Liouville Theorems for Fractional Parabolic Equations
In this paper, we establish several Liouville type theorems for entire solutions to fractional parabolic equations. We first obtain the key ingredients needed in the proof of Liouville theorems, such as narrow region principles and maximum principles for antisymmetric functions in unbounded domains,...
Saved in:
Published in | Advanced nonlinear studies Vol. 21; no. 4; pp. 939 - 958 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
De Gruyter
01.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1536-1365 2169-0375 |
DOI | 10.1515/ans-2021-2148 |
Cover
Abstract | In this paper, we establish several Liouville type theorems for entire solutions to fractional parabolic equations. We first obtain the key ingredients needed in the proof of Liouville theorems, such as narrow region principles and maximum principles for antisymmetric functions in unbounded domains, in which we remarkably weaken the usual decay condition
at infinity to a polynomial growth on 𝑢 by constructing proper auxiliary functions. Then we derive monotonicity for the solutions in a half space
and obtain some new connections between the nonexistence of solutions in a half space
and in the whole space
and therefore prove the corresponding Liouville type theorems. To overcome the difficulty caused by the nonlocality of the fractional Laplacian, we introduce several new ideas which will become useful tools in investigating qualitative properties of solutions for a variety of nonlocal parabolic problems. |
---|---|
AbstractList | In this paper, we establish several Liouville type theorems for entire solutions to fractional parabolic equations. We first obtain the key ingredients needed in the proof of Liouville theorems, such as narrow region principles and maximum principles for antisymmetric functions in unbounded domains, in which we remarkably weaken the usual decay condition u→0u\to 0 at infinity to a polynomial growth on 𝑢 by constructing proper auxiliary functions. Then we derive monotonicity for the solutions in a half space R+n×R\mathbb{R}_{+}^{n}\times\mathbb{R} and obtain some new connections between the nonexistence of solutions in a half space R+n×R\mathbb{R}_{+}^{n}\times\mathbb{R} and in the whole space Rn-1×R\mathbb{R}^{n-1}\times\mathbb{R} and therefore prove the corresponding Liouville type theorems. To overcome the difficulty caused by the nonlocality of the fractional Laplacian, we introduce several new ideas which will become useful tools in investigating qualitative properties of solutions for a variety of nonlocal parabolic problems. In this paper, we establish several Liouville type theorems for entire solutions to fractional parabolic equations. We first obtain the key ingredients needed in the proof of Liouville theorems, such as narrow region principles and maximum principles for antisymmetric functions in unbounded domains, in which we remarkably weaken the usual decay condition u → 0 u\to 0 at infinity to a polynomial growth on by constructing proper auxiliary functions. Then we derive monotonicity for the solutions in a half space R + n × R \mathbb{R}_{+}^{n}\times\mathbb{R} and obtain some new connections between the nonexistence of solutions in a half space R + n × R \mathbb{R}_{+}^{n}\times\mathbb{R} and in the whole space R n - 1 × R \mathbb{R}^{n-1}\times\mathbb{R} and therefore prove the corresponding Liouville type theorems. To overcome the difficulty caused by the nonlocality of the fractional Laplacian, we introduce several new ideas which will become useful tools in investigating qualitative properties of solutions for a variety of nonlocal parabolic problems. In this paper, we establish several Liouville type theorems for entire solutions to fractional parabolic equations. We first obtain the key ingredients needed in the proof of Liouville theorems, such as narrow region principles and maximum principles for antisymmetric functions in unbounded domains, in which we remarkably weaken the usual decay condition at infinity to a polynomial growth on 𝑢 by constructing proper auxiliary functions. Then we derive monotonicity for the solutions in a half space and obtain some new connections between the nonexistence of solutions in a half space and in the whole space and therefore prove the corresponding Liouville type theorems. To overcome the difficulty caused by the nonlocality of the fractional Laplacian, we introduce several new ideas which will become useful tools in investigating qualitative properties of solutions for a variety of nonlocal parabolic problems. |
Author | Wu, Leyun Chen, Wenxiong |
Author_xml | – sequence: 1 givenname: Wenxiong surname: Chen fullname: Chen, Wenxiong email: wchen@yu.edu organization: Department of Mathematical Sciences, Yeshiva University, New York, NY, 10033, USA – sequence: 2 givenname: Leyun surname: Wu fullname: Wu, Leyun email: leyunwu@sjtu.edu.cn organization: School of Mathematical Sciences, MOE-LSC, Shanghai Jiao Tong University, Shanghai, P. R. China; and Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong |
BookMark | eNp1kE1LBDEMhosouH4cvc8fGO1XOlM8ifgFC3rQc8m0Ge0ybrWdVfz3zrp6EQ2EhJD3JXn22PYyLYmxI8GPBQg4wWWpJZeilkK3W2wmhbE1Vw1ss5kAZWqhDOyyw1IWfAptpQaYMZjHtHqLw0DV_ROlTM-l6lOuLjP6MaYlDtUdZuzSEH118brC9bAcsJ0eh0KH33WfPVxe3J9f1_Pbq5vzs3ntldVj7bvWtD4EadFQL7xtEIwMjVCcC_QeqBEkVWiAZCOCtjZoQ8Q9BN31HNQ-u9n4hoQL95LjM-YPlzC6r0HKjw7zGP1AzkCnW4M-IAlNtkUQfQPYgwTpoTOTl9p4-ZxKydQ7H8evd8aMcXCCuzVIN4F0a5BuDXJS1b9UP1f8t3-62X_HYaQc6DGvPqbGLdIqTzTL37oprbLqE3fZikE |
CitedBy_id | crossref_primary_10_1515_ans_2022_0069 crossref_primary_10_1142_S0219530523500380 crossref_primary_10_1016_j_aim_2024_109891 crossref_primary_10_1515_ans_2023_0114 crossref_primary_10_3390_fractalfract8030173 crossref_primary_10_1142_S0129167X24500101 crossref_primary_10_1007_s13540_024_00328_7 crossref_primary_10_1016_j_aim_2022_108607 crossref_primary_10_3934_cpaa_2022089 crossref_primary_10_1515_acv_2022_0109 crossref_primary_10_1515_anona_2023_0135 crossref_primary_10_1016_j_jfa_2023_110117 crossref_primary_10_1080_17476933_2023_2209727 crossref_primary_10_1515_ans_2022_0034 crossref_primary_10_3390_fractalfract7120877 crossref_primary_10_1007_s10231_023_01357_4 crossref_primary_10_1007_s10440_024_00638_1 crossref_primary_10_4153_S0008414X23000457 crossref_primary_10_1007_s00209_025_03693_y crossref_primary_10_1515_ans_2023_0102 crossref_primary_10_14232_ejqtde_2022_1_68 crossref_primary_10_1515_ans_2023_0104 crossref_primary_10_1016_j_aim_2021_108018 crossref_primary_10_1515_ans_2023_0108 crossref_primary_10_1002_mma_10104 |
Cites_doi | 10.1016/j.anihpc.2012.02.004 10.1016/j.aim.2020.107463 10.1007/s00526-021-01924-8 10.1007/BF02392645 10.1007/s10231-006-0015-0 10.1007/BF01221125 10.1016/j.na.2019.01.010 10.1007/BF02937290 10.1016/j.jfa.2021.109187 10.3934/dcds.2019054 10.1142/10550 10.1016/j.jde.2014.10.017 10.36045/bbms/1103055577 10.1007/PL00004238 10.1007/s00222-007-0086-6 10.1016/j.jfa.2017.02.022 10.1007/978-1-4684-0313-8 10.1080/03605300600987306 10.1017/S0004972700012089 10.1016/j.jfa.2017.02.015 10.1007/s10114-008-5615-8 10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C 10.1512/iumj.2007.56.2911 10.1073/pnas.1804225115 10.1016/j.aim.2019.106933 10.1215/S0012-7094-07-13935-8 10.1007/s00208-018-1784-7 10.1017/S0308210500027293 10.1215/S0012-7094-95-08016-8 10.1007/BF01244896 10.1080/03605308108820196 10.1002/cpa.20153 10.1002/cpa.3160340406 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W 10.1016/j.aim.2014.02.034 10.1016/s0294-1449(16)30358-4 10.1215/S0012-7094-91-06325-8 10.3934/dcds.2014.34.2581 10.1142/9789812709257_0003 10.1215/00127094-2020-0096 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1515/ans-2021-2148 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-0375 |
EndPage | 958 |
ExternalDocumentID | oai_doaj_org_article_65b486acdae14e98a51f75af5252c5b6 10_1515_ans_2021_2148 10_1515_ans_2021_2148214939 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12071229; 11831003; 12031012 |
GroupedDBID | 0R~ 23M 5GY AAGVJ AAJBH AAPJK AAQCX AAXCG ABAQN ABFKT ABJNI ABSOE ABYKJ ACEFL ACGFS ACZBO ADGQD ADJVZ AEICA AENEX AEQDQ AERZL AFBDD AFCXV AFYRI AHGSO AHVWV AKXKS ALMA_UNASSIGNED_HOLDINGS ALUKF AMVHM ASYPN BAKPI BBCWN BCIFA CFGNV EBS GROUPED_DOAJ IY9 J9A KDIRW M48 O9- P2P QD8 SLJYH WTRAM AAYXX CITATION |
ID | FETCH-LOGICAL-c394t-cb868cdd29a6ef1c97a562d713001acc5e71e23d75e271d499d46ee0c5d4bf053 |
IEDL.DBID | M48 |
ISSN | 1536-1365 |
IngestDate | Wed Aug 27 00:58:48 EDT 2025 Thu Apr 24 23:09:18 EDT 2025 Tue Jul 01 01:37:05 EDT 2025 Thu Jul 10 10:34:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-cb868cdd29a6ef1c97a562d713001acc5e71e23d75e271d499d46ee0c5d4bf053 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/ans-2021-2148 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_65b486acdae14e98a51f75af5252c5b6 crossref_citationtrail_10_1515_ans_2021_2148 crossref_primary_10_1515_ans_2021_2148 walterdegruyter_journals_10_1515_ans_2021_2148214939 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Advanced nonlinear studies |
PublicationYear | 2021 |
Publisher | De Gruyter |
Publisher_xml | – name: De Gruyter |
References | 2023033117171779742_j_ans-2021-2148_ref_021 2023033117171779742_j_ans-2021-2148_ref_043 2023033117171779742_j_ans-2021-2148_ref_020 2023033117171779742_j_ans-2021-2148_ref_042 2023033117171779742_j_ans-2021-2148_ref_001 2023033117171779742_j_ans-2021-2148_ref_023 2023033117171779742_j_ans-2021-2148_ref_022 2023033117171779742_j_ans-2021-2148_ref_044 2023033117171779742_j_ans-2021-2148_ref_041 2023033117171779742_j_ans-2021-2148_ref_040 2023033117171779742_j_ans-2021-2148_ref_018 2023033117171779742_j_ans-2021-2148_ref_017 2023033117171779742_j_ans-2021-2148_ref_039 2023033117171779742_j_ans-2021-2148_ref_019 2023033117171779742_j_ans-2021-2148_ref_014 2023033117171779742_j_ans-2021-2148_ref_036 2023033117171779742_j_ans-2021-2148_ref_013 2023033117171779742_j_ans-2021-2148_ref_035 2023033117171779742_j_ans-2021-2148_ref_016 2023033117171779742_j_ans-2021-2148_ref_038 2023033117171779742_j_ans-2021-2148_ref_015 2023033117171779742_j_ans-2021-2148_ref_037 2023033117171779742_j_ans-2021-2148_ref_010 2023033117171779742_j_ans-2021-2148_ref_032 2023033117171779742_j_ans-2021-2148_ref_031 2023033117171779742_j_ans-2021-2148_ref_012 2023033117171779742_j_ans-2021-2148_ref_034 2023033117171779742_j_ans-2021-2148_ref_011 2023033117171779742_j_ans-2021-2148_ref_033 2023033117171779742_j_ans-2021-2148_ref_030 2023033117171779742_j_ans-2021-2148_ref_007 2023033117171779742_j_ans-2021-2148_ref_029 2023033117171779742_j_ans-2021-2148_ref_006 2023033117171779742_j_ans-2021-2148_ref_028 2023033117171779742_j_ans-2021-2148_ref_009 2023033117171779742_j_ans-2021-2148_ref_008 2023033117171779742_j_ans-2021-2148_ref_003 2023033117171779742_j_ans-2021-2148_ref_025 2023033117171779742_j_ans-2021-2148_ref_002 2023033117171779742_j_ans-2021-2148_ref_024 2023033117171779742_j_ans-2021-2148_ref_005 2023033117171779742_j_ans-2021-2148_ref_027 2023033117171779742_j_ans-2021-2148_ref_004 2023033117171779742_j_ans-2021-2148_ref_026 |
References_xml | – ident: 2023033117171779742_j_ans-2021-2148_ref_033 doi: 10.1016/j.anihpc.2012.02.004 – ident: 2023033117171779742_j_ans-2021-2148_ref_014 doi: 10.1016/j.aim.2020.107463 – ident: 2023033117171779742_j_ans-2021-2148_ref_018 doi: 10.1007/s00526-021-01924-8 – ident: 2023033117171779742_j_ans-2021-2148_ref_039 doi: 10.1007/BF02392645 – ident: 2023033117171779742_j_ans-2021-2148_ref_002 doi: 10.1007/s10231-006-0015-0 – ident: 2023033117171779742_j_ans-2021-2148_ref_020 doi: 10.1007/BF01221125 – ident: 2023033117171779742_j_ans-2021-2148_ref_009 doi: 10.1016/j.na.2019.01.010 – ident: 2023033117171779742_j_ans-2021-2148_ref_030 doi: 10.1007/BF02937290 – ident: 2023033117171779742_j_ans-2021-2148_ref_010 doi: 10.1016/j.jfa.2021.109187 – ident: 2023033117171779742_j_ans-2021-2148_ref_011 doi: 10.3934/dcds.2019054 – ident: 2023033117171779742_j_ans-2021-2148_ref_012 doi: 10.1142/10550 – ident: 2023033117171779742_j_ans-2021-2148_ref_027 doi: 10.1016/j.jde.2014.10.017 – ident: 2023033117171779742_j_ans-2021-2148_ref_023 doi: 10.36045/bbms/1103055577 – ident: 2023033117171779742_j_ans-2021-2148_ref_026 doi: 10.1007/PL00004238 – ident: 2023033117171779742_j_ans-2021-2148_ref_008 doi: 10.1007/s00222-007-0086-6 – ident: 2023033117171779742_j_ans-2021-2148_ref_013 doi: 10.1016/j.jfa.2017.02.022 – ident: 2023033117171779742_j_ans-2021-2148_ref_041 doi: 10.1007/978-1-4684-0313-8 – ident: 2023033117171779742_j_ans-2021-2148_ref_007 doi: 10.1080/03605300600987306 – ident: 2023033117171779742_j_ans-2021-2148_ref_016 doi: 10.1017/S0004972700012089 – ident: 2023033117171779742_j_ans-2021-2148_ref_042 – ident: 2023033117171779742_j_ans-2021-2148_ref_019 doi: 10.1016/j.jfa.2017.02.015 – ident: 2023033117171779742_j_ans-2021-2148_ref_044 doi: 10.1007/s10114-008-5615-8 – ident: 2023033117171779742_j_ans-2021-2148_ref_004 – ident: 2023033117171779742_j_ans-2021-2148_ref_034 doi: 10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C – ident: 2023033117171779742_j_ans-2021-2148_ref_037 doi: 10.1512/iumj.2007.56.2911 – ident: 2023033117171779742_j_ans-2021-2148_ref_031 doi: 10.1073/pnas.1804225115 – ident: 2023033117171779742_j_ans-2021-2148_ref_043 doi: 10.1016/j.aim.2019.106933 – ident: 2023033117171779742_j_ans-2021-2148_ref_036 doi: 10.1215/S0012-7094-07-13935-8 – ident: 2023033117171779742_j_ans-2021-2148_ref_035 doi: 10.1007/s00208-018-1784-7 – ident: 2023033117171779742_j_ans-2021-2148_ref_005 doi: 10.1017/S0308210500027293 – ident: 2023033117171779742_j_ans-2021-2148_ref_032 doi: 10.1215/S0012-7094-95-08016-8 – ident: 2023033117171779742_j_ans-2021-2148_ref_003 doi: 10.1007/BF01244896 – ident: 2023033117171779742_j_ans-2021-2148_ref_021 doi: 10.1080/03605308108820196 – ident: 2023033117171779742_j_ans-2021-2148_ref_040 doi: 10.1002/cpa.20153 – ident: 2023033117171779742_j_ans-2021-2148_ref_022 doi: 10.1002/cpa.3160340406 – ident: 2023033117171779742_j_ans-2021-2148_ref_025 doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W – ident: 2023033117171779742_j_ans-2021-2148_ref_017 doi: 10.1016/j.aim.2014.02.034 – ident: 2023033117171779742_j_ans-2021-2148_ref_029 doi: 10.1016/s0294-1449(16)30358-4 – ident: 2023033117171779742_j_ans-2021-2148_ref_015 doi: 10.1215/S0012-7094-91-06325-8 – ident: 2023033117171779742_j_ans-2021-2148_ref_028 doi: 10.3934/dcds.2014.34.2581 – ident: 2023033117171779742_j_ans-2021-2148_ref_001 – ident: 2023033117171779742_j_ans-2021-2148_ref_024 – ident: 2023033117171779742_j_ans-2021-2148_ref_006 doi: 10.1142/9789812709257_0003 – ident: 2023033117171779742_j_ans-2021-2148_ref_038 doi: 10.1215/00127094-2020-0096 |
SSID | ssj0000492455 |
Score | 2.4321952 |
Snippet | In this paper, we establish several Liouville type theorems for entire solutions to fractional parabolic equations. We first obtain the key ingredients needed... |
SourceID | doaj crossref walterdegruyter |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 939 |
SubjectTerms | 35B53 35K58 35R11 Entire Solutions Fractional Parabolic Equations Liouville Type Theorems Maximum Principle for Antisymmetric Functions Monotonicity Narrow Region Principles Nonexistence of Solutions |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJ3soPrG-yEE8GZps9pE9qrQUUfFgobew2Z1Ipbbapor_3tlNWoooXjyEQNiw4Zsd5hsm8w0hZxqNDKlKQw7oTcjA0eeEkSFYk4iEFqkSrt_57l70B-xmyIdro77cP2GVPHAFXEfwnKVCG6shZqBSzeNCcl1wyqnhuRfbjlS0lkw9V7yXMj_yFD3aCe0JXgtsYvzuYBDA00HjkMZu7s9aQPK6_U3S-vC1agtPs8VnuayN-pDT2yKtmisGl9U3bpMNmOyQ5pqC4C7ht6Pp4t318wW-yx5e5gHS0KA3qxoW8PUHPUNDj0cm6L5Vut7zPTLodR-v-2E9CSE0iWJlaPJUpMZaqrSAIjZKauQtVrpaVKyN4SBjoImVHKiMLWYxlgmAyHDL8gL9bJ80JtMJHJBAWI6ULQJRcMbwlke04Fa6wE1zq2WbXCzhyEwtE-6mVYwzly4gehmilzn0Modem5yvlr9W-hi_Lbxy2K4WOVlr_wCNndXGzv4ydpuwb5bJapeb_7wrXipRh_-x9xHZ9GfG9yEek0Y5W8AJEpIyP_Vn7wtQL9s7 priority: 102 providerName: Directory of Open Access Journals |
Title | Liouville Theorems for Fractional Parabolic Equations |
URI | https://www.degruyter.com/doi/10.1515/ans-2021-2148 https://doaj.org/article/65b486acdae14e98a51f75af5252c5b6 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9swED4xeBkPaIOhdRtVHtCeCDSOz04epgkQpUIMJm2VeIsc-4KYunak7Tb-PWcnZQzY2x6iSJETS9_54u90vu8Atg0bmbI8i5HYm5iBs88pq2NyNlWpqLJc-XrnT2dqMJQnF3jxR1KoBXD6ZGjn-0kN69Hu7-ubj-zwH0L3ngT3-J_OxhZJLJjbP4OVkCryp_hapv-tIcJChh6o7OJeeU9hq7j56At_7VBByH8V1n6F5LWjy3p-M1skS8Me1H8Bay15jPYba7-EJRqvw-o9ScENwNOryfynL_CLQtk9fZ9GzEujft1UMPDrn03Nlh9d2ejouhH6nr6CYf_o6-EgblsjxDbN5Sy2ZaYy65zIjaIqsbk2TGSc9smpxFiLpBMSqdNIQieOwxonFVHPopNlxY63CcvjyZheQ6QcMofrkapQSr6VPVGh034nF6UzugM7CzgK2-qG-_YVo8LHD4xewegVHr3Co9eB93fDfzSCGf8aeOCxvRvkda7Dg0l9WbRuUygsZaaMdYYSSXlmMKk0mgoFCoul6oB8YJlisYSenpWvPM3f_I-538LzsGZCYeI7WJ7Vc9pihjIru7CyPzj-ct4NEX43rMRb5tXkjQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOBQOiEcRS0vJAXFqtBvHj-QIFdsFFqhUkHqzHHsCSMsuZLOt-u8ZJyGiUC4cokjROLFmPJlvbM9ngD1DRsYkTUKB5E2EwMnnpFUhOhvLmOVJKn2989m5HFzxk1_iaTfhtNlW6fC6mP0ta4bUrpvYmZ8oa7kGKAJ36TdO9mVRyAjOd2_Ku9E8LMpEcsq_Fg8G339etBMtBIEZr04_Jef2nHtSNFybr170T2yqKPyXYeVPtWzd9ulZ9OmvwkoDG4OD2s5rMIfjdVh-Ria4AWJ4O5n99qV9QVVwj3fTgBBp0C_q2gVq_sMUZPPRrQ2OHmqK7-lHuOofXX4bhM2hCKGNU16GNktkYp1jqZGYRzZVhiCMU35ZKjLWClQRstgpgUxFjhIaxyVizwrHs5xcbhMWxpMxbkEgnSD01kOZC87plvVYLpzyMZxlzqgOfH1Sh7YNY7g_uGKkfeZA2tOkPe21p732OrDfit_XVBlvCR563bZCnuG6ejAprnXjMFqKjCfSWGcw4pgmRkS5EiYXTDArMtkB_sIyuvG-6f-_Slcap9vva7YLHwaXZ0M9PD4__QRL1YipChI_w0JZzHCHkEmZfWnG3iMvL911 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC58gOhB1hc7q6s5iCfDTDr9SI666zi-BRW8NZ3uigjujJuZcdl_b3USw_i6eAiBUJ2EeqS-7k59BbBtyMiYpEkokKKJEDjFnLQqRGdjGbM8SaWvdz47l70bfnwrbieq-P1vlQ7vivH_UcWQ2nYDO_YLZQ3XAGXgNn3Gyb4sChnB-fajy6dhVspEkqfP7vUOry6adRZCwIyXzU8ptj3lnhQ11ea7-7xKTSWD_wIs_it3rZtXmkg-3W-wWKPGYK8y8xJMYX8ZFia4BFdAnN4Pxk--si8o6-3xzzAgQBp0i6p0gYZfmoJM_nBvg4O_FcP3cBVuugfXv3ph3RMhtHHKR6HNEplY51hqJOaRTZUhBOOU35WKjLUCVYQsdkogU5Gj-YzjErFjheNZThG3BjP9QR-_QyCdIPDWQZkLzumUdVgunPIpnGXOqBbsvqhD25ow3PeteNB-4kDa06Q97bWnvfZasNOIP1ZMGZ8J7nvdNkKe4Lq8MCjudB0vWoqMJ9JYZzDimCZGRLkSJhdMMCsy2QL-xjK6Dr7hx0-lI43TH18btgVzl7-7-vTo_GQd5kuHKcsRN2BmVIzxJ-GSUbZZu94z6X7cmw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liouville+Theorems+for+Fractional+Parabolic+Equations&rft.jtitle=Advanced+nonlinear+studies&rft.au=Chen+Wenxiong&rft.au=Wu+Leyun&rft.date=2021-11-01&rft.pub=De+Gruyter&rft.issn=1536-1365&rft.eissn=2169-0375&rft.volume=21&rft.issue=4&rft.spage=939&rft.epage=958&rft_id=info:doi/10.1515%2Fans-2021-2148&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_65b486acdae14e98a51f75af5252c5b6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1365&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1365&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1365&client=summon |