Optimal breast cancer classification using Gauss–Newton representation based algorithm
•A novel GNRBA for breast cancer classification is proposed.•It uses sparse representation with feature selection.•It evaluates the sparsity in a computationally efficient way.•A new Gauss-Newton based classifier is proposed.•Experimental results on two databases of WBCD are presented. Breast cancer...
        Saved in:
      
    
          | Published in | Expert systems with applications Vol. 85; pp. 134 - 145 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Elsevier Ltd
    
        01.11.2017
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0957-4174 1873-6793  | 
| DOI | 10.1016/j.eswa.2017.05.035 | 
Cover
| Abstract | •A novel GNRBA for breast cancer classification is proposed.•It uses sparse representation with feature selection.•It evaluates the sparsity in a computationally efficient way.•A new Gauss-Newton based classifier is proposed.•Experimental results on two databases of WBCD are presented.
Breast cancer is a decisive disease worldwide. It is one of the most widely spread cancer among women. As per the survey, one out of eight women in the world are at risk of breast cancer at some point of time in her life. One of the methods to reduce breast cancer mortality rate is timely detection and effective treatment. That is why, more accurate classification of a breast cancer tumor has become a challenging problem in the medical field. Many classification techniques are proposed in the literature. Today, expert systems and machine learning techniques are being extensively used in the breast cancer classification problem. They provide high classification accuracy and effective diagnostic capabilities. In this paper, we have proposed a novel Gauss-Newton representation based algorithm (GNRBA) for breast cancer classification. It uses the sparse representation with training sample selection. Until now, sparse representation has been successfully applied in pattern recognition only. The proposed method introduces a novel Gauss-Newton based approach to find the optimal weights for the training samples for classification. In addition, it evaluates the sparsity in a computationally efficient way as compared to the conventional l1-norm method. The effectiveness of the GNRBA is examined on the Wisconsin Breast Cancer Database (WBCD) and the Wisconsin Diagnosis Breast Cancer (WDBC) database from the UCI Machine Learning repository. Various performance measures like classification accuracy, sensitivity, specificity, confusion matrices, a statistical test and the area under the receiver operating characteristic (AUC) are reported to show the superiority of the proposed method as compared to classical models. The experimental results show that the proposed GNRBA could be a good alternative for breast cancer classification for clinical experts. | 
    
|---|---|
| AbstractList | •A novel GNRBA for breast cancer classification is proposed.•It uses sparse representation with feature selection.•It evaluates the sparsity in a computationally efficient way.•A new Gauss-Newton based classifier is proposed.•Experimental results on two databases of WBCD are presented.
Breast cancer is a decisive disease worldwide. It is one of the most widely spread cancer among women. As per the survey, one out of eight women in the world are at risk of breast cancer at some point of time in her life. One of the methods to reduce breast cancer mortality rate is timely detection and effective treatment. That is why, more accurate classification of a breast cancer tumor has become a challenging problem in the medical field. Many classification techniques are proposed in the literature. Today, expert systems and machine learning techniques are being extensively used in the breast cancer classification problem. They provide high classification accuracy and effective diagnostic capabilities. In this paper, we have proposed a novel Gauss-Newton representation based algorithm (GNRBA) for breast cancer classification. It uses the sparse representation with training sample selection. Until now, sparse representation has been successfully applied in pattern recognition only. The proposed method introduces a novel Gauss-Newton based approach to find the optimal weights for the training samples for classification. In addition, it evaluates the sparsity in a computationally efficient way as compared to the conventional l1-norm method. The effectiveness of the GNRBA is examined on the Wisconsin Breast Cancer Database (WBCD) and the Wisconsin Diagnosis Breast Cancer (WDBC) database from the UCI Machine Learning repository. Various performance measures like classification accuracy, sensitivity, specificity, confusion matrices, a statistical test and the area under the receiver operating characteristic (AUC) are reported to show the superiority of the proposed method as compared to classical models. The experimental results show that the proposed GNRBA could be a good alternative for breast cancer classification for clinical experts. Breast cancer is a decisive disease worldwide. It is one of the most widely spread cancer among women. As per the survey, one out of eight women in the world are at risk of breast cancer at some point of time in her life. One of the methods to reduce breast cancer mortality rate is timely detection and effective treatment. That is why, more accurate classification of a breast cancer tumor has become a challenging problem in the medical field. Many classification techniques are proposed in the literature. Today, expert systems and machine learning techniques are being extensively used in the breast cancer classification problem. They provide high classification accuracy and effective diagnostic capabilities. In this paper, we have proposed a novel Gauss-Newton representation based algorithm (GNRBA) for breast cancer classification. It uses the sparse representation with training sample selection. Until now, sparse representation has been successfully applied in pattern recognition only. The proposed method introduces a novel Gauss-Newton based approach to find the optimal weights for the training samples for classification. In addition, it evaluates the sparsity in a computationally efficient way as compared to the conventional l1-norm method. The effectiveness of the GNRBA is examined on the Wisconsin Breast Cancer Database (WBCD) and the Wisconsin Diagnosis Breast Cancer (WDBC) database from the UCI Machine Learning repository. Various performance measures like classification accuracy, sensitivity, specificity, confusion matrices, a statistical test and the area under the receiver operating characteristic (AUC) are reported to show the superiority of the proposed method as compared to classical models. The experimental results show that the proposed GNRBA could be a good alternative for breast cancer classification for clinical experts.  | 
    
| Author | Dora, Lingraj Panda, Rutuparna Agrawal, Sanjay Abraham, Ajith  | 
    
| Author_xml | – sequence: 1 givenname: Lingraj surname: Dora fullname: Dora, Lingraj email: lingraj02uce157ster@gmail.com organization: Department of Electrical and Electronics Engineering, VSSUT, Burla 768018, India – sequence: 2 givenname: Sanjay surname: Agrawal fullname: Agrawal, Sanjay email: agrawals_72@yahoo.com organization: Department of Electronics and Telecommunication Engineering, VSSUT, Burla 768018, India – sequence: 3 givenname: Rutuparna surname: Panda fullname: Panda, Rutuparna email: r_ppanda@yahoo.co.in organization: Department of Electronics and Telecommunication Engineering, VSSUT, Burla 768018, India – sequence: 4 givenname: Ajith surname: Abraham fullname: Abraham, Ajith email: ajith.abraham@ieee.org organization: Machine Intelligence Research Labs (MIR Labs), Scientific Network for Innovation and Research Excellence, Washington-98071-2259, USA  | 
    
| BookMark | eNp9kMtKAzEUhoNUsFZfwNWA6xlP5pYJuJGiVSh2o-AuJJmTmjLO1CRV3PkOvqFPYsq4cuHqwOH_zuU7JpN-6JGQMwoZBVpfbDL07zLLgbIMqgyK6oBMacOKtGa8mJAp8IqlJWXlETn2fgMxCMCm5Gm1DfZFdolyKH1ItOw1ukR30ntrrJbBDn2y87ZfJwu58_778-se30NsOtw69NiHMaOkxzaR3XpwNjy_nJBDIzuPp791Rh5vrh_mt-lytbibXy1TXfAypIYqZqAGxUsKDVfI0CjWNhJyYIxrqGWp8xaVNIXJFUJNGTdVq7XiOdZ5MSPn49ytG1536IPYDDvXx5WC8iKHuoSmiqlmTGk3eO_QCG3Hu4OTthMUxN6j2Ii9R7H3KKAS0WNE8z_o1kVj7uN_6HKEML7-ZtEJry1Gta11qINoB_sf_gOD0ZGf | 
    
| CitedBy_id | crossref_primary_10_1007_s11517_020_02187_9 crossref_primary_10_4018_IJHISI_2020010101 crossref_primary_10_2139_ssrn_3125283 crossref_primary_10_1049_ipr2_12774 crossref_primary_10_1002_ima_22698 crossref_primary_10_1007_s12046_018_0915_x crossref_primary_10_1016_j_procs_2023_01_110 crossref_primary_10_1002_ima_22656 crossref_primary_10_1016_j_measurement_2019_05_022 crossref_primary_10_1007_s41870_018_0184_2 crossref_primary_10_17694_bajece_557693 crossref_primary_10_1016_j_compbiomed_2022_105580 crossref_primary_10_1007_s00521_024_09617_x crossref_primary_10_1016_j_ijleo_2023_171574 crossref_primary_10_1007_s13198_021_01603_z crossref_primary_10_4028_www_scientific_net_JBBBE_49_75 crossref_primary_10_1109_ACCESS_2022_3186021 crossref_primary_10_1007_s13198_024_02408_6 crossref_primary_10_1002_ima_23050 crossref_primary_10_1016_j_jiph_2020_06_033 crossref_primary_10_4108_eetpht_9_3533 crossref_primary_10_1007_s00521_021_05938_3 crossref_primary_10_1371_journal_pone_0271377 crossref_primary_10_1016_j_patrec_2019_12_006 crossref_primary_10_1049_iet_cvi_2018_5332 crossref_primary_10_1016_j_eswa_2022_119185 crossref_primary_10_3390_cancers13215546 crossref_primary_10_1590_1678_4324_2023220297 crossref_primary_10_1016_j_bspc_2021_102682 crossref_primary_10_1016_j_compeleceng_2020_106958 crossref_primary_10_1002_ima_22889 crossref_primary_10_1142_S219688882150007X crossref_primary_10_24012_dumf_578606 crossref_primary_10_1016_j_compbiomed_2022_105498 crossref_primary_10_3390_electronics9111966 crossref_primary_10_1016_j_eswa_2018_07_039 crossref_primary_10_1007_s42600_023_00301_y crossref_primary_10_1016_j_asoc_2019_105765 crossref_primary_10_1002_jbio_202100370 crossref_primary_10_5812_jjnpp_142058 crossref_primary_10_1016_j_eswa_2018_08_013 crossref_primary_10_1111_exsy_12789 crossref_primary_10_1007_s10044_023_01203_6 crossref_primary_10_1016_j_eswa_2022_118086 crossref_primary_10_1109_ACCESS_2024_3356602 crossref_primary_10_1016_j_heliyon_2024_e26799 crossref_primary_10_3390_sym12020271 crossref_primary_10_1016_j_ijar_2020_10_009 crossref_primary_10_1109_ACCESS_2019_2897078 crossref_primary_10_4018_IJGHPC_2020040104 crossref_primary_10_1016_j_bbe_2018_09_002 crossref_primary_10_1007_s10462_021_10074_4 crossref_primary_10_1088_1742_6596_1821_1_012014 crossref_primary_10_1016_j_cmpb_2019_06_029 crossref_primary_10_1590_1678_4324_2019180486 crossref_primary_10_2174_1573405616666201217112521 crossref_primary_10_3103_S0146411623060093 crossref_primary_10_32604_cmc_2021_013314 crossref_primary_10_3389_fonc_2023_1150840 crossref_primary_10_1016_j_ygeno_2020_09_047 crossref_primary_10_32628_IJSRST24113102 crossref_primary_10_1007_s00607_018_0599_4 crossref_primary_10_1002_ima_22467 crossref_primary_10_1016_j_irbm_2020_02_001 crossref_primary_10_1002_cpe_5293 crossref_primary_10_1109_ACCESS_2025_3525721 crossref_primary_10_1049_iet_ipr_2016_1014 crossref_primary_10_1038_s41598_024_74778_7 crossref_primary_10_1080_1206212X_2019_1577534 crossref_primary_10_1016_j_patrec_2018_11_004 crossref_primary_10_1007_s11227_023_05664_8 crossref_primary_10_1007_s11042_024_19515_y  | 
    
| Cites_doi | 10.1016/j.sigpro.2015.11.011 10.1016/j.eswa.2010.09.028 10.1109/TIP.2012.2185940 10.1016/j.eswa.2015.01.065 10.1109/79.814646 10.1613/jair.279 10.1080/10556789208805504 10.1016/S0933-3657(98)00070-0 10.1016/j.asoc.2013.09.018 10.1016/j.knosys.2016.02.019 10.1016/j.tele.2017.01.007 10.1002/cncr.2820360944 10.1007/s10462-010-9156-z 10.1007/s10462-004-0751-8 10.1016/j.eswa.2011.01.167 10.1016/j.jbi.2009.07.008 10.1073/pnas.87.23.9193 10.1016/j.dsp.2006.10.008 10.1136/bmj.321.7261.624 10.1016/j.eswa.2015.10.015 10.1016/j.cmpb.2007.07.013 10.1016/j.eswa.2006.08.005 10.1016/j.ipm.2009.03.002 10.1016/j.bspc.2016.11.004 10.1016/j.engappai.2016.12.019 10.1109/TIP.2012.2205006 10.1016/j.eswa.2013.08.044 10.1109/TIP.2011.2118222 10.1016/j.compbiomed.2006.05.003 10.1016/j.eswa.2011.01.120 10.1109/TCSVT.2011.2138790 10.1016/S0167-8655(03)00047-3 10.1056/NEJM199412013312206 10.1016/S0933-3657(99)00019-6 10.1016/j.ultras.2016.12.017 10.1016/j.asoc.2013.10.024 10.1016/j.cell.2011.02.013 10.1016/j.patrec.2005.10.010  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Nov 1, 2017  | 
    
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Nov 1, 2017  | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.eswa.2017.05.035 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1873-6793 | 
    
| EndPage | 145 | 
    
| ExternalDocumentID | 10_1016_j_eswa_2017_05_035 S0957417417303597  | 
    
| GeographicLocations | Wisconsin | 
    
| GeographicLocations_xml | – name: Wisconsin | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D SSH  | 
    
| ID | FETCH-LOGICAL-c394t-f1b7f060b941089be7efb7d8a020779c06a4c2debaf3f2be06179f5dccb92e623 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0957-4174 | 
    
| IngestDate | Fri Jul 25 03:30:20 EDT 2025 Thu Apr 24 23:08:52 EDT 2025 Wed Oct 01 03:51:50 EDT 2025 Fri Feb 23 02:29:06 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Sparse representation Breast cancer classification Gauss-Newton representation based algorithm Euclidean distance measure  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c394t-f1b7f060b941089be7efb7d8a020779c06a4c2debaf3f2be06179f5dccb92e623 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 1932064085 | 
    
| PQPubID | 2045477 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | proquest_journals_1932064085 crossref_citationtrail_10_1016_j_eswa_2017_05_035 crossref_primary_10_1016_j_eswa_2017_05_035 elsevier_sciencedirect_doi_10_1016_j_eswa_2017_05_035  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-11-01 2017-11-00 20171101  | 
    
| PublicationDateYYYYMMDD | 2017-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Expert systems with applications | 
    
| PublicationYear | 2017 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Xu, Zhang, Yang, Yang (bib0054) 2011; 21 Mei, Ling, Jacobs (bib0032) 2011; 20 Orponen (bib0039) 1994; 1 Zhang, Yang, Feng (bib0057) 2011 Koza, Rice (bib0023) 1991; 2 Bennett, Mangasarian (bib0007) 1992; 1 Örkcü, Bal (bib0038) 2011; 38 Rodrigues, Chang, Suri (bib0046) 2006 Xue, Zhang, Browne (bib0055) 2014; 18 Fawcett (bib0014) 2006; 27 Prasad, Biswas, Jain (bib0044) 2010 Chen (bib0009) 2014; 20 Bache, Lichman (bib0006) 2013 Sokolova, Lapalme (bib0048) 2009; 45 Wang, Hu, Li, Liu, Zhu (bib0050) 2016; 122 Chen, Yang, Liu, Liu (bib0010) 2011; 38 Mangasarian, Setiono, Wolberg (bib0029) 1990 Pena-Reyes, Sipper (bib0040) 1999; 17 Nilashi, Ibrahim, Ahmadi, Shahmoradi (bib0037) 2017; 34 Bhardwaj, Tiwari (bib0008) 2015; 42 Hamilton, Shan, Cercone (bib0018) 1996 Muto, Bussey, Morson (bib0034) 1975; 36 Magna, Casti, Jayaraman, Salmeri, Mencattini, Martinelli (bib0025) 2016; 101 Şahan, Polat, Kodaz, Güneş (bib0047) 2007; 37 Hagan, Demuth, Beale, De Jesús (bib0017) 1996; 20 Wolberg, Mangasarian (bib0052) 1990; 87 Elmore, Wells, Lee, Howard, Feinstein (bib0013) 1994; 331 Moon, Chen, Chang, Shin, Lo, Chang (bib0033) 2016; 76 Lavanya, Rani (bib0024) 2011; 2 Marcano-Cedeño, Quintanilla-Domínguez, Andina (bib0030) 2011; 38 Wolberg, Street, Mangasarian (bib0053) 1995; 17 Nettleton, Orriols-Puig, Fornells (bib0036) 2010; 33 Übeyli (bib0049) 2007; 33 Peng, Wu, Jiang (bib0041) 2010; 43 Hanahan, Weinberg (bib0019) 2011; 144 Jang, Sun, Mizutani (bib0021) 1997 Williams, Zipser (bib0051) 1995; 1 Hastie, Tibshirani, Friedman (bib0020) 2009 Quinlan (bib0045) 1996; 4 Abdel-Nasser, Melendez, Moreno, Omer, Puig (bib0001) 2017; 59 Albrecht, Lappas, Vinterbo, Wong, Ohno-Machado (bib0005) 2002; 1 Mangasarian, Wolberg (bib0028) 1990; 23 Nauck, Kruse (bib0035) 1999; 16 Garcia, Herrera (bib0015) 2008; 9 Gill, Murray, Wright (bib0016) 1981 Abdel-Zaher, Eldeib (bib0002) 2016; 46 Mahmoudi, Sapiro (bib0026) 2012; 21 Demšar (bib0012) 2006; 7 Zheng, Yoon, Lam (bib0058) 2014; 41 Christoyianni, Dermatas, Kokkinakis (bib0011) 2000; 17 Polat, Güneş (bib0042) 2007; 17 Polat, Güneş (bib0043) 2007; 88 Koyuncu, Ceylan (bib0022) 2013 Yuan, Liu, Yan (bib0056) 2012; 21 Malmir, Farokhi, Sabbaghi-Nadooshan (bib0027) 2013 Zhu, Wu (bib0059) 2004; 22 Abonyi, Szeifert (bib0003) 2003; 24 McPherson, Steel, Dixon (bib0031) 2000; 321 Acharya, Ng, Rahmat, Sudarshan, Koh, Tan, Hagiwara, Yeong, Ng (bib0004) 2017; 33 Polat (10.1016/j.eswa.2017.05.035_bib0042) 2007; 17 Demšar (10.1016/j.eswa.2017.05.035_bib0012) 2006; 7 Lavanya (10.1016/j.eswa.2017.05.035_bib0024) 2011; 2 Chen (10.1016/j.eswa.2017.05.035_bib0010) 2011; 38 Orponen (10.1016/j.eswa.2017.05.035_bib0039) 1994; 1 Yuan (10.1016/j.eswa.2017.05.035_bib0056) 2012; 21 Hastie (10.1016/j.eswa.2017.05.035_bib0020) 2009 Fawcett (10.1016/j.eswa.2017.05.035_bib0014) 2006; 27 Jang (10.1016/j.eswa.2017.05.035_bib0021) 1997 Marcano-Cedeño (10.1016/j.eswa.2017.05.035_bib0030) 2011; 38 Bennett (10.1016/j.eswa.2017.05.035_bib0007) 1992; 1 Wolberg (10.1016/j.eswa.2017.05.035_bib0052) 1990; 87 Rodrigues (10.1016/j.eswa.2017.05.035_bib0046) 2006 McPherson (10.1016/j.eswa.2017.05.035_bib0031) 2000; 321 Mangasarian (10.1016/j.eswa.2017.05.035_bib0028) 1990; 23 Muto (10.1016/j.eswa.2017.05.035_bib0034) 1975; 36 Mangasarian (10.1016/j.eswa.2017.05.035_bib0029) 1990 Wang (10.1016/j.eswa.2017.05.035_bib0050) 2016; 122 Abonyi (10.1016/j.eswa.2017.05.035_bib0003) 2003; 24 Abdel-Zaher (10.1016/j.eswa.2017.05.035_bib0002) 2016; 46 Moon (10.1016/j.eswa.2017.05.035_bib0033) 2016; 76 Şahan (10.1016/j.eswa.2017.05.035_bib0047) 2007; 37 Christoyianni (10.1016/j.eswa.2017.05.035_bib0011) 2000; 17 Hamilton (10.1016/j.eswa.2017.05.035_bib0018) 1996 Gill (10.1016/j.eswa.2017.05.035_bib0016) 1981 Magna (10.1016/j.eswa.2017.05.035_bib0025) 2016; 101 Wolberg (10.1016/j.eswa.2017.05.035_bib0053) 1995; 17 Zheng (10.1016/j.eswa.2017.05.035_bib0058) 2014; 41 Acharya (10.1016/j.eswa.2017.05.035_bib0004) 2017; 33 Malmir (10.1016/j.eswa.2017.05.035_bib0027) 2013 Pena-Reyes (10.1016/j.eswa.2017.05.035_bib0040) 1999; 17 Nettleton (10.1016/j.eswa.2017.05.035_bib0036) 2010; 33 Bhardwaj (10.1016/j.eswa.2017.05.035_bib0008) 2015; 42 Hagan (10.1016/j.eswa.2017.05.035_bib0017) 1996; 20 Zhang (10.1016/j.eswa.2017.05.035_bib0057) 2011 Mei (10.1016/j.eswa.2017.05.035_bib0032) 2011; 20 Nauck (10.1016/j.eswa.2017.05.035_bib0035) 1999; 16 Garcia (10.1016/j.eswa.2017.05.035_bib0015) 2008; 9 Polat (10.1016/j.eswa.2017.05.035_bib0043) 2007; 88 Albrecht (10.1016/j.eswa.2017.05.035_bib0005) 2002; 1 Zhu (10.1016/j.eswa.2017.05.035_bib0059) 2004; 22 Koyuncu (10.1016/j.eswa.2017.05.035_bib0022) 2013 Abdel-Nasser (10.1016/j.eswa.2017.05.035_bib0001) 2017; 59 Chen (10.1016/j.eswa.2017.05.035_bib0009) 2014; 20 Übeyli (10.1016/j.eswa.2017.05.035_bib0049) 2007; 33 Mahmoudi (10.1016/j.eswa.2017.05.035_bib0026) 2012; 21 Xue (10.1016/j.eswa.2017.05.035_bib0055) 2014; 18 Elmore (10.1016/j.eswa.2017.05.035_bib0013) 1994; 331 Örkcü (10.1016/j.eswa.2017.05.035_bib0038) 2011; 38 Bache (10.1016/j.eswa.2017.05.035_bib0006) Peng (10.1016/j.eswa.2017.05.035_bib0041) 2010; 43 Xu (10.1016/j.eswa.2017.05.035_bib0054) 2011; 21 Prasad (10.1016/j.eswa.2017.05.035_bib0044) 2010 Hanahan (10.1016/j.eswa.2017.05.035_bib0019) 2011; 144 Quinlan (10.1016/j.eswa.2017.05.035_bib0045) 1996; 4 Koza (10.1016/j.eswa.2017.05.035_bib0023) 1991; 2 Nilashi (10.1016/j.eswa.2017.05.035_bib0037) 2017; 34 Sokolova (10.1016/j.eswa.2017.05.035_bib0048) 2009; 45 Williams (10.1016/j.eswa.2017.05.035_bib0051) 1995; 1  | 
    
| References_xml | – volume: 24 start-page: 2195 year: 2003 end-page: 2207 ident: bib0003 article-title: Supervised fuzzy clustering for the identification of fuzzy classifiers publication-title: Pattern Recognition Letters – year: 2009 ident: bib0020 article-title: The elements of statistical learning – volume: 2 start-page: 756 year: 2011 end-page: 763 ident: bib0024 article-title: Analysis of feature selection with classification: Breast cancer datasets publication-title: Indian Journal of Computer Science and Engineering (IJCSE) – volume: 331 start-page: 1493 year: 1994 end-page: 1499 ident: bib0013 article-title: Variability in radiologists' interpretations of mammograms publication-title: New England Journal of Medicine – volume: 45 start-page: 427 year: 2009 end-page: 437 ident: bib0048 article-title: A systematic analysis of performance measures for classification tasks publication-title: Information Processing & Management – volume: 33 start-page: 275 year: 2010 end-page: 306 ident: bib0036 article-title: A study of the effect of different types of noise on the precision of supervised learning techniques publication-title: Artificial intelligence review – volume: 17 start-page: 694 year: 2007 end-page: 701 ident: bib0042 article-title: Breast cancer diagnosis using least square support vector machine publication-title: Digital Signal Processing – volume: 18 start-page: 261 year: 2014 end-page: 276 ident: bib0055 article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms publication-title: Applied Soft Computing – start-page: 471 year: 2011 end-page: 478 ident: bib0057 article-title: Sparse representation or collaborative representation: Which helps face recognition? publication-title: 2011 International Conference on Computer Vision – volume: 1 start-page: 433 year: 1995 end-page: 486 ident: bib0051 article-title: Gradient-based learning algorithms for recurrent networks and their computational complexity publication-title: Backpropagation: Theory, Architectures, and Applications – volume: 1 start-page: 23 year: 1992 end-page: 34 ident: bib0007 article-title: Robust linear programming discrimination of two linearly inseparable sets publication-title: Optimization methods and software – volume: 36 start-page: 2251 year: 1975 end-page: 2270 ident: bib0034 article-title: The evolution of cancer of the colon and rectum publication-title: Cancer – volume: 38 start-page: 3703 year: 2011 end-page: 3709 ident: bib0038 article-title: Comparing performances of backpropagation and genetic algorithms in the data classification publication-title: Expert systems with applications – volume: 20 start-page: 4 year: 2014 end-page: 14 ident: bib0009 article-title: A hybrid intelligent model of analyzing clinical breast cancer data using clustering techniques with feature selection publication-title: Applied Soft Computing – volume: 1 start-page: 94 year: 1994 end-page: 110 ident: bib0039 article-title: Computational complexity of neural networks: A survey publication-title: Nordic Journal of Computing – volume: 43 start-page: 15 year: 2010 end-page: 23 ident: bib0041 article-title: A novel feature selection approach for biomedical data classification publication-title: Journal of Biomedical Informatics – volume: 4 start-page: 77 year: 1996 end-page: 90 ident: bib0045 article-title: Improved use of continuous attributes in C4. 5 publication-title: Journal of Artificial Intelligence Research – volume: 88 start-page: 164 year: 2007 end-page: 174 ident: bib0043 article-title: A hybrid approach to medical decision support systems: Combining feature selection, fuzzy weighted pre-processing and AIRS publication-title: Computer methods and programs in biomedicine – year: 1981 ident: bib0016 article-title: Practical optimization – year: 1996 ident: bib0018 article-title: RIAC: A rule induction algorithm based on approximate classification – volume: 17 start-page: 131 year: 1999 end-page: 155 ident: bib0040 article-title: A fuzzy-genetic approach to breast cancer diagnosis publication-title: Artificial intelligence in medicine – volume: 16 start-page: 149 year: 1999 end-page: 169 ident: bib0035 article-title: Obtaining interpretable fuzzy classification rules from medical data publication-title: Artificial intelligence in medicine – volume: 41 start-page: 1476 year: 2014 end-page: 1482 ident: bib0058 article-title: Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms publication-title: Expert Systems with Applications – volume: 42 start-page: 4611 year: 2015 end-page: 4620 ident: bib0008 article-title: Breast cancer diagnosis using genetically optimized neural network model publication-title: Expert Systems with Applications – start-page: 121 year: 2006 end-page: 128 ident: bib0046 article-title: Non-extensive entropy for cad systems of breast cancer images publication-title: 2006 19th Brazilian Symposium on Computer Graphics and Image Processing – start-page: 343 year: 2013 end-page: 347 ident: bib0027 article-title: Optimization of data mining with evolutionary algorithms for cloud computing application publication-title: Computer and Knowledge Engineering (ICCKE), 2013 3th International eConference on – volume: 17 start-page: 54 year: 2000 end-page: 64 ident: bib0011 article-title: Fast detection of masses in computer-aided mammography publication-title: IEEE Signal Processing Magazine – volume: 2 start-page: 397 year: 1991 end-page: 404 ident: bib0023 article-title: Genetic generation of both the weights and architecture for a neural network publication-title: Neural Networks, 1991., IJCNN-91-Seattle International Joint Conference on – volume: 20 start-page: 2366 year: 2011 end-page: 2377 ident: bib0032 article-title: Illumination recovery from image with cast shadows via sparse representation publication-title: IEEE Transactions on Image Processing – volume: 22 start-page: 177 year: 2004 end-page: 210 ident: bib0059 article-title: Class noise vs. attribute noise: A quantitative study publication-title: Artificial Intelligence Review – start-page: 22 year: 1990 end-page: 31 ident: bib0029 article-title: Pattern recognition via linear programming: Theory and application to medical diagnosis publication-title: Large-scale numerical optimization – volume: 37 start-page: 415 year: 2007 end-page: 423 ident: bib0047 article-title: A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis publication-title: Computers in Biology and Medicine – volume: 38 start-page: 9573 year: 2011 end-page: 9579 ident: bib0030 article-title: WBCD breast cancer database classification applying artificial metaplasticity neural network publication-title: Expert Systems with Applications – volume: 23 year: 1990 ident: bib0028 article-title: Cancer diagnosis via linear programming publication-title: SIAM News – volume: 21 start-page: 4349 year: 2012 end-page: 4360 ident: bib0056 article-title: Visual classification with multitask joint sparse representation publication-title: IEEE Transactions on Image Processing – volume: 59 start-page: 84 year: 2017 end-page: 92 ident: bib0001 article-title: Breast tumor classification in ultrasound images using texture analysis and super-resolution methods publication-title: Engineering Applications of Artificial Intelligence – volume: 33 start-page: 400 year: 2017 end-page: 410 ident: bib0004 article-title: Data mining framework for breast lesion classification in shear wave ultrasound: A hybrid feature paradigm publication-title: Biomedical Signal Processing and Control – year: 1997 ident: bib0021 article-title: Neuro-fuzzy and soft computing; a computational approach to learning and machine intelligence – volume: 122 start-page: 1 year: 2016 end-page: 13 ident: bib0050 article-title: Automatic cell nuclei segmentation and classification of breast cancer histopathology images publication-title: Signal Processing – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: bib0014 article-title: An introduction to ROC analysis publication-title: Pattern recognition letters – volume: 76 start-page: 70 year: 2016 end-page: 77 ident: bib0033 article-title: The Adaptive Computer-aided Diagnosis System based on Tumor Sizes for the Classification of Breast Tumors detected at Screening Ultrasound publication-title: Ultrasonics – year: 2013 ident: bib0006 article-title: Retrieved from UCI machine learning repository – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bib0012 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine learning research – volume: 20 year: 1996 ident: bib0017 publication-title: Neural network design – volume: 21 start-page: 1255 year: 2011 end-page: 1262 ident: bib0054 article-title: A two-phase test sample sparse representation method for use with face recognition publication-title: IEEE Transactions on Circuits and Systems for Video Technology – volume: 38 start-page: 9014 year: 2011 end-page: 9022 ident: bib0010 article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis publication-title: Expert Systems with Applications – volume: 1 start-page: 184 year: 2002 end-page: 189 ident: bib0005 article-title: Two applications of the LSA machine publication-title: Neural Information Processing, 2002. ICONIP'02. Proceedings of the 9th International Conference on – start-page: 307 year: 2010 end-page: 314 ident: bib0044 article-title: SVM classifier based feature selection using GA, ACO and PSO for siRNA design publication-title: International conference in swarm intelligence – volume: 34 start-page: 133 year: 2017 end-page: 144 ident: bib0037 article-title: A knowledge-based system for breast cancer classification using fuzzy logic method publication-title: Telematics and Informatics – start-page: 581 year: 2013 end-page: 585 ident: bib0022 article-title: Artificial neural network based on rotation forest for biomedical pattern classification publication-title: Telecommunications and Signal Processing (TSP), 2013 36th International Conference on – volume: 21 start-page: 2909 year: 2012 end-page: 2915 ident: bib0026 article-title: Sparse representations for range data restoration publication-title: IEEE transactions on image processing: A publication of the IEEE Signal Processing Society – volume: 46 start-page: 139 year: 2016 end-page: 144 ident: bib0002 article-title: Breast cancer classification using deep belief networks publication-title: Expert Systems with Applications – volume: 33 start-page: 1054 year: 2007 end-page: 1062 ident: bib0049 article-title: Implementing automated diagnostic systems for breast cancer detection publication-title: Expert systems with Applications – volume: 101 start-page: 60 year: 2016 end-page: 70 ident: bib0025 article-title: Identification of mammography anomalies for breast cancer detection by an ensemble of classification models based on artificial immune system publication-title: Knowledge-Based Systems – volume: 9 start-page: 2677 year: 2008 end-page: 2694 ident: bib0015 article-title: An extension on``statistical comparisons of classifiers over multiple data sets''for all pairwise comparisons publication-title: Journal of Machine Learning Research – volume: 321 start-page: 624 year: 2000 ident: bib0031 article-title: Breast cancer-epidemiology, risk factors, and genetics publication-title: BMJ: British Medical Journal – volume: 144 start-page: 646 year: 2011 end-page: 674 ident: bib0019 article-title: Hallmarks of cancer: The next generation publication-title: Cell – volume: 17 start-page: 77 year: 1995 end-page: 87 ident: bib0053 article-title: Image analysis and machine learning applied to breast cancer diagnosis and prognosis publication-title: Analytical and Quantitative cytology and histology – volume: 87 start-page: 9193 year: 1990 end-page: 9196 ident: bib0052 article-title: Multisurface method of pattern separation for medical diagnosis applied to breast cytology publication-title: Proceedings of the National Academy of Sciences – volume: 23 issue: 5 year: 1990 ident: 10.1016/j.eswa.2017.05.035_bib0028 article-title: Cancer diagnosis via linear programming publication-title: SIAM News – volume: 122 start-page: 1 year: 2016 ident: 10.1016/j.eswa.2017.05.035_bib0050 article-title: Automatic cell nuclei segmentation and classification of breast cancer histopathology images publication-title: Signal Processing doi: 10.1016/j.sigpro.2015.11.011 – volume: 38 start-page: 3703 issue: 4 year: 2011 ident: 10.1016/j.eswa.2017.05.035_bib0038 article-title: Comparing performances of backpropagation and genetic algorithms in the data classification publication-title: Expert systems with applications doi: 10.1016/j.eswa.2010.09.028 – volume: 2 start-page: 756 issue: 5 year: 2011 ident: 10.1016/j.eswa.2017.05.035_bib0024 article-title: Analysis of feature selection with classification: Breast cancer datasets publication-title: Indian Journal of Computer Science and Engineering (IJCSE) – volume: 21 start-page: 2909 issue: 5 year: 2012 ident: 10.1016/j.eswa.2017.05.035_bib0026 article-title: Sparse representations for range data restoration publication-title: IEEE transactions on image processing: A publication of the IEEE Signal Processing Society doi: 10.1109/TIP.2012.2185940 – volume: 42 start-page: 4611 issue: 10 year: 2015 ident: 10.1016/j.eswa.2017.05.035_bib0008 article-title: Breast cancer diagnosis using genetically optimized neural network model publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.01.065 – volume: 17 start-page: 54 issue: 1 year: 2000 ident: 10.1016/j.eswa.2017.05.035_bib0011 article-title: Fast detection of masses in computer-aided mammography publication-title: IEEE Signal Processing Magazine doi: 10.1109/79.814646 – year: 1997 ident: 10.1016/j.eswa.2017.05.035_bib0021 – volume: 4 start-page: 77 year: 1996 ident: 10.1016/j.eswa.2017.05.035_bib0045 article-title: Improved use of continuous attributes in C4. 5 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.279 – volume: 1 start-page: 23 issue: 1 year: 1992 ident: 10.1016/j.eswa.2017.05.035_bib0007 article-title: Robust linear programming discrimination of two linearly inseparable sets publication-title: Optimization methods and software doi: 10.1080/10556789208805504 – volume: 1 start-page: 94 issue: 1 year: 1994 ident: 10.1016/j.eswa.2017.05.035_bib0039 article-title: Computational complexity of neural networks: A survey publication-title: Nordic Journal of Computing – volume: 16 start-page: 149 issue: 2 year: 1999 ident: 10.1016/j.eswa.2017.05.035_bib0035 article-title: Obtaining interpretable fuzzy classification rules from medical data publication-title: Artificial intelligence in medicine doi: 10.1016/S0933-3657(98)00070-0 – volume: 18 start-page: 261 year: 2014 ident: 10.1016/j.eswa.2017.05.035_bib0055 article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2013.09.018 – start-page: 121 year: 2006 ident: 10.1016/j.eswa.2017.05.035_bib0046 article-title: Non-extensive entropy for cad systems of breast cancer images – start-page: 581 year: 2013 ident: 10.1016/j.eswa.2017.05.035_bib0022 article-title: Artificial neural network based on rotation forest for biomedical pattern classification – volume: 101 start-page: 60 year: 2016 ident: 10.1016/j.eswa.2017.05.035_bib0025 article-title: Identification of mammography anomalies for breast cancer detection by an ensemble of classification models based on artificial immune system publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2016.02.019 – volume: 1 start-page: 433 year: 1995 ident: 10.1016/j.eswa.2017.05.035_bib0051 article-title: Gradient-based learning algorithms for recurrent networks and their computational complexity – volume: 9 start-page: 2677 year: 2008 ident: 10.1016/j.eswa.2017.05.035_bib0015 article-title: An extension on``statistical comparisons of classifiers over multiple data sets''for all pairwise comparisons publication-title: Journal of Machine Learning Research – volume: 20 year: 1996 ident: 10.1016/j.eswa.2017.05.035_bib0017 – volume: 34 start-page: 133 issue: 4 year: 2017 ident: 10.1016/j.eswa.2017.05.035_bib0037 article-title: A knowledge-based system for breast cancer classification using fuzzy logic method publication-title: Telematics and Informatics doi: 10.1016/j.tele.2017.01.007 – volume: 36 start-page: 2251 issue: 6 year: 1975 ident: 10.1016/j.eswa.2017.05.035_bib0034 article-title: The evolution of cancer of the colon and rectum publication-title: Cancer doi: 10.1002/cncr.2820360944 – volume: 33 start-page: 275 issue: 4 year: 2010 ident: 10.1016/j.eswa.2017.05.035_bib0036 article-title: A study of the effect of different types of noise on the precision of supervised learning techniques publication-title: Artificial intelligence review doi: 10.1007/s10462-010-9156-z – year: 1981 ident: 10.1016/j.eswa.2017.05.035_bib0016 – start-page: 307 year: 2010 ident: 10.1016/j.eswa.2017.05.035_bib0044 article-title: SVM classifier based feature selection using GA, ACO and PSO for siRNA design – volume: 22 start-page: 177 issue: 3 year: 2004 ident: 10.1016/j.eswa.2017.05.035_bib0059 article-title: Class noise vs. attribute noise: A quantitative study publication-title: Artificial Intelligence Review doi: 10.1007/s10462-004-0751-8 – volume: 38 start-page: 9573 issue: 8 year: 2011 ident: 10.1016/j.eswa.2017.05.035_bib0030 article-title: WBCD breast cancer database classification applying artificial metaplasticity neural network publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.01.167 – volume: 43 start-page: 15 issue: 1 year: 2010 ident: 10.1016/j.eswa.2017.05.035_bib0041 article-title: A novel feature selection approach for biomedical data classification publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2009.07.008 – volume: 87 start-page: 9193 issue: 23 year: 1990 ident: 10.1016/j.eswa.2017.05.035_bib0052 article-title: Multisurface method of pattern separation for medical diagnosis applied to breast cytology publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.87.23.9193 – start-page: 471 year: 2011 ident: 10.1016/j.eswa.2017.05.035_bib0057 article-title: Sparse representation or collaborative representation: Which helps face recognition? – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.eswa.2017.05.035_bib0012 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine learning research – volume: 17 start-page: 694 issue: 4 year: 2007 ident: 10.1016/j.eswa.2017.05.035_bib0042 article-title: Breast cancer diagnosis using least square support vector machine publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2006.10.008 – volume: 1 start-page: 184 year: 2002 ident: 10.1016/j.eswa.2017.05.035_bib0005 article-title: Two applications of the LSA machine – year: 2009 ident: 10.1016/j.eswa.2017.05.035_bib0020 – volume: 321 start-page: 624 issue: 7261 year: 2000 ident: 10.1016/j.eswa.2017.05.035_bib0031 article-title: Breast cancer-epidemiology, risk factors, and genetics publication-title: BMJ: British Medical Journal doi: 10.1136/bmj.321.7261.624 – start-page: 22 year: 1990 ident: 10.1016/j.eswa.2017.05.035_bib0029 article-title: Pattern recognition via linear programming: Theory and application to medical diagnosis – volume: 46 start-page: 139 year: 2016 ident: 10.1016/j.eswa.2017.05.035_bib0002 article-title: Breast cancer classification using deep belief networks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.10.015 – volume: 88 start-page: 164 issue: 2 year: 2007 ident: 10.1016/j.eswa.2017.05.035_bib0043 article-title: A hybrid approach to medical decision support systems: Combining feature selection, fuzzy weighted pre-processing and AIRS publication-title: Computer methods and programs in biomedicine doi: 10.1016/j.cmpb.2007.07.013 – volume: 33 start-page: 1054 issue: 4 year: 2007 ident: 10.1016/j.eswa.2017.05.035_bib0049 article-title: Implementing automated diagnostic systems for breast cancer detection publication-title: Expert systems with Applications doi: 10.1016/j.eswa.2006.08.005 – volume: 45 start-page: 427 issue: 4 year: 2009 ident: 10.1016/j.eswa.2017.05.035_bib0048 article-title: A systematic analysis of performance measures for classification tasks publication-title: Information Processing & Management doi: 10.1016/j.ipm.2009.03.002 – volume: 33 start-page: 400 year: 2017 ident: 10.1016/j.eswa.2017.05.035_bib0004 article-title: Data mining framework for breast lesion classification in shear wave ultrasound: A hybrid feature paradigm publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2016.11.004 – year: 1996 ident: 10.1016/j.eswa.2017.05.035_bib0018 – volume: 17 start-page: 77 issue: 2 year: 1995 ident: 10.1016/j.eswa.2017.05.035_bib0053 article-title: Image analysis and machine learning applied to breast cancer diagnosis and prognosis publication-title: Analytical and Quantitative cytology and histology – volume: 59 start-page: 84 year: 2017 ident: 10.1016/j.eswa.2017.05.035_bib0001 article-title: Breast tumor classification in ultrasound images using texture analysis and super-resolution methods publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2016.12.019 – volume: 21 start-page: 4349 issue: 10 year: 2012 ident: 10.1016/j.eswa.2017.05.035_bib0056 article-title: Visual classification with multitask joint sparse representation publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2012.2205006 – volume: 41 start-page: 1476 issue: 4 year: 2014 ident: 10.1016/j.eswa.2017.05.035_bib0058 article-title: Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.08.044 – volume: 20 start-page: 2366 issue: 8 year: 2011 ident: 10.1016/j.eswa.2017.05.035_bib0032 article-title: Illumination recovery from image with cast shadows via sparse representation publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2011.2118222 – volume: 37 start-page: 415 issue: 3 year: 2007 ident: 10.1016/j.eswa.2017.05.035_bib0047 article-title: A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2006.05.003 – volume: 38 start-page: 9014 issue: 7 year: 2011 ident: 10.1016/j.eswa.2017.05.035_bib0010 article-title: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.01.120 – volume: 21 start-page: 1255 issue: 9 year: 2011 ident: 10.1016/j.eswa.2017.05.035_bib0054 article-title: A two-phase test sample sparse representation method for use with face recognition publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2011.2138790 – volume: 24 start-page: 2195 issue: 14 year: 2003 ident: 10.1016/j.eswa.2017.05.035_bib0003 article-title: Supervised fuzzy clustering for the identification of fuzzy classifiers publication-title: Pattern Recognition Letters doi: 10.1016/S0167-8655(03)00047-3 – volume: 331 start-page: 1493 issue: 22 year: 1994 ident: 10.1016/j.eswa.2017.05.035_bib0013 article-title: Variability in radiologists' interpretations of mammograms publication-title: New England Journal of Medicine doi: 10.1056/NEJM199412013312206 – volume: 17 start-page: 131 issue: 2 year: 1999 ident: 10.1016/j.eswa.2017.05.035_bib0040 article-title: A fuzzy-genetic approach to breast cancer diagnosis publication-title: Artificial intelligence in medicine doi: 10.1016/S0933-3657(99)00019-6 – start-page: 343 year: 2013 ident: 10.1016/j.eswa.2017.05.035_bib0027 article-title: Optimization of data mining with evolutionary algorithms for cloud computing application – volume: 76 start-page: 70 year: 2016 ident: 10.1016/j.eswa.2017.05.035_bib0033 article-title: The Adaptive Computer-aided Diagnosis System based on Tumor Sizes for the Classification of Breast Tumors detected at Screening Ultrasound publication-title: Ultrasonics doi: 10.1016/j.ultras.2016.12.017 – volume: 20 start-page: 4 year: 2014 ident: 10.1016/j.eswa.2017.05.035_bib0009 article-title: A hybrid intelligent model of analyzing clinical breast cancer data using clustering techniques with feature selection publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2013.10.024 – volume: 144 start-page: 646 issue: 5 year: 2011 ident: 10.1016/j.eswa.2017.05.035_bib0019 article-title: Hallmarks of cancer: The next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – ident: 10.1016/j.eswa.2017.05.035_bib0006 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 10.1016/j.eswa.2017.05.035_bib0014 article-title: An introduction to ROC analysis publication-title: Pattern recognition letters doi: 10.1016/j.patrec.2005.10.010 – volume: 2 start-page: 397 year: 1991 ident: 10.1016/j.eswa.2017.05.035_bib0023 article-title: Genetic generation of both the weights and architecture for a neural network  | 
    
| SSID | ssj0017007 | 
    
| Score | 2.4919367 | 
    
| Snippet | •A novel GNRBA for breast cancer classification is proposed.•It uses sparse representation with feature selection.•It evaluates the sparsity in a... Breast cancer is a decisive disease worldwide. It is one of the most widely spread cancer among women. As per the survey, one out of eight women in the world...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 134 | 
    
| SubjectTerms | Accuracy Algorithms Artificial intelligence Breast cancer Breast cancer classification Cancer Classification Diagnostic systems Euclidean distance measure Expert systems Gauss-Newton representation based algorithm Machine learning Pattern recognition Sparse representation Statistical analysis Statistical methods Training Womens health  | 
    
| Title | Optimal breast cancer classification using Gauss–Newton representation based algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.eswa.2017.05.035 https://www.proquest.com/docview/1932064085  | 
    
| Volume | 85 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KvXjxW6zWsgdvEps0u93kWIq1KtaDFnpbsh-plTYtTYo38T_4D_0l7iSbgiI9CLkkzIYwszvzIG_eIHRBQ8lkIGPHVxJGmHnaCc0pcqRLBGWa-IpA7_DDoN0fkrsRHVVQt-yFAVqlzf1FTs-ztX3StN5sLiaT5pMBB6YcwuWDDh10lBPCYIrB1fua5gHyc6zQ22MOWNvGmYLjpdM30B7yCvXOfOTbn8XpV5rOa09vD-1Y0Ig7xXfto4pODtBuOZAB2_N5iEaPJgHMjKUAqnmGJYR0iSUgZKAE5VHAQHUf45tolaZfH58myxn4h3Nxy7IRKcFQ3BSOpuP5cpK9zI7QsHf93O07dnSCI_2QZE7sCRa7bVeExHODUGimY8FUEBl0yFgo3XZEZEtpEcV-3BIagEwYUyWlCFvaQKJjVE3miT5BOFK-T7ViIqaRQRsqIq7wlG5pjwpJqaohr_QZl1ZXHMZbTHlJIHvl4GcOfuYu5cbPNXS5XrMoVDU2WtMyFPzH3uAm7W9cVy_jxu3JTDkAVvh7GdDTf772DG3DXdGQWEfVbLnS5waZZKKRb70G2urc3vcH3x7R5rk | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOcCFHVEo4AM3FJrFrpsjqigF2nKglXqz4iWlqJvaVNwQ_8Af8iV4EqcSCHFAyimxo2jGnnmR37xB6IKGksmajJ1ASWhh5mknNLvIkS4RlGkSKAK1w-1Otdkj933aL6B6XgsDtEob-7OYnkZre6dirVmZDYeVJwMOTDqEKwAdOraG1gn1GfyBXb2teB6gP8cywT3mwHBbOZORvPTiFcSHvEy-M-359mt2-hGn0-TT2EFbFjXi6-zDdlFBT_bQdt6RAdsNuo_6jyYCjM1IAVzzBEvw6RxLgMjACUrdgIHrPsC30XKx-Hz_MGHO4D-cqlvmlUgTDNlN4Wg0mM6HyfP4APUaN91607G9ExwZhCRxYk-w2K26IiSeWwuFZjoWTNUiAw8ZC6VbjYj0lRZRHMS-0IBkwpgqKUXoa4OJDlFxMp3oI4QjFQRUKyZiGhm4oSLiCk9pX3tUSEpVCXm5zbi0wuLQ32LEcwbZCwc7c7Azdyk3di6hy9WcWSar8edomruCf1sc3MT9P-eVc79xuzUXHBArHF_W6PE_X3uONprddou37joPJ2gTnmTViWVUTOZLfWpgSiLO0mX4BYW56E4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+breast+cancer+classification+using+Gauss%E2%80%93Newton+representation+based+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Dora%2C+Lingraj&rft.au=Agrawal%2C+Sanjay&rft.au=Panda%2C+Rutuparna&rft.au=Abraham%2C+Ajith&rft.date=2017-11-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=85&rft.spage=134&rft_id=info:doi/10.1016%2Fj.eswa.2017.05.035&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |