Application of BP Neural Network Algorithm in Traditional Hydrological Model for Flood Forecasting
Flooding contributes to tremendous hazards every year; more accurate forecasting may significantly mitigate the damages and loss caused by flood disasters. Current hydrological models are either purely knowledge-based or data-driven. A combination of data-driven method (artificial neural networks in...
Saved in:
Published in | Water (Basel) Vol. 9; no. 1; p. 48 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2073-4441 2073-4441 |
DOI | 10.3390/w9010048 |
Cover
Abstract | Flooding contributes to tremendous hazards every year; more accurate forecasting may significantly mitigate the damages and loss caused by flood disasters. Current hydrological models are either purely knowledge-based or data-driven. A combination of data-driven method (artificial neural networks in this paper) and knowledge-based method (traditional hydrological model) may booster simulation accuracy. In this study, we proposed a new back-propagation (BP) neural network algorithm and applied it in the semi-distributed Xinanjiang (XAJ) model. The improved hydrological model is capable of updating the flow forecasting error without losing the leading time. The proposed method was tested in a real case study for both single period corrections and real-time corrections. The results reveal that the proposed method could significantly increase the accuracy of flood forecasting and indicate that the global correction effect is superior to the second-order autoregressive correction method in real-time correction. |
---|---|
AbstractList | Flooding contributes to tremendous hazards every year; more accurate forecasting may significantly mitigate the damages and loss caused by flood disasters. Current hydrological models are either purely knowledge-based or data-driven. A combination of data-driven method (artificial neural networks in this paper) and knowledge-based method (traditional hydrological model) may booster simulation accuracy. In this study, we proposed a new back-propagation (BP) neural network algorithm and applied it in the semi-distributed Xinanjiang (XAJ) model. The improved hydrological model is capable of updating the flow forecasting error without losing the leading time. The proposed method was tested in a real case study for both single period corrections and real-time corrections. The results reveal that the proposed method could significantly increase the accuracy of flood forecasting and indicate that the global correction effect is superior to the second-order autoregressive correction method in real-time correction. |
Audience | Academic |
Author | Shi, Peng Chen, Xingyu Qu, Simin Jiang, Peng Dai, Yunqiu Wang, Jianjin Xiao, Ziwei Hu, Jianwei Chen, Yingbing |
Author_xml | – sequence: 1 givenname: Jianjin surname: Wang fullname: Wang, Jianjin – sequence: 2 givenname: Peng surname: Shi fullname: Shi, Peng – sequence: 3 givenname: Peng surname: Jiang fullname: Jiang, Peng – sequence: 4 givenname: Jianwei surname: Hu fullname: Hu, Jianwei – sequence: 5 givenname: Simin orcidid: 0000-0002-1450-1194 surname: Qu fullname: Qu, Simin – sequence: 6 givenname: Xingyu surname: Chen fullname: Chen, Xingyu – sequence: 7 givenname: Yingbing surname: Chen fullname: Chen, Yingbing – sequence: 8 givenname: Yunqiu surname: Dai fullname: Dai, Yunqiu – sequence: 9 givenname: Ziwei surname: Xiao fullname: Xiao, Ziwei |
BookMark | eNqFkU1rHDEMhk1JoUkayE8w9NIcNvXn2HPchG5TSD8O6XmwPfbWqXc0sWdY9t_XyaYfFJpIBwnxvAK9OkIHAwweoVNKzjlvybttSyghQr9Ah4wovhBC0IO_-lfopJRbUkO0WktyiOxyHFN0ZoowYAj44iv-7OdsUi3TFvIPvExryHH6vsFxwDfZ9PGercDVrs-QYF3VCX-C3iccIONVAujxCrJ3pkxxWL9GL4NJxZ881mP0bfX-5vJqcf3lw8fL5fXC8VZMi14zRqgVklnHrW0aYp0j0jnaO9kaJXtNjG2lDtZKKY1SLQmKSaeNCpI6fozO9nvnYTS7rUmpG3PcmLzrKOnu_el--VPZt3t2zHA3-zJ1m1icT8kMHubSMU4lU43i7bMo1Y3mTCjOK_rmH_QW5ly9eqAY5ZKRplLne2ptku_iEGDKxtXs_Sa6-tAQ63yptFKNYIT9EbgMpWQfOhenh49VYUxPXPdb8F8jfgKi5a2c |
CitedBy_id | crossref_primary_10_1007_s12145_024_01454_9 crossref_primary_10_3934_environsci_2025004 crossref_primary_10_1016_j_ijhydene_2024_11_468 crossref_primary_10_1142_S2047684123500069 crossref_primary_10_1007_s12517_019_5031_7 crossref_primary_10_3390_w9050347 crossref_primary_10_3390_w17060784 crossref_primary_10_1007_s12652_021_03446_9 crossref_primary_10_1007_s42044_019_00051_0 crossref_primary_10_3390_hydrology10070141 crossref_primary_10_1155_2022_3411203 crossref_primary_10_1002_hyp_13410 crossref_primary_10_1080_10106049_2019_1665715 crossref_primary_10_3390_su16198517 crossref_primary_10_3390_w16030472 crossref_primary_10_3390_w13020196 crossref_primary_10_1007_s13131_023_2149_y crossref_primary_10_1016_j_eswa_2022_118747 crossref_primary_10_1029_2022JD037634 crossref_primary_10_1016_j_jhydrol_2021_126423 crossref_primary_10_1007_s11269_019_02351_3 crossref_primary_10_1155_2021_5578871 crossref_primary_10_3390_app142412008 crossref_primary_10_3390_su16104161 crossref_primary_10_1016_j_jhydrol_2023_129205 crossref_primary_10_1134_S1995080224604909 crossref_primary_10_3390_w10070876 crossref_primary_10_2478_heem_2022_0005 crossref_primary_10_3390_w16131763 crossref_primary_10_1109_ACCESS_2020_2977718 crossref_primary_10_3390_w13151997 crossref_primary_10_1016_j_ejrh_2019_100652 crossref_primary_10_3390_app12157464 crossref_primary_10_1016_j_eswa_2021_116257 crossref_primary_10_1016_j_jhydrol_2024_132471 crossref_primary_10_3233_JIFS_211269 crossref_primary_10_3390_w11010009 crossref_primary_10_3390_ijerph17145204 crossref_primary_10_3390_agriculture15020140 crossref_primary_10_3390_pr7030177 crossref_primary_10_1038_s41598_024_62127_7 crossref_primary_10_1155_2022_2848255 crossref_primary_10_1016_j_jpdc_2022_03_010 crossref_primary_10_2166_nh_2020_048 crossref_primary_10_1007_s10661_018_7012_9 crossref_primary_10_1093_ijlct_ctab100 crossref_primary_10_1016_j_jhydrol_2022_127653 crossref_primary_10_1049_joe_2019_0655 crossref_primary_10_3390_app8020261 crossref_primary_10_3390_w16162216 crossref_primary_10_1155_2020_8821627 crossref_primary_10_3390_met9040458 crossref_primary_10_3390_f13111870 crossref_primary_10_1051_matecconf_201824601093 crossref_primary_10_1515_geo_2020_0166 crossref_primary_10_1109_ACCESS_2022_3150015 crossref_primary_10_1007_s40808_020_00780_3 crossref_primary_10_5194_piahs_379_55_2018 crossref_primary_10_1007_s40808_022_01540_1 crossref_primary_10_3390_w11071387 crossref_primary_10_5194_piahs_379_335_2018 crossref_primary_10_3390_w13152095 crossref_primary_10_3390_app10228240 crossref_primary_10_3390_w10010056 crossref_primary_10_1038_s41598_021_96250_6 crossref_primary_10_1080_23311916_2024_2360007 crossref_primary_10_1016_j_biosystemseng_2018_04_022 crossref_primary_10_1155_2021_3443189 crossref_primary_10_1155_2022_4027667 crossref_primary_10_3390_molecules26133835 crossref_primary_10_1007_s11356_023_28936_5 crossref_primary_10_3390_w10020235 crossref_primary_10_3390_w16111556 crossref_primary_10_46300_9106_2022_16_127 crossref_primary_10_1007_s11081_020_09538_3 crossref_primary_10_1155_2022_7355233 crossref_primary_10_1007_s12205_022_0559_6 crossref_primary_10_1007_s12652_018_0837_9 crossref_primary_10_3390_w11091848 crossref_primary_10_3390_w13040437 crossref_primary_10_3390_w10030310 crossref_primary_10_3390_s22249701 crossref_primary_10_1007_s11082_023_05770_0 crossref_primary_10_5004_dwt_2018_22596 crossref_primary_10_2166_hydro_2023_161 crossref_primary_10_3390_w13040550 crossref_primary_10_1016_j_oceaneng_2021_110435 crossref_primary_10_1109_ACCESS_2023_3241995 crossref_primary_10_3390_hydrology11030035 crossref_primary_10_3390_en11010163 |
Cites_doi | 10.1016/S1364-8152(99)00007-9 10.7551/mitpress/3163.001.0001 10.1016/j.jhydrol.2015.06.008 10.1016/j.jhydrol.2010.05.040 10.1002/int.4550080406 10.1016/j.advwatres.2013.06.010 10.1016/j.jhydrol.2009.06.005 10.1016/j.jhydrol.2012.11.041 10.1061/(ASCE)1084-0699(2000)5:2(115) 10.1002/hyp.6184 10.1109/45.329294 10.1109/JPROC.1996.503146 10.1016/j.jhydrol.2010.10.001 10.1016/j.crte.2004.10.017 10.1016/j.jhydrol.2007.01.013 10.1016/j.jhydrol.2014.06.037 10.1002/1099-1085(20001015)14:14<2473::AID-HYP109>3.0.CO;2-J 10.1007/s11069-004-4537-8 10.1002/2015WR017234 10.1016/S0893-6080(96)00102-5 10.1016/j.aej.2014.06.010 10.1061/(ASCE)HE.1943-5584.0000848 10.1007/s11269-016-1454-z 10.1029/WS006p0105 10.1016/j.asoc.2015.09.049 10.1016/j.jhydrol.2008.05.020 10.1002/2014JD022414 10.1029/2003WR002355 10.3112/erdkunde.2008.03.04 10.1061/(ASCE)HE.1943-5584.0000578 10.1016/0022-1694(92)90096-E 10.1098/rsta.2002.1008 10.1016/S1004-9541(12)60611-9 10.1061/(ASCE)HE.1943-5584.0000120 10.1016/0022-1694(95)02918-4 10.1016/j.jhydrol.2014.09.042 10.1002/hyp.5581 10.1111/j.1752-1688.2006.tb03851.x |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 MDPI AG Copyright MDPI AG 2017 |
Copyright_xml | – notice: COPYRIGHT 2017 MDPI AG – notice: Copyright MDPI AG 2017 |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7QH 7UA C1K F1W H97 L.G 7S9 L.6 ADTOC UNPAY |
DOI | 10.3390/w9010048 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2073-4441 |
EndPage | 48 |
ExternalDocumentID | 10.3390/w9010048 4309142531 A787764202 10_3390_w9010048 |
GeographicLocations | China China, People's Republic |
GeographicLocations_xml | – name: China – name: China, People's Republic |
GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION D1J E3Z ECGQY EDH ESTFP GX1 IAO IPNFZ ITC KQ8 MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC PUEGO RIG PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7QH 7UA C1K F1W H97 L.G 7S9 L.6 ADTOC OZF UNPAY |
ID | FETCH-LOGICAL-c394t-d82201b452bc3bb660bcc05cc1dc59a75d80ab958fbb555a7790f725c8a7f51c3 |
IEDL.DBID | BENPR |
ISSN | 2073-4441 |
IngestDate | Tue Aug 19 23:21:54 EDT 2025 Fri Sep 05 13:24:14 EDT 2025 Mon Sep 08 12:32:54 EDT 2025 Mon Jun 30 10:59:06 EDT 2025 Tue Jun 10 21:13:13 EDT 2025 Thu Apr 24 23:10:46 EDT 2025 Wed Oct 01 04:56:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-d82201b452bc3bb660bcc05cc1dc59a75d80ab958fbb555a7790f725c8a7f51c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1450-1194 |
OpenAccessLink | https://www.proquest.com/docview/1862135206?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 1862135206 |
PQPubID | 2032318 |
PageCount | 1 |
ParticipantIDs | unpaywall_primary_10_3390_w9010048 proquest_miscellaneous_2315276739 proquest_miscellaneous_1868324733 proquest_journals_1862135206 gale_infotracacademiconefile_A787764202 crossref_citationtrail_10_3390_w9010048 crossref_primary_10_3390_w9010048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Water (Basel) |
PublicationYear | 2017 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Jiang (ref_6) 2016; 30 Bebis (ref_25) 1994; 13 ref_14 Huijuan (ref_35) 2012; 20 Maier (ref_24) 2000; 15 ref_34 Werner (ref_3) 2005; 36 ref_32 Si (ref_44) 2015; 51 Wang (ref_2) 2015; 527 Peng (ref_15) 2009; 14 Moore (ref_7) 2005; 337 Young (ref_8) 2002; 360 Aqil (ref_20) 2007; 337 Yuan (ref_40) 2009; 326 Elsafi (ref_22) 2014; 53 Rang (ref_37) 2006; 42 Cloke (ref_9) 2009; 375 Yao (ref_31) 1993; 8 Hartmann (ref_23) 2008; 62 Shi (ref_13) 2013; 18 Sudheer (ref_36) 2005; 19 Jiang (ref_4) 2013; 479 Vrugt (ref_16) 2003; 39 Chen (ref_43) 2013; 59 Wu (ref_17) 2010; 389 Yu (ref_5) 2015; 120 Yu (ref_33) 1997; 10 Rientjes (ref_18) 2008; 44 Zhao (ref_38) 1992; 135 Govindaraju (ref_26) 2000; 5 Hosseini (ref_11) 2016; 38 ref_1 Tingsanchali (ref_12) 2000; 14 Jain (ref_19) 2004; 40 Tiwari (ref_21) 2010; 394 ref_29 Yapo (ref_41) 1996; 181 Fares (ref_27) 2014; 519 ref_28 Yao (ref_39) 2014; 517 Han (ref_30) 2007; 21 Weimin (ref_10) 2013; 19 Komma (ref_42) 2008; 357 |
References_xml | – ident: ref_28 – volume: 15 start-page: 101 year: 2000 ident: ref_24 article-title: Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications publication-title: Environ. Model. Softw. doi: 10.1016/S1364-8152(99)00007-9 – ident: ref_29 doi: 10.7551/mitpress/3163.001.0001 – ident: ref_32 – volume: 527 start-page: 1130 year: 2015 ident: ref_2 article-title: Flood hazard risk assessment model based on random forest publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.06.008 – volume: 389 start-page: 146 year: 2010 ident: ref_17 article-title: Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.05.040 – volume: 8 start-page: 539 year: 1993 ident: ref_31 article-title: A review of evolutionary artificial neural networks publication-title: Int. J. Intell. Syst. doi: 10.1002/int.4550080406 – volume: 59 start-page: 209 year: 2013 ident: ref_43 article-title: Hydrological data assimilation with the ensemble square-root-filter: Use of streamflow observations to update model states for real-time flash flood forecasting publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2013.06.010 – volume: 375 start-page: 613 year: 2009 ident: ref_9 article-title: Ensemble flood forecasting: A review publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.06.005 – volume: 479 start-page: 75 year: 2013 ident: ref_4 article-title: How well do the gcms/rcms capture the multi-scale temporal variability of precipitation in the southwestern united states? publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.11.041 – volume: 5 start-page: 115 year: 2000 ident: ref_26 article-title: Artificial neural networks in hydrology. I: Preliminary concepts publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2000)5:2(115) – volume: 21 start-page: 223 year: 2007 ident: ref_30 article-title: Uncertainties in real-time flood forecasting with neural networks publication-title: Hydrol. Process. doi: 10.1002/hyp.6184 – volume: 13 start-page: 27 year: 1994 ident: ref_25 article-title: Feed-forward neural networks publication-title: IEEE Potentials doi: 10.1109/45.329294 – ident: ref_34 doi: 10.1109/JPROC.1996.503146 – volume: 394 start-page: 458 year: 2010 ident: ref_21 article-title: Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ann (WBANN) hybrid approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.10.001 – ident: ref_14 – volume: 337 start-page: 203 year: 2005 ident: ref_7 article-title: Forecasting for flood warning publication-title: C. R. Geosci. doi: 10.1016/j.crte.2004.10.017 – volume: 337 start-page: 22 year: 2007 ident: ref_20 article-title: A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.01.013 – ident: ref_1 – volume: 517 start-page: 1035 year: 2014 ident: ref_39 article-title: Improving the flood prediction capability of the xinanjiang model in ungauged nested catchments by coupling it with the geomorphologic instantaneous unit hydrograph publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.06.037 – volume: 14 start-page: 2473 year: 2000 ident: ref_12 article-title: Application of tank, nam, arma and neural network models to flood forecasting publication-title: Hydrol. Process. doi: 10.1002/1099-1085(20001015)14:14<2473::AID-HYP109>3.0.CO;2-J – volume: 36 start-page: 25 year: 2005 ident: ref_3 article-title: Flood forecasting and warning at the river basin and at the European scale publication-title: Nat. Hazards doi: 10.1007/s11069-004-4537-8 – volume: 51 start-page: 5128 year: 2015 ident: ref_44 article-title: Updating real-time flood forecasts via the dynamic system response curve method publication-title: Water Resour. Res. doi: 10.1002/2015WR017234 – volume: 10 start-page: 517 year: 1997 ident: ref_33 article-title: Efficient backpropagation learning using optimal learning rate and momentum publication-title: Neural Netw. doi: 10.1016/S0893-6080(96)00102-5 – volume: 53 start-page: 655 year: 2014 ident: ref_22 article-title: Artificial neural networks (ANNS) for flood forecasting at dongola station in the River Nile, Sudan publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2014.06.010 – volume: 19 start-page: 747 year: 2013 ident: ref_10 article-title: Flow updating in real-time flood forecasting based on runoff correction by a dynamic system response curve publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000848 – volume: 30 start-page: 4807 year: 2016 ident: ref_6 article-title: The spatiotemporal characteristics of extreme precipitation events in the western united states publication-title: Water Resour. Manag. doi: 10.1007/s11269-016-1454-z – volume: 39 start-page: 105 year: 2003 ident: ref_16 article-title: A shuffled complex evolution metropolis algorithm for estimating posterior distribution of watershed model parameters publication-title: Calibration Watershed Models doi: 10.1029/WS006p0105 – volume: 38 start-page: 329 year: 2016 ident: ref_11 article-title: Integrating support vector regression and a geomorphologic artificial neural network for daily rainfall-runoff modeling publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.09.049 – volume: 357 start-page: 228 year: 2008 ident: ref_42 article-title: Soil moisture updating by ensemble kalman filtering in real-time flood forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.05.020 – volume: 120 start-page: 2676 year: 2015 ident: ref_5 article-title: Changes of seasonal storm properties in california and nevada from an ensemble of climate projections publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2014JD022414 – volume: 44 start-page: W08434 year: 2008 ident: ref_18 article-title: Multiobjective training of artificial neural networks for rainfall-runoff modeling publication-title: Water Resour. Res. – volume: 40 start-page: W04302 year: 2004 ident: ref_19 article-title: Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques publication-title: Water Resour. Res. doi: 10.1029/2003WR002355 – volume: 62 start-page: 231 year: 2008 ident: ref_23 article-title: Forecasting water levels at the yangtze river with neural networks publication-title: Erdkunde doi: 10.3112/erdkunde.2008.03.04 – volume: 18 start-page: 1522 year: 2013 ident: ref_13 article-title: Application of a swat model for hydrological modeling in the xixian watershed, china publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000578 – volume: 135 start-page: 371 year: 1992 ident: ref_38 article-title: The xinanjiang model applied in China publication-title: J. Hydrol. doi: 10.1016/0022-1694(92)90096-E – volume: 326 start-page: 63 year: 2009 ident: ref_40 article-title: Application of the xinanjiang vegetation—Hydrology model to streamflow simulation over the Hanjiang river basin, China publication-title: IAHS-AISH Publ. – volume: 360 start-page: 1433 year: 2002 ident: ref_8 article-title: Advances in real-time flood forecasting publication-title: Philos. Trans. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2002.1008 – volume: 20 start-page: 1219 year: 2012 ident: ref_35 article-title: Fast learning in spiking neural networks by learning rate adaptation publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(12)60611-9 – volume: 14 start-page: 1299 year: 2009 ident: ref_15 article-title: Water-stage forecasting in a multitributary tidal river using a bidirectional muskingum method publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000120 – volume: 181 start-page: 23 year: 1996 ident: ref_41 article-title: Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data publication-title: J. Hydrol. doi: 10.1016/0022-1694(95)02918-4 – volume: 519 start-page: 3436 year: 2014 ident: ref_27 article-title: Rainfall-runoff modeling in a flashy tropical watershed using the distributed HL-RDHM model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.09.042 – volume: 19 start-page: 1277 year: 2005 ident: ref_36 article-title: Rainfall-runoff modelling using artificial neural networks: Comparison of network types publication-title: Hydrol. Process. doi: 10.1002/hyp.5581 – volume: 42 start-page: 473 year: 2006 ident: ref_37 article-title: Application of Grey Model and Artificial Neural Networks to Flood Forecasting publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.2006.tb03851.x |
SSID | ssj0000498850 |
Score | 2.4313583 |
Snippet | Flooding contributes to tremendous hazards every year; more accurate forecasting may significantly mitigate the damages and loss caused by flood disasters.... |
SourceID | unpaywall proquest gale crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 48 |
SubjectTerms | Accuracy Algorithms Back propagation Case studies China disasters Flood forecasting Floods Forecasting Freshwater hydrologic models Hydrology Knowledge Mean square errors Neural networks Precipitation Propagation Runoff Stream flow Teaching methods Watersheds |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB_O3oPeg99iz1NWEe4p12Q3m01AkCiWIljuwcL5IGE_slqMaemld5x_vTNNUsvhgficSbLJzM78Znf2NwCvrfJR5oUPSuXLgHgmA4O6DkTieMadtomlA86fpslkFn88k2d78KY_C0NllZiKzzdOmqP9BTEG7FE2ikZxOlo6__aiW0dCHB8LCnDqFuwntL00gP3Z9DT_Qv3k-jtbvlmBmf3okioRQmr0sxOBrvvhA7i9rpf66lJX1U6gGd-Dr_0Q2_qSHyfrxpzYX9fYG__3G-7D3Q6Bsrw1mQewV9YP4WCHl_ARmPzPtjZbePbulBGJB941bavGWV59W6zmzfefbF4zjHdu3q4pssmVW_X-lFGjtYohLGZjqo9n1AfU6nOqtH4Ms_GHz-8nQdeMIbAii5vAIZIIIxNLbqwwBn-4sTaU1kbOykwr6dJQm0ym3hgppSYeQ6-4tKlWXkZWPIFBvajLp8Bi7hAXSMT1nscS872ktMK6NNvgF62HcNwrqLAdUzk1zKgKzFhIlUWvyiG83EouW3aOv8gck44LmrD4FKu7cwc4FqK-KnJ0WQqzsJAP4ag3g6KbyedFhClfhCg1TPBl28s4B2ljRdflYr2RQccYKyFulkEcLblKlMiG8GprYjeO-vBfhJ7BHU4oY7MidASDZrUunyNGasyLbir8Biw5C8A priority: 102 providerName: Unpaywall |
Title | Application of BP Neural Network Algorithm in Traditional Hydrological Model for Flood Forecasting |
URI | https://www.proquest.com/docview/1862135206 https://www.proquest.com/docview/1868324733 https://www.proquest.com/docview/2315276739 https://www.mdpi.com/2073-4441/9/1/48/pdf?version=1484307827 |
UnpaywallVersion | publishedVersion |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: ADMLS dateStart: 20100901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2073-4441 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFD602wftg3jF1VpGEfoUmsxkMsmDSCpdF8GwiAvrU5hLphZidm13Kf33npPLdhHrY8gkmczlnG_OnPk-gPdW-SjzwgeV8lVAPJOBwb4OROJ4xp22iaUDzl-LZDqPvyzkYg-K4SwMpVUONrE11G5pKUZ-GiH0jhAthMnH1e-AVKNod3WQ0NC9tIL70FKM7cMBJ1XlERycnRezb9uoC-LhNJVhx0IrcL1_ekP5CSHJ_-z4pb-t8yE82DQrfXuj63rH_Uwew6MeN7K86-gnsFc1T-Fwh03wGZj8bjOaLT07mzGi3sCnii7Xm-X1Bf7S-ucvdtkw9FLusosEsumtuxqsICN5tJohmGUTympnpN5p9TXlRz-H-eT8-6dp0EsoBFZk8Tpw6P_DyMSSGyuMSZLQWBtKayNnZaaVdGmoTSZTb4yUUhP7oFdc2lQrLyMrXsCoWTbVS2Axd-jNJaJxz2OJq7SkssK6NGtRh9ZjOBkasLQ9vzjJXNQlrjOoqcuhqcfwdlty1XFq_KPMCfVBSdMM32J1f1oA60KEVWWOhkbh2inkYzgauqns5991eTda8GPb2zhzaDtEN9Vy05ZBcxYrIe4vg-hXcpUokY3h3XYI3FvrV_-vy2t4yAkVtBGcIxitrzbVG8Q0a3PcD9Rj2P-8iPBqXszyH38AwBv5JQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROFAOFX2poZRuq1acLNa7Xj8OqAotUSgQoQokbu4-7IJknEASRflz_W2d8SNEVemNs8f2anZn5pvd2W8APtko95Nc5l4W5ZlHPJOewbn2ZOhEIpy2oaULzqeDsH8RfL9Ulyvwu70LQ2WVrU-sHLUbWtoj3_MRevuIFnj4ZXTrUdcoOl1tW2joprWC268oxpqLHcfZfIYp3Hj_6BvO92cheofnX_te02XAszIJJp7DEMl9EyhhrDQmDLmxlitrfWdVoiPlYq5NouLcGKWUJoK-PBLKxjrKlW8lfvcJrCHskGhVaweHg7Mfi10exN9xrHjNeitlwvdmVA_Bqd3QUhz8OxpswPq0HOn5TBfFUrjrbcKzBqeybr2wnsNKVr6AjSX2wpdguveH32yYs4MzRlQf-Nagri1n3eIXqnBydcOuS4ZR0V3XO4-sP3d3rddl1I6tYAieWY-q6Bl1C7V6TPXYr-DiUZT5GlbLYZm9ARYIh-hBIfrPRaAwKwwzK62LkwrlaN2B3VaBqW34zKmtRpFiXkOqTltVd-DDQnJUc3j8Q2aX5iAls8avWN3cTsCxEEFW2kXHFmGuxkUHtttpSht7H6f3qxN_tniMlkrHL7rMhtNKBt1nEEn5sAyibSWiMJJJBz4ulsCDo976_1jew3r__PQkPTkaHL-Fp4IQSbV7tA2rk7tp9g7x1MTsNIuWwc_HtpM_u5Iz8A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qqQTtAbGKQIEBgXqyYs94vBwqlNJGKYUoQlTqzczioZWME5pEUf4iv4r3vKQRotx69tgevfV7M28BeGdiF6ROOC-PXe5Rn0lPI689EVmecqtMZKjA-csoGp6Fn87l-Rb8bmthKK2ytYmVobYTQ2fkvQChd4BowY96rkmLGB8NPkx_eTRBim5a23EaqhmzYA-qdmNNkcdpvlpiODc7ODlC3r_nfHD87ePQayYOeEak4dyz6C79QIeSayO0jiJfG-NLYwJrZKpiaRNf6VQmTmsppaJmfS7m0iQqdjIwAr97B7ZjqhftwPbh8Wj8dX3ig1g8SaRfd8AVIvV7S8qN8Gn00IZP_Nsz7MK9RTlVq6Uqig3XN3gA9xvMyvq1kD2Erbx8BLsbnQwfg-5fX4SziWOHY0ZtP_CtUZ1nzvrFDyTh_OInuywZekh7WZ9CsuHKXrUWmNFotoIhkGYDyqhnNDnUqBnlZj-Bs1sh5lPolJMyfwYs5BaRhMRIwPFQYoQY5UYYm6QV4lGqC_stATPT9DanERtFhjEOkTprSd2FN-uV07qfxz_W7BMPMlJx_IpRTaUC7oWaZWV9NHIxxm0-78Jey6as0f1Zdi2p-LP1Y9RauopRZT5ZVGvQlIaxEDevQeQteRyhMHXh7VoEbtz18__v5TXcRX3JPp-MTl_ADidwUh0k7UFnfrXIXyK0mutXjcwy-H7bavIH_ug4Kg |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB_O3oPeg99iz1NWEe4p12Q3m01AkCiWIljuwcL5IGE_slqMaemld5x_vTNNUsvhgficSbLJzM78Znf2NwCvrfJR5oUPSuXLgHgmA4O6DkTieMadtomlA86fpslkFn88k2d78KY_C0NllZiKzzdOmqP9BTEG7FE2ikZxOlo6__aiW0dCHB8LCnDqFuwntL00gP3Z9DT_Qv3k-jtbvlmBmf3okioRQmr0sxOBrvvhA7i9rpf66lJX1U6gGd-Dr_0Q2_qSHyfrxpzYX9fYG__3G-7D3Q6Bsrw1mQewV9YP4WCHl_ARmPzPtjZbePbulBGJB941bavGWV59W6zmzfefbF4zjHdu3q4pssmVW_X-lFGjtYohLGZjqo9n1AfU6nOqtH4Ms_GHz-8nQdeMIbAii5vAIZIIIxNLbqwwBn-4sTaU1kbOykwr6dJQm0ym3hgppSYeQ6-4tKlWXkZWPIFBvajLp8Bi7hAXSMT1nscS872ktMK6NNvgF62HcNwrqLAdUzk1zKgKzFhIlUWvyiG83EouW3aOv8gck44LmrD4FKu7cwc4FqK-KnJ0WQqzsJAP4ag3g6KbyedFhClfhCg1TPBl28s4B2ljRdflYr2RQccYKyFulkEcLblKlMiG8GprYjeO-vBfhJ7BHU4oY7MidASDZrUunyNGasyLbir8Biw5C8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+BP+Neural+Network+Algorithm+in+Traditional+Hydrological+Model+for+Flood+Forecasting&rft.jtitle=Water+%28Basel%29&rft.au=Wang%2C+Jianjin&rft.au=Shi%2C+Peng&rft.au=Jiang%2C+Peng&rft.au=Hu%2C+Jianwei&rft.date=2017-01-01&rft.pub=MDPI+AG&rft.eissn=2073-4441&rft.volume=9&rft.issue=1&rft.spage=48&rft_id=info:doi/10.3390%2Fw9010048&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4309142531 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |