegetation Science
– year: 2014
  article-title: picante ‐ R tools for integrating phylogenies and ecology
– volume: 100
  start-page: 678
  year: 2012
  end-page: 689
  article-title: Changes in coexistence mechanisms along a long‐term soil chronosequence revealed by functional trait diversity
  publication-title: Journal of Ecology
– volume: 92
  start-page: 557
  year: 2004
  end-page: 567
  article-title: Evidence for limiting similarity in a sand dune community
  publication-title: Journal of Ecology
– volume: 101
  start-page: 377
  year: 1967
  end-page: 385
  article-title: The limiting similarity, convergence, and divergence of coexisting species
  publication-title: The American Naturalist
– volume: 60
  start-page: 1132
  year: 1979
  article-title: The assembly of species communities: chance or competition?
  publication-title: Ecology
– volume: 96
  start-page: 914
  year: 2008
  end-page: 926
  article-title: Testing the spatial phylogenetic structure of local communities: statistical performances of different null models and test statistics on a locally neutral community
  publication-title: Journal of Ecology
– year: 2010
– volume: 122
  start-page: 2
  year: 2013
  end-page: 18
  article-title: Pattern detection in null model analysis
  publication-title: Oikos
– volume: 17
  start-page: 255
  year: 2006
  end-page: 260
  article-title: Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences
  publication-title: Journal of Vegetation Science
– year: 1984
– volume: 24
  start-page: 867
  year: 2010
  end-page: 876
  article-title: Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules
  publication-title: Functional Ecology
– volume: 262
  start-page: 650
  year: 2010
  end-page: 661
  article-title: A stochastic dispersal limited trait‐based model of community dynamics
  publication-title: Journal of Theoretical Biology
– volume: 7
  start-page: 114
  year: 2016
  end-page: 126
  article-title: Testing the ability of functional diversity indices to detect trait convergence and divergence using individual‐based simulation
  publication-title: Methods in Ecology and Evolution
– year: 1988
– volume: 80
  start-page: 469
  year: 2010
  end-page: 484
  article-title: A user's guide to functional diversity indices
  publication-title: Ecological Monographs
– volume: 180
  start-page: 233
  year: 2016
  end-page: 240
  article-title: Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms
  publication-title: Oecologia
– volume: 21
  start-page: 178
  year: 2006
  end-page: 185
  article-title: Rebuilding community ecology from functional traits
  publication-title: Trends in Ecology & Evolution
– volume: 24
  start-page: 777
  year: 2013
  end-page: 780
  article-title: Functional diversity: a tool for answering challenging ecological questions
  publication-title: Journal of Vegetation Science
– volume: 91
  start-page: 3384
  year: 2010
  end-page: 3397
  article-title: Null model analysis of species associations using abundance data
  publication-title: Ecology
– volume: 24
  start-page: 599
  year: 2009
  end-page: 605
  article-title: Novel ecosystems: implications for conservation and restoration
  publication-title: Trends in Ecology & Evolution
– volume: 162
  start-page: 463
  year: 2010
  end-page: 477
  article-title: The empirical Bayes approach as a tool to identify non‐random species associations
  publication-title: Oecologia
– volume: 116
  start-page: 93
  year: 1995
  end-page: 106
  article-title: Community structure and assembly rules in a dune slack: variance in richness, guild proportionality, biomass constancy and dominance/diversity relations
  publication-title: Vegetatio
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1461-0248.2004.00608.x
– volume-title: Statistical power analysis for the behavioral sciences
  year: 1988
  ident: e_1_2_7_7_1
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1600-0587.2011.07259.x
– ident: e_1_2_7_57_1
  doi: 10.1007/BF00045301
– ident: e_1_2_7_37_1
  doi: 10.1111/j.1365-2435.2010.01695.x
– ident: e_1_2_7_12_1
  doi: 10.1007/s00442-016-3546-0
– ident: e_1_2_7_33_1
  doi: 10.1111/j.1365-2745.2012.01965.x
– ident: e_1_2_7_49_1
  doi: 10.1890/09-2157.1
– ident: e_1_2_7_6_1
  doi: 10.1098/rstb.2011.0063
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1600-0706.2011.20301.x
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1654-1103.2006.tb02444.x
– ident: e_1_2_7_5_1
  doi: 10.1111/jvs.12031
– ident: e_1_2_7_2_1
  doi: 10.1890/13-0269.1
– ident: e_1_2_7_22_1
  doi: 10.1146/annurev.es.14.110183.001201
– ident: e_1_2_7_47_1
  doi: 10.2307/4733
– volume: 33
  start-page: 565
  year: 2009
  ident: e_1_2_7_52_1
  article-title: Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2009.05975.x
– ident: e_1_2_7_54_1
  doi: 10.2307/3545108
– ident: e_1_2_7_45_1
  doi: 10.2307/1938672
– ident: e_1_2_7_27_1
– ident: e_1_2_7_43_1
  doi: 10.1515/9781400857081
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1654-1103.2005.tb02393.x
– ident: e_1_2_7_40_1
  doi: 10.1111/2041-210X.12364
– ident: e_1_2_7_4_1
  doi: 10.1111/2041-210X.12450
– ident: e_1_2_7_10_1
  doi: 10.1890/11-1394.1
– ident: e_1_2_7_39_1
  doi: 10.1111/geb.12137
– ident: e_1_2_7_35_1
  doi: 10.1016/j.tree.2006.02.002
– ident: e_1_2_7_24_1
  doi: 10.1016/j.tree.2009.05.012
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1469-185X.2011.00187.x
– ident: e_1_2_7_26_1
  doi: 10.1016/j.jtbi.2009.11.004
– ident: e_1_2_7_28_1
  doi: 10.1890/09-1672.1
– ident: e_1_2_7_58_1
  doi: 10.2307/2389796
– ident: e_1_2_7_8_1
  doi: 10.2307/1936961
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1365-2745.2009.01610.x
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1365-2745.2008.01421.x
– ident: e_1_2_7_41_1
  doi: 10.1034/j.1600-0706.2001.930112.x
– ident: e_1_2_7_50_1
  doi: 10.1111/j.1600-0706.2012.20325.x
– ident: e_1_2_7_17_1
  doi: 10.1007/s00442-009-1474-y
– ident: e_1_2_7_51_1
  doi: 10.1086/652373
– ident: e_1_2_7_56_1
  doi: 10.1111/j.1654-1103.2007.tb02557.x
– start-page: 342
  volume-title: Ecology and evolution of communities
  year: 1975
  ident: e_1_2_7_13_1
– ident: e_1_2_7_44_1
  doi: 10.1111/j.0022-0477.2004.00898.x
– ident: e_1_2_7_32_1
  doi: 10.1111/jvs.12013
– ident: e_1_2_7_34_1
  doi: 10.1111/j.1461-0248.2010.01509.x
– ident: e_1_2_7_30_1
  doi: 10.1086/282505
– volume-title: Biological diversity: frontiers in measurement and assessment
  year: 2010
  ident: e_1_2_7_36_1
– ident: e_1_2_7_42_1
  doi: 10.1890/08-2225.1
– ident: e_1_2_7_15_1
  doi: 10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2
– ident: e_1_2_7_48_1
  doi: 10.1890/06-1208.1
– ident: e_1_2_7_11_1
  doi: 10.1111/jvs.12008
– ident: e_1_2_7_9_1
  doi: 10.1890/07-1134.1
– ident: e_1_2_7_14_1
  doi: 10.1016/S0169-5347(01)02283-2
– volume-title: The unified theory of biodiversity and biogeography
  year: 2001
  ident: e_1_2_7_25_1
– ident: e_1_2_7_55_1
  doi: 10.2307/3546047
– ident: e_1_2_7_23_1
  doi: 10.1146/annurev-ecolsys-110411-160411
– ident: e_1_2_7_31_1
  doi: 10.1111/jvs.12097
– ident: e_1_2_7_53_1
  doi: 10.2307/3235896
– volume-title: Null models in ecology
  year: 1996
  ident: e_1_2_7_16_1
SSID ssj0017961
Score 2.4721136
Snippet Questions: Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the...
Questions Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the...
Questions Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the...
QUESTIONS: Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the...
SourceID proquest
crossref
wiley
jstor
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1275
SubjectTerms Assembly rules
Co-existence
Community ecology
Competition
environmental factors
Functional diversity
Functional traits
Habitat filtering
habitats
Null model
Statistical power
Type I error
Title Which randomizations detect convergence and divergence in trait-based community assembly? A test of commonly used null models
URI https://api.istex.fr/ark:/67375/WNG-4L7943ZX-G/fulltext.pdf
https://www.jstor.org/stable/44132714
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjvs.12452
https://www.proquest.com/docview/1868340948
https://www.proquest.com/docview/2020897772
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1654-1103
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0017961
  issn: 1100-9233
  databaseCode: ABDBF
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1100-9233
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1654-1103
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017961
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEB9K64Mv_i-e1bKKSF9yXLKbTYIPcqdeS5E-aLWHCGF3M0uPtknp5YrXl_oR_Ix-Emc3l9CKBfEhsCG_kP0zs_Pb7MwswEuyyWisMoEdcONCcrJAFykGPFMoqRSj9Q6ye3Lns9idxJMVeN3GwjT5Ibofbk4z_HztFFzp2VUlP5_1Q7dvSPNvyGO_RfuxSx1FctbkSg0Hg4BIDF9mFfJePO2b12zRmuvW761b4jXCeZW2erszvgvf2ho37iZH_Xmt--bij2SO_9mke3BnyUfZsBGg-7CC5QO4NaqIMy4ewuXB4dQcMrJnRXXSRmyyAt3OA_MO6z52ExkBWDHtbqclc2dP1L9-_HRmsiCsj0OpF4zIOp7o48UbNmREc2tWWf-U6r9gc4ctaVXM_Ak9s0ewP36__3YnWB7ZEBiexVGghbTEgDBMZGEiqYS2SseIXJnQWGm5UnTRxGLDEKPIRCLlMkOtUykGOuTrsFpWJT4GVggrlSwwsTITJDepSoSmcZSRUila3oOtduxys0xn7lp2nHfLmvNZ7nuzBy866GmTw-NvoFdeADqEOjtyTm9JnB_sbefig8uk93WSb_dg3UtIByRCyaMkFD143opMTjrqNl5UidWcPpDKlLuFdHozJnKnpRIZT6gmW15Ibq5rvvvlky88-XfoBtwmriebMMqnsFqfzfEZ8alab8LacPRuNN70CvQb5gYg6Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3batwwEB3SpNC-9B66vaqllLx4WVuybEOhpJdkm273od02S6AISZbIksQuWW_o5iX9hH5jviQjeW2S0kDpg0HGx1iXGc-RNDMCeIE22WgrdWB7VLuQnCxQeWoCmknDsRQb6x1kh7z_lW2N4_ESvGpiYer8EO2Cm9MM_792Cu4WpM9r-dG0G7qNwyuw4vbnnFq--9wmj0JJq7Olhr1egDSGLvIKeT-e5tUL1mjFdezPxjHxAuU8T1y95dm4Cd-bOtcOJ3vdWaW6-viPdI7_26hbcGNBScl6LUO3YckUd-DqmxJp4_wunGzvTvQuQZOWlwdN0CbJjdt8IN5n3YdvGoIAkk_a20lB3PET1emv385S5oj1oSjVnCBfNwdqf_6arBNkuhUprX-KDZiTmcMWWF3iD-mZ3oPRxvvR236wOLUh0DSLo0AxbpEEmTDhuY64ZMpKFRtDpQ615ZZKiRf-W2wYmijSEUspz4xSKWc9FdJVWC7KwtwHkjPLJc9NYnnGUHRSmTCFA8kjKVNjaQfWmsETepHR3LVsX7Qzm6Op8L3Zgect9EedxuNvoJdeAlqEPNxzfm9JLLaHm4INXDK9nbHY7MCqF5EWiJySRknIOvCskRmBaur2XmRhyhl-IOUpdXPp9HJM5A5MRT6eYE3WvJRcXlex9e2LLzz4d-hTuNYffRqIwYfhx4dwHakfr6MqH8FydTgzj5FeVeqJ16IzuRYjkw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UVsQX78X1OopIX7JsMpNJgg9SL9tayyJa7SLCMFe6tE1KN1tcX_Qn-Bv9JZ6ZbEIrFsSHwIR8IXM5Z843mXPOADxBm2y1kzpyA6p9SE4RKZPbiBbSciyl1gUH2RHf_Mi2xul4CZ61sTBNfojuh5vXjDBfewU_Mu60kp9M-7HfN7wAK4zj6sozovdd7igUtCZZajwYRMhi6CKtUHDjaV89Y4xWfL9-bf0SzzDO07w1GJ7hVfjSVrnxN9nvz2rV19_-yOb4n226BlcWhJSsNxJ0HZZseQMuvqiQNM5vwvfdvYneI2jQTHXYhmwSY_3WAwke6yF40xIEEDPpbicl8YdP1L9-_PR20iA2BKLUc4Js3R6qg_lzsk6Q59akcuEp1n9OZh5b4rKYhCN6prdgZ_h65-VmtDizIdK0SJNIMe6QAtk440YnXDLlpEqtpVLH2nFHpcQLZxYXxzZJdMJyygurVM7ZQMV0FZbLqrS3gRjmuOTGZo4XDAUnlxlTOI48kTK3jvZgrR07oRf5zH3LDkS3rjmZitCbPXjcQY-aJB5_Az0NAtAh5PG-93rLUrE72hBs26fS-zwWGz1YDRLSAZFR0iSLWQ8etSIjUEn9zossbTXDD-Q8p34lnZ-PSfxxqcjGM6zJWhCS8-sqtj59CIU7_w59CJfevRqK7Tejt3fhMvI-3oRU3oPl-nhm7yO3qtWDoEO_AUA2IkI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Which+randomizations+detect+convergence+and+divergence+in+trait%E2%80%90based+community+assembly%3F+A+test+of+commonly+used+null+models&rft.jtitle=Journal+of+vegetation+science&rft.au=G%C3%B6tzenberger%2C+Lars&rft.au=Botta%E2%80%90Duk%C3%A1t%2C+Zolt%C3%A1n&rft.au=Lep%C5%A1%2C+Jan&rft.au=P%C3%A4rtel%2C+Meelis&rft.date=2016-11-01&rft.issn=1100-9233&rft.eissn=1654-1103&rft.volume=27&rft.issue=6&rft.spage=1275&rft.epage=1287&rft_id=info:doi/10.1111%2Fjvs.12452&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_jvs_12452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1100-9233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1100-9233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1100-9233&client=summon