Convolutional long short-term memory neural network equalizer for nonlinear Fourier transform-based optical transmission systems

We evaluate improvement in the performance of the optical transmission systems operating with the continuous nonlinear Fourier spectrum by the artificial neural network equalisers installed at the receiver end. We propose here a novel equaliser designs based on bidirectional long short-term memory (...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 29; no. 7; p. 11254
Main Authors Kotlyar, Oleksandr, Kamalian-Kopae, Morteza, Pankratova, Maryna, Vasylchenkova, Anastasiia, Prilepsky, Jaroslaw E., Turitsyn, Sergei K.
Format Journal Article
LanguageEnglish
Published United States 29.03.2021
Subjects
Online AccessGet full text
ISSN1094-4087
1094-4087
DOI10.1364/OE.419314

Cover

Abstract We evaluate improvement in the performance of the optical transmission systems operating with the continuous nonlinear Fourier spectrum by the artificial neural network equalisers installed at the receiver end. We propose here a novel equaliser designs based on bidirectional long short-term memory (BLSTM) gated recurrent neural network and compare their performance with the equaliser based on several fully connected layers. The proposed approach accounts for the correlations between different nonlinear spectral components. The application of BLSTM equaliser leads to a 16x improvement in terms of bit-error rate (BER) compared to the non-equalised case. The proposed equaliser makes it possible to reach the data rate of 170 Gbit/s for one polarisation conventional nonlinear Fourier transform (NFT) based system at 1000 km distance. We show that our new BLSTM equalisers significantly outperform the previously proposed scheme based on a feed-forward fully connected neural network. Moreover, we demonstrate that by adding a 1D convolutional layer for the data pre-processing before BLSTM recurrent layers, we can further enhance the performance of the BLSTM equaliser, reaching 23x BER improvement for the 170 Gbit/s system over 1000 km, staying below the 7% forward error correction hard decision threshold (HD-FEC).
AbstractList We evaluate improvement in the performance of the optical transmission systems operating with the continuous nonlinear Fourier spectrum by the artificial neural network equalisers installed at the receiver end. We propose here a novel equaliser designs based on bidirectional long short-term memory (BLSTM) gated recurrent neural network and compare their performance with the equaliser based on several fully connected layers. The proposed approach accounts for the correlations between different nonlinear spectral components. The application of BLSTM equaliser leads to a 16x improvement in terms of bit-error rate (BER) compared to the non-equalised case. The proposed equaliser makes it possible to reach the data rate of 170 Gbit/s for one polarisation conventional nonlinear Fourier transform (NFT) based system at 1000 km distance. We show that our new BLSTM equalisers significantly outperform the previously proposed scheme based on a feed-forward fully connected neural network. Moreover, we demonstrate that by adding a 1D convolutional layer for the data pre-processing before BLSTM recurrent layers, we can further enhance the performance of the BLSTM equaliser, reaching 23x BER improvement for the 170 Gbit/s system over 1000 km, staying below the 7% forward error correction hard decision threshold (HD-FEC).
We evaluate improvement in the performance of the optical transmission systems operating with the continuous nonlinear Fourier spectrum by the artificial neural network equalisers installed at the receiver end. We propose here a novel equaliser designs based on bidirectional long short-term memory (BLSTM) gated recurrent neural network and compare their performance with the equaliser based on several fully connected layers. The proposed approach accounts for the correlations between different nonlinear spectral components. The application of BLSTM equaliser leads to a 16x improvement in terms of bit-error rate (BER) compared to the non-equalised case. The proposed equaliser makes it possible to reach the data rate of 170 Gbit/s for one polarisation conventional nonlinear Fourier transform (NFT) based system at 1000 km distance. We show that our new BLSTM equalisers significantly outperform the previously proposed scheme based on a feed-forward fully connected neural network. Moreover, we demonstrate that by adding a 1D convolutional layer for the data pre-processing before BLSTM recurrent layers, we can further enhance the performance of the BLSTM equaliser, reaching 23x BER improvement for the 170 Gbit/s system over 1000 km, staying below the 7% forward error correction hard decision threshold (HD-FEC).We evaluate improvement in the performance of the optical transmission systems operating with the continuous nonlinear Fourier spectrum by the artificial neural network equalisers installed at the receiver end. We propose here a novel equaliser designs based on bidirectional long short-term memory (BLSTM) gated recurrent neural network and compare their performance with the equaliser based on several fully connected layers. The proposed approach accounts for the correlations between different nonlinear spectral components. The application of BLSTM equaliser leads to a 16x improvement in terms of bit-error rate (BER) compared to the non-equalised case. The proposed equaliser makes it possible to reach the data rate of 170 Gbit/s for one polarisation conventional nonlinear Fourier transform (NFT) based system at 1000 km distance. We show that our new BLSTM equalisers significantly outperform the previously proposed scheme based on a feed-forward fully connected neural network. Moreover, we demonstrate that by adding a 1D convolutional layer for the data pre-processing before BLSTM recurrent layers, we can further enhance the performance of the BLSTM equaliser, reaching 23x BER improvement for the 170 Gbit/s system over 1000 km, staying below the 7% forward error correction hard decision threshold (HD-FEC).
Author Pankratova, Maryna
Kamalian-Kopae, Morteza
Kotlyar, Oleksandr
Turitsyn, Sergei K.
Vasylchenkova, Anastasiia
Prilepsky, Jaroslaw E.
Author_xml – sequence: 1
  givenname: Oleksandr
  orcidid: 0000-0002-2744-0132
  surname: Kotlyar
  fullname: Kotlyar, Oleksandr
– sequence: 2
  givenname: Morteza
  orcidid: 0000-0002-6278-976X
  surname: Kamalian-Kopae
  fullname: Kamalian-Kopae, Morteza
– sequence: 3
  givenname: Maryna
  orcidid: 0000-0002-5974-6160
  surname: Pankratova
  fullname: Pankratova, Maryna
– sequence: 4
  givenname: Anastasiia
  orcidid: 0000-0002-6997-9427
  surname: Vasylchenkova
  fullname: Vasylchenkova, Anastasiia
– sequence: 5
  givenname: Jaroslaw E.
  orcidid: 0000-0002-3035-4112
  surname: Prilepsky
  fullname: Prilepsky, Jaroslaw E.
– sequence: 6
  givenname: Sergei K.
  orcidid: 0000-0003-0101-3834
  surname: Turitsyn
  fullname: Turitsyn, Sergei K.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33820241$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-24986$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-91383$$DView record from Swedish Publication Index
BookMark eNqNkTtvFDEQxy0URB5Q8AWQS5DYxF57z-syOi6AFOmaiNayvXOJwWtf_Eh0VHx0HC5ECFFQjDya-c3D8z9GByEGQOg1JaeULfjZenXKqWSUP0NHlEjecTKKgz_8Q3Sc81dCKBdSvECHjI096Tk9Qj-WMdxFX4uLQXvsY7jG-Sam0hVIM55hjmmHA9TUsgHKfUzfMNxW7d13SHgTE27LeBdAJ3wRa3ItWpIOuaXmzugME47b4myr_xWfXc5tGM67XGDOL9HzjfYZXj2-J-jqYnW1_NRdrj9-Xp5fdpZJXrpJUib1ZsGtMWMPg5mGfiEmYgTXw0SZsaL5lo9jr3vCBibNxJiQI6V2AMpO0Pt923wP22rUNrlZp52K2qkP7su5ium6WVVtzsj-D79xWfVcjouGv93j2xRvK-Si2i8teK8DxNqogchesEH0DX3ziFYzw_TU-bckDXi3B2yKOSfYPCGUqAe51Xql9nI39uwv1rqiH7Rsp3b-HxU_AYINr2M
CitedBy_id crossref_primary_10_1109_JLT_2021_3114427
crossref_primary_10_1364_AOP_484119
crossref_primary_10_1109_JLT_2022_3141404
crossref_primary_10_1016_j_optcom_2023_129809
crossref_primary_10_1016_j_yofte_2022_103072
crossref_primary_10_1109_JLT_2024_3483289
crossref_primary_10_1016_j_optcom_2024_130589
crossref_primary_10_1109_JLT_2021_3108006
crossref_primary_10_1364_OE_448845
crossref_primary_10_3390_s24155035
crossref_primary_10_1038_s41598_022_12141_4
crossref_primary_10_1109_JLT_2022_3177413
crossref_primary_10_3233_HIS_230004
crossref_primary_10_1364_OE_489102
crossref_primary_10_1016_j_yofte_2023_103329
crossref_primary_10_1016_j_optcom_2024_131423
crossref_primary_10_1016_j_optlastec_2024_110971
crossref_primary_10_1016_j_optcom_2023_130159
crossref_primary_10_1038_s41598_021_02252_9
crossref_primary_10_1070_QEL17655
crossref_primary_10_1364_OE_499296
crossref_primary_10_1364_OE_450059
crossref_primary_10_1016_j_optcom_2023_129857
crossref_primary_10_1016_j_optcom_2023_129396
crossref_primary_10_1364_OE_500473
crossref_primary_10_3390_en15124361
Cites_doi 10.1038/ncomms12710
10.1364/OL.394115
10.1109/JLT.2016.2590989
10.1364/OE.414885
10.1364/OPN.31.3.000034
10.1109/LPT.2017.2722040
10.1162/neco.1997.9.8.1735
10.1038/nphoton.2017.118
10.1109/TIT.2019.2941479
10.1109/LPT.2018.2860124
10.1103/PhysRevApplied.13.054021
10.1070/QEL17463
10.1109/TIT.2014.2321143
10.21105/joss.00597
10.1364/OPTICA.4.000307
10.1109/JLT.2018.2798412
10.1088/2040-8978/18/6/063002
10.1364/OE.394971
10.1109/JLT.2016.2536780
10.1109/JLT.2009.2039464
10.1364/OE.16.000841
10.1109/JLT.2020.3007919
10.1109/LPT.2018.2874204
10.1364/OE.25.001916
10.1109/COMST.2018.2880039
10.1109/JLT.2019.2904102
10.3390/app10249099
10.1364/OE.22.026720
10.1109/JLT.2017.2775105
10.1162/tacl_a_00104
10.1109/LPT.2018.2831693
10.1103/PhysRevLett.113.013901
10.1162/089976600300015015
10.1364/OE.27.019650
10.1364/OE.26.024190
10.1109/JLT.2015.2511084
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
ABSHZ
ADTPV
AOWAS
D8T
DF6
ZZAVC
AABEP
D91
DOI 10.1364/OE.419314
DatabaseName CrossRef
PubMed
MEDLINE - Academic
SWEPUB Högskolan i Skövde full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Högskolan i Skövde
SwePub Articles full text
SWEPUB Örebro universitet full text
SWEPUB Örebro universitet
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1094-4087
ExternalDocumentID oai_DiVA_org_oru_91383
oai_DiVA_org_his_24986
33820241
10_1364_OE_419314
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
ROP
7X8
ABSHZ
ADTPV
AOWAS
C1A
D8T
DF6
EJD
ZZAVC
AABEP
D91
ID FETCH-LOGICAL-c394t-d9139af64cbb82e5bd5267d0b74a5d13bc70b7c4882a203539bd3379811c5e13
ISSN 1094-4087
IngestDate Thu Aug 21 06:55:14 EDT 2025
Thu Aug 21 06:41:21 EDT 2025
Thu Jul 10 17:46:17 EDT 2025
Wed Feb 19 02:27:44 EST 2025
Tue Jul 01 01:41:19 EDT 2025
Thu Apr 24 23:03:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c394t-d9139af64cbb82e5bd5267d0b74a5d13bc70b7c4882a203539bd3379811c5e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6278-976X
0000-0002-3035-4112
0000-0002-6997-9427
0000-0002-5974-6160
0000-0002-2744-0132
0000-0003-0101-3834
OpenAccessLink http://dx.doi.org/10.1364/OE.419314
PMID 33820241
PQID 2509273572
PQPubID 23479
ParticipantIDs swepub_primary_oai_DiVA_org_oru_91383
swepub_primary_oai_DiVA_org_his_24986
proquest_miscellaneous_2509273572
pubmed_primary_33820241
crossref_primary_10_1364_OE_419314
crossref_citationtrail_10_1364_OE_419314
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-29
PublicationDateYYYYMMDD 2021-03-29
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2021
References Yousefi (oe-29-7-11254-R5) 2014; 60
Derevyanko (oe-29-7-11254-R46) 2021; 29
Musumeci (oe-29-7-11254-R14) 2019; 21
Derevyanko (oe-29-7-11254-R28) 2020
Le (oe-29-7-11254-R7) 2017; 11
Da Ros (oe-29-7-11254-R42) 2019; 37
Yangzhang (oe-29-7-11254-R11) 2018; 36
Wu (oe-29-7-11254-R18) 2020; 28
Agrawal (oe-29-7-11254-R33) 2012; 222
Sedov (oe-29-7-11254-R21) 2020; 50
Kotlyar (oe-29-7-11254-R24) 2020; 45
Gers (oe-29-7-11254-R53) 2000; 12
Li (oe-29-7-11254-R57) 2018; 31
Turitsyn (oe-29-7-11254-R6) 2017; 4
Shieh (oe-29-7-11254-R43) 2008; 16
Karanov (oe-29-7-11254-R31) 2019; 27
Essiambre (oe-29-7-11254-R1) 2010; 28
Le (oe-29-7-11254-R8) 2014; 22
Wahls (oe-29-7-11254-R38) 2018; 3
Agrell (oe-29-7-11254-R2) 2016; 18
Hochreiter (oe-29-7-11254-R51) 1997; 9
Thrane (oe-29-7-11254-R13) 2017; 35
Deligiannidis (oe-29-7-11254-R32) 2020; 38
Civelli (oe-29-7-11254-R45) 2020; 10
Zibar (oe-29-7-11254-R15) 2020; 31
Cartledge (oe-29-7-11254-R4) 2017; 25
Winzer (oe-29-7-11254-R3) 2018; 26
Gaiarin (oe-29-7-11254-R17) 2018; 30
Chiu (oe-29-7-11254-R54) 2016; 4
Kamalian (oe-29-7-11254-R10) 2017; 35
Derevyanko (oe-29-7-11254-R9) 2016; 7
Civelli (oe-29-7-11254-R44) 2017; 29
Le (oe-29-7-11254-R34) 2016; 34
Pankratova (oe-29-7-11254-R12) 2020; 13
Jones (oe-29-7-11254-R16) 2018; 30
Prilepsky (oe-29-7-11254-R36) 2014; 113
Le (oe-29-7-11254-R40) 2016; 34
Zakharov (oe-29-7-11254-R35) 1972; 34
Gemechu (oe-29-7-11254-R41) 2018; 30
Yousefi (oe-29-7-11254-R37) 2020; 66
References_xml – volume: 7
  start-page: 12710
  year: 2016
  ident: oe-29-7-11254-R9
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12710
– volume: 45
  start-page: 3462
  year: 2020
  ident: oe-29-7-11254-R24
  publication-title: Opt. Lett.
  doi: 10.1364/OL.394115
– volume: 31
  start-page: 6389
  year: 2018
  ident: oe-29-7-11254-R57
  article-title: Visualizing the loss landscape of neural nets
– volume: 35
  start-page: 868
  year: 2017
  ident: oe-29-7-11254-R13
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2590989
– volume: 29
  start-page: 6384
  year: 2021
  ident: oe-29-7-11254-R46
  publication-title: Opt. Express
  doi: 10.1364/OE.414885
– volume: 31
  start-page: 34
  year: 2020
  ident: oe-29-7-11254-R15
  publication-title: Opt. Photonics News
  doi: 10.1364/OPN.31.3.000034
– start-page: SF2L
  year: 2020
  ident: oe-29-7-11254-R28
  article-title: Analytical model of nonlinear noise in the b-modulated optical transmission systems
– volume: 29
  start-page: 1332
  year: 2017
  ident: oe-29-7-11254-R44
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2017.2722040
– volume: 9
  start-page: 1735
  year: 1997
  ident: oe-29-7-11254-R51
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 11
  start-page: 570
  year: 2017
  ident: oe-29-7-11254-R7
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2017.118
– volume: 66
  start-page: 478
  year: 2020
  ident: oe-29-7-11254-R37
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2019.2941479
– volume: 30
  start-page: 1589
  year: 2018
  ident: oe-29-7-11254-R41
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2018.2860124
– volume: 13
  start-page: 054021
  year: 2020
  ident: oe-29-7-11254-R12
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.13.054021
– volume: 50
  start-page: 1105
  year: 2020
  ident: oe-29-7-11254-R21
  publication-title: Quantum Electron.
  doi: 10.1070/QEL17463
– volume: 60
  start-page: 4312
  year: 2014
  ident: oe-29-7-11254-R5
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2014.2321143
– volume: 3
  start-page: 597
  year: 2018
  ident: oe-29-7-11254-R38
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00597
– volume: 4
  start-page: 307
  year: 2017
  ident: oe-29-7-11254-R6
  publication-title: Optica
  doi: 10.1364/OPTICA.4.000307
– volume: 36
  start-page: 485
  year: 2018
  ident: oe-29-7-11254-R11
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2798412
– volume: 18
  start-page: 063002
  year: 2016
  ident: oe-29-7-11254-R2
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/18/6/063002
– volume: 34
  start-page: 62
  year: 1972
  ident: oe-29-7-11254-R35
  publication-title: Soviet Physics JETP
– volume: 222
  year: 2012
  ident: oe-29-7-11254-R33
– volume: 28
  start-page: 18304
  year: 2020
  ident: oe-29-7-11254-R18
  publication-title: Opt. Express
  doi: 10.1364/OE.394971
– volume: 34
  start-page: 2459
  year: 2016
  ident: oe-29-7-11254-R40
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2536780
– volume: 28
  start-page: 662
  year: 2010
  ident: oe-29-7-11254-R1
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2009.2039464
– volume: 16
  start-page: 841
  year: 2008
  ident: oe-29-7-11254-R43
  publication-title: Opt. Express
  doi: 10.1364/OE.16.000841
– volume: 38
  start-page: 5991
  year: 2020
  ident: oe-29-7-11254-R32
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2020.3007919
– volume: 30
  start-page: 1983
  year: 2018
  ident: oe-29-7-11254-R17
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2018.2874204
– volume: 25
  start-page: 1916
  year: 2017
  ident: oe-29-7-11254-R4
  publication-title: Opt. Express
  doi: 10.1364/OE.25.001916
– volume: 21
  start-page: 1383
  year: 2019
  ident: oe-29-7-11254-R14
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2018.2880039
– volume: 37
  start-page: 2335
  year: 2019
  ident: oe-29-7-11254-R42
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2019.2904102
– volume: 10
  start-page: 9099
  year: 2020
  ident: oe-29-7-11254-R45
  publication-title: Appl. Sci.
  doi: 10.3390/app10249099
– volume: 22
  start-page: 26720
  year: 2014
  ident: oe-29-7-11254-R8
  publication-title: Opt. Express
  doi: 10.1364/OE.22.026720
– volume: 35
  start-page: 5464
  year: 2017
  ident: oe-29-7-11254-R10
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2017.2775105
– volume: 4
  start-page: 357
  year: 2016
  ident: oe-29-7-11254-R54
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00104
– volume: 30
  start-page: 1079
  year: 2018
  ident: oe-29-7-11254-R16
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2018.2831693
– volume: 113
  start-page: 013901
  year: 2014
  ident: oe-29-7-11254-R36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.013901
– volume: 12
  start-page: 2451
  year: 2000
  ident: oe-29-7-11254-R53
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015015
– volume: 27
  start-page: 19650
  year: 2019
  ident: oe-29-7-11254-R31
  publication-title: Opt. Express
  doi: 10.1364/OE.27.019650
– volume: 26
  start-page: 24190
  year: 2018
  ident: oe-29-7-11254-R3
  publication-title: Opt. Express
  doi: 10.1364/OE.26.024190
– volume: 34
  start-page: 1778
  year: 2016
  ident: oe-29-7-11254-R34
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2015.2511084
SSID ssj0014797
Score 2.547272
Snippet We evaluate improvement in the performance of the optical transmission systems operating with the continuous nonlinear Fourier spectrum by the artificial...
SourceID swepub
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 11254
SubjectTerms Computer Science
Datavetenskap
Title Convolutional long short-term memory neural network equalizer for nonlinear Fourier transform-based optical transmission systems
URI https://www.ncbi.nlm.nih.gov/pubmed/33820241
https://www.proquest.com/docview/2509273572
https://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-24986
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-91383
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBIvaNzLYDIIJKQqWxM7cfJYjaKJCcpDmfYWObHDqnZp1SQT7QPiX_B3Ob7U7bZKDF6iyHaT1OeL_Z2Tc0HoLYtABxCMeDIkzKOim3iJjKlHeRF144IzEqt4589fouNv9NNZeNZq_d7wWmrq7CBfbo0r-R-pQhvIVUXJ_oNk3UWhAc5BvnAECcPxVjI-mpaX9gYw0xNVNqg6Bz7tqfW2c6GcaBcdlbESekvj792ROoxyKefawbA0mTL4XNVX0sXr6hWT9dQGJzrTmbF263YAhbKu2fzP1SazHcx0wmf5Y-acOnRETT1ZGB_uwUSOK14K5w18wi-0kcU7AcXdGMiV5-_SbRRfeTlWXgCX3EYVLUrXd8qrxQQAV45td6_kQHSr0YhvGjIC7cllrR1m7QVNE9RZu__KLW12wV7_qFm5GZvVF7ijyUh9Y18gEQVhDvoHFAiriVrdkmb7w-i0l07n39PzUZWCXhpHd9DdgAEpUz6hP_vu8xRlpmrP6ulsyiq4y6G7x1Wic0N7uZaaVtOZ4S56YPUQ3DOgeohasnyE7ml_4Lx6jH5dgRZW0MJraGEDLWyghS20sIMWBvxgBy1soYWvQQtbaOFNaGELrSdo-LE_PDr2bLEOLycJrT2h8svCC07zLIsDGWYiDCImuhmjPBQ-yXIG5znsFwEPuiQkSSYIYUns-3koffIU7cBzyecIJ0IUfpKrrE-CirCIozyhNCSZqkFPSNFG71cTm-Y2kb2qpzJJ9dfZiKaDfmpk0EZv3NCZyd6ybdDrlXRS-K_qgxkv5bQBCACbBnofsqCNnhmxucsQAtwZ6G8bvTNydD3bkfSXcdN5k8IMxuTFLa-3h-6vX6KXaKeeN_IV8OM629d2pX2N2D9YBcnw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+long+short-term+memory+neural+network+equalizer+for+nonlinear+Fourier+transform-based+optical+transmission+systems&rft.jtitle=Optics+express&rft.au=Kotlyar%2C+Oleksandr&rft.au=Kamalian-Kopae%2C+Morteza&rft.au=Pankratova%2C+Maryna&rft.au=Vasylchenkova%2C+Anastasiia&rft.date=2021-03-29&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=29&rft.issue=7&rft.spage=11254&rft_id=info:doi/10.1364%2FOE.419314&rft.externalDocID=oai_DiVA_org_his_24986
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon