Which randomizations detect convergence and divergence in trait-based community assembly? A test of commonly used null models
Questions: Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the traits of existing species are more similar (trait convergence) or more dissimilar (trait divergence) than expected by chance, these tests rel...
Saved in:
Published in | Journal of vegetation science Vol. 27; no. 6; pp. 1275 - 1287 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.11.2016
John Wiley & Sons Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1100-9233 1654-1103 |
DOI | 10.1111/jvs.12452 |
Cover
Abstract | Questions: Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the traits of existing species are more similar (trait convergence) or more dissimilar (trait divergence) than expected by chance, these tests relate observed patterns to different existence mechanisms. Do null models accurately detect trait convergence and divergence? Are different null models equally good at detecting these two opposing patterns? How important are the species pool and other constraints that are considered by different null models? Methods: We applied ten common randomizations to communities that were simulated in a process-based model. Results: Null models good at detecting biotic processes differed from those null models that revealed abiotic processes. In particular, limiting similarity (detected through divergence) was better detected by randomizations that release the link between species abundance and trait values, whereas environmental filtering (detected through convergence of an environmental response trait) was identified by randomizations that keep this link. In general, using species abundance data provided better results than using presence-absence data, particularly within given limited environmental conditions. Weaker competitor exclusion (detected through convergence of a competition-related trait) was only detected when no environmental filtering was acting on the simulated assembly, which points to difficulties in disentangling biotic and abiotic convergence in natural communities, especially when data are randomized across habitats. Conclusions: Overall the results manifest the importance of the pool of species over which randomizations are applied; in particular whether randomizations are conducted across or within given habitats. Taken together, our findings show that different null models must be combined and applied to a carefully chosen pool of species and species abundance data to ensure that co-existence mechanisms can be properly assessed. We utilize the results to (1) discuss how different constraints implied in the different null models affect the outcomes of our tests, and (2) provide some basic recommendations on how to choose null models, given the data available and questions being asked. |
---|---|
AbstractList | Questions Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the traits of co-existing species are more similar (trait convergence) or more dissimilar (trait divergence) than expected by chance, these tests relate observed patterns to different co-existence mechanisms. Do null models accurately detect trait convergence and divergence? Are different null models equally good at detecting these two opposing patterns? How important are the species pool and other constraints that are considered by different null models? Methods We applied ten common randomizations to communities that were simulated in a process-based model. Results Null models good at detecting biotic processes differed from those null models that revealed abiotic processes. In particular, limiting similarity (detected through divergence) was better detected by randomizations that release the link between species abundance and trait values, whereas environmental filtering (detected through convergence of an environmental response trait) was identified by randomizations that keep this link. In general, using species abundance data provided better results than using presence-absence data, particularly within given limited environmental conditions. Weaker competitor exclusion (detected through convergence of a competition-related trait) was only detected when no environmental filtering was acting on the simulated assembly, which points to difficulties in disentangling biotic and abiotic convergence in natural communities, especially when data are randomized across habitats. Conclusions Overall the results manifest the importance of the pool of species over which randomizations are applied; in particular whether randomizations are conducted across or within given habitats. Taken together, our findings show that different null models must be combined and applied to a carefully chosen pool of species and species abundance data to ensure that co-existence mechanisms can be properly assessed. We utilize the results to (1) discuss how different constraints implied in the different null models affect the outcomes of our tests, and (2) provide some basic recommendations on how to choose null models, given the data available and questions being asked. Randomisations are often used to estimate trait divergence and convergence patterns and to infer community assembly mechanisms. Many different randomisations are available but a statistical assessment of these is missing. We fill this gap by providing Type I error rate and power tests for commonly used randomisations. These tests demonstrate which randomisations are best for detecting hypothesized assembly mechanisms. Questions: Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the traits of existing species are more similar (trait convergence) or more dissimilar (trait divergence) than expected by chance, these tests relate observed patterns to different existence mechanisms. Do null models accurately detect trait convergence and divergence? Are different null models equally good at detecting these two opposing patterns? How important are the species pool and other constraints that are considered by different null models? Methods: We applied ten common randomizations to communities that were simulated in a process-based model. Results: Null models good at detecting biotic processes differed from those null models that revealed abiotic processes. In particular, limiting similarity (detected through divergence) was better detected by randomizations that release the link between species abundance and trait values, whereas environmental filtering (detected through convergence of an environmental response trait) was identified by randomizations that keep this link. In general, using species abundance data provided better results than using presence-absence data, particularly within given limited environmental conditions. Weaker competitor exclusion (detected through convergence of a competition-related trait) was only detected when no environmental filtering was acting on the simulated assembly, which points to difficulties in disentangling biotic and abiotic convergence in natural communities, especially when data are randomized across habitats. Conclusions: Overall the results manifest the importance of the pool of species over which randomizations are applied; in particular whether randomizations are conducted across or within given habitats. Taken together, our findings show that different null models must be combined and applied to a carefully chosen pool of species and species abundance data to ensure that co-existence mechanisms can be properly assessed. We utilize the results to (1) discuss how different constraints implied in the different null models affect the outcomes of our tests, and (2) provide some basic recommendations on how to choose null models, given the data available and questions being asked. Questions Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the traits of co‐existing species are more similar (trait convergence) or more dissimilar (trait divergence) than expected by chance, these tests relate observed patterns to different co‐existence mechanisms. Do null models accurately detect trait convergence and divergence? Are different null models equally good at detecting these two opposing patterns? How important are the species pool and other constraints that are considered by different null models? Methods We applied ten common randomizations to communities that were simulated in a process‐based model. Results Null models good at detecting biotic processes differed from those null models that revealed abiotic processes. In particular, limiting similarity (detected through divergence) was better detected by randomizations that release the link between species abundance and trait values, whereas environmental filtering (detected through convergence of an environmental response trait) was identified by randomizations that keep this link. In general, using species abundance data provided better results than using presence–absence data, particularly within given limited environmental conditions. Weaker competitor exclusion (detected through convergence of a competition‐related trait) was only detected when no environmental filtering was acting on the simulated assembly, which points to difficulties in disentangling biotic and abiotic convergence in natural communities, especially when data are randomized across habitats. Conclusions Overall the results manifest the importance of the pool of species over which randomizations are applied; in particular whether randomizations are conducted across or within given habitats. Taken together, our findings show that different null models must be combined and applied to a carefully chosen pool of species and species abundance data to ensure that co‐existence mechanisms can be properly assessed. We utilize the results to (1) discuss how different constraints implied in the different null models affect the outcomes of our tests, and (2) provide some basic recommendations on how to choose null models, given the data available and questions being asked. Randomisations are often used to estimate trait divergence and convergence patterns and to infer community assembly mechanisms. Many different randomisations are available but a statistical assessment of these is missing. We fill this gap by providing Type I error rate and power tests for commonly used randomisations. These tests demonstrate which randomisations are best for detecting hypothesized assembly mechanisms. QUESTIONS: Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the traits of co‐existing species are more similar (trait convergence) or more dissimilar (trait divergence) than expected by chance, these tests relate observed patterns to different co‐existence mechanisms. Do null models accurately detect trait convergence and divergence? Are different null models equally good at detecting these two opposing patterns? How important are the species pool and other constraints that are considered by different null models? METHODS: We applied ten common randomizations to communities that were simulated in a process‐based model. RESULTS: Null models good at detecting biotic processes differed from those null models that revealed abiotic processes. In particular, limiting similarity (detected through divergence) was better detected by randomizations that release the link between species abundance and trait values, whereas environmental filtering (detected through convergence of an environmental response trait) was identified by randomizations that keep this link. In general, using species abundance data provided better results than using presence–absence data, particularly within given limited environmental conditions. Weaker competitor exclusion (detected through convergence of a competition‐related trait) was only detected when no environmental filtering was acting on the simulated assembly, which points to difficulties in disentangling biotic and abiotic convergence in natural communities, especially when data are randomized across habitats. CONCLUSIONS: Overall the results manifest the importance of the pool of species over which randomizations are applied; in particular whether randomizations are conducted across or within given habitats. Taken together, our findings show that different null models must be combined and applied to a carefully chosen pool of species and species abundance data to ensure that co‐existence mechanisms can be properly assessed. We utilize the results to (1) discuss how different constraints implied in the different null models affect the outcomes of our tests, and (2) provide some basic recommendations on how to choose null models, given the data available and questions being asked. |
Author | Lepš, Jan Botta-Dukát, Zoltán de Bello, Francesco Zobel, Martin Götzenberger, Lars Pärtel, Meelis |
Author_xml | – sequence: 1 givenname: Lars surname: Götzenberger fullname: Götzenberger, Lars email: lars.goetzenberger@gmail.com, lars.goetzenberger@gmail.com organization: Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82, Třeboň, Czech Republic – sequence: 2 givenname: Zoltán surname: Botta-Dukát fullname: Botta-Dukát, Zoltán email: dukat.zoltan@okologia.mta.hu organization: MTA Centre for Ecological Research, Alkotmány 2-4, 2163, Vácrátót, Hungary – sequence: 3 givenname: Jan surname: Lepš fullname: Lepš, Jan email: suspa@prf.jcu.cz organization: Department of Botany, Faculty of Science, University of South Bohemia, Na Zlaté stoce 1, CZ-370 05, České Budějovice, Czech Republic – sequence: 4 givenname: Meelis surname: Pärtel fullname: Pärtel, Meelis email: meelis.partel@ut.ee organization: Department of Botany, University of Tartu, Lai 40, 51005, Tartu, Estonia – sequence: 5 givenname: Martin surname: Zobel fullname: Zobel, Martin email: martin.zobel@ut.ee organization: Department of Botany, University of Tartu, Lai 40, 51005, Tartu, Estonia – sequence: 6 givenname: Francesco surname: de Bello fullname: de Bello, Francesco email: fradebello@ctfc.es organization: Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82, Třeboň, Czech Republic |
BookMark | eNqFkV9rFDEUxYNUsF198AMIedSHafNvMjNPUoquyqIPFiu-hEzmjs2aSWqSrY7gdze7W_dBFAMhN5zfuQn3nKAjHzwg9JiSU1rW2fo2nVImanYPHVNZi4pSwo9KTQmpOsb5A3SS0poQ2nSSHqOfV9fWXOOo_RAm-0NnG3zCA2QwGZvgbyF-Bm8AFwAP9nC1Hueoba56nWAo5DRtvM0z1inB1Lv5OT7HGVLGYdypwbsZb7as3ziHpzCASw_R_VG7BI_uzgW6fPni8uJVtXq3fH1xvqoM72pW9UKObceBNnIwTGrRj7qvAbg21Ixy5FqXTTgZKQXGDBMtlx30fSsF6SlfoKf7tjcxfN2UT6nJJgPOaQ9hkxQjjLRd0zTsvyhtZcsF6coLC3S2R00MKUUYlbF5N8DtZJyiRG0jUSUStYukOJ794biJdtJx_it71_2bdTD_G1RvPrz_7Xiyd6xTDvHgEIJy1lBR9Gqv25Th-0HX8YuSDW9qdfV2qcSq6QT_9FEt-S8PkLhx |
CitedBy_id | crossref_primary_10_1002_ece3_8031 crossref_primary_10_1007_s00442_019_04386_0 crossref_primary_10_21425_fob_17_133819 crossref_primary_10_1002_ece3_9360 crossref_primary_10_1007_s00442_019_04555_1 crossref_primary_10_1111_jvs_13154 crossref_primary_10_1038_s41559_017_0426_x crossref_primary_10_1016_j_scitotenv_2020_140459 crossref_primary_10_1111_jbi_14506 crossref_primary_10_1111_1365_2745_14117 crossref_primary_10_1002_ecy_2079 crossref_primary_10_1111_jvs_13277 crossref_primary_10_1111_jvs_12544 crossref_primary_10_1111_jvs_12789 crossref_primary_10_1111_jbi_14356 crossref_primary_10_1111_jvs_12986 crossref_primary_10_1111_jvs_12625 crossref_primary_10_1111_1365_2435_13882 crossref_primary_10_3389_fpls_2023_1088643 crossref_primary_10_1111_geb_13275 crossref_primary_10_1016_j_baae_2021_02_009 crossref_primary_10_3390_f10121055 crossref_primary_10_1111_1365_2435_14749 crossref_primary_10_1038_s41598_020_76645_7 crossref_primary_10_1111_ecog_05405 crossref_primary_10_1016_j_ecolind_2021_108229 crossref_primary_10_1038_s41396_021_00959_1 crossref_primary_10_1111_1440_1703_1002 crossref_primary_10_3390_land12051090 crossref_primary_10_1111_1365_2745_13177 crossref_primary_10_1111_1365_2745_13650 crossref_primary_10_1086_727471 crossref_primary_10_1111_ecog_05363 crossref_primary_10_1111_jvs_12632 crossref_primary_10_1002_ecy_3058 crossref_primary_10_1111_1365_2435_14186 crossref_primary_10_1111_jvs_12758 crossref_primary_10_1002_ecs2_2045 crossref_primary_10_1007_s10750_024_05781_2 crossref_primary_10_1111_fwb_14138 crossref_primary_10_1002_ecs2_2840 crossref_primary_10_1093_aob_mcaa162 crossref_primary_10_1007_s11258_023_01306_4 crossref_primary_10_1111_brv_12782 crossref_primary_10_1007_s10530_018_1883_0 crossref_primary_10_1111_1365_2664_12922 crossref_primary_10_3390_plants10112252 crossref_primary_10_1016_j_ppees_2017_01_004 crossref_primary_10_1017_S0266467424000014 crossref_primary_10_1002_ece3_5823 crossref_primary_10_1016_j_ppees_2021_125630 crossref_primary_10_1111_ecog_06287 crossref_primary_10_1002_ece3_9828 crossref_primary_10_1080_17550874_2019_1628112 crossref_primary_10_1111_1365_2745_14172 crossref_primary_10_3389_fpls_2022_993051 crossref_primary_10_1111_1365_2745_14171 crossref_primary_10_1111_geb_13098 crossref_primary_10_3390_d12030091 crossref_primary_10_1038_s41598_019_57278_x crossref_primary_10_1093_jpe_rtz007 crossref_primary_10_1007_s11258_021_01142_4 crossref_primary_10_1111_een_13069 crossref_primary_10_1002_ece3_11644 crossref_primary_10_1111_1365_2435_12982 crossref_primary_10_1111_1365_2656_14060 crossref_primary_10_1093_aob_mcaa138 crossref_primary_10_1111_jvs_13260 crossref_primary_10_1002_ece3_8587 crossref_primary_10_1111_1365_2745_12986 crossref_primary_10_1111_icad_12805 crossref_primary_10_1111_1365_2745_13037 crossref_primary_10_1111_2041_210X_12735 crossref_primary_10_1111_jvs_13027 crossref_primary_10_1111_ecog_07122 crossref_primary_10_1007_s00442_020_04829_z crossref_primary_10_1111_1365_2435_14683 crossref_primary_10_1111_geb_13840 crossref_primary_10_1007_s11104_020_04478_4 |
Cites_doi | 10.1111/j.1461-0248.2004.00608.x 10.1111/j.1600-0587.2011.07259.x 10.1007/BF00045301 10.1111/j.1365-2435.2010.01695.x 10.1007/s00442-016-3546-0 10.1111/j.1365-2745.2012.01965.x 10.1890/09-2157.1 10.1098/rstb.2011.0063 10.1111/j.1600-0706.2011.20301.x 10.1111/j.1654-1103.2006.tb02444.x 10.1111/jvs.12031 10.1890/13-0269.1 10.1146/annurev.es.14.110183.001201 10.2307/4733 10.1111/j.1600-0587.2009.05975.x 10.2307/3545108 10.2307/1938672 10.1515/9781400857081 10.1111/j.1654-1103.2005.tb02393.x 10.1111/2041-210X.12364 10.1111/2041-210X.12450 10.1890/11-1394.1 10.1111/geb.12137 10.1016/j.tree.2006.02.002 10.1016/j.tree.2009.05.012 10.1111/j.1469-185X.2011.00187.x 10.1016/j.jtbi.2009.11.004 10.1890/09-1672.1 10.2307/2389796 10.2307/1936961 10.1111/j.1365-2745.2009.01610.x 10.1111/j.1365-2745.2008.01421.x 10.1034/j.1600-0706.2001.930112.x 10.1111/j.1600-0706.2012.20325.x 10.1007/s00442-009-1474-y 10.1086/652373 10.1111/j.1654-1103.2007.tb02557.x 10.1111/j.0022-0477.2004.00898.x 10.1111/jvs.12013 10.1111/j.1461-0248.2010.01509.x 10.1086/282505 10.1890/08-2225.1 10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2 10.1890/06-1208.1 10.1111/jvs.12008 10.1890/07-1134.1 10.1016/S0169-5347(01)02283-2 10.2307/3546047 10.1146/annurev-ecolsys-110411-160411 10.1111/jvs.12097 10.2307/3235896 |
ContentType | Journal Article |
Copyright | Copyright © 2017 International Association for Vegetation Science 2016 International Association for Vegetation Science |
Copyright_xml | – notice: Copyright © 2017 International Association for Vegetation Science – notice: 2016 International Association for Vegetation Science |
DBID | BSCLL AAYXX CITATION 7SN 7ST C1K SOI 7S9 L.6 |
DOI | 10.1111/jvs.12452 |
DatabaseName | Istex CrossRef Ecology Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Ecology Abstracts Environment Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Ecology Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1654-1103 |
Editor | Mason, Norman |
Editor_xml | – sequence: 7 givenname: Norman surname: Mason fullname: Mason, Norman |
EndPage | 1287 |
ExternalDocumentID | 10_1111_jvs_12452 JVS12452 44132714 ark_67375_WNG_4L7943ZX_G |
Genre | article |
GrantInformation_xml | – fundername: European Union Seventh Framework Programme for research, technological development and demonstration funderid: GA‐2010‐267243 – fundername: Hungarian Science Fund funderid: K83595 – fundername: European Union through the European Regional Development Fund, Centre of Excellence EcolChange – fundername: Czech Science Foundation (GACR) funderid: P505/12/1296 – fundername: Estonian Ministry of Education and Research, institutional research funding |
GroupedDBID | -JH .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 29L 2~F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AAPSS AASGY AAXRX AAXTN AAYCA AAZKR ABBHK ABCQN ABCUV ABDBF ABEML ABJNI ABPLY ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCZN ACGFS ACHIC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADHSS ADIZJ ADKYN ADMGS ADNMO ADOZA ADULT ADXAS ADZMN AEEJZ AEFGJ AEIGN AEIMD AENEX AEPYG AEUPB AEUYR AEYWJ AFAZZ AFBPY AFFIJ AFFPM AFGKR AFNWH AFRAH AFWVQ AGHNM AGQPQ AGUYK AGXDD AGYGG AHBTC AHXOZ AI. AICQM AIDQK AIDYY AITYG AIURR AJXKR AKPMI ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CBGCD COF CS3 D-E D-F DATOO DC7 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK ESX F00 F01 F04 FEDTE G-S G.N GODZA GTFYD H.T H.X H13 HF~ HGD HGLYW HTVGU HVGLF HZ~ IAG IAO IEP IHR IPSME ITC J0M JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P4D PQ0 Q.N Q11 Q5J QB0 R.K RBO ROL RX1 SA0 SUPJJ TEORI TUS UB1 VH1 VOH W8V W99 WBKPD WIH WIK WOHZO WQJ WUPDE WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~02 ~8M ~IA ~KM ~WT 1OB AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE DOOOF EQZMY JSODD RWI WRC AAYXX CITATION 7SN 7ST C1K SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c3952-b46f893e176dc26a4bfab5ee3ac1cf6f3aaf3a030f11e22c248369ebb8640b13 |
IEDL.DBID | DR2 |
ISSN | 1100-9233 |
IngestDate | Fri Jul 11 18:23:09 EDT 2025 Fri Jul 11 05:22:49 EDT 2025 Wed Oct 01 03:50:11 EDT 2025 Thu Apr 24 22:53:08 EDT 2025 Wed Jan 22 16:18:09 EST 2025 Thu Jul 03 22:16:25 EDT 2025 Sun Sep 21 06:18:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3952-b46f893e176dc26a4bfab5ee3ac1cf6f3aaf3a030f11e22c248369ebb8640b13 |
Notes | ark:/67375/WNG-4L7943ZX-G Appendix S1. Detailed description of the community simulation model used in the study.Appendix S2. Scheme of the data used for null model-based studies of community assembly.Appendix S3. Detailed description of the tested null models.Appendix S4. Tables of results of the Type I error and power analyses.Appendix S5. Rank-abundance curves for three selected simulated communities European Union through the European Regional Development Fund, Centre of Excellence EcolChange Czech Science Foundation (GACR) - No. P505/12/1296 European Union Seventh Framework Programme for research, technological development and demonstration - No. GA-2010-267243 Estonian Ministry of Education and Research, institutional research funding istex:100E710053F5D6D780A46E95B0A9C27C6BC75110 Hungarian Science Fund - No. K83595 ArticleID:JVS12452 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1868340948 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2020897772 proquest_miscellaneous_1868340948 crossref_citationtrail_10_1111_jvs_12452 crossref_primary_10_1111_jvs_12452 wiley_primary_10_1111_jvs_12452_JVS12452 jstor_primary_44132714 istex_primary_ark_67375_WNG_4L7943ZX_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11 20161101 November 2016 2016-11-00 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11 |
PublicationDecade | 2010 |
PublicationTitle | Journal of vegetation science |
PublicationTitleAlternate | J Veg Sci |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons Ltd |
References | Hardy, O.J. 2008. Testing the spatial phylogenetic structure of local communities: statistical performances of different null models and test statistics on a locally neutral community. Journal of Ecology 96: 914-926. Wilson, J.B. 1991. Methods for fitting dominance/diversity curves. Journal of Vegetation Science 2: 35-46. Ulrich, W. & Gotelli, N.J. 2007. Null model analysis of species nestedness patterns. Ecology 88: 1824-1831. McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178-185. Mouchet, M.A., Villéger, S., Mason, N.W.H. & Mouillot, D. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24: 867-876. Vellend, M. 2010. Conceptual synthesis in community ecology. The Quarterly Review of Biology 85: 183-206. Aiba, M., Katabuchi, M., Takafumi, H., Matsuzaki, S.S., Sasaki, T. & Hiura, T. 2013. Robustness of trait distribution metrics for community assembly studies under the uncertainties of assembly processes. Ecology 94: 2873-2885. Ulrich, W. & Gotelli, N.J. 2013. Pattern detection in null model analysis. Oikos 122: 2-18. Wilson, J.B. 1993. Would we recognise a broken-stick community if we found one? Oikos 67: 181-183. Chase, J.M. & Myers, J.A. 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 366: 2351-2363. Strong, D.R.J., Simberloff, D., Abele, L.G. & Thistle, A.B. 1984. Ecological communities: conceptual issues and the evidence. Princeton University Press, Princeton, NJ, US. Wilson, J.B., Gitay, H. & Agnew, A.D.Q. 1987. Does niche limitation exist? Functional Ecology 1: 391-397. Hubbell, S.P. 2001. The unified theory of biodiversity and biogeography. Princeton University Press, Princeton, NJ, US. Münkemüller, T., de Bello, F., Meynard, C.N., Gravel, D., Lavergne, S., Mouillot, D., Mouquet, N. & Thuiller, W. 2012. From diversity indices to community assembly processes: a test with simulated data. Ecography 35: 468-480. Wilson, J.B. 2007. Trait-divergence assembly rules have been demonstrated: limiting similarity lives! A reply to Grime. Journal of Vegetation Science 18: 451-452. Grime, J.P. 2006. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. Journal of Vegetation Science 17: 255-260. Wilson, J.B. 1995. Null models for assembly rules: the Jack Horner effect is more insidious than the narcissus effect. Oikos 72: 139-144. Mason, N.W.H. & De Bello, F. 2013. Functional diversity: a tool for answering challenging ecological questions. Journal of Vegetation Science 24: 777-780. Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Holt, R.D., Shurin, J.B., Law, R., (...) & Gonzalez, A. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601-613. Chalmandrier, L., Münkemüller, T., Gallien, L., de Bello, F., Mazel, F., Lavergne, S. & Thuiller, W. 2013. A family of null models to distinguish between environmental filtering and biotic interactions in functional diversity patterns. Journal of Vegetation Science 24: 853-864. Hobbs, R.J., Higgs, E. & Harris, J.A. 2009. Novel ecosystems: implications for conservation and restoration. Trends in Ecology & Evolution 24: 599-605. Connor, E.F. & Simberloff, D. 1979. The assembly of species communities: chance or competition? Ecology 60: 1132. HilleRisLambers, J., Adler, P.B., Harpole, W.S., Levine, J.M. & Mayfield, M.M. 2012. Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics 43: 227-248. de Bello, F., Carmona, C.P., Lepš, J., Szava-Kovats, R. & Pärtel, M. 2016. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia 180: 233-240. Harvey, P.H., Colwell, R.K., Silvertown, J. & May, R.M. 1983. Null models in ecology. Annual Review of Ecology and Systematics 14: 189-211. Mason, N.W.H., Richardson, S.J., Peltzer, D.A., de Bello, F., Wardle, D.A. & Allen, R.B. 2012. Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity. Journal of Ecology 100: 678-689. ter Braak, C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167-1179. Ulrich, W. & Gotelli, N.J. 2010. Null model analysis of species associations using abundance data. Ecology 91: 3384-3397. De Bello, F., Carmona, C.P., Mason, N.W.H., Sebastià, M.-T. & Lepš, J. 2013. Which trait dissimilarity for functional diversity: trait means or trait overlap? Journal of Vegetation Science 24: 807-819. Mayfield, M.M. & Levine, J.M. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13: 1085-1093. Cornwell, W.K. & Ackerly, D.D. 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79: 109-126. Gotelli, N.J. 2000. Null model analysis of species co-occurrence patterns. Ecology 81: 2606-2621. Götzenberger, L., de Bello, F., Bråthen, K.A., Davison, J., Dubuis, A., Guisan, A., Lepš, J., Lindborg, R., Moora, M., (...) & Zobel, M. 2012. Ecological assembly rules in plant communities - approaches, patterns and prospects. Biological Reviews 87: 111-127. Münkemüller, T., Gallien, L., Lavergne, S., Renaud, J., Roquet, C., Abdulhak, S., Dullinger, S., Garraud, L., Guisan, A., (...) & Thuiller, W. 2014. Scale decisions can reverse conclusions on community assembly processes. Global Ecology and Biogeography 23: 620-632. Jabot, F. 2010. A stochastic dispersal limited trait-based model of community dynamics. Journal of Theoretical Biology 262: 650-661. Münkemüller, T., Gallien, L. & Travis, J. 2015. VirtualCom: a simulation model for eco-evolutionary community assembly and invasion. Methods in Ecology and Evolution 6: 735-743. Botta-Dukát, Z. 2005. Rao's quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16: 533-540. Wilson, J.B. & Gitay, H. 1995. Community structure and assembly rules in a dune slack: variance in richness, guild proportionality, biomass constancy and dominance/diversity relations. Vegetatio 116: 93-106. Peres-Neto, P.R., Olden, J.D. & Jackson, D.A. 2001. Environmentally constrained null models: site suitability as occupancy criterion. Oikos 93: 110-120. De Bello, F., Price, J.N., Münkemüller, T., Liira, J., Zobel, M., Thuiller, W., Gerhold, P., Götzenberger, L., Lavergne, S., (...) & Pärtel, M. 2012. Functional species pool framework to test for biotic effects on community assembly. Ecology 93: 2263-2273. Díaz, S. & Cabido, M. 2001. Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution 16: 646-655. Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. 2010. A user's guide to functional diversity indices. Ecological Monographs 80: 469-484. Gotelli, N.J. & Graves, G.R. 1996. Null models in ecology. Smithsonian Institution Press, Washington, DC, US. MacArthur, R. & Levins, R. 1967. The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist 101: 377-385. Tokeshi, M. 1986. Resource utilization, overlap and temporal community dynamics: a null model analysis of an epiphytic chironomid community. Journal of Animal Ecology 55: 491-506. Mason, N.W.H., de Bello, F., Mouillot, D., Pavoine, S. & Dray, S. 2013. A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science 24: 794-806. Gotelli, N.J. & Ulrich, W. 2012. Statistical challenges in null model analysis. Oikos 121: 171-180. Thompson, K., Petchey, O.L., Askew, A.P., Dunnett, N.P., Beckerman, A.P. & Willis, A.J. 2010. Little evidence for limiting similarity in a long-term study of a roadside plant community. Journal of Ecology 98: 480-487. Gotelli, N.J. & Ulrich, W. 2010. The empirical Bayes approach as a tool to identify non-random species associations. Oecologia 162: 463-477. Kraft, N.J.B. & Ackerly, D.D. 2010. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs 80: 401-422. Cohen, J. 1988. Statistical power analysis for the behavioral sciences. L. Erlbaum Associates. Mahwah, NJ, US. Botta-Dukát, Z. & Czúcz, B. 2016. Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation. Methods in Ecology and Evolution 7: 114-126. Willis, C.G., Halina, M., Lehman, C., Reich, P.B., Keen, A., McCarthy, S. & Cavender-Bares, J. 2009. Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography 33: 565-577. Stubbs, W.J. & Wilson, J.B. 2004. Evidence for limiting similarity in a sand dune community. Journal of Ecology 92: 557-567. 1987; 1 2001; 93 2010; 98 1993; 67 1995; 72 2012; 121 2010; 13 2013; 24 2004; 7 1975 2013; 122 2010; 262 2016; 180 2014; 23 1983; 14 2011; 366 2010; 24 2001 2006; 21 2013; 94 1967; 101 1984 2001; 16 1979; 60 1988 2007; 18 1991; 2 2009; 24 2015; 6 2012; 100 2010 1986; 55 2006; 17 1996 1995; 116 2010; 162 2008; 96 2010; 80 2012; 35 2010; 85 2012; 93 2009; 33 2016; 7 2009; 79 2004; 92 1986; 67 2000; 81 2014 2005; 16 2010; 91 2007; 88 2012; 87 2012; 43 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Hubbell S.P. (e_1_2_7_25_1) 2001 e_1_2_7_50_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Cohen J. (e_1_2_7_7_1) 1988 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 Willis C.G. (e_1_2_7_52_1) 2009; 33 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 Gotelli N.J. (e_1_2_7_16_1) 1996 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 McGill B.J. (e_1_2_7_36_1) 2010 e_1_2_7_38_1 Diamond J.M. (e_1_2_7_13_1) 1975 |
References_xml | – reference: Cohen, J. 1988. Statistical power analysis for the behavioral sciences. L. Erlbaum Associates. Mahwah, NJ, US. – reference: Chase, J.M. & Myers, J.A. 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 366: 2351-2363. – reference: Willis, C.G., Halina, M., Lehman, C., Reich, P.B., Keen, A., McCarthy, S. & Cavender-Bares, J. 2009. Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography 33: 565-577. – reference: Kraft, N.J.B. & Ackerly, D.D. 2010. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs 80: 401-422. – reference: Wilson, J.B. & Gitay, H. 1995. Community structure and assembly rules in a dune slack: variance in richness, guild proportionality, biomass constancy and dominance/diversity relations. Vegetatio 116: 93-106. – reference: Mouchet, M.A., Villéger, S., Mason, N.W.H. & Mouillot, D. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24: 867-876. – reference: Wilson, J.B. 1991. Methods for fitting dominance/diversity curves. Journal of Vegetation Science 2: 35-46. – reference: Münkemüller, T., Gallien, L. & Travis, J. 2015. VirtualCom: a simulation model for eco-evolutionary community assembly and invasion. Methods in Ecology and Evolution 6: 735-743. – reference: HilleRisLambers, J., Adler, P.B., Harpole, W.S., Levine, J.M. & Mayfield, M.M. 2012. Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics 43: 227-248. – reference: Gotelli, N.J. & Ulrich, W. 2012. Statistical challenges in null model analysis. Oikos 121: 171-180. – reference: Hardy, O.J. 2008. Testing the spatial phylogenetic structure of local communities: statistical performances of different null models and test statistics on a locally neutral community. Journal of Ecology 96: 914-926. – reference: De Bello, F., Carmona, C.P., Mason, N.W.H., Sebastià, M.-T. & Lepš, J. 2013. Which trait dissimilarity for functional diversity: trait means or trait overlap? Journal of Vegetation Science 24: 807-819. – reference: Wilson, J.B. 1993. Would we recognise a broken-stick community if we found one? Oikos 67: 181-183. – reference: Wilson, J.B. 1995. Null models for assembly rules: the Jack Horner effect is more insidious than the narcissus effect. Oikos 72: 139-144. – reference: Connor, E.F. & Simberloff, D. 1979. The assembly of species communities: chance or competition? Ecology 60: 1132. – reference: Peres-Neto, P.R., Olden, J.D. & Jackson, D.A. 2001. Environmentally constrained null models: site suitability as occupancy criterion. Oikos 93: 110-120. – reference: De Bello, F., Price, J.N., Münkemüller, T., Liira, J., Zobel, M., Thuiller, W., Gerhold, P., Götzenberger, L., Lavergne, S., (...) & Pärtel, M. 2012. Functional species pool framework to test for biotic effects on community assembly. Ecology 93: 2263-2273. – reference: Díaz, S. & Cabido, M. 2001. Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution 16: 646-655. – reference: Mason, N.W.H. & De Bello, F. 2013. Functional diversity: a tool for answering challenging ecological questions. Journal of Vegetation Science 24: 777-780. – reference: Münkemüller, T., Gallien, L., Lavergne, S., Renaud, J., Roquet, C., Abdulhak, S., Dullinger, S., Garraud, L., Guisan, A., (...) & Thuiller, W. 2014. Scale decisions can reverse conclusions on community assembly processes. Global Ecology and Biogeography 23: 620-632. – reference: Hubbell, S.P. 2001. The unified theory of biodiversity and biogeography. Princeton University Press, Princeton, NJ, US. – reference: Ulrich, W. & Gotelli, N.J. 2013. Pattern detection in null model analysis. Oikos 122: 2-18. – reference: Stubbs, W.J. & Wilson, J.B. 2004. Evidence for limiting similarity in a sand dune community. Journal of Ecology 92: 557-567. – reference: Götzenberger, L., de Bello, F., Bråthen, K.A., Davison, J., Dubuis, A., Guisan, A., Lepš, J., Lindborg, R., Moora, M., (...) & Zobel, M. 2012. Ecological assembly rules in plant communities - approaches, patterns and prospects. Biological Reviews 87: 111-127. – reference: Jabot, F. 2010. A stochastic dispersal limited trait-based model of community dynamics. Journal of Theoretical Biology 262: 650-661. – reference: Wilson, J.B. 2007. Trait-divergence assembly rules have been demonstrated: limiting similarity lives! A reply to Grime. Journal of Vegetation Science 18: 451-452. – reference: de Bello, F., Carmona, C.P., Lepš, J., Szava-Kovats, R. & Pärtel, M. 2016. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia 180: 233-240. – reference: Chalmandrier, L., Münkemüller, T., Gallien, L., de Bello, F., Mazel, F., Lavergne, S. & Thuiller, W. 2013. A family of null models to distinguish between environmental filtering and biotic interactions in functional diversity patterns. Journal of Vegetation Science 24: 853-864. – reference: Mason, N.W.H., de Bello, F., Mouillot, D., Pavoine, S. & Dray, S. 2013. A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science 24: 794-806. – reference: McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178-185. – reference: Ulrich, W. & Gotelli, N.J. 2007. Null model analysis of species nestedness patterns. Ecology 88: 1824-1831. – reference: Aiba, M., Katabuchi, M., Takafumi, H., Matsuzaki, S.S., Sasaki, T. & Hiura, T. 2013. Robustness of trait distribution metrics for community assembly studies under the uncertainties of assembly processes. Ecology 94: 2873-2885. – reference: Ulrich, W. & Gotelli, N.J. 2010. Null model analysis of species associations using abundance data. Ecology 91: 3384-3397. – reference: Mason, N.W.H., Richardson, S.J., Peltzer, D.A., de Bello, F., Wardle, D.A. & Allen, R.B. 2012. Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity. Journal of Ecology 100: 678-689. – reference: Thompson, K., Petchey, O.L., Askew, A.P., Dunnett, N.P., Beckerman, A.P. & Willis, A.J. 2010. Little evidence for limiting similarity in a long-term study of a roadside plant community. Journal of Ecology 98: 480-487. – reference: Harvey, P.H., Colwell, R.K., Silvertown, J. & May, R.M. 1983. Null models in ecology. Annual Review of Ecology and Systematics 14: 189-211. – reference: Gotelli, N.J. 2000. Null model analysis of species co-occurrence patterns. Ecology 81: 2606-2621. – reference: Hobbs, R.J., Higgs, E. & Harris, J.A. 2009. Novel ecosystems: implications for conservation and restoration. Trends in Ecology & Evolution 24: 599-605. – reference: Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Holt, R.D., Shurin, J.B., Law, R., (...) & Gonzalez, A. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601-613. – reference: Gotelli, N.J. & Graves, G.R. 1996. Null models in ecology. Smithsonian Institution Press, Washington, DC, US. – reference: Strong, D.R.J., Simberloff, D., Abele, L.G. & Thistle, A.B. 1984. Ecological communities: conceptual issues and the evidence. Princeton University Press, Princeton, NJ, US. – reference: Münkemüller, T., de Bello, F., Meynard, C.N., Gravel, D., Lavergne, S., Mouillot, D., Mouquet, N. & Thuiller, W. 2012. From diversity indices to community assembly processes: a test with simulated data. Ecography 35: 468-480. – reference: Botta-Dukát, Z. 2005. Rao's quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16: 533-540. – reference: Botta-Dukát, Z. & Czúcz, B. 2016. Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation. Methods in Ecology and Evolution 7: 114-126. – reference: Cornwell, W.K. & Ackerly, D.D. 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79: 109-126. – reference: Mayfield, M.M. & Levine, J.M. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13: 1085-1093. – reference: Vellend, M. 2010. Conceptual synthesis in community ecology. The Quarterly Review of Biology 85: 183-206. – reference: ter Braak, C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167-1179. – reference: Wilson, J.B., Gitay, H. & Agnew, A.D.Q. 1987. Does niche limitation exist? Functional Ecology 1: 391-397. – reference: Grime, J.P. 2006. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. Journal of Vegetation Science 17: 255-260. – reference: MacArthur, R. & Levins, R. 1967. The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist 101: 377-385. – reference: Tokeshi, M. 1986. Resource utilization, overlap and temporal community dynamics: a null model analysis of an epiphytic chironomid community. Journal of Animal Ecology 55: 491-506. – reference: Gotelli, N.J. & Ulrich, W. 2010. The empirical Bayes approach as a tool to identify non-random species associations. Oecologia 162: 463-477. – reference: Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. 2010. A user's guide to functional diversity indices. Ecological Monographs 80: 469-484. – volume: 43 start-page: 227 year: 2012 end-page: 248 article-title: Rethinking community assembly through the lens of coexistence theory publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 67 start-page: 181 year: 1993 end-page: 183 article-title: Would we recognise a broken‐stick community if we found one? publication-title: Oikos – volume: 81 start-page: 2606 year: 2000 end-page: 2621 article-title: Null model analysis of species co‐occurrence patterns publication-title: Ecology – volume: 24 start-page: 794 year: 2013 end-page: 806 article-title: A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients publication-title: Journal of Vegetation Science – volume: 33 start-page: 565 year: 2009 end-page: 577 article-title: Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation publication-title: Ecography – year: 2001 – volume: 2 start-page: 35 year: 1991 end-page: 46 article-title: Methods for fitting dominance/diversity curves publication-title: Journal of Vegetation Science – volume: 72 start-page: 139 year: 1995 end-page: 144 article-title: Null models for assembly rules: the Jack Horner effect is more insidious than the narcissus effect publication-title: Oikos – volume: 18 start-page: 451 year: 2007 end-page: 452 article-title: Trait‐divergence assembly rules have been demonstrated: limiting similarity lives! A reply to Grime publication-title: Journal of Vegetation Science – volume: 16 start-page: 533 year: 2005 end-page: 540 article-title: Rao's quadratic entropy as a measure of functional diversity based on multiple traits publication-title: Journal of Vegetation Science – volume: 55 start-page: 491 year: 1986 end-page: 506 article-title: Resource utilization, overlap and temporal community dynamics: a null model analysis of an epiphytic chironomid community publication-title: Journal of Animal Ecology – volume: 93 start-page: 110 year: 2001 end-page: 120 article-title: Environmentally constrained null models: site suitability as occupancy criterion publication-title: Oikos – volume: 98 start-page: 480 year: 2010 end-page: 487 article-title: Little evidence for limiting similarity in a long‐term study of a roadside plant community publication-title: Journal of Ecology – volume: 94 start-page: 2873 year: 2013 end-page: 2885 article-title: Robustness of trait distribution metrics for community assembly studies under the uncertainties of assembly processes publication-title: Ecology – volume: 13 start-page: 1085 year: 2010 end-page: 1093 article-title: Opposing effects of competitive exclusion on the phylogenetic structure of communities publication-title: Ecology Letters – volume: 88 start-page: 1824 year: 2007 end-page: 1831 article-title: Null model analysis of species nestedness patterns publication-title: Ecology – volume: 85 start-page: 183 year: 2010 end-page: 206 article-title: Conceptual synthesis in community ecology publication-title: The Quarterly Review of Biology – volume: 79 start-page: 109 year: 2009 end-page: 126 article-title: Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California publication-title: Ecological Monographs – volume: 23 start-page: 620 year: 2014 end-page: 632 article-title: Scale decisions can reverse conclusions on community assembly processes publication-title: Global Ecology and Biogeography – volume: 24 start-page: 853 year: 2013 end-page: 864 article-title: A family of null models to distinguish between environmental filtering and biotic interactions in functional diversity patterns publication-title: Journal of Vegetation Science – volume: 67 start-page: 1167 year: 1986 end-page: 1179 article-title: Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis publication-title: Ecology – volume: 80 start-page: 401 year: 2010 end-page: 422 article-title: Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest publication-title: Ecological Monographs – start-page: 342 year: 1975 end-page: 444 – volume: 16 start-page: 646 year: 2001 end-page: 655 article-title: Vive la différence: plant functional diversity matters to ecosystem processes publication-title: Trends in Ecology & Evolution – volume: 1 start-page: 391 year: 1987 end-page: 397 article-title: Does niche limitation exist? publication-title: Functional Ecology – volume: 87 start-page: 111 year: 2012 end-page: 127 article-title: Ecological assembly rules in plant communities – approaches, patterns and prospects publication-title: Biological Reviews – volume: 7 start-page: 601 year: 2004 end-page: 613 article-title: The metacommunity concept: a framework for multi‐scale community ecology publication-title: Ecology Letters – volume: 35 start-page: 468 year: 2012 end-page: 480 article-title: From diversity indices to community assembly processes: a test with simulated data publication-title: Ecography – volume: 121 start-page: 171 year: 2012 end-page: 180 article-title: Statistical challenges in null model analysis publication-title: Oikos – volume: 14 start-page: 189 year: 1983 end-page: 211 article-title: Null models in ecology publication-title: Annual Review of Ecology and Systematics – volume: 6 start-page: 735 year: 2015 end-page: 743 article-title: VirtualCom: a simulation model for eco‐evolutionary community assembly and invasion publication-title: Methods in Ecology and Evolution – volume: 93 start-page: 2263 year: 2012 end-page: 2273 article-title: Functional species pool framework to test for biotic effects on community assembly publication-title: Ecology – year: 1996 – volume: 366 start-page: 2351 year: 2011 end-page: 2363 article-title: Disentangling the importance of ecological niches from stochastic processes across scales publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences – volume: 24 start-page: 807 year: 2013 end-page: 819 article-title: Which trait dissimilarity for functional diversity: trait means or trait overlap? publication-title: Journal of Vegetation Science – year: 2014 article-title: picante ‐ R tools for integrating phylogenies and ecology – volume: 100 start-page: 678 year: 2012 end-page: 689 article-title: Changes in coexistence mechanisms along a long‐term soil chronosequence revealed by functional trait diversity publication-title: Journal of Ecology – volume: 92 start-page: 557 year: 2004 end-page: 567 article-title: Evidence for limiting similarity in a sand dune community publication-title: Journal of Ecology – volume: 101 start-page: 377 year: 1967 end-page: 385 article-title: The limiting similarity, convergence, and divergence of coexisting species publication-title: The American Naturalist – volume: 60 start-page: 1132 year: 1979 article-title: The assembly of species communities: chance or competition? publication-title: Ecology – volume: 96 start-page: 914 year: 2008 end-page: 926 article-title: Testing the spatial phylogenetic structure of local communities: statistical performances of different null models and test statistics on a locally neutral community publication-title: Journal of Ecology – year: 2010 – volume: 122 start-page: 2 year: 2013 end-page: 18 article-title: Pattern detection in null model analysis publication-title: Oikos – volume: 17 start-page: 255 year: 2006 end-page: 260 article-title: Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences publication-title: Journal of Vegetation Science – year: 1984 – volume: 24 start-page: 867 year: 2010 end-page: 876 article-title: Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules publication-title: Functional Ecology – volume: 262 start-page: 650 year: 2010 end-page: 661 article-title: A stochastic dispersal limited trait‐based model of community dynamics publication-title: Journal of Theoretical Biology – volume: 7 start-page: 114 year: 2016 end-page: 126 article-title: Testing the ability of functional diversity indices to detect trait convergence and divergence using individual‐based simulation publication-title: Methods in Ecology and Evolution – year: 1988 – volume: 80 start-page: 469 year: 2010 end-page: 484 article-title: A user's guide to functional diversity indices publication-title: Ecological Monographs – volume: 180 start-page: 233 year: 2016 end-page: 240 article-title: Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms publication-title: Oecologia – volume: 21 start-page: 178 year: 2006 end-page: 185 article-title: Rebuilding community ecology from functional traits publication-title: Trends in Ecology & Evolution – volume: 24 start-page: 777 year: 2013 end-page: 780 article-title: Functional diversity: a tool for answering challenging ecological questions publication-title: Journal of Vegetation Science – volume: 91 start-page: 3384 year: 2010 end-page: 3397 article-title: Null model analysis of species associations using abundance data publication-title: Ecology – volume: 24 start-page: 599 year: 2009 end-page: 605 article-title: Novel ecosystems: implications for conservation and restoration publication-title: Trends in Ecology & Evolution – volume: 162 start-page: 463 year: 2010 end-page: 477 article-title: The empirical Bayes approach as a tool to identify non‐random species associations publication-title: Oecologia – volume: 116 start-page: 93 year: 1995 end-page: 106 article-title: Community structure and assembly rules in a dune slack: variance in richness, guild proportionality, biomass constancy and dominance/diversity relations publication-title: Vegetatio – ident: e_1_2_7_29_1 doi: 10.1111/j.1461-0248.2004.00608.x – volume-title: Statistical power analysis for the behavioral sciences year: 1988 ident: e_1_2_7_7_1 – ident: e_1_2_7_38_1 doi: 10.1111/j.1600-0587.2011.07259.x – ident: e_1_2_7_57_1 doi: 10.1007/BF00045301 – ident: e_1_2_7_37_1 doi: 10.1111/j.1365-2435.2010.01695.x – ident: e_1_2_7_12_1 doi: 10.1007/s00442-016-3546-0 – ident: e_1_2_7_33_1 doi: 10.1111/j.1365-2745.2012.01965.x – ident: e_1_2_7_49_1 doi: 10.1890/09-2157.1 – ident: e_1_2_7_6_1 doi: 10.1098/rstb.2011.0063 – ident: e_1_2_7_18_1 doi: 10.1111/j.1600-0706.2011.20301.x – ident: e_1_2_7_20_1 doi: 10.1111/j.1654-1103.2006.tb02444.x – ident: e_1_2_7_5_1 doi: 10.1111/jvs.12031 – ident: e_1_2_7_2_1 doi: 10.1890/13-0269.1 – ident: e_1_2_7_22_1 doi: 10.1146/annurev.es.14.110183.001201 – ident: e_1_2_7_47_1 doi: 10.2307/4733 – volume: 33 start-page: 565 year: 2009 ident: e_1_2_7_52_1 article-title: Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation publication-title: Ecography doi: 10.1111/j.1600-0587.2009.05975.x – ident: e_1_2_7_54_1 doi: 10.2307/3545108 – ident: e_1_2_7_45_1 doi: 10.2307/1938672 – ident: e_1_2_7_27_1 – ident: e_1_2_7_43_1 doi: 10.1515/9781400857081 – ident: e_1_2_7_3_1 doi: 10.1111/j.1654-1103.2005.tb02393.x – ident: e_1_2_7_40_1 doi: 10.1111/2041-210X.12364 – ident: e_1_2_7_4_1 doi: 10.1111/2041-210X.12450 – ident: e_1_2_7_10_1 doi: 10.1890/11-1394.1 – ident: e_1_2_7_39_1 doi: 10.1111/geb.12137 – ident: e_1_2_7_35_1 doi: 10.1016/j.tree.2006.02.002 – ident: e_1_2_7_24_1 doi: 10.1016/j.tree.2009.05.012 – ident: e_1_2_7_19_1 doi: 10.1111/j.1469-185X.2011.00187.x – ident: e_1_2_7_26_1 doi: 10.1016/j.jtbi.2009.11.004 – ident: e_1_2_7_28_1 doi: 10.1890/09-1672.1 – ident: e_1_2_7_58_1 doi: 10.2307/2389796 – ident: e_1_2_7_8_1 doi: 10.2307/1936961 – ident: e_1_2_7_46_1 doi: 10.1111/j.1365-2745.2009.01610.x – ident: e_1_2_7_21_1 doi: 10.1111/j.1365-2745.2008.01421.x – ident: e_1_2_7_41_1 doi: 10.1034/j.1600-0706.2001.930112.x – ident: e_1_2_7_50_1 doi: 10.1111/j.1600-0706.2012.20325.x – ident: e_1_2_7_17_1 doi: 10.1007/s00442-009-1474-y – ident: e_1_2_7_51_1 doi: 10.1086/652373 – ident: e_1_2_7_56_1 doi: 10.1111/j.1654-1103.2007.tb02557.x – start-page: 342 volume-title: Ecology and evolution of communities year: 1975 ident: e_1_2_7_13_1 – ident: e_1_2_7_44_1 doi: 10.1111/j.0022-0477.2004.00898.x – ident: e_1_2_7_32_1 doi: 10.1111/jvs.12013 – ident: e_1_2_7_34_1 doi: 10.1111/j.1461-0248.2010.01509.x – ident: e_1_2_7_30_1 doi: 10.1086/282505 – volume-title: Biological diversity: frontiers in measurement and assessment year: 2010 ident: e_1_2_7_36_1 – ident: e_1_2_7_42_1 doi: 10.1890/08-2225.1 – ident: e_1_2_7_15_1 doi: 10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2 – ident: e_1_2_7_48_1 doi: 10.1890/06-1208.1 – ident: e_1_2_7_11_1 doi: 10.1111/jvs.12008 – ident: e_1_2_7_9_1 doi: 10.1890/07-1134.1 – ident: e_1_2_7_14_1 doi: 10.1016/S0169-5347(01)02283-2 – volume-title: The unified theory of biodiversity and biogeography year: 2001 ident: e_1_2_7_25_1 – ident: e_1_2_7_55_1 doi: 10.2307/3546047 – ident: e_1_2_7_23_1 doi: 10.1146/annurev-ecolsys-110411-160411 – ident: e_1_2_7_31_1 doi: 10.1111/jvs.12097 – ident: e_1_2_7_53_1 doi: 10.2307/3235896 – volume-title: Null models in ecology year: 1996 ident: e_1_2_7_16_1 |
SSID | ssj0017961 |
Score | 2.4721136 |
Snippet | Questions: Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the... Questions Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the... Questions Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the... QUESTIONS: Mechanisms of community assembly are increasingly explored by combining community and species trait data with null models. By investigating if the... |
SourceID | proquest crossref wiley jstor istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1275 |
SubjectTerms | Assembly rules Co-existence Community ecology Competition environmental factors Functional diversity Functional traits Habitat filtering habitats Null model Statistical power Type I error |
Title | Which randomizations detect convergence and divergence in trait-based community assembly? A test of commonly used null models |
URI | https://api.istex.fr/ark:/67375/WNG-4L7943ZX-G/fulltext.pdf https://www.jstor.org/stable/44132714 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjvs.12452 https://www.proquest.com/docview/1868340948 https://www.proquest.com/docview/2020897772 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1654-1103 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0017961 issn: 1100-9233 databaseCode: ABDBF dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1100-9233 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1654-1103 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017961 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEB9K64Mv_i-e1bKKSF9yXLKbTYIPcqdeS5E-aLWHCGF3M0uPtknp5YrXl_oR_Ix-Emc3l9CKBfEhsCG_kP0zs_Pb7MwswEuyyWisMoEdcONCcrJAFykGPFMoqRSj9Q6ye3Lns9idxJMVeN3GwjT5Ibofbk4z_HztFFzp2VUlP5_1Q7dvSPNvyGO_RfuxSx1FctbkSg0Hg4BIDF9mFfJePO2b12zRmuvW761b4jXCeZW2erszvgvf2ho37iZH_Xmt--bij2SO_9mke3BnyUfZsBGg-7CC5QO4NaqIMy4ewuXB4dQcMrJnRXXSRmyyAt3OA_MO6z52ExkBWDHtbqclc2dP1L9-_HRmsiCsj0OpF4zIOp7o48UbNmREc2tWWf-U6r9gc4ctaVXM_Ak9s0ewP36__3YnWB7ZEBiexVGghbTEgDBMZGEiqYS2SseIXJnQWGm5UnTRxGLDEKPIRCLlMkOtUykGOuTrsFpWJT4GVggrlSwwsTITJDepSoSmcZSRUila3oOtduxys0xn7lp2nHfLmvNZ7nuzBy866GmTw-NvoFdeADqEOjtyTm9JnB_sbefig8uk93WSb_dg3UtIByRCyaMkFD143opMTjrqNl5UidWcPpDKlLuFdHozJnKnpRIZT6gmW15Ibq5rvvvlky88-XfoBtwmriebMMqnsFqfzfEZ8alab8LacPRuNN70CvQb5gYg6Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3batwwEB3SpNC-9B66vaqllLx4WVuybEOhpJdkm273od02S6AISZbIksQuWW_o5iX9hH5jviQjeW2S0kDpg0HGx1iXGc-RNDMCeIE22WgrdWB7VLuQnCxQeWoCmknDsRQb6x1kh7z_lW2N4_ESvGpiYer8EO2Cm9MM_792Cu4WpM9r-dG0G7qNwyuw4vbnnFq--9wmj0JJq7Olhr1egDSGLvIKeT-e5tUL1mjFdezPxjHxAuU8T1y95dm4Cd-bOtcOJ3vdWaW6-viPdI7_26hbcGNBScl6LUO3YckUd-DqmxJp4_wunGzvTvQuQZOWlwdN0CbJjdt8IN5n3YdvGoIAkk_a20lB3PET1emv385S5oj1oSjVnCBfNwdqf_6arBNkuhUprX-KDZiTmcMWWF3iD-mZ3oPRxvvR236wOLUh0DSLo0AxbpEEmTDhuY64ZMpKFRtDpQ615ZZKiRf-W2wYmijSEUspz4xSKWc9FdJVWC7KwtwHkjPLJc9NYnnGUHRSmTCFA8kjKVNjaQfWmsETepHR3LVsX7Qzm6Op8L3Zgect9EedxuNvoJdeAlqEPNxzfm9JLLaHm4INXDK9nbHY7MCqF5EWiJySRknIOvCskRmBaur2XmRhyhl-IOUpdXPp9HJM5A5MRT6eYE3WvJRcXlex9e2LLzz4d-hTuNYffRqIwYfhx4dwHakfr6MqH8FydTgzj5FeVeqJ16IzuRYjkw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UVsQX78X1OopIX7JsMpNJgg9SL9tayyJa7SLCMFe6tE1KN1tcX_Qn-Bv9JZ6ZbEIrFsSHwIR8IXM5Z843mXPOADxBm2y1kzpyA6p9SE4RKZPbiBbSciyl1gUH2RHf_Mi2xul4CZ61sTBNfojuh5vXjDBfewU_Mu60kp9M-7HfN7wAK4zj6sozovdd7igUtCZZajwYRMhi6CKtUHDjaV89Y4xWfL9-bf0SzzDO07w1GJ7hVfjSVrnxN9nvz2rV19_-yOb4n226BlcWhJSsNxJ0HZZseQMuvqiQNM5vwvfdvYneI2jQTHXYhmwSY_3WAwke6yF40xIEEDPpbicl8YdP1L9-_PR20iA2BKLUc4Js3R6qg_lzsk6Q59akcuEp1n9OZh5b4rKYhCN6prdgZ_h65-VmtDizIdK0SJNIMe6QAtk440YnXDLlpEqtpVLH2nFHpcQLZxYXxzZJdMJyygurVM7ZQMV0FZbLqrS3gRjmuOTGZo4XDAUnlxlTOI48kTK3jvZgrR07oRf5zH3LDkS3rjmZitCbPXjcQY-aJB5_Az0NAtAh5PG-93rLUrE72hBs26fS-zwWGz1YDRLSAZFR0iSLWQ8etSIjUEn9zossbTXDD-Q8p34lnZ-PSfxxqcjGM6zJWhCS8-sqtj59CIU7_w59CJfevRqK7Tejt3fhMvI-3oRU3oPl-nhm7yO3qtWDoEO_AUA2IkI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Which+randomizations+detect+convergence+and+divergence+in+trait%E2%80%90based+community+assembly%3F+A+test+of+commonly+used+null+models&rft.jtitle=Journal+of+vegetation+science&rft.au=G%C3%B6tzenberger%2C+Lars&rft.au=Botta%E2%80%90Duk%C3%A1t%2C+Zolt%C3%A1n&rft.au=Lep%C5%A1%2C+Jan&rft.au=P%C3%A4rtel%2C+Meelis&rft.date=2016-11-01&rft.issn=1100-9233&rft.eissn=1654-1103&rft.volume=27&rft.issue=6&rft.spage=1275&rft.epage=1287&rft_id=info:doi/10.1111%2Fjvs.12452&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_jvs_12452 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1100-9233&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1100-9233&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1100-9233&client=summon |