Application of BP Neural Network Algorithm in Traditional Hydrological Model for Flood Forecasting

Flooding contributes to tremendous hazards every year; more accurate forecasting may significantly mitigate the damages and loss caused by flood disasters. Current hydrological models are either purely knowledge-based or data-driven. A combination of data-driven method (artificial neural networks in...

Full description

Saved in:
Bibliographic Details
Published inWater (Basel) Vol. 9; no. 1; p. 48
Main Authors Wang, Jianjin, Shi, Peng, Jiang, Peng, Hu, Jianwei, Qu, Simin, Chen, Xingyu, Chen, Yingbing, Dai, Yunqiu, Xiao, Ziwei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2017
Subjects
Online AccessGet full text
ISSN2073-4441
2073-4441
DOI10.3390/w9010048

Cover

Abstract Flooding contributes to tremendous hazards every year; more accurate forecasting may significantly mitigate the damages and loss caused by flood disasters. Current hydrological models are either purely knowledge-based or data-driven. A combination of data-driven method (artificial neural networks in this paper) and knowledge-based method (traditional hydrological model) may booster simulation accuracy. In this study, we proposed a new back-propagation (BP) neural network algorithm and applied it in the semi-distributed Xinanjiang (XAJ) model. The improved hydrological model is capable of updating the flow forecasting error without losing the leading time. The proposed method was tested in a real case study for both single period corrections and real-time corrections. The results reveal that the proposed method could significantly increase the accuracy of flood forecasting and indicate that the global correction effect is superior to the second-order autoregressive correction method in real-time correction.
AbstractList Flooding contributes to tremendous hazards every year; more accurate forecasting may significantly mitigate the damages and loss caused by flood disasters. Current hydrological models are either purely knowledge-based or data-driven. A combination of data-driven method (artificial neural networks in this paper) and knowledge-based method (traditional hydrological model) may booster simulation accuracy. In this study, we proposed a new back-propagation (BP) neural network algorithm and applied it in the semi-distributed Xinanjiang (XAJ) model. The improved hydrological model is capable of updating the flow forecasting error without losing the leading time. The proposed method was tested in a real case study for both single period corrections and real-time corrections. The results reveal that the proposed method could significantly increase the accuracy of flood forecasting and indicate that the global correction effect is superior to the second-order autoregressive correction method in real-time correction.
Audience Academic
Author Shi, Peng
Chen, Xingyu
Qu, Simin
Jiang, Peng
Dai, Yunqiu
Wang, Jianjin
Xiao, Ziwei
Hu, Jianwei
Chen, Yingbing
Author_xml – sequence: 1
  givenname: Jianjin
  surname: Wang
  fullname: Wang, Jianjin
– sequence: 2
  givenname: Peng
  surname: Shi
  fullname: Shi, Peng
– sequence: 3
  givenname: Peng
  surname: Jiang
  fullname: Jiang, Peng
– sequence: 4
  givenname: Jianwei
  surname: Hu
  fullname: Hu, Jianwei
– sequence: 5
  givenname: Simin
  orcidid: 0000-0002-1450-1194
  surname: Qu
  fullname: Qu, Simin
– sequence: 6
  givenname: Xingyu
  surname: Chen
  fullname: Chen, Xingyu
– sequence: 7
  givenname: Yingbing
  surname: Chen
  fullname: Chen, Yingbing
– sequence: 8
  givenname: Yunqiu
  surname: Dai
  fullname: Dai, Yunqiu
– sequence: 9
  givenname: Ziwei
  surname: Xiao
  fullname: Xiao, Ziwei
BookMark eNqFkU1rHDEMhk1JoUkayE8w9NIcNvXn2HPchG5TSD8O6XmwPfbWqXc0sWdY9t_XyaYfFJpIBwnxvAK9OkIHAwweoVNKzjlvybttSyghQr9Ah4wovhBC0IO_-lfopJRbUkO0WktyiOxyHFN0ZoowYAj44iv-7OdsUi3TFvIPvExryHH6vsFxwDfZ9PGercDVrs-QYF3VCX-C3iccIONVAujxCrJ3pkxxWL9GL4NJxZ881mP0bfX-5vJqcf3lw8fL5fXC8VZMi14zRqgVklnHrW0aYp0j0jnaO9kaJXtNjG2lDtZKKY1SLQmKSaeNCpI6fozO9nvnYTS7rUmpG3PcmLzrKOnu_el--VPZt3t2zHA3-zJ1m1icT8kMHubSMU4lU43i7bMo1Y3mTCjOK_rmH_QW5ly9eqAY5ZKRplLne2ptku_iEGDKxtXs_Sa6-tAQ63yptFKNYIT9EbgMpWQfOhenh49VYUxPXPdb8F8jfgKi5a2c
CitedBy_id crossref_primary_10_1007_s12145_024_01454_9
crossref_primary_10_3934_environsci_2025004
crossref_primary_10_1016_j_ijhydene_2024_11_468
crossref_primary_10_1142_S2047684123500069
crossref_primary_10_1007_s12517_019_5031_7
crossref_primary_10_3390_w9050347
crossref_primary_10_3390_w17060784
crossref_primary_10_1007_s12652_021_03446_9
crossref_primary_10_1007_s42044_019_00051_0
crossref_primary_10_3390_hydrology10070141
crossref_primary_10_1155_2022_3411203
crossref_primary_10_1002_hyp_13410
crossref_primary_10_1080_10106049_2019_1665715
crossref_primary_10_3390_su16198517
crossref_primary_10_3390_w16030472
crossref_primary_10_3390_w13020196
crossref_primary_10_1007_s13131_023_2149_y
crossref_primary_10_1016_j_eswa_2022_118747
crossref_primary_10_1029_2022JD037634
crossref_primary_10_1016_j_jhydrol_2021_126423
crossref_primary_10_1007_s11269_019_02351_3
crossref_primary_10_1155_2021_5578871
crossref_primary_10_3390_app142412008
crossref_primary_10_3390_su16104161
crossref_primary_10_1016_j_jhydrol_2023_129205
crossref_primary_10_1134_S1995080224604909
crossref_primary_10_3390_w10070876
crossref_primary_10_2478_heem_2022_0005
crossref_primary_10_3390_w16131763
crossref_primary_10_1109_ACCESS_2020_2977718
crossref_primary_10_3390_w13151997
crossref_primary_10_1016_j_ejrh_2019_100652
crossref_primary_10_3390_app12157464
crossref_primary_10_1016_j_eswa_2021_116257
crossref_primary_10_1016_j_jhydrol_2024_132471
crossref_primary_10_3233_JIFS_211269
crossref_primary_10_3390_w11010009
crossref_primary_10_3390_ijerph17145204
crossref_primary_10_3390_agriculture15020140
crossref_primary_10_3390_pr7030177
crossref_primary_10_1038_s41598_024_62127_7
crossref_primary_10_1155_2022_2848255
crossref_primary_10_1016_j_jpdc_2022_03_010
crossref_primary_10_2166_nh_2020_048
crossref_primary_10_1007_s10661_018_7012_9
crossref_primary_10_1093_ijlct_ctab100
crossref_primary_10_1016_j_jhydrol_2022_127653
crossref_primary_10_1049_joe_2019_0655
crossref_primary_10_3390_app8020261
crossref_primary_10_3390_w16162216
crossref_primary_10_1155_2020_8821627
crossref_primary_10_3390_met9040458
crossref_primary_10_3390_f13111870
crossref_primary_10_1051_matecconf_201824601093
crossref_primary_10_1515_geo_2020_0166
crossref_primary_10_1109_ACCESS_2022_3150015
crossref_primary_10_1007_s40808_020_00780_3
crossref_primary_10_5194_piahs_379_55_2018
crossref_primary_10_1007_s40808_022_01540_1
crossref_primary_10_3390_w11071387
crossref_primary_10_5194_piahs_379_335_2018
crossref_primary_10_3390_w13152095
crossref_primary_10_3390_app10228240
crossref_primary_10_3390_w10010056
crossref_primary_10_1038_s41598_021_96250_6
crossref_primary_10_1080_23311916_2024_2360007
crossref_primary_10_1016_j_biosystemseng_2018_04_022
crossref_primary_10_1155_2021_3443189
crossref_primary_10_1155_2022_4027667
crossref_primary_10_3390_molecules26133835
crossref_primary_10_1007_s11356_023_28936_5
crossref_primary_10_3390_w10020235
crossref_primary_10_3390_w16111556
crossref_primary_10_46300_9106_2022_16_127
crossref_primary_10_1007_s11081_020_09538_3
crossref_primary_10_1155_2022_7355233
crossref_primary_10_1007_s12205_022_0559_6
crossref_primary_10_1007_s12652_018_0837_9
crossref_primary_10_3390_w11091848
crossref_primary_10_3390_w13040437
crossref_primary_10_3390_w10030310
crossref_primary_10_3390_s22249701
crossref_primary_10_1007_s11082_023_05770_0
crossref_primary_10_5004_dwt_2018_22596
crossref_primary_10_2166_hydro_2023_161
crossref_primary_10_3390_w13040550
crossref_primary_10_1016_j_oceaneng_2021_110435
crossref_primary_10_1109_ACCESS_2023_3241995
crossref_primary_10_3390_hydrology11030035
crossref_primary_10_3390_en11010163
Cites_doi 10.1016/S1364-8152(99)00007-9
10.7551/mitpress/3163.001.0001
10.1016/j.jhydrol.2015.06.008
10.1016/j.jhydrol.2010.05.040
10.1002/int.4550080406
10.1016/j.advwatres.2013.06.010
10.1016/j.jhydrol.2009.06.005
10.1016/j.jhydrol.2012.11.041
10.1061/(ASCE)1084-0699(2000)5:2(115)
10.1002/hyp.6184
10.1109/45.329294
10.1109/JPROC.1996.503146
10.1016/j.jhydrol.2010.10.001
10.1016/j.crte.2004.10.017
10.1016/j.jhydrol.2007.01.013
10.1016/j.jhydrol.2014.06.037
10.1002/1099-1085(20001015)14:14<2473::AID-HYP109>3.0.CO;2-J
10.1007/s11069-004-4537-8
10.1002/2015WR017234
10.1016/S0893-6080(96)00102-5
10.1016/j.aej.2014.06.010
10.1061/(ASCE)HE.1943-5584.0000848
10.1007/s11269-016-1454-z
10.1029/WS006p0105
10.1016/j.asoc.2015.09.049
10.1016/j.jhydrol.2008.05.020
10.1002/2014JD022414
10.1029/2003WR002355
10.3112/erdkunde.2008.03.04
10.1061/(ASCE)HE.1943-5584.0000578
10.1016/0022-1694(92)90096-E
10.1098/rsta.2002.1008
10.1016/S1004-9541(12)60611-9
10.1061/(ASCE)HE.1943-5584.0000120
10.1016/0022-1694(95)02918-4
10.1016/j.jhydrol.2014.09.042
10.1002/hyp.5581
10.1111/j.1752-1688.2006.tb03851.x
ContentType Journal Article
Copyright COPYRIGHT 2017 MDPI AG
Copyright MDPI AG 2017
Copyright_xml – notice: COPYRIGHT 2017 MDPI AG
– notice: Copyright MDPI AG 2017
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7QH
7UA
C1K
F1W
H97
L.G
7S9
L.6
ADTOC
UNPAY
DOI 10.3390/w9010048
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA

Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4441
EndPage 48
ExternalDocumentID 10.3390/w9010048
4309142531
A787764202
10_3390_w9010048
GeographicLocations China
China, People's Republic
GeographicLocations_xml – name: China
– name: China, People's Republic
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
D1J
E3Z
ECGQY
EDH
ESTFP
GX1
IAO
IPNFZ
ITC
KQ8
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
PUEGO
RIG
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7QH
7UA
C1K
F1W
H97
L.G
7S9
L.6
ADTOC
OZF
UNPAY
ID FETCH-LOGICAL-c394t-d82201b452bc3bb660bcc05cc1dc59a75d80ab958fbb555a7790f725c8a7f51c3
IEDL.DBID BENPR
ISSN 2073-4441
IngestDate Tue Aug 19 23:21:54 EDT 2025
Fri Sep 05 13:24:14 EDT 2025
Mon Sep 08 12:32:54 EDT 2025
Mon Jun 30 10:59:06 EDT 2025
Tue Jun 10 21:13:13 EDT 2025
Thu Apr 24 23:10:46 EDT 2025
Wed Oct 01 04:56:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-d82201b452bc3bb660bcc05cc1dc59a75d80ab958fbb555a7790f725c8a7f51c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1450-1194
OpenAccessLink https://www.proquest.com/docview/1862135206?pq-origsite=%requestingapplication%&accountid=15518
PQID 1862135206
PQPubID 2032318
PageCount 1
ParticipantIDs unpaywall_primary_10_3390_w9010048
proquest_miscellaneous_2315276739
proquest_miscellaneous_1868324733
proquest_journals_1862135206
gale_infotracacademiconefile_A787764202
crossref_citationtrail_10_3390_w9010048
crossref_primary_10_3390_w9010048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Water (Basel)
PublicationYear 2017
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Jiang (ref_6) 2016; 30
Bebis (ref_25) 1994; 13
ref_14
Huijuan (ref_35) 2012; 20
Maier (ref_24) 2000; 15
ref_34
Werner (ref_3) 2005; 36
ref_32
Si (ref_44) 2015; 51
Wang (ref_2) 2015; 527
Peng (ref_15) 2009; 14
Moore (ref_7) 2005; 337
Young (ref_8) 2002; 360
Aqil (ref_20) 2007; 337
Yuan (ref_40) 2009; 326
Elsafi (ref_22) 2014; 53
Rang (ref_37) 2006; 42
Cloke (ref_9) 2009; 375
Yao (ref_31) 1993; 8
Hartmann (ref_23) 2008; 62
Shi (ref_13) 2013; 18
Sudheer (ref_36) 2005; 19
Jiang (ref_4) 2013; 479
Vrugt (ref_16) 2003; 39
Chen (ref_43) 2013; 59
Wu (ref_17) 2010; 389
Yu (ref_5) 2015; 120
Yu (ref_33) 1997; 10
Rientjes (ref_18) 2008; 44
Zhao (ref_38) 1992; 135
Govindaraju (ref_26) 2000; 5
Hosseini (ref_11) 2016; 38
ref_1
Tingsanchali (ref_12) 2000; 14
Jain (ref_19) 2004; 40
Tiwari (ref_21) 2010; 394
ref_29
Yapo (ref_41) 1996; 181
Fares (ref_27) 2014; 519
ref_28
Yao (ref_39) 2014; 517
Han (ref_30) 2007; 21
Weimin (ref_10) 2013; 19
Komma (ref_42) 2008; 357
References_xml – ident: ref_28
– volume: 15
  start-page: 101
  year: 2000
  ident: ref_24
  article-title: Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
  publication-title: Environ. Model. Softw.
  doi: 10.1016/S1364-8152(99)00007-9
– ident: ref_29
  doi: 10.7551/mitpress/3163.001.0001
– ident: ref_32
– volume: 527
  start-page: 1130
  year: 2015
  ident: ref_2
  article-title: Flood hazard risk assessment model based on random forest
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.06.008
– volume: 389
  start-page: 146
  year: 2010
  ident: ref_17
  article-title: Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.05.040
– volume: 8
  start-page: 539
  year: 1993
  ident: ref_31
  article-title: A review of evolutionary artificial neural networks
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.4550080406
– volume: 59
  start-page: 209
  year: 2013
  ident: ref_43
  article-title: Hydrological data assimilation with the ensemble square-root-filter: Use of streamflow observations to update model states for real-time flash flood forecasting
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2013.06.010
– volume: 375
  start-page: 613
  year: 2009
  ident: ref_9
  article-title: Ensemble flood forecasting: A review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.06.005
– volume: 479
  start-page: 75
  year: 2013
  ident: ref_4
  article-title: How well do the gcms/rcms capture the multi-scale temporal variability of precipitation in the southwestern united states?
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.11.041
– volume: 5
  start-page: 115
  year: 2000
  ident: ref_26
  article-title: Artificial neural networks in hydrology. I: Preliminary concepts
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(115)
– volume: 21
  start-page: 223
  year: 2007
  ident: ref_30
  article-title: Uncertainties in real-time flood forecasting with neural networks
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.6184
– volume: 13
  start-page: 27
  year: 1994
  ident: ref_25
  article-title: Feed-forward neural networks
  publication-title: IEEE Potentials
  doi: 10.1109/45.329294
– ident: ref_34
  doi: 10.1109/JPROC.1996.503146
– volume: 394
  start-page: 458
  year: 2010
  ident: ref_21
  article-title: Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ann (WBANN) hybrid approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.10.001
– ident: ref_14
– volume: 337
  start-page: 203
  year: 2005
  ident: ref_7
  article-title: Forecasting for flood warning
  publication-title: C. R. Geosci.
  doi: 10.1016/j.crte.2004.10.017
– volume: 337
  start-page: 22
  year: 2007
  ident: ref_20
  article-title: A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2007.01.013
– ident: ref_1
– volume: 517
  start-page: 1035
  year: 2014
  ident: ref_39
  article-title: Improving the flood prediction capability of the xinanjiang model in ungauged nested catchments by coupling it with the geomorphologic instantaneous unit hydrograph
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.06.037
– volume: 14
  start-page: 2473
  year: 2000
  ident: ref_12
  article-title: Application of tank, nam, arma and neural network models to flood forecasting
  publication-title: Hydrol. Process.
  doi: 10.1002/1099-1085(20001015)14:14<2473::AID-HYP109>3.0.CO;2-J
– volume: 36
  start-page: 25
  year: 2005
  ident: ref_3
  article-title: Flood forecasting and warning at the river basin and at the European scale
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-004-4537-8
– volume: 51
  start-page: 5128
  year: 2015
  ident: ref_44
  article-title: Updating real-time flood forecasts via the dynamic system response curve method
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR017234
– volume: 10
  start-page: 517
  year: 1997
  ident: ref_33
  article-title: Efficient backpropagation learning using optimal learning rate and momentum
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(96)00102-5
– volume: 53
  start-page: 655
  year: 2014
  ident: ref_22
  article-title: Artificial neural networks (ANNS) for flood forecasting at dongola station in the River Nile, Sudan
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2014.06.010
– volume: 19
  start-page: 747
  year: 2013
  ident: ref_10
  article-title: Flow updating in real-time flood forecasting based on runoff correction by a dynamic system response curve
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000848
– volume: 30
  start-page: 4807
  year: 2016
  ident: ref_6
  article-title: The spatiotemporal characteristics of extreme precipitation events in the western united states
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-016-1454-z
– volume: 39
  start-page: 105
  year: 2003
  ident: ref_16
  article-title: A shuffled complex evolution metropolis algorithm for estimating posterior distribution of watershed model parameters
  publication-title: Calibration Watershed Models
  doi: 10.1029/WS006p0105
– volume: 38
  start-page: 329
  year: 2016
  ident: ref_11
  article-title: Integrating support vector regression and a geomorphologic artificial neural network for daily rainfall-runoff modeling
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.09.049
– volume: 357
  start-page: 228
  year: 2008
  ident: ref_42
  article-title: Soil moisture updating by ensemble kalman filtering in real-time flood forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.05.020
– volume: 120
  start-page: 2676
  year: 2015
  ident: ref_5
  article-title: Changes of seasonal storm properties in california and nevada from an ensemble of climate projections
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2014JD022414
– volume: 44
  start-page: W08434
  year: 2008
  ident: ref_18
  article-title: Multiobjective training of artificial neural networks for rainfall-runoff modeling
  publication-title: Water Resour. Res.
– volume: 40
  start-page: W04302
  year: 2004
  ident: ref_19
  article-title: Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
  publication-title: Water Resour. Res.
  doi: 10.1029/2003WR002355
– volume: 62
  start-page: 231
  year: 2008
  ident: ref_23
  article-title: Forecasting water levels at the yangtze river with neural networks
  publication-title: Erdkunde
  doi: 10.3112/erdkunde.2008.03.04
– volume: 18
  start-page: 1522
  year: 2013
  ident: ref_13
  article-title: Application of a swat model for hydrological modeling in the xixian watershed, china
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000578
– volume: 135
  start-page: 371
  year: 1992
  ident: ref_38
  article-title: The xinanjiang model applied in China
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(92)90096-E
– volume: 326
  start-page: 63
  year: 2009
  ident: ref_40
  article-title: Application of the xinanjiang vegetation—Hydrology model to streamflow simulation over the Hanjiang river basin, China
  publication-title: IAHS-AISH Publ.
– volume: 360
  start-page: 1433
  year: 2002
  ident: ref_8
  article-title: Advances in real-time flood forecasting
  publication-title: Philos. Trans. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2002.1008
– volume: 20
  start-page: 1219
  year: 2012
  ident: ref_35
  article-title: Fast learning in spiking neural networks by learning rate adaptation
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(12)60611-9
– volume: 14
  start-page: 1299
  year: 2009
  ident: ref_15
  article-title: Water-stage forecasting in a multitributary tidal river using a bidirectional muskingum method
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000120
– volume: 181
  start-page: 23
  year: 1996
  ident: ref_41
  article-title: Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(95)02918-4
– volume: 519
  start-page: 3436
  year: 2014
  ident: ref_27
  article-title: Rainfall-runoff modeling in a flashy tropical watershed using the distributed HL-RDHM model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.09.042
– volume: 19
  start-page: 1277
  year: 2005
  ident: ref_36
  article-title: Rainfall-runoff modelling using artificial neural networks: Comparison of network types
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.5581
– volume: 42
  start-page: 473
  year: 2006
  ident: ref_37
  article-title: Application of Grey Model and Artificial Neural Networks to Flood Forecasting
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.2006.tb03851.x
SSID ssj0000498850
Score 2.4313583
Snippet Flooding contributes to tremendous hazards every year; more accurate forecasting may significantly mitigate the damages and loss caused by flood disasters....
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 48
SubjectTerms Accuracy
Algorithms
Back propagation
Case studies
China
disasters
Flood forecasting
Floods
Forecasting
Freshwater
hydrologic models
Hydrology
Knowledge
Mean square errors
Neural networks
Precipitation
Propagation
Runoff
Stream flow
Teaching methods
Watersheds
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB_O3oPeg99iz1NWEe4p12Q3m01AkCiWIljuwcL5IGE_slqMaemld5x_vTNNUsvhgficSbLJzM78Znf2NwCvrfJR5oUPSuXLgHgmA4O6DkTieMadtomlA86fpslkFn88k2d78KY_C0NllZiKzzdOmqP9BTEG7FE2ikZxOlo6__aiW0dCHB8LCnDqFuwntL00gP3Z9DT_Qv3k-jtbvlmBmf3okioRQmr0sxOBrvvhA7i9rpf66lJX1U6gGd-Dr_0Q2_qSHyfrxpzYX9fYG__3G-7D3Q6Bsrw1mQewV9YP4WCHl_ARmPzPtjZbePbulBGJB941bavGWV59W6zmzfefbF4zjHdu3q4pssmVW_X-lFGjtYohLGZjqo9n1AfU6nOqtH4Ms_GHz-8nQdeMIbAii5vAIZIIIxNLbqwwBn-4sTaU1kbOykwr6dJQm0ym3hgppSYeQ6-4tKlWXkZWPIFBvajLp8Bi7hAXSMT1nscS872ktMK6NNvgF62HcNwrqLAdUzk1zKgKzFhIlUWvyiG83EouW3aOv8gck44LmrD4FKu7cwc4FqK-KnJ0WQqzsJAP4ag3g6KbyedFhClfhCg1TPBl28s4B2ljRdflYr2RQccYKyFulkEcLblKlMiG8GprYjeO-vBfhJ7BHU4oY7MidASDZrUunyNGasyLbir8Biw5C8A
  priority: 102
  providerName: Unpaywall
Title Application of BP Neural Network Algorithm in Traditional Hydrological Model for Flood Forecasting
URI https://www.proquest.com/docview/1862135206
https://www.proquest.com/docview/1868324733
https://www.proquest.com/docview/2315276739
https://www.mdpi.com/2073-4441/9/1/48/pdf?version=1484307827
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: ADMLS
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFD602wftg3jF1VpGEfoUmsxkMsmDSCpdF8GwiAvrU5hLphZidm13Kf33npPLdhHrY8gkmczlnG_OnPk-gPdW-SjzwgeV8lVAPJOBwb4OROJ4xp22iaUDzl-LZDqPvyzkYg-K4SwMpVUONrE11G5pKUZ-GiH0jhAthMnH1e-AVKNod3WQ0NC9tIL70FKM7cMBJ1XlERycnRezb9uoC-LhNJVhx0IrcL1_ekP5CSHJ_-z4pb-t8yE82DQrfXuj63rH_Uwew6MeN7K86-gnsFc1T-Fwh03wGZj8bjOaLT07mzGi3sCnii7Xm-X1Bf7S-ucvdtkw9FLusosEsumtuxqsICN5tJohmGUTympnpN5p9TXlRz-H-eT8-6dp0EsoBFZk8Tpw6P_DyMSSGyuMSZLQWBtKayNnZaaVdGmoTSZTb4yUUhP7oFdc2lQrLyMrXsCoWTbVS2Axd-jNJaJxz2OJq7SkssK6NGtRh9ZjOBkasLQ9vzjJXNQlrjOoqcuhqcfwdlty1XFq_KPMCfVBSdMM32J1f1oA60KEVWWOhkbh2inkYzgauqns5991eTda8GPb2zhzaDtEN9Vy05ZBcxYrIe4vg-hXcpUokY3h3XYI3FvrV_-vy2t4yAkVtBGcIxitrzbVG8Q0a3PcD9Rj2P-8iPBqXszyH38AwBv5JQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROFAOFX2poZRuq1acLNa7Xj8OqAotUSgQoQokbu4-7IJknEASRflz_W2d8SNEVemNs8f2anZn5pvd2W8APtko95Nc5l4W5ZlHPJOewbn2ZOhEIpy2oaULzqeDsH8RfL9Ulyvwu70LQ2WVrU-sHLUbWtoj3_MRevuIFnj4ZXTrUdcoOl1tW2joprWC268oxpqLHcfZfIYp3Hj_6BvO92cheofnX_te02XAszIJJp7DEMl9EyhhrDQmDLmxlitrfWdVoiPlYq5NouLcGKWUJoK-PBLKxjrKlW8lfvcJrCHskGhVaweHg7Mfi10exN9xrHjNeitlwvdmVA_Bqd3QUhz8OxpswPq0HOn5TBfFUrjrbcKzBqeybr2wnsNKVr6AjSX2wpdguveH32yYs4MzRlQf-Nagri1n3eIXqnBydcOuS4ZR0V3XO4-sP3d3rddl1I6tYAieWY-q6Bl1C7V6TPXYr-DiUZT5GlbLYZm9ARYIh-hBIfrPRaAwKwwzK62LkwrlaN2B3VaBqW34zKmtRpFiXkOqTltVd-DDQnJUc3j8Q2aX5iAls8avWN3cTsCxEEFW2kXHFmGuxkUHtttpSht7H6f3qxN_tniMlkrHL7rMhtNKBt1nEEn5sAyibSWiMJJJBz4ulsCDo976_1jew3r__PQkPTkaHL-Fp4IQSbV7tA2rk7tp9g7x1MTsNIuWwc_HtpM_u5Iz8A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qqQTtAbGKQIEBgXqyYs94vBwqlNJGKYUoQlTqzczioZWME5pEUf4iv4r3vKQRotx69tgevfV7M28BeGdiF6ROOC-PXe5Rn0lPI689EVmecqtMZKjA-csoGp6Fn87l-Rb8bmthKK2ytYmVobYTQ2fkvQChd4BowY96rkmLGB8NPkx_eTRBim5a23EaqhmzYA-qdmNNkcdpvlpiODc7ODlC3r_nfHD87ePQayYOeEak4dyz6C79QIeSayO0jiJfG-NLYwJrZKpiaRNf6VQmTmsppaJmfS7m0iQqdjIwAr97B7ZjqhftwPbh8Wj8dX3ig1g8SaRfd8AVIvV7S8qN8Gn00IZP_Nsz7MK9RTlVq6Uqig3XN3gA9xvMyvq1kD2Erbx8BLsbnQwfg-5fX4SziWOHY0ZtP_CtUZ1nzvrFDyTh_OInuywZekh7WZ9CsuHKXrUWmNFotoIhkGYDyqhnNDnUqBnlZj-Bs1sh5lPolJMyfwYs5BaRhMRIwPFQYoQY5UYYm6QV4lGqC_stATPT9DanERtFhjEOkTprSd2FN-uV07qfxz_W7BMPMlJx_IpRTaUC7oWaZWV9NHIxxm0-78Jey6as0f1Zdi2p-LP1Y9RauopRZT5ZVGvQlIaxEDevQeQteRyhMHXh7VoEbtz18__v5TXcRX3JPp-MTl_ADidwUh0k7UFnfrXIXyK0mutXjcwy-H7bavIH_ug4Kg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB_O3oPeg99iz1NWEe4p12Q3m01AkCiWIljuwcL5IGE_slqMaemld5x_vTNNUsvhgficSbLJzM78Znf2NwCvrfJR5oUPSuXLgHgmA4O6DkTieMadtomlA86fpslkFn88k2d78KY_C0NllZiKzzdOmqP9BTEG7FE2ikZxOlo6__aiW0dCHB8LCnDqFuwntL00gP3Z9DT_Qv3k-jtbvlmBmf3okioRQmr0sxOBrvvhA7i9rpf66lJX1U6gGd-Dr_0Q2_qSHyfrxpzYX9fYG__3G-7D3Q6Bsrw1mQewV9YP4WCHl_ARmPzPtjZbePbulBGJB941bavGWV59W6zmzfefbF4zjHdu3q4pssmVW_X-lFGjtYohLGZjqo9n1AfU6nOqtH4Ms_GHz-8nQdeMIbAii5vAIZIIIxNLbqwwBn-4sTaU1kbOykwr6dJQm0ym3hgppSYeQ6-4tKlWXkZWPIFBvajLp8Bi7hAXSMT1nscS872ktMK6NNvgF62HcNwrqLAdUzk1zKgKzFhIlUWvyiG83EouW3aOv8gck44LmrD4FKu7cwc4FqK-KnJ0WQqzsJAP4ag3g6KbyedFhClfhCg1TPBl28s4B2ljRdflYr2RQccYKyFulkEcLblKlMiG8GprYjeO-vBfhJ7BHU4oY7MidASDZrUunyNGasyLbir8Biw5C8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+BP+Neural+Network+Algorithm+in+Traditional+Hydrological+Model+for+Flood+Forecasting&rft.jtitle=Water+%28Basel%29&rft.au=Wang%2C+Jianjin&rft.au=Shi%2C+Peng&rft.au=Jiang%2C+Peng&rft.au=Hu%2C+Jianwei&rft.date=2017-01-01&rft.pub=MDPI+AG&rft.eissn=2073-4441&rft.volume=9&rft.issue=1&rft.spage=48&rft_id=info:doi/10.3390%2Fw9010048&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4309142531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon