WIMP and SIMP dark matter from the spontaneous breaking of a global group

We propose and study a scalar extension of the Standard Model which respects a ℤ{sub 3} symmetry remnant of the spontaneous breaking of a global U(1){sub DM} symmetry. Consequently, this model has a natural dark matter candidate and a Goldstone boson in the physical spectrum. In addition, the Higgs...

Full description

Saved in:
Bibliographic Details
Published inJournal of cosmology and astroparticle physics Vol. 2015; no. 4; p. 12
Main Authors Bernal, Nicolás, Garcia-Cely, Camilo, Rosenfeld, Rogério
Format Journal Article
LanguageEnglish
Published United States 09.04.2015
Subjects
Online AccessGet full text
ISSN1475-7516
1475-7508
1475-7516
DOI10.1088/1475-7516/2015/04/012

Cover

Abstract We propose and study a scalar extension of the Standard Model which respects a ℤ{sub 3} symmetry remnant of the spontaneous breaking of a global U(1){sub DM} symmetry. Consequently, this model has a natural dark matter candidate and a Goldstone boson in the physical spectrum. In addition, the Higgs boson properties are changed with respect to the Standard Model due to the mixing with a new particle. We explore regions in the parameter space taking into account bounds from the measured Higgs properties, dark matter direct detection as well as measurements of the effective number of neutrino species before recombination. The dark matter relic density is determined by three classes of processes: the usual self-annihilation, semi-annihilation and purely dark matter 3→2 processes. The latter has been subject of recent interest leading to the so-called ‘Strongly Interacting Massive Particle’ (SIMP) scenario. We show under which conditions our model can lead to a concrete realization of such scenario and study the possibility that the dark matter self-interactions could address the small scale structure problems. In particular, we find that in order for the SIMP scenario to work, the dark matter mass must be in the range 7−115 MeV, with the global symmetry energy breaking scale in the TeV range.
AbstractList We propose and study a scalar extension of the Standard Model which respects a ℤ{sub 3} symmetry remnant of the spontaneous breaking of a global U(1){sub DM} symmetry. Consequently, this model has a natural dark matter candidate and a Goldstone boson in the physical spectrum. In addition, the Higgs boson properties are changed with respect to the Standard Model due to the mixing with a new particle. We explore regions in the parameter space taking into account bounds from the measured Higgs properties, dark matter direct detection as well as measurements of the effective number of neutrino species before recombination. The dark matter relic density is determined by three classes of processes: the usual self-annihilation, semi-annihilation and purely dark matter 3→2 processes. The latter has been subject of recent interest leading to the so-called ‘Strongly Interacting Massive Particle’ (SIMP) scenario. We show under which conditions our model can lead to a concrete realization of such scenario and study the possibility that the dark matter self-interactions could address the small scale structure problems. In particular, we find that in order for the SIMP scenario to work, the dark matter mass must be in the range 7−115 MeV, with the global symmetry energy breaking scale in the TeV range.
Author Garcia-Cely, Camilo
Rosenfeld, Rogério
Bernal, Nicolás
Author_xml – sequence: 1
  givenname: Nicolás
  surname: Bernal
  fullname: Bernal, Nicolás
– sequence: 2
  givenname: Camilo
  surname: Garcia-Cely
  fullname: Garcia-Cely, Camilo
– sequence: 3
  givenname: Rogério
  surname: Rosenfeld
  fullname: Rosenfeld, Rogério
BackLink https://www.osti.gov/biblio/22454537$$D View this record in Osti.gov
BookMark eNqNkEtLAzEUhYNUsK3-BCHgepw854ErKT4KFQUVlyGZJO3YaVKSFOm_d4aKiBtd3cPlnPv4JmDkvDMAnGN0iVFV5ZiVPCs5LnKCMM8RyxEmR2D83R_90CdgEuM7QqSgtBqD-dv84QlKp-HzILQMa7iRKZkAbfAbmFYGxq13STrjdxGqYOS6dUvoLZRw2XklO7gMfrc9BcdWdtGcfdUpeL29eZndZ4vHu_nsepE1tGYpMxZTRTmyhmiKKS8QYZSrmhsiGSqZ0kzWlVZaNQ3VujSKaK6KSlkrq7pAdAqKw9yd28r9h-w6sQ3tRoa9wEgMQMTwrBieFQMQgZjogfTBi0PQx9SK2LTJNKvGO2eaJAhhnHFa9q6rg6sJPsZgrOiNMrU9giDb7s8d_Ff6f7d9Aiitg78
CitedBy_id crossref_primary_10_1088_1475_7516_2024_09_024
crossref_primary_10_1088_1475_7516_2018_12_020
crossref_primary_10_1088_1475_7516_2018_06_036
crossref_primary_10_1103_PhysRevD_97_095042
crossref_primary_10_1103_PhysRevD_107_095026
crossref_primary_10_1007_JHEP08_2018_079
crossref_primary_10_1103_PhysRevLett_133_021003
crossref_primary_10_1088_1475_7516_2016_03_018
crossref_primary_10_1103_PhysRevD_101_035001
crossref_primary_10_1007_s13226_021_00183_9
crossref_primary_10_1088_1475_7516_2021_06_011
crossref_primary_10_1140_epjc_s10052_019_6550_9
crossref_primary_10_1093_mnras_stae1270
crossref_primary_10_1007_JHEP01_2019_185
crossref_primary_10_1103_PhysRevD_102_054507
crossref_primary_10_21468_SciPostPhys_14_3_044
crossref_primary_10_1103_PhysRevLett_116_221302
crossref_primary_10_1007_JHEP11_2018_005
crossref_primary_10_1088_1475_7516_2017_01_042
crossref_primary_10_1103_PhysRevD_96_103519
crossref_primary_10_1088_1475_7516_2021_03_101
crossref_primary_10_1088_1475_7516_2025_01_101
crossref_primary_10_1051_epjconf_201816806009
crossref_primary_10_1088_1475_7516_2018_11_048
crossref_primary_10_1007_JHEP07_2017_101
crossref_primary_10_1103_PhysRevD_97_123017
crossref_primary_10_1088_1475_7516_2017_03_045
crossref_primary_10_1103_PhysRevD_111_063044
crossref_primary_10_1103_PhysRevD_93_055007
crossref_primary_10_1007_JHEP08_2017_078
crossref_primary_10_1103_PhysRevD_109_035018
crossref_primary_10_1007_JHEP03_2019_077
crossref_primary_10_1007_JHEP03_2023_216
crossref_primary_10_1007_JHEP11_2016_048
crossref_primary_10_1103_PhysRevD_99_095025
crossref_primary_10_1103_PhysRevD_98_083517
crossref_primary_10_1007_JHEP07_2019_049
crossref_primary_10_1007_JHEP05_2016_090
crossref_primary_10_1103_PhysRevD_94_083516
crossref_primary_10_1007_JHEP04_2017_154
crossref_primary_10_1103_PhysRevLett_122_071103
crossref_primary_10_1093_mnras_stad1850
crossref_primary_10_1007_JHEP09_2015_063
crossref_primary_10_1088_1475_7516_2018_07_013
crossref_primary_10_1088_1475_7516_2020_01_040
crossref_primary_10_1088_1475_7516_2019_11_033
crossref_primary_10_1140_epjc_s10052_015_3788_8
crossref_primary_10_1007_JHEP12_2016_099
crossref_primary_10_1088_1475_7516_2015_09_063
crossref_primary_10_1103_PhysRevD_111_015037
crossref_primary_10_1007_JHEP07_2022_037
crossref_primary_10_1103_PhysRevD_94_035005
crossref_primary_10_1103_PhysRevD_95_115023
crossref_primary_10_1007_JHEP03_2019_204
crossref_primary_10_1007_JHEP11_2024_050
crossref_primary_10_1088_1475_7516_2017_10_042
crossref_primary_10_1007_JHEP08_2019_050
crossref_primary_10_1088_1475_7516_2020_03_027
crossref_primary_10_1007_JHEP08_2023_130
crossref_primary_10_1016_j_physletb_2016_10_001
crossref_primary_10_1103_PhysRevD_96_083521
crossref_primary_10_1088_1475_7516_2016_01_006
crossref_primary_10_1140_epjc_s10052_019_6608_8
crossref_primary_10_1103_PhysRevLett_119_061102
crossref_primary_10_1007_JHEP08_2020_149
crossref_primary_10_1088_1475_7516_2020_06_043
crossref_primary_10_1088_1475_7516_2020_10_006
crossref_primary_10_1007_JHEP03_2020_109
crossref_primary_10_1007_JHEP09_2021_028
Cites_doi 10.1016/0370-1573(95)00058-5
10.1088/0004-637X/742/1/20
10.1093/mnras/sts535
10.1093/mnrasl/sls053
10.1016/j.physletb.2009.11.050
10.1103/PhysRevLett.112.091303
10.1103/PhysRevLett.62.1221
10.1016/0550-3213(91)90438-4
10.1016/S0550-3213(01)00513-2
10.1088/1475-7516/2013/11/061
10.1088/1475-7516/2014/05/047
10.1007/JHEP03(2015)045
10.1016/j.cpc.2013.01.014
10.1111/j.1745-3933.2011.01074.x
10.1103/PhysRevLett.113.171301
10.1088/1475-7516/2013/01/022
10.1002/andp.201200116
10.1093/mnras/stu1713
10.1086/176322
10.1007/JHEP11(2014)039
10.1016/j.physletb.2014.06.077
10.1051/0004-6361/201321591
10.1088/0034-4885/63/5/2r3
10.1088/1475-7516/2012/04/010
10.1086/383178
10.1088/0004-6256/142/1/24
10.1016/j.cpc.2013.10.016
10.1103/PhysRevD.87.103517
10.1140/epjc/s2002-01115-1
10.1016/j.cpc.2009.02.018
10.1103/PhysRevLett.39.165
10.1103/PhysRevLett.84.3760
10.1016/0370-2693(85)90624-0
10.1016/j.physrep.2007.10.004
10.1088/1126-6708/2009/01/028
10.1086/187350
10.1103/PhysRevLett.110.241301
10.1086/171833
10.1140/epjc/s10052-011-1541-5
10.1016/j.cpc.2006.11.008
10.1086/587859
10.1086/381970
10.1093/mnras/stu1477
10.1103/PhysRevD.32.3261
10.1111/j.1365-2966.2012.21182.x
10.1103/PhysRevD.62.041302
10.1038/370629a0
10.1086/174465
10.1016/S0370-2693(01)01078-4
10.1007/JHEP01(2010)053
10.1103/PhysRevD.50.3637
10.1016/j.physrep.2004.08.031
10.1088/1475-7516/2014/06/021
10.1103/PhysRevD.88.055025
10.1093/mnras/sts514
10.1142/S0217751X04018154
ContentType Journal Article
DBID AAYXX
CITATION
OTOTI
ADTOC
UNPAY
DOI 10.1088/1475-7516/2015/04/012
DatabaseName CrossRef
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1475-7516
EndPage 12
ExternalDocumentID 10.1088/1475-7516/2015/04/012
22454537
10_1088_1475_7516_2015_04_012
GroupedDBID 1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
AAYXX
ABCXL
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ADEQX
ADWVK
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
ER.
IHE
IJHAN
IOP
IZVLO
J9A
KOT
LAP
M45
MV1
N5L
N9A
NT-
NT.
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
VSI
W28
XPP
ZMT
HAK
KNG
OK1
OTOTI
RW3
UCJ
02O
1WK
ACARI
ADTOC
AERVB
AGQPQ
AHSEE
ARNYC
BBWZM
FEDTE
HVGLF
JCGBZ
Q02
RNS
S3P
UNPAY
ID FETCH-LOGICAL-c394t-ef13b350fe2d3135602435b95e2a4074bd4a98dbdbcc3dd7eb2d5b68bffa89603
IEDL.DBID UNPAY
ISSN 1475-7516
1475-7508
IngestDate Sun Oct 26 04:12:38 EDT 2025
Thu May 18 18:39:12 EDT 2023
Wed Oct 01 04:29:19 EDT 2025
Thu Apr 24 23:20:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://creativecommons.org/licenses/by/3.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-ef13b350fe2d3135602435b95e2a4074bd4a98dbdbcc3dd7eb2d5b68bffa89603
Notes SCOAP3, CERN, Geneva (Switzerland)
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1475-7516/2015/04/012/pdf
PageCount 1
ParticipantIDs unpaywall_primary_10_1088_1475_7516_2015_04_012
osti_scitechconnect_22454537
crossref_citationtrail_10_1088_1475_7516_2015_04_012
crossref_primary_10_1088_1475_7516_2015_04_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-09
PublicationDateYYYYMMDD 2015-04-09
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of cosmology and astroparticle physics
PublicationYear 2015
References 44
L. Bergström (2) 2000; 63
47
48
49
F. D'Eramo (16) 2010; 2010
M. Markevitch . (60) 2004; 606
L. Feng (14) 2015; 2015
P. Bechtle (46) 2014; 2014
51
53
10
54
11
55
M. Gonderinger (9) 2010; 2010
12
56
13
57
D. Clowe (59) 2004; 604
G.F. Giudice (6)
19
Planck collaboration (42)
S.-H. Oh . (21) 2011; 142
1
3
4
5
7
8
M.G. Walker (22) 2011; 742
63
20
64
D.H. Weinberg (50)
65
D.A. Sierra (30)
66
23
24
Y. Hochberg (26)
25
T. Hambye (15) 2009; 2009
29
G. Bélanger (18) 2014; 2014
W. Kilian (62)
O.D. Elbert . (58)
G. Bélanger (27) 2013; 2013
31
P. Ko (28) 2014; 2014
32
33
34
B.D. Wandelt . (52)
35
N. Yamanaka (67)
36
37
38
39
G. Steigman (43)
G. Bélanger (17) 2012; 2012
S.W. Randall (61) 2008; 679
40
C. Garcia-Cely (45) 2013; 2013
41
References_xml – ident: 1
  doi: 10.1016/0370-1573(95)00058-5
– volume: 742
  start-page: 20
  issn: 0004-637X
  year: 2011
  ident: 22
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/742/1/20
– ident: 6
– ident: 58
– ident: 55
  doi: 10.1093/mnras/sts535
– ident: 56
  doi: 10.1093/mnrasl/sls053
– ident: 38
  doi: 10.1016/j.physletb.2009.11.050
– ident: 49
  doi: 10.1103/PhysRevLett.112.091303
– ident: 29
  doi: 10.1103/PhysRevLett.62.1221
– ident: 39
  doi: 10.1016/0550-3213(91)90438-4
– ident: 12
  doi: 10.1016/S0550-3213(01)00513-2
– volume: 2013
  start-page: 061
  issn: 1475-7516
  year: 2013
  ident: 45
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2013/11/061
– volume: 2014
  start-page: 047
  issn: 1475-7516
  year: 2014
  ident: 28
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/05/047
– volume: 2015
  start-page: 045
  issn: 1126-6708
  year: 2015
  ident: 14
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP03(2015)045
– ident: 34
  doi: 10.1016/j.cpc.2013.01.014
– volume: 2010
  start-page: 109
  issn: 1126-6708
  year: 2010
  ident: 16
  publication-title: J. High Energy Phys.
– ident: 23
  doi: 10.1111/j.1745-3933.2011.01074.x
– ident: 52
– ident: 62
– ident: 25
  doi: 10.1103/PhysRevLett.113.171301
– ident: 67
– volume: 2013
  start-page: 022
  issn: 1475-7516
  year: 2013
  ident: 27
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2013/01/022
– ident: 5
  doi: 10.1002/andp.201200116
– ident: 57
  doi: 10.1093/mnras/stu1713
– ident: 66
  doi: 10.1086/176322
– volume: 2014
  start-page: 039
  issn: 1126-6708
  year: 2014
  ident: 46
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP11(2014)039
– ident: 47
  doi: 10.1016/j.physletb.2014.06.077
– ident: 40
  doi: 10.1051/0004-6361/201321591
– volume: 63
  start-page: 793
  issn: 0034-4885
  year: 2000
  ident: 2
  publication-title: Rept. Prog. Phys.
  doi: 10.1088/0034-4885/63/5/2r3
– volume: 2012
  start-page: 010
  issn: 1475-7516
  year: 2012
  ident: 17
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2012/04/010
– volume: 606
  start-page: 819
  issn: 0004-637X
  year: 2004
  ident: 60
  publication-title: Astrophys. J.
  doi: 10.1086/383178
– volume: 142
  start-page: 24
  issn: 1538-3881
  year: 2011
  ident: 21
  publication-title: Astron. J.
  doi: 10.1088/0004-6256/142/1/24
– ident: 36
  doi: 10.1016/j.cpc.2013.10.016
– ident: 41
  doi: 10.1103/PhysRevD.87.103517
– ident: 48
  doi: 10.1140/epjc/s2002-01115-1
– ident: 32
  doi: 10.1016/j.cpc.2009.02.018
– ident: 37
  doi: 10.1103/PhysRevLett.39.165
– ident: 51
  doi: 10.1103/PhysRevLett.84.3760
– ident: 10
  doi: 10.1016/0370-2693(85)90624-0
– ident: 31
  doi: 10.1016/j.physrep.2007.10.004
– ident: 43
– volume: 2009
  start-page: 028
  issn: 1126-6708
  year: 2009
  ident: 15
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2009/01/028
– ident: 20
  doi: 10.1086/187350
– ident: 44
  doi: 10.1103/PhysRevLett.110.241301
– ident: 64
  doi: 10.1086/171833
– ident: 33
  doi: 10.1140/epjc/s10052-011-1541-5
– ident: 35
  doi: 10.1016/j.cpc.2006.11.008
– volume: 679
  start-page: 1173
  issn: 0004-637X
  year: 2008
  ident: 61
  publication-title: Astrophys. J.
  doi: 10.1086/587859
– volume: 604
  start-page: 596
  issn: 0004-637X
  year: 2004
  ident: 59
  publication-title: Astrophys. J.
  doi: 10.1086/381970
– ident: 24
  doi: 10.1093/mnras/stu1477
– ident: 63
  doi: 10.1103/PhysRevD.32.3261
– ident: 53
  doi: 10.1111/j.1365-2966.2012.21182.x
– ident: 42
– ident: 50
– ident: 7
  doi: 10.1103/PhysRevD.62.041302
– ident: 30
– ident: 19
  doi: 10.1038/370629a0
– ident: 26
– ident: 65
  doi: 10.1086/174465
– ident: 8
  doi: 10.1016/S0370-2693(01)01078-4
– volume: 2010
  start-page: 053
  issn: 1126-6708
  year: 2010
  ident: 9
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP01(2010)053
– ident: 11
  doi: 10.1103/PhysRevD.50.3637
– ident: 4
  doi: 10.1016/j.physrep.2004.08.031
– volume: 2014
  start-page: 021
  issn: 1475-7516
  year: 2014
  ident: 18
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/06/021
– ident: 13
  doi: 10.1103/PhysRevD.88.055025
– ident: 54
  doi: 10.1093/mnras/sts514
– ident: 3
  doi: 10.1142/S0217751X04018154
SSID ssj0026338
Score 2.4488776
Snippet We propose and study a scalar extension of the Standard Model which respects a ℤ{sub 3} symmetry remnant of the spontaneous breaking of a global U(1){sub DM}...
SourceID unpaywall
osti
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 12
SubjectTerms ANNIHILATION
DETECTION
GOLDSTONE BOSONS
HIGGS BOSONS
MATHEMATICAL SPACE
MEV RANGE
NEUTRINOS
NONLUMINOUS MATTER
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
RECOMBINATION
RELICT RADIATION
SPECTRA
STANDARD MODEL
STRONG INTERACTIONS
SYMMETRY
TEV RANGE
Title WIMP and SIMP dark matter from the spontaneous breaking of a global group
URI https://www.osti.gov/biblio/22454537
https://iopscience.iop.org/article/10.1088/1475-7516/2015/04/012/pdf
UnpaywallVersion publishedVersion
Volume 2015
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1475-7516
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026338
  issn: 1475-7516
  databaseCode: IOP
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB616QE48EZNKdUeEDfHj33YPkZA1SC1RIKIclrt89LUjhpHqPz6zq6dCJAQIG5rybOyZ8a736xnvgF47USRaSpc4kshEmZKm9TelAnnaGNnEECoUOB8fiHOFuzDJb_cg3e7Wph2NSz9Exz2RMG9CoeEuCrNWcmTkucCA_ecpxlLcZFNV9bvw4HgiMhHcLC4mE-_xsKieG9sTLeT2xby_G6un7aoUYuf2gO4t2lW6vabWi5_2H5OH4HbPnifdXI12XR6Yr7_wun4v2_2GB4O-JRMe5knsOeap3A4XYcT8_b6lrwhcdwfiKyfwezL7HxOVGPJpzCw6uaKXEfOThIqVwjiSxKycBGDunazJhiBx_5XpPVEkZ6OhMTSkuewOH3_-e1ZMrRnSAytWZc4n1NNeeZdYWlOEToViL10zV2hMExk2jJVV1ZbbQy1tsQY3nItKu29qtBM9AWMmrZxh0CoE5wLJXhhauazokafKZhQuqy19d6MgW0tIs3AXR5aaCxl_IdeVTKoTgbVyaA6mTGJqhvDZCe26sk7_iRwHMwt0VCBQteEXCPTSYQ5CDRpOYZ05wZ_N-HRP0u8hPvhKiYH1ccw6m427hXink6fwP7s4_xkcO47hUn02A
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE40PKourRUPiBu2Tz8SHJclVZtpVaVyopysvy8dJusulmh8usZO9kVICFA3BwpYyUzE_sbZ-YbgPdOFJmmwiW-FCJhprRJ7U2ZcI42dgYBhAoFzpdX4mzGLm757RZ83NTCtIth6Z_gsCcK7lU4JMRVac5KnpQ8Fxi45zzNWIqLbLqw_glsC46IfATbs6vr6ZdYWBTvjY3pNnLrQp7fzfXTFjVq8VN7Dk9XzUI9flXz-Q_bz-kOuPWD91knd5NVpyfm2y-cjv_7ZrvwYsCnZNrLvIQt17yC_ekynJi394_kA4nj_kBk-RrOP59fXhPVWHITBlY93JH7yNlJQuUKQXxJQhYuYlDXrpYEI_DY_4q0nijS05GQWFryBmanJ5-Oz5KhPUNiaM26xPmcasoz7wpLc4rQqUDspWvuCoVhItOWqbqy2mpjqLUlxvCWa1Fp71WFZqJ7MGraxu0DoU5wLpTghamZz4oafaZgQumy1tZ7Mwa2tog0A3d5aKExl_EfelXJoDoZVCeD6mTGJKpuDJON2KIn7_iTwGEwt0RDBQpdE3KNTCcR5iDQpOUY0o0b_N2Eb_9Z4gCehauYHFQfwqh7WLl3iHs6fTS49XfNZPPP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WIMP+and+SIMP+dark+matter+from+the+spontaneous+breaking+of+a+global+group&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=Bernal%2C+Nicol%C3%A1s&rft.au=Garcia-Cely%2C+Camilo&rft.au=Rosenfeld%2C+Rog%C3%A9rio&rft.date=2015-04-09&rft.issn=1475-7516&rft.eissn=1475-7516&rft.volume=2015&rft.issue=4&rft.spage=12&rft.epage=12&rft_id=info:doi/10.1088%2F1475-7516%2F2015%2F04%2F012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1475_7516_2015_04_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon