Adaptive Neural Consensus Observer Networks Design for a Class of Semilinear Parabolic PDE Systems

This article concerns the investigation on the consensus problem for the joint state-uncertainty estimation of a class of parabolic partial differential equation (PDE) systems with parametric and nonparametric uncertainties. We propose a two-layer network consisting of informed and uninformed bounda...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 36; no. 3; pp. 5734 - 5746
Main Authors Cai, Mingxing, Yuan, Yuan, Luo, Biao, Li, Fanbiao, Xu, Xiaodong, Yang, Chunhua, Gui, Weihua
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2025
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2024.3383030

Cover

More Information
Summary:This article concerns the investigation on the consensus problem for the joint state-uncertainty estimation of a class of parabolic partial differential equation (PDE) systems with parametric and nonparametric uncertainties. We propose a two-layer network consisting of informed and uninformed boundary observers where novel adaptation laws are developed for the identification of uncertainties. Particularly, all observer agents in the network transmit their information with each other across the entire network. The proposed adaptation laws include a penalty term of the mismatch between the parameter estimates generated by the other observer agents. Moreover, for the nonparametric uncertainties, radial basis function (RBF) neural networks are employed for the universal approximation of unknown nonlinear functions. Given the persistently exciting condition, it is shown that the proposed network of adaptive observers can achieve exponential joint state-uncertainty estimation in the presence of parametric uncertainties and ultimate bounded estimation in the presence of nonparametric uncertainties based on the Lyapunov stability theory. The effects of the proposed consensus method are demonstrated through a typical reaction-diffusion system example, which implies convincing numerical findings.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2024.3383030