Convolutional long short-term memory neural network equalizer for nonlinear Fourier transform-based optical transmission systems
We evaluate improvement in the performance of the optical transmission systems operating with the continuous nonlinear Fourier spectrum by the artificial neural network equalisers installed at the receiver end. We propose here a novel equaliser designs based on bidirectional long short-term memory (...
Saved in:
Published in | Optics express Vol. 29; no. 7; p. 11254 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
29.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1094-4087 1094-4087 |
DOI | 10.1364/OE.419314 |
Cover
Abstract | We evaluate improvement in the performance of the optical transmission systems operating with the continuous nonlinear Fourier spectrum by the artificial neural network equalisers installed at the receiver end. We propose here a novel equaliser designs based on bidirectional long short-term memory (BLSTM) gated recurrent neural network and compare their performance with the equaliser based on several fully connected layers. The proposed approach accounts for the correlations between different nonlinear spectral components. The application of BLSTM equaliser leads to a 16x improvement in terms of bit-error rate (BER) compared to the non-equalised case. The proposed equaliser makes it possible to reach the data rate of 170 Gbit/s for one polarisation conventional nonlinear Fourier transform (NFT) based system at 1000 km distance. We show that our new BLSTM equalisers significantly outperform the previously proposed scheme based on a feed-forward fully connected neural network. Moreover, we demonstrate that by adding a 1D convolutional layer for the data pre-processing before BLSTM recurrent layers, we can further enhance the performance of the BLSTM equaliser, reaching 23x BER improvement for the 170 Gbit/s system over 1000 km, staying below the 7% forward error correction hard decision threshold (HD-FEC). |
---|---|
AbstractList | We evaluate improvement in the performance of the optical transmission systems operating with the continuous nonlinear Fourier spectrum by the artificial neural network equalisers installed at the receiver end. We propose here a novel equaliser designs based on bidirectional long short-term memory (BLSTM) gated recurrent neural network and compare their performance with the equaliser based on several fully connected layers. The proposed approach accounts for the correlations between different nonlinear spectral components. The application of BLSTM equaliser leads to a 16x improvement in terms of bit-error rate (BER) compared to the non-equalised case. The proposed equaliser makes it possible to reach the data rate of 170 Gbit/s for one polarisation conventional nonlinear Fourier transform (NFT) based system at 1000 km distance. We show that our new BLSTM equalisers significantly outperform the previously proposed scheme based on a feed-forward fully connected neural network. Moreover, we demonstrate that by adding a 1D convolutional layer for the data pre-processing before BLSTM recurrent layers, we can further enhance the performance of the BLSTM equaliser, reaching 23x BER improvement for the 170 Gbit/s system over 1000 km, staying below the 7% forward error correction hard decision threshold (HD-FEC). We evaluate improvement in the performance of the optical transmission systems operating with the continuous nonlinear Fourier spectrum by the artificial neural network equalisers installed at the receiver end. We propose here a novel equaliser designs based on bidirectional long short-term memory (BLSTM) gated recurrent neural network and compare their performance with the equaliser based on several fully connected layers. The proposed approach accounts for the correlations between different nonlinear spectral components. The application of BLSTM equaliser leads to a 16x improvement in terms of bit-error rate (BER) compared to the non-equalised case. The proposed equaliser makes it possible to reach the data rate of 170 Gbit/s for one polarisation conventional nonlinear Fourier transform (NFT) based system at 1000 km distance. We show that our new BLSTM equalisers significantly outperform the previously proposed scheme based on a feed-forward fully connected neural network. Moreover, we demonstrate that by adding a 1D convolutional layer for the data pre-processing before BLSTM recurrent layers, we can further enhance the performance of the BLSTM equaliser, reaching 23x BER improvement for the 170 Gbit/s system over 1000 km, staying below the 7% forward error correction hard decision threshold (HD-FEC).We evaluate improvement in the performance of the optical transmission systems operating with the continuous nonlinear Fourier spectrum by the artificial neural network equalisers installed at the receiver end. We propose here a novel equaliser designs based on bidirectional long short-term memory (BLSTM) gated recurrent neural network and compare their performance with the equaliser based on several fully connected layers. The proposed approach accounts for the correlations between different nonlinear spectral components. The application of BLSTM equaliser leads to a 16x improvement in terms of bit-error rate (BER) compared to the non-equalised case. The proposed equaliser makes it possible to reach the data rate of 170 Gbit/s for one polarisation conventional nonlinear Fourier transform (NFT) based system at 1000 km distance. We show that our new BLSTM equalisers significantly outperform the previously proposed scheme based on a feed-forward fully connected neural network. Moreover, we demonstrate that by adding a 1D convolutional layer for the data pre-processing before BLSTM recurrent layers, we can further enhance the performance of the BLSTM equaliser, reaching 23x BER improvement for the 170 Gbit/s system over 1000 km, staying below the 7% forward error correction hard decision threshold (HD-FEC). |
Author | Pankratova, Maryna Kamalian-Kopae, Morteza Kotlyar, Oleksandr Turitsyn, Sergei K. Vasylchenkova, Anastasiia Prilepsky, Jaroslaw E. |
Author_xml | – sequence: 1 givenname: Oleksandr orcidid: 0000-0002-2744-0132 surname: Kotlyar fullname: Kotlyar, Oleksandr – sequence: 2 givenname: Morteza orcidid: 0000-0002-6278-976X surname: Kamalian-Kopae fullname: Kamalian-Kopae, Morteza – sequence: 3 givenname: Maryna orcidid: 0000-0002-5974-6160 surname: Pankratova fullname: Pankratova, Maryna – sequence: 4 givenname: Anastasiia orcidid: 0000-0002-6997-9427 surname: Vasylchenkova fullname: Vasylchenkova, Anastasiia – sequence: 5 givenname: Jaroslaw E. orcidid: 0000-0002-3035-4112 surname: Prilepsky fullname: Prilepsky, Jaroslaw E. – sequence: 6 givenname: Sergei K. orcidid: 0000-0003-0101-3834 surname: Turitsyn fullname: Turitsyn, Sergei K. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33820241$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-24986$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-91383$$DView record from Swedish Publication Index |
BookMark | eNqNkTtvFDEQxy0URB5Q8AWQS5DYxF57z-syOi6AFOmaiNayvXOJwWtf_Eh0VHx0HC5ECFFQjDya-c3D8z9GByEGQOg1JaeULfjZenXKqWSUP0NHlEjecTKKgz_8Q3Sc81dCKBdSvECHjI096Tk9Qj-WMdxFX4uLQXvsY7jG-Sam0hVIM55hjmmHA9TUsgHKfUzfMNxW7d13SHgTE27LeBdAJ3wRa3ItWpIOuaXmzugME47b4myr_xWfXc5tGM67XGDOL9HzjfYZXj2-J-jqYnW1_NRdrj9-Xp5fdpZJXrpJUib1ZsGtMWMPg5mGfiEmYgTXw0SZsaL5lo9jr3vCBibNxJiQI6V2AMpO0Pt923wP22rUNrlZp52K2qkP7su5ium6WVVtzsj-D79xWfVcjouGv93j2xRvK-Si2i8teK8DxNqogchesEH0DX3ziFYzw_TU-bckDXi3B2yKOSfYPCGUqAe51Xql9nI39uwv1rqiH7Rsp3b-HxU_AYINr2M |
CitedBy_id | crossref_primary_10_1109_JLT_2021_3114427 crossref_primary_10_1364_AOP_484119 crossref_primary_10_1109_JLT_2022_3141404 crossref_primary_10_1016_j_optcom_2023_129809 crossref_primary_10_1016_j_yofte_2022_103072 crossref_primary_10_1109_JLT_2024_3483289 crossref_primary_10_1016_j_optcom_2024_130589 crossref_primary_10_1109_JLT_2021_3108006 crossref_primary_10_1364_OE_448845 crossref_primary_10_3390_s24155035 crossref_primary_10_1038_s41598_022_12141_4 crossref_primary_10_1109_JLT_2022_3177413 crossref_primary_10_3233_HIS_230004 crossref_primary_10_1364_OE_489102 crossref_primary_10_1016_j_yofte_2023_103329 crossref_primary_10_1016_j_optcom_2024_131423 crossref_primary_10_1016_j_optlastec_2024_110971 crossref_primary_10_1016_j_optcom_2023_130159 crossref_primary_10_1038_s41598_021_02252_9 crossref_primary_10_1070_QEL17655 crossref_primary_10_1364_OE_499296 crossref_primary_10_1364_OE_450059 crossref_primary_10_1016_j_optcom_2023_129857 crossref_primary_10_1016_j_optcom_2023_129396 crossref_primary_10_1364_OE_500473 crossref_primary_10_3390_en15124361 |
Cites_doi | 10.1038/ncomms12710 10.1364/OL.394115 10.1109/JLT.2016.2590989 10.1364/OE.414885 10.1364/OPN.31.3.000034 10.1109/LPT.2017.2722040 10.1162/neco.1997.9.8.1735 10.1038/nphoton.2017.118 10.1109/TIT.2019.2941479 10.1109/LPT.2018.2860124 10.1103/PhysRevApplied.13.054021 10.1070/QEL17463 10.1109/TIT.2014.2321143 10.21105/joss.00597 10.1364/OPTICA.4.000307 10.1109/JLT.2018.2798412 10.1088/2040-8978/18/6/063002 10.1364/OE.394971 10.1109/JLT.2016.2536780 10.1109/JLT.2009.2039464 10.1364/OE.16.000841 10.1109/JLT.2020.3007919 10.1109/LPT.2018.2874204 10.1364/OE.25.001916 10.1109/COMST.2018.2880039 10.1109/JLT.2019.2904102 10.3390/app10249099 10.1364/OE.22.026720 10.1109/JLT.2017.2775105 10.1162/tacl_a_00104 10.1109/LPT.2018.2831693 10.1103/PhysRevLett.113.013901 10.1162/089976600300015015 10.1364/OE.27.019650 10.1364/OE.26.024190 10.1109/JLT.2015.2511084 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 ABSHZ ADTPV AOWAS D8T DF6 ZZAVC AABEP D91 |
DOI | 10.1364/OE.419314 |
DatabaseName | CrossRef PubMed MEDLINE - Academic SWEPUB Högskolan i Skövde full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Högskolan i Skövde SwePub Articles full text SWEPUB Örebro universitet full text SWEPUB Örebro universitet |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1094-4087 |
ExternalDocumentID | oai_DiVA_org_oru_91383 oai_DiVA_org_his_24986 33820241 10_1364_OE_419314 |
Genre | Journal Article |
GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB NPM ROP 7X8 ABSHZ ADTPV AOWAS C1A D8T DF6 EJD ZZAVC AABEP D91 |
ID | FETCH-LOGICAL-c394t-d9139af64cbb82e5bd5267d0b74a5d13bc70b7c4882a203539bd3379811c5e13 |
ISSN | 1094-4087 |
IngestDate | Thu Aug 21 06:55:14 EDT 2025 Thu Aug 21 06:41:21 EDT 2025 Thu Jul 10 17:46:17 EDT 2025 Wed Feb 19 02:27:44 EST 2025 Tue Jul 01 01:41:19 EDT 2025 Thu Apr 24 23:03:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c394t-d9139af64cbb82e5bd5267d0b74a5d13bc70b7c4882a203539bd3379811c5e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6278-976X 0000-0002-3035-4112 0000-0002-6997-9427 0000-0002-5974-6160 0000-0002-2744-0132 0000-0003-0101-3834 |
OpenAccessLink | http://dx.doi.org/10.1364/OE.419314 |
PMID | 33820241 |
PQID | 2509273572 |
PQPubID | 23479 |
ParticipantIDs | swepub_primary_oai_DiVA_org_oru_91383 swepub_primary_oai_DiVA_org_his_24986 proquest_miscellaneous_2509273572 pubmed_primary_33820241 crossref_primary_10_1364_OE_419314 crossref_citationtrail_10_1364_OE_419314 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-29 |
PublicationDateYYYYMMDD | 2021-03-29 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Optics express |
PublicationTitleAlternate | Opt Express |
PublicationYear | 2021 |
References | Yousefi (oe-29-7-11254-R5) 2014; 60 Derevyanko (oe-29-7-11254-R46) 2021; 29 Musumeci (oe-29-7-11254-R14) 2019; 21 Derevyanko (oe-29-7-11254-R28) 2020 Le (oe-29-7-11254-R7) 2017; 11 Da Ros (oe-29-7-11254-R42) 2019; 37 Yangzhang (oe-29-7-11254-R11) 2018; 36 Wu (oe-29-7-11254-R18) 2020; 28 Agrawal (oe-29-7-11254-R33) 2012; 222 Sedov (oe-29-7-11254-R21) 2020; 50 Kotlyar (oe-29-7-11254-R24) 2020; 45 Gers (oe-29-7-11254-R53) 2000; 12 Li (oe-29-7-11254-R57) 2018; 31 Turitsyn (oe-29-7-11254-R6) 2017; 4 Shieh (oe-29-7-11254-R43) 2008; 16 Karanov (oe-29-7-11254-R31) 2019; 27 Essiambre (oe-29-7-11254-R1) 2010; 28 Le (oe-29-7-11254-R8) 2014; 22 Wahls (oe-29-7-11254-R38) 2018; 3 Agrell (oe-29-7-11254-R2) 2016; 18 Hochreiter (oe-29-7-11254-R51) 1997; 9 Thrane (oe-29-7-11254-R13) 2017; 35 Deligiannidis (oe-29-7-11254-R32) 2020; 38 Civelli (oe-29-7-11254-R45) 2020; 10 Zibar (oe-29-7-11254-R15) 2020; 31 Cartledge (oe-29-7-11254-R4) 2017; 25 Winzer (oe-29-7-11254-R3) 2018; 26 Gaiarin (oe-29-7-11254-R17) 2018; 30 Chiu (oe-29-7-11254-R54) 2016; 4 Kamalian (oe-29-7-11254-R10) 2017; 35 Derevyanko (oe-29-7-11254-R9) 2016; 7 Civelli (oe-29-7-11254-R44) 2017; 29 Le (oe-29-7-11254-R34) 2016; 34 Pankratova (oe-29-7-11254-R12) 2020; 13 Jones (oe-29-7-11254-R16) 2018; 30 Prilepsky (oe-29-7-11254-R36) 2014; 113 Le (oe-29-7-11254-R40) 2016; 34 Zakharov (oe-29-7-11254-R35) 1972; 34 Gemechu (oe-29-7-11254-R41) 2018; 30 Yousefi (oe-29-7-11254-R37) 2020; 66 |
References_xml | – volume: 7 start-page: 12710 year: 2016 ident: oe-29-7-11254-R9 publication-title: Nat. Commun. doi: 10.1038/ncomms12710 – volume: 45 start-page: 3462 year: 2020 ident: oe-29-7-11254-R24 publication-title: Opt. Lett. doi: 10.1364/OL.394115 – volume: 31 start-page: 6389 year: 2018 ident: oe-29-7-11254-R57 article-title: Visualizing the loss landscape of neural nets – volume: 35 start-page: 868 year: 2017 ident: oe-29-7-11254-R13 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2590989 – volume: 29 start-page: 6384 year: 2021 ident: oe-29-7-11254-R46 publication-title: Opt. Express doi: 10.1364/OE.414885 – volume: 31 start-page: 34 year: 2020 ident: oe-29-7-11254-R15 publication-title: Opt. Photonics News doi: 10.1364/OPN.31.3.000034 – start-page: SF2L year: 2020 ident: oe-29-7-11254-R28 article-title: Analytical model of nonlinear noise in the b-modulated optical transmission systems – volume: 29 start-page: 1332 year: 2017 ident: oe-29-7-11254-R44 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2017.2722040 – volume: 9 start-page: 1735 year: 1997 ident: oe-29-7-11254-R51 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 11 start-page: 570 year: 2017 ident: oe-29-7-11254-R7 publication-title: Nat. Photonics doi: 10.1038/nphoton.2017.118 – volume: 66 start-page: 478 year: 2020 ident: oe-29-7-11254-R37 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2019.2941479 – volume: 30 start-page: 1589 year: 2018 ident: oe-29-7-11254-R41 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2018.2860124 – volume: 13 start-page: 054021 year: 2020 ident: oe-29-7-11254-R12 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.054021 – volume: 50 start-page: 1105 year: 2020 ident: oe-29-7-11254-R21 publication-title: Quantum Electron. doi: 10.1070/QEL17463 – volume: 60 start-page: 4312 year: 2014 ident: oe-29-7-11254-R5 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2014.2321143 – volume: 3 start-page: 597 year: 2018 ident: oe-29-7-11254-R38 publication-title: J. Open Source Softw. doi: 10.21105/joss.00597 – volume: 4 start-page: 307 year: 2017 ident: oe-29-7-11254-R6 publication-title: Optica doi: 10.1364/OPTICA.4.000307 – volume: 36 start-page: 485 year: 2018 ident: oe-29-7-11254-R11 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2798412 – volume: 18 start-page: 063002 year: 2016 ident: oe-29-7-11254-R2 publication-title: J. Opt. doi: 10.1088/2040-8978/18/6/063002 – volume: 34 start-page: 62 year: 1972 ident: oe-29-7-11254-R35 publication-title: Soviet Physics JETP – volume: 222 year: 2012 ident: oe-29-7-11254-R33 – volume: 28 start-page: 18304 year: 2020 ident: oe-29-7-11254-R18 publication-title: Opt. Express doi: 10.1364/OE.394971 – volume: 34 start-page: 2459 year: 2016 ident: oe-29-7-11254-R40 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2536780 – volume: 28 start-page: 662 year: 2010 ident: oe-29-7-11254-R1 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2009.2039464 – volume: 16 start-page: 841 year: 2008 ident: oe-29-7-11254-R43 publication-title: Opt. Express doi: 10.1364/OE.16.000841 – volume: 38 start-page: 5991 year: 2020 ident: oe-29-7-11254-R32 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2020.3007919 – volume: 30 start-page: 1983 year: 2018 ident: oe-29-7-11254-R17 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2018.2874204 – volume: 25 start-page: 1916 year: 2017 ident: oe-29-7-11254-R4 publication-title: Opt. Express doi: 10.1364/OE.25.001916 – volume: 21 start-page: 1383 year: 2019 ident: oe-29-7-11254-R14 publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2018.2880039 – volume: 37 start-page: 2335 year: 2019 ident: oe-29-7-11254-R42 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2904102 – volume: 10 start-page: 9099 year: 2020 ident: oe-29-7-11254-R45 publication-title: Appl. Sci. doi: 10.3390/app10249099 – volume: 22 start-page: 26720 year: 2014 ident: oe-29-7-11254-R8 publication-title: Opt. Express doi: 10.1364/OE.22.026720 – volume: 35 start-page: 5464 year: 2017 ident: oe-29-7-11254-R10 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2775105 – volume: 4 start-page: 357 year: 2016 ident: oe-29-7-11254-R54 publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00104 – volume: 30 start-page: 1079 year: 2018 ident: oe-29-7-11254-R16 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2018.2831693 – volume: 113 start-page: 013901 year: 2014 ident: oe-29-7-11254-R36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.013901 – volume: 12 start-page: 2451 year: 2000 ident: oe-29-7-11254-R53 publication-title: Neural Comput. doi: 10.1162/089976600300015015 – volume: 27 start-page: 19650 year: 2019 ident: oe-29-7-11254-R31 publication-title: Opt. Express doi: 10.1364/OE.27.019650 – volume: 26 start-page: 24190 year: 2018 ident: oe-29-7-11254-R3 publication-title: Opt. Express doi: 10.1364/OE.26.024190 – volume: 34 start-page: 1778 year: 2016 ident: oe-29-7-11254-R34 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2015.2511084 |
SSID | ssj0014797 |
Score | 2.547272 |
Snippet | We evaluate improvement in the performance of the optical transmission systems operating with the continuous nonlinear Fourier spectrum by the artificial... |
SourceID | swepub proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 11254 |
SubjectTerms | Computer Science Datavetenskap |
Title | Convolutional long short-term memory neural network equalizer for nonlinear Fourier transform-based optical transmission systems |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33820241 https://www.proquest.com/docview/2509273572 https://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-24986 https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-91383 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBIvaNzLYDIIJKQqWxM7cfJYjaKJCcpDmfYWObHDqnZp1SQT7QPiX_B3Ob7U7bZKDF6iyHaT1OeL_Z2Tc0HoLYtABxCMeDIkzKOim3iJjKlHeRF144IzEqt4589fouNv9NNZeNZq_d7wWmrq7CBfbo0r-R-pQhvIVUXJ_oNk3UWhAc5BvnAECcPxVjI-mpaX9gYw0xNVNqg6Bz7tqfW2c6GcaBcdlbESekvj792ROoxyKefawbA0mTL4XNVX0sXr6hWT9dQGJzrTmbF263YAhbKu2fzP1SazHcx0wmf5Y-acOnRETT1ZGB_uwUSOK14K5w18wi-0kcU7AcXdGMiV5-_SbRRfeTlWXgCX3EYVLUrXd8qrxQQAV45td6_kQHSr0YhvGjIC7cllrR1m7QVNE9RZu__KLW12wV7_qFm5GZvVF7ijyUh9Y18gEQVhDvoHFAiriVrdkmb7w-i0l07n39PzUZWCXhpHd9DdgAEpUz6hP_vu8xRlpmrP6ulsyiq4y6G7x1Wic0N7uZaaVtOZ4S56YPUQ3DOgeohasnyE7ml_4Lx6jH5dgRZW0MJraGEDLWyghS20sIMWBvxgBy1soYWvQQtbaOFNaGELrSdo-LE_PDr2bLEOLycJrT2h8svCC07zLIsDGWYiDCImuhmjPBQ-yXIG5znsFwEPuiQkSSYIYUns-3koffIU7cBzyecIJ0IUfpKrrE-CirCIozyhNCSZqkFPSNFG71cTm-Y2kb2qpzJJ9dfZiKaDfmpk0EZv3NCZyd6ybdDrlXRS-K_qgxkv5bQBCACbBnofsqCNnhmxucsQAtwZ6G8bvTNydD3bkfSXcdN5k8IMxuTFLa-3h-6vX6KXaKeeN_IV8OM629d2pX2N2D9YBcnw |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+long+short-term+memory+neural+network+equalizer+for+nonlinear+Fourier+transform-based+optical+transmission+systems&rft.jtitle=Optics+express&rft.au=Kotlyar%2C+Oleksandr&rft.au=Kamalian-Kopae%2C+Morteza&rft.au=Pankratova%2C+Maryna&rft.au=Vasylchenkova%2C+Anastasiia&rft.date=2021-03-29&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=29&rft.issue=7&rft.spage=11254&rft_id=info:doi/10.1364%2FOE.419314&rft.externalDocID=oai_DiVA_org_his_24986 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |