Asymptotic stability of a pendulum with quadratic damping

The equation considered in this paper is x ′ ′ + h ( t ) x ′ | x ′ | + ω 2 sin x = 0 , where h ( t ) is continuous and nonnegative for t ≥ 0 and ω is a positive real number. This may be regarded as an equation of motion of an underwater pendulum. The damping force is proportional to the square of th...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für angewandte Mathematik und Physik Vol. 65; no. 5; pp. 865 - 884
Main Author Sugie, Jitsuro
Format Journal Article
LanguageEnglish
Published Basel Springer Basel 01.10.2014
Subjects
Online AccessGet full text
ISSN0044-2275
1420-9039
DOI10.1007/s00033-013-0361-x

Cover

Abstract The equation considered in this paper is x ′ ′ + h ( t ) x ′ | x ′ | + ω 2 sin x = 0 , where h ( t ) is continuous and nonnegative for t ≥ 0 and ω is a positive real number. This may be regarded as an equation of motion of an underwater pendulum. The damping force is proportional to the square of the velocity. The primary purpose is to establish necessary and sufficient conditions on the time-varying coefficient h ( t ) for the origin to be asymptotically stable. The phase plane analysis concerning the positive orbits of an equivalent planar system to the above-mentioned equation is used to obtain the main results. In addition, solutions of the system are compared with a particular solution of the first-order nonlinear differential equation u ′ + h ( t ) u | u | + 1 = 0 . Some examples are also included to illustrate our results. Finally, the present results are extended to be applied to an equation with a nonnegative real-power damping force.
AbstractList The equation considered in this paper is x ′ ′ + h ( t ) x ′ | x ′ | + ω 2 sin x = 0 , where h ( t ) is continuous and nonnegative for t ≥ 0 and ω is a positive real number. This may be regarded as an equation of motion of an underwater pendulum. The damping force is proportional to the square of the velocity. The primary purpose is to establish necessary and sufficient conditions on the time-varying coefficient h ( t ) for the origin to be asymptotically stable. The phase plane analysis concerning the positive orbits of an equivalent planar system to the above-mentioned equation is used to obtain the main results. In addition, solutions of the system are compared with a particular solution of the first-order nonlinear differential equation u ′ + h ( t ) u | u | + 1 = 0 . Some examples are also included to illustrate our results. Finally, the present results are extended to be applied to an equation with a nonnegative real-power damping force.
Author Sugie Jitsuro
Author_xml – sequence: 1
  givenname: Jitsuro
  surname: Sugie
  fullname: Sugie, Jitsuro
  email: jsugie@riko.shimane-u.ac.jp
  organization: Department of Mathematics, Shimane University
BackLink https://cir.nii.ac.jp/crid/1570009752741440000$$DView record in CiNii
BookMark eNp9kD1PwzAQhi1UJNrCD2DLwBo4f6Sux6riS6rEArPlxnZxlTjBdkT773EUJgaGu5NO73N6712gme-8QegWwz0G4A8RACgtAeeiK1yeLtAcMwKlACpmaA7AWEkIr67QIsZjVnMMdI7EJp7bPnXJ1UVMau8al85FZwtV9MbroRna4tulz-JrUDqoUaZV2zt_uEaXVjXR3PzOJfp4enzfvpS7t-fX7WZX1lSwVNaaELPaqzVVRgjNCK6MXVNdE76yNq_A7g2hlGCiGKdGaSswV2sQ1DCrK7pEfLpbhy7GYKysXcpGOp-Cco3EIMcE5JSAzAnIMQF5yiT-Q_bBtSqc_2XIxMSs9QcT5LEbgs8P_gvdTZB3LrsbO654lgleEc4wYzAyP6xpev4
CitedBy_id crossref_primary_10_1007_s00605_018_1192_9
crossref_primary_10_1088_1361_6404_ac1446
crossref_primary_10_1088_1742_6596_2090_1_012008
crossref_primary_10_1155_2022_7803798
crossref_primary_10_1063_5_0159852
Cites_doi 10.2307/20022396
10.1007/b139028
10.1007/BF01231091
10.1007/s00605-011-0297-1
10.1090/S0002-9939-2013-11615-1
10.1006/jdeq.1995.1087
10.1007/s10884-012-9256-3
10.1119/1.14703
10.1093/qmath/12.1.123
10.1016/j.jmaa.2010.04.035
10.1016/0022-460X(82)90491-6
10.1016/S0029-8018(99)00026-8
10.1016/S0029-8018(98)00023-7
10.1016/0362-546X(95)00093-B
10.1007/s11071-010-9861-9
10.1016/j.na.2011.07.028
10.1016/0029-8018(82)90012-9
10.2219/rtriqr.49.209
10.2298/PIM0999119C
10.1002/9780470549162
10.2307/2303961
10.1016/j.camwa.2009.07.014
10.1007/BF03184624
10.1007/s10440-013-9839-y
10.1007/978-1-4684-9362-7
10.3233/ISP-1991-3841303
10.1080/00423114.1999.12063109
10.5957/jsr.1978.22.3.178
10.1115/1.4011142
ContentType Journal Article
Copyright Springer Basel 2013
Copyright_xml – notice: Springer Basel 2013
DBID RYH
AAYXX
CITATION
DOI 10.1007/s00033-013-0361-x
DatabaseName CiNii Complete
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
Engineering
EISSN 1420-9039
EndPage 884
ExternalDocumentID 10_1007_s00033_013_0361_x
120005647367
GroupedDBID -~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
203
29R
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
6TJ
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFDZB
AFHIU
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PQQKQ
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNS
ROL
RPX
RSV
RYH
S16
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
-5B
-5G
-BR
-EM
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AARHV
ABQSL
ADINQ
AEFIE
AEKMD
AFEXP
AFFNX
AGGDS
ARCEE
BBWZM
CAG
COF
GQ6
IHE
KOW
NDZJH
R4E
RNI
RZK
S1Z
S26
S28
SCLPG
SCV
T16
VOH
_50
AAYXX
ABRTQ
ADHKG
AFOHR
CITATION
ID FETCH-LOGICAL-c394t-cd22e6ba83ae99d4215ef83dc276ffe990fbe233212a473eadf917a8093e4fd53
IEDL.DBID U2A
ISSN 0044-2275
IngestDate Wed Oct 01 06:29:49 EDT 2025
Thu Apr 24 23:02:17 EDT 2025
Fri Feb 21 02:38:50 EST 2025
Fri Jun 27 00:14:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Phase plane analysis
Asymptotic stability
34D45
37C75
Secondary 34C10
Comparison of solutions
Quadratic damping force
Damped pendulum
70K05
Primary 34D23
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-cd22e6ba83ae99d4215ef83dc276ffe990fbe233212a473eadf917a8093e4fd53
OpenAccessLink https://ir.lib.shimane-u.ac.jp/32684
PageCount 20
ParticipantIDs crossref_citationtrail_10_1007_s00033_013_0361_x
crossref_primary_10_1007_s00033_013_0361_x
springer_journals_10_1007_s00033_013_0361_x
nii_cinii_1570009752741440000
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationSubtitle Journal of Applied Mathematics and Physics / Journal de Mathématiques et de Physique appliquées
PublicationTitle Zeitschrift für angewandte Mathematik und Physik
PublicationTitleAbbrev Z. Angew. Math. Phys
PublicationYear 2014
Publisher Springer Basel
Publisher_xml – name: Springer Basel
References Wylie (CR35) 1940; 47
Smith (CR27) 1961; 12
Richardson (CR23) 1963; 11
Citterio, Talamo (CR7) 2010; 59
Sugie (CR28) 2011; 74
Dalzell (CR9) 1978; 22
Kovacic, Rakaric (CR18) 2011; 64
CR36
CR13
CR12
CR33
Simmonds (CR26) 1982; 84
Sugie (CR29) 2013; 141
Neves, Pérez, Valerio (CR21) 1999; 26
Bacciotti, Rosier (CR2) 2005
Bass, Haddara (CR3) 1991; 38
Sugie, Hata (CR30) 2012; 166
Hatvani, Krisztin, Totik (CR15) 1995; 119
Sugie, Hata, Onitsuka (CR31) 2010; 371
Peirce (CR22) 1908; 44
Biringen, Chow (CR5) 2011
Eng, Lau, Low, Seet, Chin (CR10) 2008; 16
Michel, Hou, Liu (CR19) 2008
Sugie, Shimadu, Yamasaki (CR32) 2012; 24
Cvetićanin (CR8) 2009; 85
Ahmed, Tapley (CR1) 1984; 33
Nelson, Olsson (CR20) 1986; 54
Klotter (CR17) 1955; 22
CR24
Berg (CR4) 1999; 33
Shimozawa, Tohtake (CR25) 2008; 49
Hatvani (CR14) 1995; 25
Hatvani, Totik (CR16) 1993; 6
Cardo, Francescutto, Nabergoj (CR6) 1982; 9
Halanay (CR11) 1996
Taylan (CR34) 2000; 27
M. Berg (361_CR4) 1999; 33
M. Taylan (361_CR34) 2000; 27
J. Sugie (361_CR29) 2013; 141
J. Sugie (361_CR30) 2012; 166
361_CR24
A.H. Ahmed (361_CR1) 1984; 33
A. Halanay (361_CR11) 1996
B.O. Peirce (361_CR22) 1908; 44
C.R. Wylie Jr (361_CR35) 1940; 47
J. Sugie (361_CR32) 2012; 24
P.D. Richardson (361_CR23) 1963; 11
L. Hatvani (361_CR14) 1995; 25
A. Bacciotti (361_CR2) 2005
R.A. Smith (361_CR27) 1961; 12
J. Sugie (361_CR31) 2010; 371
S. Biringen (361_CR5) 2011
M. Citterio (361_CR7) 2010; 59
I. Kovacic (361_CR18) 2011; 64
D.W. Bass (361_CR3) 1991; 38
L. Cvetićanin (361_CR8) 2009; 85
M.A.S. Neves (361_CR21) 1999; 26
A.N. Michel (361_CR19) 2008
Y.H. Eng (361_CR10) 2008; 16
D.S. Simmonds (361_CR26) 1982; 84
J.F. Dalzell (361_CR9) 1978; 22
361_CR33
361_CR12
361_CR13
R.A. Nelson (361_CR20) 1986; 54
361_CR36
L. Hatvani (361_CR15) 1995; 119
K. Shimozawa (361_CR25) 2008; 49
J. Sugie (361_CR28) 2011; 74
A. Cardo (361_CR6) 1982; 9
K. Klotter (361_CR17) 1955; 22
L. Hatvani (361_CR16) 1993; 6
References_xml – volume: 16
  start-page: 326
  year: 2008
  end-page: 331
  ident: CR10
  article-title: Estimation of the hydrodynamic coefficients of an ROV using free decay pendulum motion
  publication-title: Eng. Lett.
– volume: 6
  start-page: 835
  year: 1993
  end-page: 848
  ident: CR16
  article-title: Asymptotic stability of the equilibrium of the damped oscillator
  publication-title: Diff. Integral Eqns.
– volume: 44
  start-page: 63
  year: 1908
  end-page: 88
  ident: CR22
  article-title: The damping of the oscillations of swinging bodies by the resistance of the air
  publication-title: Proc. Am. Acad. Arts Sci.
  doi: 10.2307/20022396
– year: 2005
  ident: CR2
  publication-title: Lyapunov Functions and Stability in Control Theory
  doi: 10.1007/b139028
– volume: 11
  start-page: 397
  year: 1963
  end-page: 400
  ident: CR23
  article-title: Free oscillations with damping proportional to the square of the velocity
  publication-title: Appl. Sci. Res. Sect. A
– volume: 33
  start-page: 1
  year: 1984
  end-page: 20
  ident: CR1
  article-title: Equivalence of the generalized Lie-Hori method and the method of averaging
  publication-title: Celestial Mech.
  doi: 10.1007/BF01231091
– volume: 22
  start-page: 178
  year: 1978
  end-page: 185
  ident: CR9
  article-title: A note on the form of ship roll damping
  publication-title: J. Ship Res.
– volume: 166
  start-page: 255
  year: 2012
  end-page: 280
  ident: CR30
  article-title: Global asymptotic stability for half-linear differential systems with generalized almost periodic coefficients
  publication-title: Monatsh. Math.
  doi: 10.1007/s00605-011-0297-1
– ident: CR12
– volume: 141
  start-page: 2419
  year: 2013
  end-page: 2427
  ident: CR29
  article-title: Smith-type criterion for the asymptotic stability of a pendulum with time-dependent damping
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-2013-11615-1
– ident: CR33
– volume: 38
  start-page: 51
  year: 1991
  end-page: 71
  ident: CR3
  article-title: Nonlinear models of ship roll damping
  publication-title: Int. Shipbuild. Prog.
– volume: 119
  start-page: 209
  year: 1995
  end-page: 223
  ident: CR15
  article-title: A necessary and sufficient condition for the asymptotic stability of the damped oscillator
  publication-title: J. Differ. Equ.
  doi: 10.1006/jdeq.1995.1087
– year: 1996
  ident: CR11
  publication-title: Differential Equations: Stability, Oscillations, Time Lags
– volume: 24
  start-page: 777
  year: 2012
  end-page: 802
  ident: CR32
  article-title: Global asymptotic stability for oscillators with superlinear damping
  publication-title: J. Dyn. Differ. Equ.
  doi: 10.1007/s10884-012-9256-3
– volume: 54
  start-page: 112
  year: 1986
  end-page: 121
  ident: CR20
  article-title: The pendulum–rich physics from a simple system
  publication-title: Am. J. Phys.
  doi: 10.1119/1.14703
– volume: 12
  start-page: 123
  year: 1961
  end-page: 126
  ident: CR27
  article-title: Asymptotic stability of ′′ +  ( ) ′ +  =  0
  publication-title: Q. J. Math. Oxford (2)
  doi: 10.1093/qmath/12.1.123
– year: 2008
  ident: CR19
  publication-title: Stability Dynamical Systems: Continuous, Discontinuous, and Discrete Systems
– volume: 371
  start-page: 95
  year: 2010
  end-page: 112
  ident: CR31
  article-title: Global asymptotic stability for half-linear differential systems with periodic coefficients
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.04.035
– volume: 84
  start-page: 453
  year: 1982
  end-page: 461
  ident: CR26
  article-title: The response of a simple pendulum with Newtonian damping
  publication-title: J. Sound Vibr.
  doi: 10.1016/0022-460X(82)90491-6
– volume: 27
  start-page: 921
  year: 2000
  end-page: 932
  ident: CR34
  article-title: The effect of nonlinear damping and restoring in ship rolling
  publication-title: Ocean Eng.
  doi: 10.1016/S0029-8018(99)00026-8
– volume: 26
  start-page: 1389
  year: 1999
  end-page: 1419
  ident: CR21
  article-title: Stability of small fishing vessels in longitudinal waves
  publication-title: Ocean Eng.
  doi: 10.1016/S0029-8018(98)00023-7
– volume: 25
  start-page: 991
  year: 1995
  end-page: 1002
  ident: CR14
  article-title: On the asymptotic stability for a two-dimensional linear nonautonomous differential system
  publication-title: Nonlinear Anal.
  doi: 10.1016/0362-546X(95)00093-B
– volume: 64
  start-page: 293
  year: 2011
  end-page: 304
  ident: CR18
  article-title: Study of oscillators with a non-negative real-power restoring force and quadratic damping
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-010-9861-9
– ident: CR13
– volume: 22
  start-page: 493
  year: 1955
  end-page: 499
  ident: CR17
  article-title: Free oscillations of systems having quadratic damping and arbitrary restoring forces
  publication-title: J. Appl. Mech.
– volume: 74
  start-page: 7151
  year: 2011
  end-page: 7167
  ident: CR28
  article-title: Global asymptotic stability for damped half-linear oscillators
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2011.07.028
– volume: 9
  start-page: 171
  year: 1982
  end-page: 179
  ident: CR6
  article-title: On damping models in free and forced rolling motion
  publication-title: Ocean Eng.
  doi: 10.1016/0029-8018(82)90012-9
– volume: 49
  start-page: 209
  year: 2008
  end-page: 214
  ident: CR25
  article-title: An air spring model with non-linear damping for vertical motion
  publication-title: Q. Rep. RTRI
  doi: 10.2219/rtriqr.49.209
– volume: 85
  start-page: 119
  issue: 99
  year: 2009
  end-page: 130
  ident: CR8
  article-title: Oscillator with strong quadratic damping force
  publication-title: Publ. Inst. Math. (Beograd) (N.S.)
  doi: 10.2298/PIM0999119C
– ident: CR36
– volume: 33
  start-page: 528
  year: 1999
  end-page: 539
  ident: CR4
  article-title: A three-dimensional airspring model with friction and orifice damping
  publication-title: Veh. Syst. Dyn.
– year: 2011
  ident: CR5
  publication-title: An Introduction to Computational Fluid Mechanics by Example
  doi: 10.1002/9780470549162
– volume: 47
  start-page: 474
  year: 1940
  end-page: 476
  ident: CR35
  article-title: Questions, discussions, and notes: simple harmonic motion with quadratic damping
  publication-title: Am. Math. Mon.
  doi: 10.2307/2303961
– volume: 59
  start-page: 352
  year: 2010
  end-page: 359
  ident: CR7
  article-title: Damped oscillators: a continuous model for velocity dependent drag
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.07.014
– ident: CR24
– volume: 26
  start-page: 1389
  year: 1999
  ident: 361_CR21
  publication-title: Ocean Eng.
  doi: 10.1016/S0029-8018(98)00023-7
– volume-title: An Introduction to Computational Fluid Mechanics by Example
  year: 2011
  ident: 361_CR5
  doi: 10.1002/9780470549162
– volume: 47
  start-page: 474
  year: 1940
  ident: 361_CR35
  publication-title: Am. Math. Mon.
– volume: 54
  start-page: 112
  year: 1986
  ident: 361_CR20
  publication-title: Am. J. Phys.
  doi: 10.1119/1.14703
– volume: 9
  start-page: 171
  year: 1982
  ident: 361_CR6
  publication-title: Ocean Eng.
  doi: 10.1016/0029-8018(82)90012-9
– volume: 24
  start-page: 777
  year: 2012
  ident: 361_CR32
  publication-title: J. Dyn. Differ. Equ.
  doi: 10.1007/s10884-012-9256-3
– volume: 44
  start-page: 63
  year: 1908
  ident: 361_CR22
  publication-title: Proc. Am. Acad. Arts Sci.
  doi: 10.2307/20022396
– ident: 361_CR13
– volume: 85
  start-page: 119
  issue: 99
  year: 2009
  ident: 361_CR8
  publication-title: Publ. Inst. Math. (Beograd) (N.S.)
  doi: 10.2298/PIM0999119C
– volume: 11
  start-page: 397
  year: 1963
  ident: 361_CR23
  publication-title: Appl. Sci. Res. Sect. A
  doi: 10.1007/BF03184624
– volume: 25
  start-page: 991
  year: 1995
  ident: 361_CR14
  publication-title: Nonlinear Anal.
  doi: 10.1016/0362-546X(95)00093-B
– volume: 16
  start-page: 326
  year: 2008
  ident: 361_CR10
  publication-title: Eng. Lett.
– ident: 361_CR36
– volume: 371
  start-page: 95
  year: 2010
  ident: 361_CR31
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.04.035
– volume-title: Stability Dynamical Systems: Continuous, Discontinuous, and Discrete Systems
  year: 2008
  ident: 361_CR19
– volume: 119
  start-page: 209
  year: 1995
  ident: 361_CR15
  publication-title: J. Differ. Equ.
  doi: 10.1006/jdeq.1995.1087
– ident: 361_CR33
  doi: 10.1007/s10440-013-9839-y
– volume: 33
  start-page: 1
  year: 1984
  ident: 361_CR1
  publication-title: Celestial Mech.
  doi: 10.1007/BF01231091
– volume: 64
  start-page: 293
  year: 2011
  ident: 361_CR18
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-010-9861-9
– volume: 74
  start-page: 7151
  year: 2011
  ident: 361_CR28
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2011.07.028
– volume: 141
  start-page: 2419
  year: 2013
  ident: 361_CR29
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-2013-11615-1
– volume-title: Lyapunov Functions and Stability in Control Theory
  year: 2005
  ident: 361_CR2
  doi: 10.1007/b139028
– ident: 361_CR24
  doi: 10.1007/978-1-4684-9362-7
– volume-title: Differential Equations: Stability, Oscillations, Time Lags
  year: 1996
  ident: 361_CR11
– volume: 38
  start-page: 51
  year: 1991
  ident: 361_CR3
  publication-title: Int. Shipbuild. Prog.
  doi: 10.3233/ISP-1991-3841303
– ident: 361_CR12
– volume: 49
  start-page: 209
  year: 2008
  ident: 361_CR25
  publication-title: Q. Rep. RTRI
  doi: 10.2219/rtriqr.49.209
– volume: 12
  start-page: 123
  year: 1961
  ident: 361_CR27
  publication-title: Q. J. Math. Oxford (2)
  doi: 10.1093/qmath/12.1.123
– volume: 33
  start-page: 528
  year: 1999
  ident: 361_CR4
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423114.1999.12063109
– volume: 166
  start-page: 255
  year: 2012
  ident: 361_CR30
  publication-title: Monatsh. Math.
  doi: 10.1007/s00605-011-0297-1
– volume: 22
  start-page: 178
  year: 1978
  ident: 361_CR9
  publication-title: J. Ship Res.
  doi: 10.5957/jsr.1978.22.3.178
– volume: 59
  start-page: 352
  year: 2010
  ident: 361_CR7
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.07.014
– volume: 6
  start-page: 835
  year: 1993
  ident: 361_CR16
  publication-title: Diff. Integral Eqns.
– volume: 22
  start-page: 493
  year: 1955
  ident: 361_CR17
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4011142
– volume: 84
  start-page: 453
  year: 1982
  ident: 361_CR26
  publication-title: J. Sound Vibr.
  doi: 10.1016/0022-460X(82)90491-6
– volume: 27
  start-page: 921
  year: 2000
  ident: 361_CR34
  publication-title: Ocean Eng.
  doi: 10.1016/S0029-8018(99)00026-8
SSID ssj0007103
Score 2.0268583
Snippet The equation considered in this paper is x ′ ′ + h ( t ) x ′ | x ′ | + ω 2 sin x = 0 , where h ( t ) is continuous and nonnegative for t ≥ 0 and ω is a...
SourceID crossref
springer
nii
SourceType Enrichment Source
Index Database
Publisher
StartPage 865
SubjectTerms Asymptotic stability
Comparison of solutions
Damped pendulum
Engineering
Mathematical Methods in Physics
Phase plane analysis
Quadratic damping force
Theoretical and Applied Mechanics
Title Asymptotic stability of a pendulum with quadratic damping
URI https://cir.nii.ac.jp/crid/1570009752741440000
https://link.springer.com/article/10.1007/s00033-013-0361-x
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1420-9039
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007103
  issn: 0044-2275
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1420-9039
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007103
  issn: 0044-2275
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60RdCDaFWs2rIHT8pCurvZJMcgraLUk4V6CvuEgn1oWrD_3tk0CYoP8BLIstnD7OP7sjPzDUKXLHFSGRURB-hMuGKWxDpKiLWSGqs4kGB_oT98FHcjfj8Ox2Ued15Fu1cuyeKkrpPdgqLuWFGNgIkeAeLYDL2aFyziEU3r4xcgs3Qrc0JpFFauzJ-G-AJG27PJ5Js_tICZwQHaL_khTjcTeoi27KyF9j6pBsLbsJZazVtop4jh1PkRStJ8PV0s59COgfMVUa9rPHdYYl_o1l_zYX_til9X0viJ19jIqc-XOkajQf_p5o6UlRGIZglfEm0otULJmEmbJIYDblsXM6NpJJyDpsApSxkDXJI8YrBaHPyWyThImOXOhOwENWbzmT1FWDJNhQKaRwPHhRTKURMHVgsRGJ8E20ZBZaJMl7LhvnrFS1YLHhdWzcCqmbdq9t5GV_Uni41mxl-dO2B3GNo_e15tP0ii0IvqcO7BtI2uqxnJyu2V_z7a2b96n6Nd4D98E5t3gRrLt5XtAMdYqi5qprfPD_1usbY-ALvexr0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-NIgQ8wAZD68aHH_YEMkpt10keq6msg5anIsFT5E-pYrRAUmnw1--cJhEMhsRLpFiOlZwvvp99d78D-M5Tr7TVMfVonanQ3NHExCl1TjHrtEAQHA70R-dycCFOL7uXVR53Xke71y7JcqVukt2isu5YWY2Ayw5F4LgscH_CWrDc-3l11m8WYDSalWNZUMbibu3MfG2QZ-ZoaTqZvPCIlobmZBPG9Ssu4kuuj-eFPjaP_7A3vvMbPsJGBTxJb6Epn-CDm27B-hM6QrwbNRyu-RaslMGhJt-GtJc_3NwWM2wnCCbLcNoHMvNEkVBBN5wfknCeS-7mygaNMsSqm5CI9RkuTvrjHwNalVyghqeioMYy5qRWCVcuTa1AQOB8wq1hsfQemyKvHeMcDZ4SMUc19LjfU0mUcie87fIdaE1nU_cFiOKGSY34kUVeSCW1ZzaJnJEysiG7tg1RLfnMVHzkoSzG76xhUi6llaG0siCt7E8bDptHbhdkHG913sPpxKHDtRNo_KM07ga2HiGClW7DUT1HWfXf5v8f7eu7eh_A6mA8GmbDX-dn32ANQZZYBADuQqu4n7s9BDKF3q8U9y8p8OUI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4uKHoQHRXHNQdPSrCTpGl7HNTBdfDggLeSFQa0M9oK-u996YbiAl4KDek7vLz2fX3L9xA6ZImTyqiIOPDOhCtmSayjhFgrqbGKAwj2Af3bobgY8auH8KGec5o31e5NSrLqafAsTVlxMjXupG18C8oZZOVkAiZ6BEDkPPc8CWDQI9pvP8XgPusUMyeURmGT1vxJxBfHNJuNx99yo6XLGayilRor4n51uGtoxmYdtPyJQRDublva1byDFsp6Tp2vo6Sfvz9NiwmsY8B_ZQXsO544LLEfeutDftiHYPHzqzTeCDQ28sn3Tm2g0eD8_vSC1FMSiGYJL4g2lFqhZMykTRLDQQvWxcxoGgnnYClwylLGwEdJHjGwHAe_aDIOEma5MyHbRHPZJLNbCEumqVAA-WjguJBCOWriwGohAuMbYrsoaFSU6ppC3E-yeExb8uNSqyloNfVaTd-66Kh9ZFrxZ_y1eQ_0DqL9teeZ94MkCj3BDufesXbRcXMiaf2q5b9L2_7X7gO0eHc2SG8uh9c7aAlgEa9K9nbRXPHyavcAehRqvzSvD_ARzFE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotic+stability+of+a+pendulum+with+quadratic+damping&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Physik&rft.au=Sugie%2C+Jitsuro&rft.date=2014-10-01&rft.pub=Springer+Basel&rft.issn=0044-2275&rft.eissn=1420-9039&rft.volume=65&rft.issue=5&rft.spage=865&rft.epage=884&rft_id=info:doi/10.1007%2Fs00033-013-0361-x&rft.externalDocID=10_1007_s00033_013_0361_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2275&client=summon