Optimal breast cancer classification using Gauss–Newton representation based algorithm

•A novel GNRBA for breast cancer classification is proposed.•It uses sparse representation with feature selection.•It evaluates the sparsity in a computationally efficient way.•A new Gauss-Newton based classifier is proposed.•Experimental results on two databases of WBCD are presented. Breast cancer...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 85; pp. 134 - 145
Main Authors Dora, Lingraj, Agrawal, Sanjay, Panda, Rutuparna, Abraham, Ajith
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.11.2017
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2017.05.035

Cover

Abstract •A novel GNRBA for breast cancer classification is proposed.•It uses sparse representation with feature selection.•It evaluates the sparsity in a computationally efficient way.•A new Gauss-Newton based classifier is proposed.•Experimental results on two databases of WBCD are presented. Breast cancer is a decisive disease worldwide. It is one of the most widely spread cancer among women. As per the survey, one out of eight women in the world are at risk of breast cancer at some point of time in her life. One of the methods to reduce breast cancer mortality rate is timely detection and effective treatment. That is why, more accurate classification of a breast cancer tumor has become a challenging problem in the medical field. Many classification techniques are proposed in the literature. Today, expert systems and machine learning techniques are being extensively used in the breast cancer classification problem. They provide high classification accuracy and effective diagnostic capabilities. In this paper, we have proposed a novel Gauss-Newton representation based algorithm (GNRBA) for breast cancer classification. It uses the sparse representation with training sample selection. Until now, sparse representation has been successfully applied in pattern recognition only. The proposed method introduces a novel Gauss-Newton based approach to find the optimal weights for the training samples for classification. In addition, it evaluates the sparsity in a computationally efficient way as compared to the conventional l1-norm method. The effectiveness of the GNRBA is examined on the Wisconsin Breast Cancer Database (WBCD) and the Wisconsin Diagnosis Breast Cancer (WDBC) database from the UCI Machine Learning repository. Various performance measures like classification accuracy, sensitivity, specificity, confusion matrices, a statistical test and the area under the receiver operating characteristic (AUC) are reported to show the superiority of the proposed method as compared to classical models. The experimental results show that the proposed GNRBA could be a good alternative for breast cancer classification for clinical experts.
AbstractList •A novel GNRBA for breast cancer classification is proposed.•It uses sparse representation with feature selection.•It evaluates the sparsity in a computationally efficient way.•A new Gauss-Newton based classifier is proposed.•Experimental results on two databases of WBCD are presented. Breast cancer is a decisive disease worldwide. It is one of the most widely spread cancer among women. As per the survey, one out of eight women in the world are at risk of breast cancer at some point of time in her life. One of the methods to reduce breast cancer mortality rate is timely detection and effective treatment. That is why, more accurate classification of a breast cancer tumor has become a challenging problem in the medical field. Many classification techniques are proposed in the literature. Today, expert systems and machine learning techniques are being extensively used in the breast cancer classification problem. They provide high classification accuracy and effective diagnostic capabilities. In this paper, we have proposed a novel Gauss-Newton representation based algorithm (GNRBA) for breast cancer classification. It uses the sparse representation with training sample selection. Until now, sparse representation has been successfully applied in pattern recognition only. The proposed method introduces a novel Gauss-Newton based approach to find the optimal weights for the training samples for classification. In addition, it evaluates the sparsity in a computationally efficient way as compared to the conventional l1-norm method. The effectiveness of the GNRBA is examined on the Wisconsin Breast Cancer Database (WBCD) and the Wisconsin Diagnosis Breast Cancer (WDBC) database from the UCI Machine Learning repository. Various performance measures like classification accuracy, sensitivity, specificity, confusion matrices, a statistical test and the area under the receiver operating characteristic (AUC) are reported to show the superiority of the proposed method as compared to classical models. The experimental results show that the proposed GNRBA could be a good alternative for breast cancer classification for clinical experts.
Breast cancer is a decisive disease worldwide. It is one of the most widely spread cancer among women. As per the survey, one out of eight women in the world are at risk of breast cancer at some point of time in her life. One of the methods to reduce breast cancer mortality rate is timely detection and effective treatment. That is why, more accurate classification of a breast cancer tumor has become a challenging problem in the medical field. Many classification techniques are proposed in the literature. Today, expert systems and machine learning techniques are being extensively used in the breast cancer classification problem. They provide high classification accuracy and effective diagnostic capabilities. In this paper, we have proposed a novel Gauss-Newton representation based algorithm (GNRBA) for breast cancer classification. It uses the sparse representation with training sample selection. Until now, sparse representation has been successfully applied in pattern recognition only. The proposed method introduces a novel Gauss-Newton based approach to find the optimal weights for the training samples for classification. In addition, it evaluates the sparsity in a computationally efficient way as compared to the conventional l1-norm method. The effectiveness of the GNRBA is examined on the Wisconsin Breast Cancer Database (WBCD) and the Wisconsin Diagnosis Breast Cancer (WDBC) database from the UCI Machine Learning repository. Various performance measures like classification accuracy, sensitivity, specificity, confusion matrices, a statistical test and the area under the receiver operating characteristic (AUC) are reported to show the superiority of the proposed method as compared to classical models. The experimental results show that the proposed GNRBA could be a good alternative for breast cancer classification for clinical experts.
Author Dora, Lingraj
Panda, Rutuparna
Agrawal, Sanjay
Abraham, Ajith
Author_xml – sequence: 1
  givenname: Lingraj
  surname: Dora
  fullname: Dora, Lingraj
  email: lingraj02uce157ster@gmail.com
  organization: Department of Electrical and Electronics Engineering, VSSUT, Burla 768018, India
– sequence: 2
  givenname: Sanjay
  surname: Agrawal
  fullname: Agrawal, Sanjay
  email: agrawals_72@yahoo.com
  organization: Department of Electronics and Telecommunication Engineering, VSSUT, Burla 768018, India
– sequence: 3
  givenname: Rutuparna
  surname: Panda
  fullname: Panda, Rutuparna
  email: r_ppanda@yahoo.co.in
  organization: Department of Electronics and Telecommunication Engineering, VSSUT, Burla 768018, India
– sequence: 4
  givenname: Ajith
  surname: Abraham
  fullname: Abraham, Ajith
  email: ajith.abraham@ieee.org
  organization: Machine Intelligence Research Labs (MIR Labs), Scientific Network for Innovation and Research Excellence, Washington-98071-2259, USA
BookMark eNp9kMtKAzEUhoNUsFZfwNWA6xlP5pYJuJGiVSh2o-AuJJmTmjLO1CRV3PkOvqFPYsq4cuHqwOH_zuU7JpN-6JGQMwoZBVpfbDL07zLLgbIMqgyK6oBMacOKtGa8mJAp8IqlJWXlETn2fgMxCMCm5Gm1DfZFdolyKH1ItOw1ukR30ntrrJbBDn2y87ZfJwu58_778-se30NsOtw69NiHMaOkxzaR3XpwNjy_nJBDIzuPp791Rh5vrh_mt-lytbibXy1TXfAypIYqZqAGxUsKDVfI0CjWNhJyYIxrqGWp8xaVNIXJFUJNGTdVq7XiOdZ5MSPn49ytG1536IPYDDvXx5WC8iKHuoSmiqlmTGk3eO_QCG3Hu4OTthMUxN6j2Ii9R7H3KKAS0WNE8z_o1kVj7uN_6HKEML7-ZtEJry1Gta11qINoB_sf_gOD0ZGf
CitedBy_id crossref_primary_10_1007_s11517_020_02187_9
crossref_primary_10_4018_IJHISI_2020010101
crossref_primary_10_2139_ssrn_3125283
crossref_primary_10_1049_ipr2_12774
crossref_primary_10_1002_ima_22698
crossref_primary_10_1007_s12046_018_0915_x
crossref_primary_10_1016_j_procs_2023_01_110
crossref_primary_10_1002_ima_22656
crossref_primary_10_1016_j_measurement_2019_05_022
crossref_primary_10_1007_s41870_018_0184_2
crossref_primary_10_17694_bajece_557693
crossref_primary_10_1016_j_compbiomed_2022_105580
crossref_primary_10_1007_s00521_024_09617_x
crossref_primary_10_1016_j_ijleo_2023_171574
crossref_primary_10_1007_s13198_021_01603_z
crossref_primary_10_4028_www_scientific_net_JBBBE_49_75
crossref_primary_10_1109_ACCESS_2022_3186021
crossref_primary_10_1007_s13198_024_02408_6
crossref_primary_10_1002_ima_23050
crossref_primary_10_1016_j_jiph_2020_06_033
crossref_primary_10_4108_eetpht_9_3533
crossref_primary_10_1007_s00521_021_05938_3
crossref_primary_10_1371_journal_pone_0271377
crossref_primary_10_1016_j_patrec_2019_12_006
crossref_primary_10_1049_iet_cvi_2018_5332
crossref_primary_10_1016_j_eswa_2022_119185
crossref_primary_10_3390_cancers13215546
crossref_primary_10_1590_1678_4324_2023220297
crossref_primary_10_1016_j_bspc_2021_102682
crossref_primary_10_1016_j_compeleceng_2020_106958
crossref_primary_10_1002_ima_22889
crossref_primary_10_1142_S219688882150007X
crossref_primary_10_24012_dumf_578606
crossref_primary_10_1016_j_compbiomed_2022_105498
crossref_primary_10_3390_electronics9111966
crossref_primary_10_1016_j_eswa_2018_07_039
crossref_primary_10_1007_s42600_023_00301_y
crossref_primary_10_1016_j_asoc_2019_105765
crossref_primary_10_1002_jbio_202100370
crossref_primary_10_5812_jjnpp_142058
crossref_primary_10_1016_j_eswa_2018_08_013
crossref_primary_10_1111_exsy_12789
crossref_primary_10_1007_s10044_023_01203_6
crossref_primary_10_1016_j_eswa_2022_118086
crossref_primary_10_1109_ACCESS_2024_3356602
crossref_primary_10_1016_j_heliyon_2024_e26799
crossref_primary_10_3390_sym12020271
crossref_primary_10_1016_j_ijar_2020_10_009
crossref_primary_10_1109_ACCESS_2019_2897078
crossref_primary_10_4018_IJGHPC_2020040104
crossref_primary_10_1016_j_bbe_2018_09_002
crossref_primary_10_1007_s10462_021_10074_4
crossref_primary_10_1088_1742_6596_1821_1_012014
crossref_primary_10_1016_j_cmpb_2019_06_029
crossref_primary_10_1590_1678_4324_2019180486
crossref_primary_10_2174_1573405616666201217112521
crossref_primary_10_3103_S0146411623060093
crossref_primary_10_32604_cmc_2021_013314
crossref_primary_10_3389_fonc_2023_1150840
crossref_primary_10_1016_j_ygeno_2020_09_047
crossref_primary_10_32628_IJSRST24113102
crossref_primary_10_1007_s00607_018_0599_4
crossref_primary_10_1002_ima_22467
crossref_primary_10_1016_j_irbm_2020_02_001
crossref_primary_10_1002_cpe_5293
crossref_primary_10_1109_ACCESS_2025_3525721
crossref_primary_10_1049_iet_ipr_2016_1014
crossref_primary_10_1038_s41598_024_74778_7
crossref_primary_10_1080_1206212X_2019_1577534
crossref_primary_10_1016_j_patrec_2018_11_004
crossref_primary_10_1007_s11227_023_05664_8
crossref_primary_10_1007_s11042_024_19515_y
Cites_doi 10.1016/j.sigpro.2015.11.011
10.1016/j.eswa.2010.09.028
10.1109/TIP.2012.2185940
10.1016/j.eswa.2015.01.065
10.1109/79.814646
10.1613/jair.279
10.1080/10556789208805504
10.1016/S0933-3657(98)00070-0
10.1016/j.asoc.2013.09.018
10.1016/j.knosys.2016.02.019
10.1016/j.tele.2017.01.007
10.1002/cncr.2820360944
10.1007/s10462-010-9156-z
10.1007/s10462-004-0751-8
10.1016/j.eswa.2011.01.167
10.1016/j.jbi.2009.07.008
10.1073/pnas.87.23.9193
10.1016/j.dsp.2006.10.008
10.1136/bmj.321.7261.624
10.1016/j.eswa.2015.10.015
10.1016/j.cmpb.2007.07.013
10.1016/j.eswa.2006.08.005
10.1016/j.ipm.2009.03.002
10.1016/j.bspc.2016.11.004
10.1016/j.engappai.2016.12.019
10.1109/TIP.2012.2205006
10.1016/j.eswa.2013.08.044
10.1109/TIP.2011.2118222
10.1016/j.compbiomed.2006.05.003
10.1016/j.eswa.2011.01.120
10.1109/TCSVT.2011.2138790
10.1016/S0167-8655(03)00047-3
10.1056/NEJM199412013312206
10.1016/S0933-3657(99)00019-6
10.1016/j.ultras.2016.12.017
10.1016/j.asoc.2013.10.024
10.1016/j.cell.2011.02.013
10.1016/j.patrec.2005.10.010
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Nov 1, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 1, 2017
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2017.05.035
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 145
ExternalDocumentID 10_1016_j_eswa_2017_05_035
S0957417417303597
GeographicLocations Wisconsin
GeographicLocations_xml – name: Wisconsin
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c394t-f1b7f060b941089be7efb7d8a020779c06a4c2debaf3f2be06179f5dccb92e623
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 25 03:30:20 EDT 2025
Thu Apr 24 23:08:52 EDT 2025
Wed Oct 01 03:51:50 EDT 2025
Fri Feb 23 02:29:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sparse representation
Breast cancer classification
Gauss-Newton representation based algorithm
Euclidean distance measure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-f1b7f060b941089be7efb7d8a020779c06a4c2debaf3f2be06179f5dccb92e623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1932064085
PQPubID 2045477
PageCount 12
ParticipantIDs proquest_journals_1932064085
crossref_citationtrail_10_1016_j_eswa_2017_05_035
crossref_primary_10_1016_j_eswa_2017_05_035
elsevier_sciencedirect_doi_10_1016_j_eswa_2017_05_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
2017-11-00
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Xu, Zhang, Yang, Yang (bib0054) 2011; 21
Mei, Ling, Jacobs (bib0032) 2011; 20
Orponen (bib0039) 1994; 1
Zhang, Yang, Feng (bib0057) 2011
Koza, Rice (bib0023) 1991; 2
Bennett, Mangasarian (bib0007) 1992; 1
Örkcü, Bal (bib0038) 2011; 38
Rodrigues, Chang, Suri (bib0046) 2006
Xue, Zhang, Browne (bib0055) 2014; 18
Fawcett (bib0014) 2006; 27
Prasad, Biswas, Jain (bib0044) 2010
Chen (bib0009) 2014; 20
Bache, Lichman (bib0006) 2013
Sokolova, Lapalme (bib0048) 2009; 45
Wang, Hu, Li, Liu, Zhu (bib0050) 2016; 122
Chen, Yang, Liu, Liu (bib0010) 2011; 38
Mangasarian, Setiono, Wolberg (bib0029) 1990
Pena-Reyes, Sipper (bib0040) 1999; 17
Nilashi, Ibrahim, Ahmadi, Shahmoradi (bib0037) 2017; 34
Bhardwaj, Tiwari (bib0008) 2015; 42
Hamilton, Shan, Cercone (bib0018) 1996
Muto, Bussey, Morson (bib0034) 1975; 36
Magna, Casti, Jayaraman, Salmeri, Mencattini, Martinelli (bib0025) 2016; 101
Şahan, Polat, Kodaz, Güneş (bib0047) 2007; 37
Hagan, Demuth, Beale, De Jesús (bib0017) 1996; 20
Wolberg, Mangasarian (bib0052) 1990; 87
Elmore, Wells, Lee, Howard, Feinstein (bib0013) 1994; 331
Moon, Chen, Chang, Shin, Lo, Chang (bib0033) 2016; 76
Lavanya, Rani (bib0024) 2011; 2
Marcano-Cedeño, Quintanilla-Domínguez, Andina (bib0030) 2011; 38
Wolberg, Street, Mangasarian (bib0053) 1995; 17
Nettleton, Orriols-Puig, Fornells (bib0036) 2010; 33
Übeyli (bib0049) 2007; 33
Peng, Wu, Jiang (bib0041) 2010; 43
Hanahan, Weinberg (bib0019) 2011; 144
Jang, Sun, Mizutani (bib0021) 1997
Williams, Zipser (bib0051) 1995; 1
Hastie, Tibshirani, Friedman (bib0020) 2009
Quinlan (bib0045) 1996; 4
Abdel-Nasser, Melendez, Moreno, Omer, Puig (bib0001) 2017; 59
Albrecht, Lappas, Vinterbo, Wong, Ohno-Machado (bib0005) 2002; 1
Mangasarian, Wolberg (bib0028) 1990; 23
Nauck, Kruse (bib0035) 1999; 16
Garcia, Herrera (bib0015) 2008; 9
Gill, Murray, Wright (bib0016) 1981
Abdel-Zaher, Eldeib (bib0002) 2016; 46
Mahmoudi, Sapiro (bib0026) 2012; 21
Demšar (bib0012) 2006; 7
Zheng, Yoon, Lam (bib0058) 2014; 41
Christoyianni, Dermatas, Kokkinakis (bib0011) 2000; 17
Polat, Güneş (bib0042) 2007; 17
Polat, Güneş (bib0043) 2007; 88
Koyuncu, Ceylan (bib0022) 2013
Yuan, Liu, Yan (bib0056) 2012; 21
Malmir, Farokhi, Sabbaghi-Nadooshan (bib0027) 2013
Zhu, Wu (bib0059) 2004; 22
Abonyi, Szeifert (bib0003) 2003; 24
McPherson, Steel, Dixon (bib0031) 2000; 321
Acharya, Ng, Rahmat, Sudarshan, Koh, Tan, Hagiwara, Yeong, Ng (bib0004) 2017; 33
Polat (10.1016/j.eswa.2017.05.035_bib0042) 2007; 17
Demšar (10.1016/j.eswa.2017.05.035_bib0012) 2006; 7
Lavanya (10.1016/j.eswa.2017.05.035_bib0024) 2011; 2
Chen (10.1016/j.eswa.2017.05.035_bib0010) 2011; 38
Orponen (10.1016/j.eswa.2017.05.035_bib0039) 1994; 1
Yuan (10.1016/j.eswa.2017.05.035_bib0056) 2012; 21
Hastie (10.1016/j.eswa.2017.05.035_bib0020) 2009
Fawcett (10.1016/j.eswa.2017.05.035_bib0014) 2006; 27
Jang (10.1016/j.eswa.2017.05.035_bib0021) 1997
Marcano-Cedeño (10.1016/j.eswa.2017.05.035_bib0030) 2011; 38
Bennett (10.1016/j.eswa.2017.05.035_bib0007) 1992; 1
Wolberg (10.1016/j.eswa.2017.05.035_bib0052) 1990; 87
Rodrigues (10.1016/j.eswa.2017.05.035_bib0046) 2006
McPherson (10.1016/j.eswa.2017.05.035_bib0031) 2000; 321
Mangasarian (10.1016/j.eswa.2017.05.035_bib0028) 1990; 23
Muto (10.1016/j.eswa.2017.05.035_bib0034) 1975; 36
Mangasarian (10.1016/j.eswa.2017.05.035_bib0029) 1990
Wang (10.1016/j.eswa.2017.05.035_bib0050) 2016; 122
Abonyi (10.1016/j.eswa.2017.05.035_bib0003) 2003; 24
Abdel-Zaher (10.1016/j.eswa.2017.05.035_bib0002) 2016; 46
Moon (10.1016/j.eswa.2017.05.035_bib0033) 2016; 76
Şahan (10.1016/j.eswa.2017.05.035_bib0047) 2007; 37
Christoyianni (10.1016/j.eswa.2017.05.035_bib0011) 2000; 17
Hamilton (10.1016/j.eswa.2017.05.035_bib0018) 1996
Gill (10.1016/j.eswa.2017.05.035_bib0016) 1981
Magna (10.1016/j.eswa.2017.05.035_bib0025) 2016; 101
Wolberg (10.1016/j.eswa.2017.05.035_bib0053) 1995; 17
Zheng (10.1016/j.eswa.2017.05.035_bib0058) 2014; 41
Acharya (10.1016/j.eswa.2017.05.035_bib0004) 2017; 33
Malmir (10.1016/j.eswa.2017.05.035_bib0027) 2013
Pena-Reyes (10.1016/j.eswa.2017.05.035_bib0040) 1999; 17
Nettleton (10.1016/j.eswa.2017.05.035_bib0036) 2010; 33
Bhardwaj (10.1016/j.eswa.2017.05.035_bib0008) 2015; 42
Hagan (10.1016/j.eswa.2017.05.035_bib0017) 1996; 20
Zhang (10.1016/j.eswa.2017.05.035_bib0057) 2011
Mei (10.1016/j.eswa.2017.05.035_bib0032) 2011; 20
Nauck (10.1016/j.eswa.2017.05.035_bib0035) 1999; 16
Garcia (10.1016/j.eswa.2017.05.035_bib0015) 2008; 9
Polat (10.1016/j.eswa.2017.05.035_bib0043) 2007; 88
Albrecht (10.1016/j.eswa.2017.05.035_bib0005) 2002; 1
Zhu (10.1016/j.eswa.2017.05.035_bib0059) 2004; 22
Koyuncu (10.1016/j.eswa.2017.05.035_bib0022) 2013
Abdel-Nasser (10.1016/j.eswa.2017.05.035_bib0001) 2017; 59
Chen (10.1016/j.eswa.2017.05.035_bib0009) 2014; 20
Übeyli (10.1016/j.eswa.2017.05.035_bib0049) 2007; 33
Mahmoudi (10.1016/j.eswa.2017.05.035_bib0026) 2012; 21
Xue (10.1016/j.eswa.2017.05.035_bib0055) 2014; 18
Elmore (10.1016/j.eswa.2017.05.035_bib0013) 1994; 331
Örkcü (10.1016/j.eswa.2017.05.035_bib0038) 2011; 38
Bache (10.1016/j.eswa.2017.05.035_bib0006)
Peng (10.1016/j.eswa.2017.05.035_bib0041) 2010; 43
Xu (10.1016/j.eswa.2017.05.035_bib0054) 2011; 21
Prasad (10.1016/j.eswa.2017.05.035_bib0044) 2010
Hanahan (10.1016/j.eswa.2017.05.035_bib0019) 2011; 144
Quinlan (10.1016/j.eswa.2017.05.035_bib0045) 1996; 4
Koza (10.1016/j.eswa.2017.05.035_bib0023) 1991; 2
Nilashi (10.1016/j.eswa.2017.05.035_bib0037) 2017; 34
Sokolova (10.1016/j.eswa.2017.05.035_bib0048) 2009; 45
Williams (10.1016/j.eswa.2017.05.035_bib0051) 1995; 1
References_xml – volume: 24
  start-page: 2195
  year: 2003
  end-page: 2207
  ident: bib0003
  article-title: Supervised fuzzy clustering for the identification of fuzzy classifiers
  publication-title: Pattern Recognition Letters
– year: 2009
  ident: bib0020
  article-title: The elements of statistical learning
– volume: 2
  start-page: 756
  year: 2011
  end-page: 763
  ident: bib0024
  article-title: Analysis of feature selection with classification: Breast cancer datasets
  publication-title: Indian Journal of Computer Science and Engineering (IJCSE)
– volume: 331
  start-page: 1493
  year: 1994
  end-page: 1499
  ident: bib0013
  article-title: Variability in radiologists' interpretations of mammograms
  publication-title: New England Journal of Medicine
– volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  ident: bib0048
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Information Processing & Management
– volume: 33
  start-page: 275
  year: 2010
  end-page: 306
  ident: bib0036
  article-title: A study of the effect of different types of noise on the precision of supervised learning techniques
  publication-title: Artificial intelligence review
– volume: 17
  start-page: 694
  year: 2007
  end-page: 701
  ident: bib0042
  article-title: Breast cancer diagnosis using least square support vector machine
  publication-title: Digital Signal Processing
– volume: 18
  start-page: 261
  year: 2014
  end-page: 276
  ident: bib0055
  article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms
  publication-title: Applied Soft Computing
– start-page: 471
  year: 2011
  end-page: 478
  ident: bib0057
  article-title: Sparse representation or collaborative representation: Which helps face recognition?
  publication-title: 2011 International Conference on Computer Vision
– volume: 1
  start-page: 433
  year: 1995
  end-page: 486
  ident: bib0051
  article-title: Gradient-based learning algorithms for recurrent networks and their computational complexity
  publication-title: Backpropagation: Theory, Architectures, and Applications
– volume: 1
  start-page: 23
  year: 1992
  end-page: 34
  ident: bib0007
  article-title: Robust linear programming discrimination of two linearly inseparable sets
  publication-title: Optimization methods and software
– volume: 36
  start-page: 2251
  year: 1975
  end-page: 2270
  ident: bib0034
  article-title: The evolution of cancer of the colon and rectum
  publication-title: Cancer
– volume: 38
  start-page: 3703
  year: 2011
  end-page: 3709
  ident: bib0038
  article-title: Comparing performances of backpropagation and genetic algorithms in the data classification
  publication-title: Expert systems with applications
– volume: 20
  start-page: 4
  year: 2014
  end-page: 14
  ident: bib0009
  article-title: A hybrid intelligent model of analyzing clinical breast cancer data using clustering techniques with feature selection
  publication-title: Applied Soft Computing
– volume: 1
  start-page: 94
  year: 1994
  end-page: 110
  ident: bib0039
  article-title: Computational complexity of neural networks: A survey
  publication-title: Nordic Journal of Computing
– volume: 43
  start-page: 15
  year: 2010
  end-page: 23
  ident: bib0041
  article-title: A novel feature selection approach for biomedical data classification
  publication-title: Journal of Biomedical Informatics
– volume: 4
  start-page: 77
  year: 1996
  end-page: 90
  ident: bib0045
  article-title: Improved use of continuous attributes in C4. 5
  publication-title: Journal of Artificial Intelligence Research
– volume: 88
  start-page: 164
  year: 2007
  end-page: 174
  ident: bib0043
  article-title: A hybrid approach to medical decision support systems: Combining feature selection, fuzzy weighted pre-processing and AIRS
  publication-title: Computer methods and programs in biomedicine
– year: 1981
  ident: bib0016
  article-title: Practical optimization
– year: 1996
  ident: bib0018
  article-title: RIAC: A rule induction algorithm based on approximate classification
– volume: 17
  start-page: 131
  year: 1999
  end-page: 155
  ident: bib0040
  article-title: A fuzzy-genetic approach to breast cancer diagnosis
  publication-title: Artificial intelligence in medicine
– volume: 16
  start-page: 149
  year: 1999
  end-page: 169
  ident: bib0035
  article-title: Obtaining interpretable fuzzy classification rules from medical data
  publication-title: Artificial intelligence in medicine
– volume: 41
  start-page: 1476
  year: 2014
  end-page: 1482
  ident: bib0058
  article-title: Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms
  publication-title: Expert Systems with Applications
– volume: 42
  start-page: 4611
  year: 2015
  end-page: 4620
  ident: bib0008
  article-title: Breast cancer diagnosis using genetically optimized neural network model
  publication-title: Expert Systems with Applications
– start-page: 121
  year: 2006
  end-page: 128
  ident: bib0046
  article-title: Non-extensive entropy for cad systems of breast cancer images
  publication-title: 2006 19th Brazilian Symposium on Computer Graphics and Image Processing
– start-page: 343
  year: 2013
  end-page: 347
  ident: bib0027
  article-title: Optimization of data mining with evolutionary algorithms for cloud computing application
  publication-title: Computer and Knowledge Engineering (ICCKE), 2013 3th International eConference on
– volume: 17
  start-page: 54
  year: 2000
  end-page: 64
  ident: bib0011
  article-title: Fast detection of masses in computer-aided mammography
  publication-title: IEEE Signal Processing Magazine
– volume: 2
  start-page: 397
  year: 1991
  end-page: 404
  ident: bib0023
  article-title: Genetic generation of both the weights and architecture for a neural network
  publication-title: Neural Networks, 1991., IJCNN-91-Seattle International Joint Conference on
– volume: 20
  start-page: 2366
  year: 2011
  end-page: 2377
  ident: bib0032
  article-title: Illumination recovery from image with cast shadows via sparse representation
  publication-title: IEEE Transactions on Image Processing
– volume: 22
  start-page: 177
  year: 2004
  end-page: 210
  ident: bib0059
  article-title: Class noise vs. attribute noise: A quantitative study
  publication-title: Artificial Intelligence Review
– start-page: 22
  year: 1990
  end-page: 31
  ident: bib0029
  article-title: Pattern recognition via linear programming: Theory and application to medical diagnosis
  publication-title: Large-scale numerical optimization
– volume: 37
  start-page: 415
  year: 2007
  end-page: 423
  ident: bib0047
  article-title: A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis
  publication-title: Computers in Biology and Medicine
– volume: 38
  start-page: 9573
  year: 2011
  end-page: 9579
  ident: bib0030
  article-title: WBCD breast cancer database classification applying artificial metaplasticity neural network
  publication-title: Expert Systems with Applications
– volume: 23
  year: 1990
  ident: bib0028
  article-title: Cancer diagnosis via linear programming
  publication-title: SIAM News
– volume: 21
  start-page: 4349
  year: 2012
  end-page: 4360
  ident: bib0056
  article-title: Visual classification with multitask joint sparse representation
  publication-title: IEEE Transactions on Image Processing
– volume: 59
  start-page: 84
  year: 2017
  end-page: 92
  ident: bib0001
  article-title: Breast tumor classification in ultrasound images using texture analysis and super-resolution methods
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 33
  start-page: 400
  year: 2017
  end-page: 410
  ident: bib0004
  article-title: Data mining framework for breast lesion classification in shear wave ultrasound: A hybrid feature paradigm
  publication-title: Biomedical Signal Processing and Control
– year: 1997
  ident: bib0021
  article-title: Neuro-fuzzy and soft computing; a computational approach to learning and machine intelligence
– volume: 122
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib0050
  article-title: Automatic cell nuclei segmentation and classification of breast cancer histopathology images
  publication-title: Signal Processing
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: bib0014
  article-title: An introduction to ROC analysis
  publication-title: Pattern recognition letters
– volume: 76
  start-page: 70
  year: 2016
  end-page: 77
  ident: bib0033
  article-title: The Adaptive Computer-aided Diagnosis System based on Tumor Sizes for the Classification of Breast Tumors detected at Screening Ultrasound
  publication-title: Ultrasonics
– year: 2013
  ident: bib0006
  article-title: Retrieved from UCI machine learning repository
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0012
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine learning research
– volume: 20
  year: 1996
  ident: bib0017
  publication-title: Neural network design
– volume: 21
  start-page: 1255
  year: 2011
  end-page: 1262
  ident: bib0054
  article-title: A two-phase test sample sparse representation method for use with face recognition
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– volume: 38
  start-page: 9014
  year: 2011
  end-page: 9022
  ident: bib0010
  article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis
  publication-title: Expert Systems with Applications
– volume: 1
  start-page: 184
  year: 2002
  end-page: 189
  ident: bib0005
  article-title: Two applications of the LSA machine
  publication-title: Neural Information Processing, 2002. ICONIP'02. Proceedings of the 9th International Conference on
– start-page: 307
  year: 2010
  end-page: 314
  ident: bib0044
  article-title: SVM classifier based feature selection using GA, ACO and PSO for siRNA design
  publication-title: International conference in swarm intelligence
– volume: 34
  start-page: 133
  year: 2017
  end-page: 144
  ident: bib0037
  article-title: A knowledge-based system for breast cancer classification using fuzzy logic method
  publication-title: Telematics and Informatics
– start-page: 581
  year: 2013
  end-page: 585
  ident: bib0022
  article-title: Artificial neural network based on rotation forest for biomedical pattern classification
  publication-title: Telecommunications and Signal Processing (TSP), 2013 36th International Conference on
– volume: 21
  start-page: 2909
  year: 2012
  end-page: 2915
  ident: bib0026
  article-title: Sparse representations for range data restoration
  publication-title: IEEE transactions on image processing: A publication of the IEEE Signal Processing Society
– volume: 46
  start-page: 139
  year: 2016
  end-page: 144
  ident: bib0002
  article-title: Breast cancer classification using deep belief networks
  publication-title: Expert Systems with Applications
– volume: 33
  start-page: 1054
  year: 2007
  end-page: 1062
  ident: bib0049
  article-title: Implementing automated diagnostic systems for breast cancer detection
  publication-title: Expert systems with Applications
– volume: 101
  start-page: 60
  year: 2016
  end-page: 70
  ident: bib0025
  article-title: Identification of mammography anomalies for breast cancer detection by an ensemble of classification models based on artificial immune system
  publication-title: Knowledge-Based Systems
– volume: 9
  start-page: 2677
  year: 2008
  end-page: 2694
  ident: bib0015
  article-title: An extension on``statistical comparisons of classifiers over multiple data sets''for all pairwise comparisons
  publication-title: Journal of Machine Learning Research
– volume: 321
  start-page: 624
  year: 2000
  ident: bib0031
  article-title: Breast cancer-epidemiology, risk factors, and genetics
  publication-title: BMJ: British Medical Journal
– volume: 144
  start-page: 646
  year: 2011
  end-page: 674
  ident: bib0019
  article-title: Hallmarks of cancer: The next generation
  publication-title: Cell
– volume: 17
  start-page: 77
  year: 1995
  end-page: 87
  ident: bib0053
  article-title: Image analysis and machine learning applied to breast cancer diagnosis and prognosis
  publication-title: Analytical and Quantitative cytology and histology
– volume: 87
  start-page: 9193
  year: 1990
  end-page: 9196
  ident: bib0052
  article-title: Multisurface method of pattern separation for medical diagnosis applied to breast cytology
  publication-title: Proceedings of the National Academy of Sciences
– volume: 23
  issue: 5
  year: 1990
  ident: 10.1016/j.eswa.2017.05.035_bib0028
  article-title: Cancer diagnosis via linear programming
  publication-title: SIAM News
– volume: 122
  start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2017.05.035_bib0050
  article-title: Automatic cell nuclei segmentation and classification of breast cancer histopathology images
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2015.11.011
– volume: 38
  start-page: 3703
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2017.05.035_bib0038
  article-title: Comparing performances of backpropagation and genetic algorithms in the data classification
  publication-title: Expert systems with applications
  doi: 10.1016/j.eswa.2010.09.028
– volume: 2
  start-page: 756
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2017.05.035_bib0024
  article-title: Analysis of feature selection with classification: Breast cancer datasets
  publication-title: Indian Journal of Computer Science and Engineering (IJCSE)
– volume: 21
  start-page: 2909
  issue: 5
  year: 2012
  ident: 10.1016/j.eswa.2017.05.035_bib0026
  article-title: Sparse representations for range data restoration
  publication-title: IEEE transactions on image processing: A publication of the IEEE Signal Processing Society
  doi: 10.1109/TIP.2012.2185940
– volume: 42
  start-page: 4611
  issue: 10
  year: 2015
  ident: 10.1016/j.eswa.2017.05.035_bib0008
  article-title: Breast cancer diagnosis using genetically optimized neural network model
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.01.065
– volume: 17
  start-page: 54
  issue: 1
  year: 2000
  ident: 10.1016/j.eswa.2017.05.035_bib0011
  article-title: Fast detection of masses in computer-aided mammography
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/79.814646
– year: 1997
  ident: 10.1016/j.eswa.2017.05.035_bib0021
– volume: 4
  start-page: 77
  year: 1996
  ident: 10.1016/j.eswa.2017.05.035_bib0045
  article-title: Improved use of continuous attributes in C4. 5
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.279
– volume: 1
  start-page: 23
  issue: 1
  year: 1992
  ident: 10.1016/j.eswa.2017.05.035_bib0007
  article-title: Robust linear programming discrimination of two linearly inseparable sets
  publication-title: Optimization methods and software
  doi: 10.1080/10556789208805504
– volume: 1
  start-page: 94
  issue: 1
  year: 1994
  ident: 10.1016/j.eswa.2017.05.035_bib0039
  article-title: Computational complexity of neural networks: A survey
  publication-title: Nordic Journal of Computing
– volume: 16
  start-page: 149
  issue: 2
  year: 1999
  ident: 10.1016/j.eswa.2017.05.035_bib0035
  article-title: Obtaining interpretable fuzzy classification rules from medical data
  publication-title: Artificial intelligence in medicine
  doi: 10.1016/S0933-3657(98)00070-0
– volume: 18
  start-page: 261
  year: 2014
  ident: 10.1016/j.eswa.2017.05.035_bib0055
  article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2013.09.018
– start-page: 121
  year: 2006
  ident: 10.1016/j.eswa.2017.05.035_bib0046
  article-title: Non-extensive entropy for cad systems of breast cancer images
– start-page: 581
  year: 2013
  ident: 10.1016/j.eswa.2017.05.035_bib0022
  article-title: Artificial neural network based on rotation forest for biomedical pattern classification
– volume: 101
  start-page: 60
  year: 2016
  ident: 10.1016/j.eswa.2017.05.035_bib0025
  article-title: Identification of mammography anomalies for breast cancer detection by an ensemble of classification models based on artificial immune system
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2016.02.019
– volume: 1
  start-page: 433
  year: 1995
  ident: 10.1016/j.eswa.2017.05.035_bib0051
  article-title: Gradient-based learning algorithms for recurrent networks and their computational complexity
– volume: 9
  start-page: 2677
  year: 2008
  ident: 10.1016/j.eswa.2017.05.035_bib0015
  article-title: An extension on``statistical comparisons of classifiers over multiple data sets''for all pairwise comparisons
  publication-title: Journal of Machine Learning Research
– volume: 20
  year: 1996
  ident: 10.1016/j.eswa.2017.05.035_bib0017
– volume: 34
  start-page: 133
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2017.05.035_bib0037
  article-title: A knowledge-based system for breast cancer classification using fuzzy logic method
  publication-title: Telematics and Informatics
  doi: 10.1016/j.tele.2017.01.007
– volume: 36
  start-page: 2251
  issue: 6
  year: 1975
  ident: 10.1016/j.eswa.2017.05.035_bib0034
  article-title: The evolution of cancer of the colon and rectum
  publication-title: Cancer
  doi: 10.1002/cncr.2820360944
– volume: 33
  start-page: 275
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2017.05.035_bib0036
  article-title: A study of the effect of different types of noise on the precision of supervised learning techniques
  publication-title: Artificial intelligence review
  doi: 10.1007/s10462-010-9156-z
– year: 1981
  ident: 10.1016/j.eswa.2017.05.035_bib0016
– start-page: 307
  year: 2010
  ident: 10.1016/j.eswa.2017.05.035_bib0044
  article-title: SVM classifier based feature selection using GA, ACO and PSO for siRNA design
– volume: 22
  start-page: 177
  issue: 3
  year: 2004
  ident: 10.1016/j.eswa.2017.05.035_bib0059
  article-title: Class noise vs. attribute noise: A quantitative study
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-004-0751-8
– volume: 38
  start-page: 9573
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2017.05.035_bib0030
  article-title: WBCD breast cancer database classification applying artificial metaplasticity neural network
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.01.167
– volume: 43
  start-page: 15
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2017.05.035_bib0041
  article-title: A novel feature selection approach for biomedical data classification
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2009.07.008
– volume: 87
  start-page: 9193
  issue: 23
  year: 1990
  ident: 10.1016/j.eswa.2017.05.035_bib0052
  article-title: Multisurface method of pattern separation for medical diagnosis applied to breast cytology
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.87.23.9193
– start-page: 471
  year: 2011
  ident: 10.1016/j.eswa.2017.05.035_bib0057
  article-title: Sparse representation or collaborative representation: Which helps face recognition?
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.eswa.2017.05.035_bib0012
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine learning research
– volume: 17
  start-page: 694
  issue: 4
  year: 2007
  ident: 10.1016/j.eswa.2017.05.035_bib0042
  article-title: Breast cancer diagnosis using least square support vector machine
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2006.10.008
– volume: 1
  start-page: 184
  year: 2002
  ident: 10.1016/j.eswa.2017.05.035_bib0005
  article-title: Two applications of the LSA machine
– year: 2009
  ident: 10.1016/j.eswa.2017.05.035_bib0020
– volume: 321
  start-page: 624
  issue: 7261
  year: 2000
  ident: 10.1016/j.eswa.2017.05.035_bib0031
  article-title: Breast cancer-epidemiology, risk factors, and genetics
  publication-title: BMJ: British Medical Journal
  doi: 10.1136/bmj.321.7261.624
– start-page: 22
  year: 1990
  ident: 10.1016/j.eswa.2017.05.035_bib0029
  article-title: Pattern recognition via linear programming: Theory and application to medical diagnosis
– volume: 46
  start-page: 139
  year: 2016
  ident: 10.1016/j.eswa.2017.05.035_bib0002
  article-title: Breast cancer classification using deep belief networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.10.015
– volume: 88
  start-page: 164
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2017.05.035_bib0043
  article-title: A hybrid approach to medical decision support systems: Combining feature selection, fuzzy weighted pre-processing and AIRS
  publication-title: Computer methods and programs in biomedicine
  doi: 10.1016/j.cmpb.2007.07.013
– volume: 33
  start-page: 1054
  issue: 4
  year: 2007
  ident: 10.1016/j.eswa.2017.05.035_bib0049
  article-title: Implementing automated diagnostic systems for breast cancer detection
  publication-title: Expert systems with Applications
  doi: 10.1016/j.eswa.2006.08.005
– volume: 45
  start-page: 427
  issue: 4
  year: 2009
  ident: 10.1016/j.eswa.2017.05.035_bib0048
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2009.03.002
– volume: 33
  start-page: 400
  year: 2017
  ident: 10.1016/j.eswa.2017.05.035_bib0004
  article-title: Data mining framework for breast lesion classification in shear wave ultrasound: A hybrid feature paradigm
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2016.11.004
– year: 1996
  ident: 10.1016/j.eswa.2017.05.035_bib0018
– volume: 17
  start-page: 77
  issue: 2
  year: 1995
  ident: 10.1016/j.eswa.2017.05.035_bib0053
  article-title: Image analysis and machine learning applied to breast cancer diagnosis and prognosis
  publication-title: Analytical and Quantitative cytology and histology
– volume: 59
  start-page: 84
  year: 2017
  ident: 10.1016/j.eswa.2017.05.035_bib0001
  article-title: Breast tumor classification in ultrasound images using texture analysis and super-resolution methods
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2016.12.019
– volume: 21
  start-page: 4349
  issue: 10
  year: 2012
  ident: 10.1016/j.eswa.2017.05.035_bib0056
  article-title: Visual classification with multitask joint sparse representation
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2012.2205006
– volume: 41
  start-page: 1476
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2017.05.035_bib0058
  article-title: Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.08.044
– volume: 20
  start-page: 2366
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2017.05.035_bib0032
  article-title: Illumination recovery from image with cast shadows via sparse representation
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2011.2118222
– volume: 37
  start-page: 415
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2017.05.035_bib0047
  article-title: A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2006.05.003
– volume: 38
  start-page: 9014
  issue: 7
  year: 2011
  ident: 10.1016/j.eswa.2017.05.035_bib0010
  article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.01.120
– volume: 21
  start-page: 1255
  issue: 9
  year: 2011
  ident: 10.1016/j.eswa.2017.05.035_bib0054
  article-title: A two-phase test sample sparse representation method for use with face recognition
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2011.2138790
– volume: 24
  start-page: 2195
  issue: 14
  year: 2003
  ident: 10.1016/j.eswa.2017.05.035_bib0003
  article-title: Supervised fuzzy clustering for the identification of fuzzy classifiers
  publication-title: Pattern Recognition Letters
  doi: 10.1016/S0167-8655(03)00047-3
– volume: 331
  start-page: 1493
  issue: 22
  year: 1994
  ident: 10.1016/j.eswa.2017.05.035_bib0013
  article-title: Variability in radiologists' interpretations of mammograms
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJM199412013312206
– volume: 17
  start-page: 131
  issue: 2
  year: 1999
  ident: 10.1016/j.eswa.2017.05.035_bib0040
  article-title: A fuzzy-genetic approach to breast cancer diagnosis
  publication-title: Artificial intelligence in medicine
  doi: 10.1016/S0933-3657(99)00019-6
– start-page: 343
  year: 2013
  ident: 10.1016/j.eswa.2017.05.035_bib0027
  article-title: Optimization of data mining with evolutionary algorithms for cloud computing application
– volume: 76
  start-page: 70
  year: 2016
  ident: 10.1016/j.eswa.2017.05.035_bib0033
  article-title: The Adaptive Computer-aided Diagnosis System based on Tumor Sizes for the Classification of Breast Tumors detected at Screening Ultrasound
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2016.12.017
– volume: 20
  start-page: 4
  year: 2014
  ident: 10.1016/j.eswa.2017.05.035_bib0009
  article-title: A hybrid intelligent model of analyzing clinical breast cancer data using clustering techniques with feature selection
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2013.10.024
– volume: 144
  start-page: 646
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2017.05.035_bib0019
  article-title: Hallmarks of cancer: The next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– ident: 10.1016/j.eswa.2017.05.035_bib0006
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10.1016/j.eswa.2017.05.035_bib0014
  article-title: An introduction to ROC analysis
  publication-title: Pattern recognition letters
  doi: 10.1016/j.patrec.2005.10.010
– volume: 2
  start-page: 397
  year: 1991
  ident: 10.1016/j.eswa.2017.05.035_bib0023
  article-title: Genetic generation of both the weights and architecture for a neural network
SSID ssj0017007
Score 2.4919367
Snippet •A novel GNRBA for breast cancer classification is proposed.•It uses sparse representation with feature selection.•It evaluates the sparsity in a...
Breast cancer is a decisive disease worldwide. It is one of the most widely spread cancer among women. As per the survey, one out of eight women in the world...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 134
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Breast cancer
Breast cancer classification
Cancer
Classification
Diagnostic systems
Euclidean distance measure
Expert systems
Gauss-Newton representation based algorithm
Machine learning
Pattern recognition
Sparse representation
Statistical analysis
Statistical methods
Training
Womens health
Title Optimal breast cancer classification using Gauss–Newton representation based algorithm
URI https://dx.doi.org/10.1016/j.eswa.2017.05.035
https://www.proquest.com/docview/1932064085
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KvXjxW6zWsgdvEps0u93kWIq1KtaDFnpbsh-plTYtTYo38T_4D_0l7iSbgiI9CLkkzIYwszvzIG_eIHRBQ8lkIGPHVxJGmHnaCc0pcqRLBGWa-IpA7_DDoN0fkrsRHVVQt-yFAVqlzf1FTs-ztX3StN5sLiaT5pMBB6YcwuWDDh10lBPCYIrB1fua5gHyc6zQ22MOWNvGmYLjpdM30B7yCvXOfOTbn8XpV5rOa09vD-1Y0Ig7xXfto4pODtBuOZAB2_N5iEaPJgHMjKUAqnmGJYR0iSUgZKAE5VHAQHUf45tolaZfH58myxn4h3Nxy7IRKcFQ3BSOpuP5cpK9zI7QsHf93O07dnSCI_2QZE7sCRa7bVeExHODUGimY8FUEBl0yFgo3XZEZEtpEcV-3BIagEwYUyWlCFvaQKJjVE3miT5BOFK-T7ViIqaRQRsqIq7wlG5pjwpJqaohr_QZl1ZXHMZbTHlJIHvl4GcOfuYu5cbPNXS5XrMoVDU2WtMyFPzH3uAm7W9cVy_jxu3JTDkAVvh7GdDTf772DG3DXdGQWEfVbLnS5waZZKKRb70G2urc3vcH3x7R5rk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOcCFHVEo4AM3FJrFrpsjqigF2nKglXqz4iWlqJvaVNwQ_8Af8iV4EqcSCHFAyimxo2jGnnmR37xB6IKGksmajJ1ASWhh5mknNLvIkS4RlGkSKAK1w-1Otdkj933aL6B6XgsDtEob-7OYnkZre6dirVmZDYeVJwMOTDqEKwAdOraG1gn1GfyBXb2teB6gP8cywT3mwHBbOZORvPTiFcSHvEy-M-359mt2-hGn0-TT2EFbFjXi6-zDdlFBT_bQdt6RAdsNuo_6jyYCjM1IAVzzBEvw6RxLgMjACUrdgIHrPsC30XKx-Hz_MGHO4D-cqlvmlUgTDNlN4Wg0mM6HyfP4APUaN91607G9ExwZhCRxYk-w2K26IiSeWwuFZjoWTNUiAw8ZC6VbjYj0lRZRHMS-0IBkwpgqKUXoa4OJDlFxMp3oI4QjFQRUKyZiGhm4oSLiCk9pX3tUSEpVCXm5zbi0wuLQ32LEcwbZCwc7c7Azdyk3di6hy9WcWSar8edomruCf1sc3MT9P-eVc79xuzUXHBArHF_W6PE_X3uONprddou37joPJ2gTnmTViWVUTOZLfWpgSiLO0mX4BYW56E4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+breast+cancer+classification+using+Gauss%E2%80%93Newton+representation+based+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Dora%2C+Lingraj&rft.au=Agrawal%2C+Sanjay&rft.au=Panda%2C+Rutuparna&rft.au=Abraham%2C+Ajith&rft.date=2017-11-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=85&rft.spage=134&rft_id=info:doi/10.1016%2Fj.eswa.2017.05.035&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon