Liouville Theorems for Fractional Parabolic Equations

In this paper, we establish several Liouville type theorems for entire solutions to fractional parabolic equations. We first obtain the key ingredients needed in the proof of Liouville theorems, such as narrow region principles and maximum principles for antisymmetric functions in unbounded domains,...

Full description

Saved in:
Bibliographic Details
Published inAdvanced nonlinear studies Vol. 21; no. 4; pp. 939 - 958
Main Authors Chen, Wenxiong, Wu, Leyun
Format Journal Article
LanguageEnglish
Published De Gruyter 01.11.2021
Subjects
Online AccessGet full text
ISSN1536-1365
2169-0375
DOI10.1515/ans-2021-2148

Cover

Abstract In this paper, we establish several Liouville type theorems for entire solutions to fractional parabolic equations. We first obtain the key ingredients needed in the proof of Liouville theorems, such as narrow region principles and maximum principles for antisymmetric functions in unbounded domains, in which we remarkably weaken the usual decay condition at infinity to a polynomial growth on 𝑢 by constructing proper auxiliary functions. Then we derive monotonicity for the solutions in a half space and obtain some new connections between the nonexistence of solutions in a half space and in the whole space and therefore prove the corresponding Liouville type theorems. To overcome the difficulty caused by the nonlocality of the fractional Laplacian, we introduce several new ideas which will become useful tools in investigating qualitative properties of solutions for a variety of nonlocal parabolic problems.
AbstractList In this paper, we establish several Liouville type theorems for entire solutions to fractional parabolic equations. We first obtain the key ingredients needed in the proof of Liouville theorems, such as narrow region principles and maximum principles for antisymmetric functions in unbounded domains, in which we remarkably weaken the usual decay condition u→0u\to 0 at infinity to a polynomial growth on 𝑢 by constructing proper auxiliary functions. Then we derive monotonicity for the solutions in a half space R+n×R\mathbb{R}_{+}^{n}\times\mathbb{R} and obtain some new connections between the nonexistence of solutions in a half space R+n×R\mathbb{R}_{+}^{n}\times\mathbb{R} and in the whole space Rn-1×R\mathbb{R}^{n-1}\times\mathbb{R} and therefore prove the corresponding Liouville type theorems. To overcome the difficulty caused by the nonlocality of the fractional Laplacian, we introduce several new ideas which will become useful tools in investigating qualitative properties of solutions for a variety of nonlocal parabolic problems.
In this paper, we establish several Liouville type theorems for entire solutions to fractional parabolic equations. We first obtain the key ingredients needed in the proof of Liouville theorems, such as narrow region principles and maximum principles for antisymmetric functions in unbounded domains, in which we remarkably weaken the usual decay condition u → 0 u\to 0 at infinity to a polynomial growth on by constructing proper auxiliary functions. Then we derive monotonicity for the solutions in a half space R + n × R \mathbb{R}_{+}^{n}\times\mathbb{R} and obtain some new connections between the nonexistence of solutions in a half space R + n × R \mathbb{R}_{+}^{n}\times\mathbb{R} and in the whole space R n - 1 × R \mathbb{R}^{n-1}\times\mathbb{R} and therefore prove the corresponding Liouville type theorems. To overcome the difficulty caused by the nonlocality of the fractional Laplacian, we introduce several new ideas which will become useful tools in investigating qualitative properties of solutions for a variety of nonlocal parabolic problems.
In this paper, we establish several Liouville type theorems for entire solutions to fractional parabolic equations. We first obtain the key ingredients needed in the proof of Liouville theorems, such as narrow region principles and maximum principles for antisymmetric functions in unbounded domains, in which we remarkably weaken the usual decay condition at infinity to a polynomial growth on 𝑢 by constructing proper auxiliary functions. Then we derive monotonicity for the solutions in a half space and obtain some new connections between the nonexistence of solutions in a half space and in the whole space and therefore prove the corresponding Liouville type theorems. To overcome the difficulty caused by the nonlocality of the fractional Laplacian, we introduce several new ideas which will become useful tools in investigating qualitative properties of solutions for a variety of nonlocal parabolic problems.
Author Wu, Leyun
Chen, Wenxiong
Author_xml – sequence: 1
  givenname: Wenxiong
  surname: Chen
  fullname: Chen, Wenxiong
  email: wchen@yu.edu
  organization: Department of Mathematical Sciences, Yeshiva University, New York, NY, 10033, USA
– sequence: 2
  givenname: Leyun
  surname: Wu
  fullname: Wu, Leyun
  email: leyunwu@sjtu.edu.cn
  organization: School of Mathematical Sciences, MOE-LSC, Shanghai Jiao Tong University, Shanghai, P. R. China; and Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
BookMark eNp1kE1LBDEMhosouH4cvc8fGO1XOlM8ifgFC3rQc8m0Ge0ybrWdVfz3zrp6EQ2EhJD3JXn22PYyLYmxI8GPBQg4wWWpJZeilkK3W2wmhbE1Vw1ss5kAZWqhDOyyw1IWfAptpQaYMZjHtHqLw0DV_ROlTM-l6lOuLjP6MaYlDtUdZuzSEH118brC9bAcsJ0eh0KH33WfPVxe3J9f1_Pbq5vzs3ntldVj7bvWtD4EadFQL7xtEIwMjVCcC_QeqBEkVWiAZCOCtjZoQ8Q9BN31HNQ-u9n4hoQL95LjM-YPlzC6r0HKjw7zGP1AzkCnW4M-IAlNtkUQfQPYgwTpoTOTl9p4-ZxKydQ7H8evd8aMcXCCuzVIN4F0a5BuDXJS1b9UP1f8t3-62X_HYaQc6DGvPqbGLdIqTzTL37oprbLqE3fZikE
CitedBy_id crossref_primary_10_1515_ans_2022_0069
crossref_primary_10_1142_S0219530523500380
crossref_primary_10_1016_j_aim_2024_109891
crossref_primary_10_1515_ans_2023_0114
crossref_primary_10_3390_fractalfract8030173
crossref_primary_10_1142_S0129167X24500101
crossref_primary_10_1007_s13540_024_00328_7
crossref_primary_10_1016_j_aim_2022_108607
crossref_primary_10_3934_cpaa_2022089
crossref_primary_10_1515_acv_2022_0109
crossref_primary_10_1515_anona_2023_0135
crossref_primary_10_1016_j_jfa_2023_110117
crossref_primary_10_1080_17476933_2023_2209727
crossref_primary_10_1515_ans_2022_0034
crossref_primary_10_3390_fractalfract7120877
crossref_primary_10_1007_s10231_023_01357_4
crossref_primary_10_1007_s10440_024_00638_1
crossref_primary_10_4153_S0008414X23000457
crossref_primary_10_1007_s00209_025_03693_y
crossref_primary_10_1515_ans_2023_0102
crossref_primary_10_14232_ejqtde_2022_1_68
crossref_primary_10_1515_ans_2023_0104
crossref_primary_10_1016_j_aim_2021_108018
crossref_primary_10_1515_ans_2023_0108
crossref_primary_10_1002_mma_10104
Cites_doi 10.1016/j.anihpc.2012.02.004
10.1016/j.aim.2020.107463
10.1007/s00526-021-01924-8
10.1007/BF02392645
10.1007/s10231-006-0015-0
10.1007/BF01221125
10.1016/j.na.2019.01.010
10.1007/BF02937290
10.1016/j.jfa.2021.109187
10.3934/dcds.2019054
10.1142/10550
10.1016/j.jde.2014.10.017
10.36045/bbms/1103055577
10.1007/PL00004238
10.1007/s00222-007-0086-6
10.1016/j.jfa.2017.02.022
10.1007/978-1-4684-0313-8
10.1080/03605300600987306
10.1017/S0004972700012089
10.1016/j.jfa.2017.02.015
10.1007/s10114-008-5615-8
10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C
10.1512/iumj.2007.56.2911
10.1073/pnas.1804225115
10.1016/j.aim.2019.106933
10.1215/S0012-7094-07-13935-8
10.1007/s00208-018-1784-7
10.1017/S0308210500027293
10.1215/S0012-7094-95-08016-8
10.1007/BF01244896
10.1080/03605308108820196
10.1002/cpa.20153
10.1002/cpa.3160340406
10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W
10.1016/j.aim.2014.02.034
10.1016/s0294-1449(16)30358-4
10.1215/S0012-7094-91-06325-8
10.3934/dcds.2014.34.2581
10.1142/9789812709257_0003
10.1215/00127094-2020-0096
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/ans-2021-2148
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-0375
EndPage 958
ExternalDocumentID oai_doaj_org_article_65b486acdae14e98a51f75af5252c5b6
10_1515_ans_2021_2148
10_1515_ans_2021_2148214939
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12071229; 11831003; 12031012
GroupedDBID 0R~
23M
5GY
AAGVJ
AAJBH
AAPJK
AAQCX
AAXCG
ABAQN
ABFKT
ABJNI
ABSOE
ABYKJ
ACEFL
ACGFS
ACZBO
ADGQD
ADJVZ
AEICA
AENEX
AEQDQ
AERZL
AFBDD
AFCXV
AFYRI
AHGSO
AHVWV
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
AMVHM
ASYPN
BAKPI
BBCWN
BCIFA
CFGNV
EBS
GROUPED_DOAJ
IY9
J9A
KDIRW
M48
O9-
P2P
QD8
SLJYH
WTRAM
AAYXX
CITATION
ID FETCH-LOGICAL-c394t-cb868cdd29a6ef1c97a562d713001acc5e71e23d75e271d499d46ee0c5d4bf053
IEDL.DBID M48
ISSN 1536-1365
IngestDate Wed Aug 27 00:58:48 EDT 2025
Thu Apr 24 23:09:18 EDT 2025
Tue Jul 01 01:37:05 EDT 2025
Thu Jul 10 10:34:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-cb868cdd29a6ef1c97a562d713001acc5e71e23d75e271d499d46ee0c5d4bf053
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/ans-2021-2148
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_65b486acdae14e98a51f75af5252c5b6
crossref_citationtrail_10_1515_ans_2021_2148
crossref_primary_10_1515_ans_2021_2148
walterdegruyter_journals_10_1515_ans_2021_2148214939
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Advanced nonlinear studies
PublicationYear 2021
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References 2023033117171779742_j_ans-2021-2148_ref_021
2023033117171779742_j_ans-2021-2148_ref_043
2023033117171779742_j_ans-2021-2148_ref_020
2023033117171779742_j_ans-2021-2148_ref_042
2023033117171779742_j_ans-2021-2148_ref_001
2023033117171779742_j_ans-2021-2148_ref_023
2023033117171779742_j_ans-2021-2148_ref_022
2023033117171779742_j_ans-2021-2148_ref_044
2023033117171779742_j_ans-2021-2148_ref_041
2023033117171779742_j_ans-2021-2148_ref_040
2023033117171779742_j_ans-2021-2148_ref_018
2023033117171779742_j_ans-2021-2148_ref_017
2023033117171779742_j_ans-2021-2148_ref_039
2023033117171779742_j_ans-2021-2148_ref_019
2023033117171779742_j_ans-2021-2148_ref_014
2023033117171779742_j_ans-2021-2148_ref_036
2023033117171779742_j_ans-2021-2148_ref_013
2023033117171779742_j_ans-2021-2148_ref_035
2023033117171779742_j_ans-2021-2148_ref_016
2023033117171779742_j_ans-2021-2148_ref_038
2023033117171779742_j_ans-2021-2148_ref_015
2023033117171779742_j_ans-2021-2148_ref_037
2023033117171779742_j_ans-2021-2148_ref_010
2023033117171779742_j_ans-2021-2148_ref_032
2023033117171779742_j_ans-2021-2148_ref_031
2023033117171779742_j_ans-2021-2148_ref_012
2023033117171779742_j_ans-2021-2148_ref_034
2023033117171779742_j_ans-2021-2148_ref_011
2023033117171779742_j_ans-2021-2148_ref_033
2023033117171779742_j_ans-2021-2148_ref_030
2023033117171779742_j_ans-2021-2148_ref_007
2023033117171779742_j_ans-2021-2148_ref_029
2023033117171779742_j_ans-2021-2148_ref_006
2023033117171779742_j_ans-2021-2148_ref_028
2023033117171779742_j_ans-2021-2148_ref_009
2023033117171779742_j_ans-2021-2148_ref_008
2023033117171779742_j_ans-2021-2148_ref_003
2023033117171779742_j_ans-2021-2148_ref_025
2023033117171779742_j_ans-2021-2148_ref_002
2023033117171779742_j_ans-2021-2148_ref_024
2023033117171779742_j_ans-2021-2148_ref_005
2023033117171779742_j_ans-2021-2148_ref_027
2023033117171779742_j_ans-2021-2148_ref_004
2023033117171779742_j_ans-2021-2148_ref_026
References_xml – ident: 2023033117171779742_j_ans-2021-2148_ref_033
  doi: 10.1016/j.anihpc.2012.02.004
– ident: 2023033117171779742_j_ans-2021-2148_ref_014
  doi: 10.1016/j.aim.2020.107463
– ident: 2023033117171779742_j_ans-2021-2148_ref_018
  doi: 10.1007/s00526-021-01924-8
– ident: 2023033117171779742_j_ans-2021-2148_ref_039
  doi: 10.1007/BF02392645
– ident: 2023033117171779742_j_ans-2021-2148_ref_002
  doi: 10.1007/s10231-006-0015-0
– ident: 2023033117171779742_j_ans-2021-2148_ref_020
  doi: 10.1007/BF01221125
– ident: 2023033117171779742_j_ans-2021-2148_ref_009
  doi: 10.1016/j.na.2019.01.010
– ident: 2023033117171779742_j_ans-2021-2148_ref_030
  doi: 10.1007/BF02937290
– ident: 2023033117171779742_j_ans-2021-2148_ref_010
  doi: 10.1016/j.jfa.2021.109187
– ident: 2023033117171779742_j_ans-2021-2148_ref_011
  doi: 10.3934/dcds.2019054
– ident: 2023033117171779742_j_ans-2021-2148_ref_012
  doi: 10.1142/10550
– ident: 2023033117171779742_j_ans-2021-2148_ref_027
  doi: 10.1016/j.jde.2014.10.017
– ident: 2023033117171779742_j_ans-2021-2148_ref_023
  doi: 10.36045/bbms/1103055577
– ident: 2023033117171779742_j_ans-2021-2148_ref_026
  doi: 10.1007/PL00004238
– ident: 2023033117171779742_j_ans-2021-2148_ref_008
  doi: 10.1007/s00222-007-0086-6
– ident: 2023033117171779742_j_ans-2021-2148_ref_013
  doi: 10.1016/j.jfa.2017.02.022
– ident: 2023033117171779742_j_ans-2021-2148_ref_041
  doi: 10.1007/978-1-4684-0313-8
– ident: 2023033117171779742_j_ans-2021-2148_ref_007
  doi: 10.1080/03605300600987306
– ident: 2023033117171779742_j_ans-2021-2148_ref_016
  doi: 10.1017/S0004972700012089
– ident: 2023033117171779742_j_ans-2021-2148_ref_042
– ident: 2023033117171779742_j_ans-2021-2148_ref_019
  doi: 10.1016/j.jfa.2017.02.015
– ident: 2023033117171779742_j_ans-2021-2148_ref_044
  doi: 10.1007/s10114-008-5615-8
– ident: 2023033117171779742_j_ans-2021-2148_ref_004
– ident: 2023033117171779742_j_ans-2021-2148_ref_034
  doi: 10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C
– ident: 2023033117171779742_j_ans-2021-2148_ref_037
  doi: 10.1512/iumj.2007.56.2911
– ident: 2023033117171779742_j_ans-2021-2148_ref_031
  doi: 10.1073/pnas.1804225115
– ident: 2023033117171779742_j_ans-2021-2148_ref_043
  doi: 10.1016/j.aim.2019.106933
– ident: 2023033117171779742_j_ans-2021-2148_ref_036
  doi: 10.1215/S0012-7094-07-13935-8
– ident: 2023033117171779742_j_ans-2021-2148_ref_035
  doi: 10.1007/s00208-018-1784-7
– ident: 2023033117171779742_j_ans-2021-2148_ref_005
  doi: 10.1017/S0308210500027293
– ident: 2023033117171779742_j_ans-2021-2148_ref_032
  doi: 10.1215/S0012-7094-95-08016-8
– ident: 2023033117171779742_j_ans-2021-2148_ref_003
  doi: 10.1007/BF01244896
– ident: 2023033117171779742_j_ans-2021-2148_ref_021
  doi: 10.1080/03605308108820196
– ident: 2023033117171779742_j_ans-2021-2148_ref_040
  doi: 10.1002/cpa.20153
– ident: 2023033117171779742_j_ans-2021-2148_ref_022
  doi: 10.1002/cpa.3160340406
– ident: 2023033117171779742_j_ans-2021-2148_ref_025
  doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W
– ident: 2023033117171779742_j_ans-2021-2148_ref_017
  doi: 10.1016/j.aim.2014.02.034
– ident: 2023033117171779742_j_ans-2021-2148_ref_029
  doi: 10.1016/s0294-1449(16)30358-4
– ident: 2023033117171779742_j_ans-2021-2148_ref_015
  doi: 10.1215/S0012-7094-91-06325-8
– ident: 2023033117171779742_j_ans-2021-2148_ref_028
  doi: 10.3934/dcds.2014.34.2581
– ident: 2023033117171779742_j_ans-2021-2148_ref_001
– ident: 2023033117171779742_j_ans-2021-2148_ref_024
– ident: 2023033117171779742_j_ans-2021-2148_ref_006
  doi: 10.1142/9789812709257_0003
– ident: 2023033117171779742_j_ans-2021-2148_ref_038
  doi: 10.1215/00127094-2020-0096
SSID ssj0000492455
Score 2.4321952
Snippet In this paper, we establish several Liouville type theorems for entire solutions to fractional parabolic equations. We first obtain the key ingredients needed...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 939
SubjectTerms 35B53
35K58
35R11
Entire Solutions
Fractional Parabolic Equations
Liouville Type Theorems
Maximum Principle for Antisymmetric Functions
Monotonicity
Narrow Region Principles
Nonexistence of Solutions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJ3soPrG-yEE8GZps9pE9qrQUUfFgobew2Z1Ipbbapor_3tlNWoooXjyEQNiw4Zsd5hsm8w0hZxqNDKlKQw7oTcjA0eeEkSFYk4iEFqkSrt_57l70B-xmyIdro77cP2GVPHAFXEfwnKVCG6shZqBSzeNCcl1wyqnhuRfbjlS0lkw9V7yXMj_yFD3aCe0JXgtsYvzuYBDA00HjkMZu7s9aQPK6_U3S-vC1agtPs8VnuayN-pDT2yKtmisGl9U3bpMNmOyQ5pqC4C7ht6Pp4t318wW-yx5e5gHS0KA3qxoW8PUHPUNDj0cm6L5Vut7zPTLodR-v-2E9CSE0iWJlaPJUpMZaqrSAIjZKauQtVrpaVKyN4SBjoImVHKiMLWYxlgmAyHDL8gL9bJ80JtMJHJBAWI6ULQJRcMbwlke04Fa6wE1zq2WbXCzhyEwtE-6mVYwzly4gehmilzn0Modem5yvlr9W-hi_Lbxy2K4WOVlr_wCNndXGzv4ydpuwb5bJapeb_7wrXipRh_-x9xHZ9GfG9yEek0Y5W8AJEpIyP_Vn7wtQL9s7
  priority: 102
  providerName: Directory of Open Access Journals
Title Liouville Theorems for Fractional Parabolic Equations
URI https://www.degruyter.com/doi/10.1515/ans-2021-2148
https://doaj.org/article/65b486acdae14e98a51f75af5252c5b6
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9swED4xeBkPaIOhdRtVHtCeCDSOz04epgkQpUIMJm2VeIsc-4KYunak7Tb-PWcnZQzY2x6iSJETS9_54u90vu8Atg0bmbI8i5HYm5iBs88pq2NyNlWpqLJc-XrnT2dqMJQnF3jxR1KoBXD6ZGjn-0kN69Hu7-ubj-zwH0L3ngT3-J_OxhZJLJjbP4OVkCryp_hapv-tIcJChh6o7OJeeU9hq7j56At_7VBByH8V1n6F5LWjy3p-M1skS8Me1H8Bay15jPYba7-EJRqvw-o9ScENwNOryfynL_CLQtk9fZ9GzEujft1UMPDrn03Nlh9d2ejouhH6nr6CYf_o6-EgblsjxDbN5Sy2ZaYy65zIjaIqsbk2TGSc9smpxFiLpBMSqdNIQieOwxonFVHPopNlxY63CcvjyZheQ6QcMofrkapQSr6VPVGh034nF6UzugM7CzgK2-qG-_YVo8LHD4xewegVHr3Co9eB93fDfzSCGf8aeOCxvRvkda7Dg0l9WbRuUygsZaaMdYYSSXlmMKk0mgoFCoul6oB8YJlisYSenpWvPM3f_I-538LzsGZCYeI7WJ7Vc9pihjIru7CyPzj-ct4NEX43rMRb5tXkjQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOBQOiEcRS0vJAXFqtBvHj-QIFdsFFqhUkHqzHHsCSMsuZLOt-u8ZJyGiUC4cokjROLFmPJlvbM9ngD1DRsYkTUKB5E2EwMnnpFUhOhvLmOVJKn2989m5HFzxk1_iaTfhtNlW6fC6mP0ta4bUrpvYmZ8oa7kGKAJ36TdO9mVRyAjOd2_Ku9E8LMpEcsq_Fg8G339etBMtBIEZr04_Jef2nHtSNFybr170T2yqKPyXYeVPtWzd9ulZ9OmvwkoDG4OD2s5rMIfjdVh-Ria4AWJ4O5n99qV9QVVwj3fTgBBp0C_q2gVq_sMUZPPRrQ2OHmqK7-lHuOofXX4bhM2hCKGNU16GNktkYp1jqZGYRzZVhiCMU35ZKjLWClQRstgpgUxFjhIaxyVizwrHs5xcbhMWxpMxbkEgnSD01kOZC87plvVYLpzyMZxlzqgOfH1Sh7YNY7g_uGKkfeZA2tOkPe21p732OrDfit_XVBlvCR563bZCnuG6ejAprnXjMFqKjCfSWGcw4pgmRkS5EiYXTDArMtkB_sIyuvG-6f-_Slcap9vva7YLHwaXZ0M9PD4__QRL1YipChI_w0JZzHCHkEmZfWnG3iMvL911
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC58gOhB1hc7q6s5iCfDTDr9SI666zi-BRW8NZ3uigjujJuZcdl_b3USw_i6eAiBUJ2EeqS-7k59BbBtyMiYpEkokKKJEDjFnLQqRGdjGbM8SaWvdz47l70bfnwrbieq-P1vlQ7vivH_UcWQ2nYDO_YLZQ3XAGXgNn3Gyb4sChnB-fajy6dhVspEkqfP7vUOry6adRZCwIyXzU8ptj3lnhQ11ea7-7xKTSWD_wIs_it3rZtXmkg-3W-wWKPGYK8y8xJMYX8ZFia4BFdAnN4Pxk--si8o6-3xzzAgQBp0i6p0gYZfmoJM_nBvg4O_FcP3cBVuugfXv3ph3RMhtHHKR6HNEplY51hqJOaRTZUhBOOU35WKjLUCVYQsdkogU5Gj-YzjErFjheNZThG3BjP9QR-_QyCdIPDWQZkLzumUdVgunPIpnGXOqBbsvqhD25ow3PeteNB-4kDa06Q97bWnvfZasNOIP1ZMGZ8J7nvdNkKe4Lq8MCjudB0vWoqMJ9JYZzDimCZGRLkSJhdMMCsy2QL-xjK6Dr7hx0-lI43TH18btgVzl7-7-vTo_GQd5kuHKcsRN2BmVIzxJ-GSUbZZu94z6X7cmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liouville+Theorems+for+Fractional+Parabolic+Equations&rft.jtitle=Advanced+nonlinear+studies&rft.au=Chen+Wenxiong&rft.au=Wu+Leyun&rft.date=2021-11-01&rft.pub=De+Gruyter&rft.issn=1536-1365&rft.eissn=2169-0375&rft.volume=21&rft.issue=4&rft.spage=939&rft.epage=958&rft_id=info:doi/10.1515%2Fans-2021-2148&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_65b486acdae14e98a51f75af5252c5b6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1365&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1365&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1365&client=summon